// SMESH SMESH_I : idl implementation based on 'SMESH' unit's calsses // // Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // // // File : SMESH_2D_Algo_i.hxx // Author : Paul RASCLE, EDF // Module : SMESH // $Header$ // File : SMESH_2smeshpy.cxx // Created : Fri Nov 18 13:20:10 2005 // Author : Edward AGAPOV (eap) #include "SMESH_2smeshpy.hxx" #include "SMESH_Gen_i.hxx" #include "utilities.h" #include "SMESH_PythonDump.hxx" #include "Resource_DataMapOfAsciiStringAsciiString.hxx" IMPLEMENT_STANDARD_HANDLE (_pyObject ,Standard_Transient); IMPLEMENT_STANDARD_HANDLE (_pyCommand ,Standard_Transient); IMPLEMENT_STANDARD_HANDLE (_pyGen ,_pyObject); IMPLEMENT_STANDARD_HANDLE (_pyMesh ,_pyObject); IMPLEMENT_STANDARD_HANDLE (_pyHypothesis ,_pyObject); IMPLEMENT_STANDARD_HANDLE (_pyAlgorithm ,_pyHypothesis); IMPLEMENT_STANDARD_HANDLE (_pyComplexParamHypo,_pyHypothesis); IMPLEMENT_STANDARD_HANDLE (_pyNumberOfSegmentsHyp,_pyHypothesis); IMPLEMENT_STANDARD_RTTIEXT(_pyObject ,Standard_Transient); IMPLEMENT_STANDARD_RTTIEXT(_pyCommand ,Standard_Transient); IMPLEMENT_STANDARD_RTTIEXT(_pyGen ,_pyObject); IMPLEMENT_STANDARD_RTTIEXT(_pyMesh ,_pyObject); IMPLEMENT_STANDARD_RTTIEXT(_pyHypothesis ,_pyObject); IMPLEMENT_STANDARD_RTTIEXT(_pyAlgorithm ,_pyHypothesis); IMPLEMENT_STANDARD_RTTIEXT(_pyComplexParamHypo,_pyHypothesis); IMPLEMENT_STANDARD_RTTIEXT(_pyNumberOfSegmentsHyp,_pyHypothesis); IMPLEMENT_STANDARD_RTTIEXT(_pyLayerDistributionHypo,_pyHypothesis); using namespace std; using SMESH::TPythonDump; /*! * \brief Container of commands into which the initial script is split. * It also contains data coresponding to SMESH_Gen contents */ static Handle(_pyGen) theGen; static TCollection_AsciiString theEmptyString; //#define DUMP_CONVERSION #if !defined(_DEBUG_) && defined(DUMP_CONVERSION) #undef DUMP_CONVERSION #endif //================================================================================ /*! * \brief Convert python script using commands of smesh.py * \param theScript - Input script * \retval TCollection_AsciiString - Convertion result */ //================================================================================ TCollection_AsciiString SMESH_2smeshpy::ConvertScript(const TCollection_AsciiString& theScript, Resource_DataMapOfAsciiStringAsciiString& theEntry2AccessorMethod) { theGen = new _pyGen( theEntry2AccessorMethod ); // split theScript into separate commands int from = 1, end = theScript.Length(), to; while ( from < end && ( to = theScript.Location( "\n", from, end ))) { if ( to != from ) // cut out and store a command theGen->AddCommand( theScript.SubString( from, to - 1 )); from = to + 1; } // finish conversion theGen->Flush(); #ifdef DUMP_CONVERSION cout << endl << " ######## RESULT ######## " << endl<< endl; #endif // reorder commands after conversion list< Handle(_pyCommand) >::iterator cmd; bool orderChanges; do { orderChanges = false; for ( cmd = theGen->GetCommands().begin(); cmd != theGen->GetCommands().end(); ++cmd ) if ( (*cmd)->SetDependentCmdsAfter() ) orderChanges = true; } while ( orderChanges ); // concat commands back into a script TCollection_AsciiString aScript; for ( cmd = theGen->GetCommands().begin(); cmd != theGen->GetCommands().end(); ++cmd ) { #ifdef DUMP_CONVERSION cout << "## COM " << (*cmd)->GetOrderNb() << ": "<< (*cmd)->GetString() << endl; #endif if ( !(*cmd)->IsEmpty() ) { aScript += "\n"; aScript += (*cmd)->GetString(); } } aScript += "\n"; theGen.Nullify(); return aScript; } //================================================================================ /*! * \brief _pyGen constructor */ //================================================================================ _pyGen::_pyGen(Resource_DataMapOfAsciiStringAsciiString& theEntry2AccessorMethod) : _pyObject( new _pyCommand( TPythonDump::SMESHGenName(), 0 )), myID2AccessorMethod( theEntry2AccessorMethod ) { myNbCommands = 0; myHasPattern = false; // make that GetID() to return TPythonDump::SMESHGenName() GetCreationCmd()->GetString() += "="; } //================================================================================ /*! * \brief Convert a command using a specific converter * \param theCommand - the command to convert */ //================================================================================ void _pyGen::AddCommand( const TCollection_AsciiString& theCommand) { // store theCommand in the sequence myCommands.push_back( new _pyCommand( theCommand, ++myNbCommands )); Handle(_pyCommand) aCommand = myCommands.back(); #ifdef DUMP_CONVERSION cout << "## COM " << myNbCommands << ": "<< aCommand->GetString() << endl; #endif _pyID objID = aCommand->GetObject(); if ( objID.IsEmpty() ) return; // SMESH_Gen method? if ( objID == this->GetID() ) { this->Process( aCommand ); return; } // SMESH_Mesh method? map< _pyID, Handle(_pyMesh) >::iterator id_mesh = myMeshes.find( objID ); if ( id_mesh != myMeshes.end() ) { id_mesh->second->Process( aCommand ); return; } // SMESH_Hypothesis method? list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin(); for ( ; hyp != myHypos.end(); ++hyp ) if ( !(*hyp)->IsAlgo() && objID == (*hyp)->GetID() ) { (*hyp)->Process( aCommand ); return; } // Add access to a wrapped mesh for ( id_mesh = myMeshes.begin(); id_mesh != myMeshes.end(); ++id_mesh ) { if ( aCommand->AddAccessorMethod( id_mesh->first, id_mesh->second->AccessorMethod() )) break; } // Add access to a wrapped algorithm for ( hyp = myHypos.begin(); hyp != myHypos.end(); ++hyp ) { if ( (*hyp)->IsAlgo() && aCommand->AddAccessorMethod( (*hyp)->GetID(), (*hyp)->AccessorMethod() )) break; } // PAL12227. PythonDump was not updated at proper time; result is // aCriteria.append(SMESH.Filter.Criterion(17,26,0,'L1',26,25,1e-07,SMESH.EDGE,-1)) // TypeError: __init__() takes exactly 11 arguments (10 given) char wrongCommand[] = "SMESH.Filter.Criterion("; if ( int beg = theCommand.Location( wrongCommand, 1, theCommand.Length() )) { _pyCommand tmpCmd( theCommand.SubString( beg, theCommand.Length() ), -1); // there must be 10 arguments, 5-th arg ThresholdID is missing, const int wrongNbArgs = 9, missingArg = 5; if ( tmpCmd.GetNbArgs() == wrongNbArgs ) { for ( int i = wrongNbArgs; i > missingArg; --i ) tmpCmd.SetArg( i + 1, tmpCmd.GetArg( i )); tmpCmd.SetArg( missingArg, "''"); aCommand->GetString().Trunc( beg - 1 ); aCommand->GetString() += tmpCmd.GetString(); } } } //================================================================================ /*! * \brief Convert the command or remember it for later conversion * \param theCommand - The python command calling a method of SMESH_Gen */ //================================================================================ void _pyGen::Process( const Handle(_pyCommand)& theCommand ) { // there are methods to convert: // CreateMesh( shape ) // CreateHypothesis( theHypType, theLibName ) // Compute( mesh, geom ) if ( theCommand->GetMethod() == "CreateMesh" ) { Handle(_pyMesh) mesh = new _pyMesh( theCommand ); myMeshes.insert( make_pair( mesh->GetID(), mesh )); return; } // CreateHypothesis() if ( theCommand->GetMethod() == "CreateHypothesis" ) { myHypos.push_back( _pyHypothesis::NewHypothesis( theCommand )); return; } // smeshgen.Compute( mesh, geom ) --> mesh.Compute() if ( theCommand->GetMethod() == "Compute" ) { const _pyID& meshID = theCommand->GetArg( 1 ); map< _pyID, Handle(_pyMesh) >::iterator id_mesh = myMeshes.find( meshID ); if ( id_mesh != myMeshes.end() ) { theCommand->SetObject( meshID ); theCommand->RemoveArgs(); id_mesh->second->Flush(); return; } } // leave only one smeshgen.GetPattern() in the script if ( theCommand->GetMethod() == "GetPattern" ) { if ( myHasPattern ) { theCommand->Clear(); return; } myHasPattern = true; } // smeshgen.Method() --> smesh.smesh.Method() theCommand->SetObject( SMESH_2smeshpy::GenName() ); } //================================================================================ /*! * \brief Convert the remembered commands */ //================================================================================ void _pyGen::Flush() { map< _pyID, Handle(_pyMesh) >::iterator id_mesh = myMeshes.begin(); for ( ; id_mesh != myMeshes.end(); ++id_mesh ) if ( ! id_mesh->second.IsNull() ) id_mesh->second->Flush(); list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin(); for ( ; hyp != myHypos.end(); ++hyp ) if ( !hyp->IsNull() ) { (*hyp)->Flush(); // smeshgen.CreateHypothesis() --> smesh.smesh.CreateHypothesis() if ( !(*hyp)->IsWrapped() ) (*hyp)->GetCreationCmd()->SetObject( SMESH_2smeshpy::GenName() ); } } //================================================================================ /*! * \brief Find hypothesis by ID (entry) * \param theHypID - The hypothesis ID * \retval Handle(_pyHypothesis) - The found hypothesis */ //================================================================================ Handle(_pyHypothesis) _pyGen::FindHyp( const _pyID& theHypID ) { list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin(); for ( ; hyp != myHypos.end(); ++hyp ) if ( !hyp->IsNull() && theHypID == (*hyp)->GetID() ) return *hyp; return Handle(_pyHypothesis)(); } //================================================================================ /*! * \brief Find algorithm the created algorithm * \param theGeom - The shape ID the algorithm was created on * \param theMesh - The mesh ID that created the algorithm * \param dim - The algo dimension * \retval Handle(_pyHypothesis) - The found algo */ //================================================================================ Handle(_pyHypothesis) _pyGen::FindAlgo( const _pyID& theGeom, const _pyID& theMesh, const TCollection_AsciiString& theAlgoType ) { list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin(); for ( ; hyp != myHypos.end(); ++hyp ) if ( !hyp->IsNull() && (*hyp)->IsAlgo() && (*hyp)->GetType() == theAlgoType && (*hyp)->GetGeom() == theGeom && (*hyp)->GetMesh() == theMesh ) return *hyp; return 0; } //================================================================================ /*! * \brief Change order of commands in the script * \param theCmd1 - One command * \param theCmd2 - Another command */ //================================================================================ void _pyGen::ExchangeCommands( Handle(_pyCommand) theCmd1, Handle(_pyCommand) theCmd2 ) { list< Handle(_pyCommand) >::iterator pos1, pos2; pos1 = find( myCommands.begin(), myCommands.end(), theCmd1 ); pos2 = find( myCommands.begin(), myCommands.end(), theCmd2 ); myCommands.insert( pos1, theCmd2 ); myCommands.insert( pos2, theCmd1 ); myCommands.erase( pos1 ); myCommands.erase( pos2 ); int nb1 = theCmd1->GetOrderNb(); theCmd1->SetOrderNb( theCmd2->GetOrderNb() ); theCmd2->SetOrderNb( nb1 ); // cout << "BECOME " << theCmd1->GetOrderNb() << "\t" << theCmd1->GetString() << endl // << "BECOME " << theCmd2->GetOrderNb() << "\t" << theCmd2->GetString() << endl << endl; } //================================================================================ /*! * \brief Set one command after the other * \param theCmd - Command to move * \param theAfterCmd - Command ater which to insert the first one */ //================================================================================ void _pyGen::SetCommandAfter( Handle(_pyCommand) theCmd, Handle(_pyCommand) theAfterCmd ) { // cout << "SET\t" << theCmd->GetString() << endl << "AFTER\t" << theAfterCmd->GetString() << endl << endl; list< Handle(_pyCommand) >::iterator pos; pos = find( myCommands.begin(), myCommands.end(), theCmd ); myCommands.erase( pos ); pos = find( myCommands.begin(), myCommands.end(), theAfterCmd ); myCommands.insert( ++pos, theCmd ); int i = 1; for ( pos = myCommands.begin(); pos != myCommands.end(); ++pos) (*pos)->SetOrderNb( i++ ); } //================================================================================ /*! * \brief Set method to access to object wrapped with python class * \param theID - The wrapped object entry * \param theMethod - The accessor method */ //================================================================================ void _pyGen::SetAccessorMethod(const _pyID& theID, const char* theMethod ) { myID2AccessorMethod.Bind( theID, (char*) theMethod ); } //================================================================================ /*! * \brief Find out type of geom group * \param grpID - The geom group entry * \retval int - The type */ //================================================================================ static bool sameGroupType( const _pyID& grpID, const TCollection_AsciiString& theType) { // define group type as smesh.Mesh.Group() does int type = -1; SALOMEDS::Study_var study = SMESH_Gen_i::GetSMESHGen()->GetCurrentStudy(); SALOMEDS::SObject_var aSObj = study->FindObjectID( grpID.ToCString() ); if ( !aSObj->_is_nil() ) { GEOM::GEOM_Object_var aGeomObj = GEOM::GEOM_Object::_narrow( aSObj->GetObject() ); if ( !aGeomObj->_is_nil() ) { switch ( aGeomObj->GetShapeType() ) { case GEOM::VERTEX: type = SMESH::NODE; break; case GEOM::EDGE: type = SMESH::EDGE; break; case GEOM::FACE: type = SMESH::FACE; break; case GEOM::SOLID: case GEOM::SHELL: type = SMESH::VOLUME; break; case GEOM::COMPOUND: { GEOM::GEOM_Gen_var aGeomGen = SMESH_Gen_i::GetSMESHGen()->GetGeomEngine(); if ( !aGeomGen->_is_nil() ) { GEOM::GEOM_IGroupOperations_var aGrpOp = aGeomGen->GetIGroupOperations( study->StudyId() ); if ( !aGrpOp->_is_nil() ) { switch ( aGrpOp->GetType( aGeomObj )) { case TopAbs_VERTEX: type = SMESH::NODE; break; case TopAbs_EDGE: type = SMESH::EDGE; break; case TopAbs_FACE: type = SMESH::FACE; break; case TopAbs_SOLID: type = SMESH::VOLUME; break; default:; } } } } default:; } } } if ( type < 0 ) { MESSAGE("Type of the group " << grpID << " not found"); return false; } if ( theType.IsIntegerValue() ) return type == theType.IntegerValue(); switch ( type ) { case SMESH::NODE: return theType.Location( "NODE", 1, theType.Length() ); case SMESH::EDGE: return theType.Location( "EDGE", 1, theType.Length() ); case SMESH::FACE: return theType.Location( "FACE", 1, theType.Length() ); case SMESH::VOLUME: return theType.Location( "VOLUME", 1, theType.Length() ); default:; } return false; } //================================================================================ /*! * \brief * \param theCreationCmd - */ //================================================================================ _pyMesh::_pyMesh(const Handle(_pyCommand) theCreationCmd): _pyObject(theCreationCmd), myHasEditor(false) { // convert my creation command Handle(_pyCommand) creationCmd = GetCreationCmd(); creationCmd->SetObject( SMESH_2smeshpy::SmeshpyName() ); creationCmd->SetMethod( "Mesh" ); theGen->SetAccessorMethod( GetID(), "GetMesh()" ); } //================================================================================ /*! * \brief Convert a IDL API command of SMESH::Mesh to a method call of python Mesh * \param theCommand - Engine method called for this mesh */ //================================================================================ void _pyMesh::Process( const Handle(_pyCommand)& theCommand ) { // smesh.py wraps the following methods: // // 1. GetSubMesh(geom, name) + AddHypothesis(geom, algo) // --> in Mesh_Algorithm.Create(mesh, geom, hypo, so) // 2. AddHypothesis(geom, hyp) // --> in Mesh_Algorithm.Hypothesis(hyp, args, so) // 3. CreateGroupFromGEOM(type, name, grp) // --> in Mesh.Group(grp, name="") // 4. ExportToMED(f, opt, version) // --> in Mesh.ExportToMED( f, version, opt=0 ) // 5. ExportMED(f, opt) // --> in Mesh.ExportMED( f,opt=0 ) // 6. ExportDAT(f) // --> in Mesh.ExportDAT( f ) // 7. ExportUNV(f) // --> in Mesh.ExportUNV(f) // 8. ExportSTL(f, ascii) // --> in Mesh.ExportSTL(f, ascii=1) const TCollection_AsciiString method = theCommand->GetMethod(); if ( method == "GetSubMesh" ) { mySubmeshes.push_back( theCommand ); } else if ( method == "AddHypothesis" ) { // mesh.AddHypothesis(geom, HYPO ) myAddHypCmds.push_back( theCommand ); // set mesh to hypo const _pyID& hypID = theCommand->GetArg( 2 ); Handle(_pyHypothesis) hyp = theGen->FindHyp( hypID ); if ( !hyp.IsNull() ) { myHypos.push_back( hyp ); if ( hyp->GetMesh().IsEmpty() ) hyp->SetMesh( this->GetID() ); } } else if ( method == "CreateGroupFromGEOM" ) {// (type, name, grp) _pyID grp = theCommand->GetArg( 3 ); if ( sameGroupType( grp, theCommand->GetArg( 1 )) ) { // --> Group(grp) theCommand->SetMethod( "Group" ); theCommand->RemoveArgs(); theCommand->SetArg( 1, grp ); } else { AddMeshAccess( theCommand ); } } else if ( method == "ExportToMED" ) {//(f, opt, version) // --> (f, version, opt) _pyID opt = theCommand->GetArg( 2 ); _pyID ver = theCommand->GetArg( 3 ); theCommand->SetArg( 2, ver ); theCommand->SetArg( 3, opt ); } else if ( method == "RemoveHypothesis" ) // (geom, hyp) { const _pyID & hypID = theCommand->GetArg( 2 ); // check if this mesh still has corresponding addition command bool hasAddCmd = false; list< Handle(_pyCommand) >::iterator cmd = myAddHypCmds.begin(); while ( cmd != myAddHypCmds.end() ) { // AddHypothesis(geom, hyp) if ( hypID == (*cmd)->GetArg( 2 )) { // erase both (add and remove) commands theCommand->Clear(); (*cmd)->Clear(); cmd = myAddHypCmds.erase( cmd ); hasAddCmd = true; } else { ++cmd; } } Handle(_pyHypothesis) hyp = theGen->FindHyp( hypID ); if ( ! hasAddCmd ) { // hypo addition already wrapped // access to wrapped mesh AddMeshAccess( theCommand ); // access to wrapped algo if ( !hyp.IsNull() && hyp->IsAlgo() && hyp->IsWrapped() ) theCommand->SetArg( 2, theCommand->GetArg( 2 ) + ".GetAlgorithm()" ); } // remove hyp from myHypos myHypos.remove( hyp ); } // leave only one " mesh_editor_ = mesh.GetMeshEditor()" else if ( theCommand->GetMethod() == "GetMeshEditor") { if ( myHasEditor ) theCommand->Clear(); else AddMeshAccess( theCommand ); myHasEditor = true; } // apply theCommand to the mesh wrapped by smeshpy mesh else { AddMeshAccess( theCommand ); } } //================================================================================ /*! * \brief Convert creation and addition of all algos and hypos */ //================================================================================ void _pyMesh::Flush() { list < Handle(_pyCommand) >::iterator cmd, cmd2; // try to convert algo addition like this: // mesh.AddHypothesis(geom, ALGO ) --> ALGO = mesh.Algo() for ( cmd = myAddHypCmds.begin(); cmd != myAddHypCmds.end(); ++cmd ) { Handle(_pyCommand) addCmd = *cmd; const _pyID& algoID = addCmd->GetArg( 2 ); Handle(_pyHypothesis) algo = theGen->FindHyp( algoID ); if ( algo.IsNull() || !algo->IsAlgo() ) continue; // try to convert _pyID geom = addCmd->GetArg( 1 ); if ( algo->Addition2Creation( addCmd, this->GetID() )) // OK { // wrapped algo is created atfer mesh creation GetCreationCmd()->AddDependantCmd( addCmd ); if ( geom != GetGeom() ) // local algo { // mesh.AddHypothesis(geom, ALGO ) --> mesh.AlgoMethod(geom) addCmd->SetArg( addCmd->GetNbArgs() + 1, TCollection_AsciiString( "geom=" ) + geom ); // sm = mesh.GetSubMesh(geom, name) --> sm = ALGO.GetSubMesh() for ( cmd2 = mySubmeshes.begin(); cmd2 != mySubmeshes.end(); ++cmd2 ) { Handle(_pyCommand) subCmd = *cmd2; if ( geom == subCmd->GetArg( 1 )) { subCmd->SetObject( algo->GetID() ); subCmd->RemoveArgs(); addCmd->AddDependantCmd( subCmd ); } } } } else // ALGO was already created { // mesh.AddHypothesis(geom, ALGO ) --> mesh.GetMesh().AddHypothesis(geom, ALGO ) AddMeshAccess( addCmd ); // mesh.GetMesh().AddHypothesis(geom, ALGO ) -> // mesh.GetMesh().AddHypothesis(geom, ALGO.GetAlgorithm() ) addCmd->SetArg( 2, addCmd->GetArg( 2 ) + ".GetAlgorithm()" ); } } // try to convert hypo addition like this: // mesh.AddHypothesis(geom, HYPO ) --> HYPO = algo.Hypo() for ( cmd = myAddHypCmds.begin(); cmd != myAddHypCmds.end(); ++cmd ) { Handle(_pyCommand) addCmd = *cmd; const _pyID& hypID = addCmd->GetArg( 2 ); Handle(_pyHypothesis) hyp = theGen->FindHyp( hypID ); if ( hyp.IsNull() || hyp->IsAlgo() ) continue; const _pyID& geom = addCmd->GetArg( 1 ); // find algo created on for this mesh Handle(_pyHypothesis) algo = theGen->FindAlgo( geom, this->GetID(), hyp->GetType() ); //_pyID algoID = algo.IsNull() ? "" : algo->GetID(); if ( !algo.IsNull() && hyp->Addition2Creation( addCmd, this->GetID() )) // OK { addCmd->SetObject( algo->GetID() ); algo->GetCreationCmd()->AddDependantCmd( addCmd ); } else { AddMeshAccess( addCmd ); } } // sm = mesh.GetSubMesh(geom, name) --> sm = mesh.GetMesh().GetSubMesh(geom, name) for ( cmd = mySubmeshes.begin(); cmd != mySubmeshes.end(); ++cmd ) { Handle(_pyCommand) subCmd = *cmd; if ( subCmd->GetNbArgs() > 0 ) AddMeshAccess( subCmd ); } myAddHypCmds.clear(); mySubmeshes.clear(); // flush hypotheses list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin(); for ( ; hyp != myHypos.end(); ++hyp ) (*hyp)->Flush(); } //================================================================================ /*! * \brief _pyHypothesis constructor * \param theCreationCmd - */ //================================================================================ _pyHypothesis::_pyHypothesis(const Handle(_pyCommand)& theCreationCmd): _pyObject( theCreationCmd ) { myDim = myIsAlgo = /*myIsLocal = */myIsWrapped = myIsConverted = false; } //================================================================================ /*! * \brief Creates algorithm or hypothesis * \param theCreationCmd - The engine command creating a hypothesis * \retval Handle(_pyHypothesis) - Result _pyHypothesis */ //================================================================================ Handle(_pyHypothesis) _pyHypothesis::NewHypothesis( const Handle(_pyCommand)& theCreationCmd) { // theCreationCmd: CreateHypothesis( "theHypType", "theLibName" ) ASSERT (( theCreationCmd->GetMethod() == "CreateHypothesis")); Handle(_pyHypothesis) hyp, algo; // "theHypType" const TCollection_AsciiString & hypTypeQuoted = theCreationCmd->GetArg( 1 ); if ( hypTypeQuoted.IsEmpty() ) return hyp; // theHypType TCollection_AsciiString hypType = hypTypeQuoted.SubString( 2, hypTypeQuoted.Length() - 1 ); algo = new _pyAlgorithm( theCreationCmd ); hyp = new _pyHypothesis( theCreationCmd ); // 1D Regular_1D ---------- if ( hypType == "Regular_1D" ) { algo->SetDimMethodType( 1, "Segment"); } else if ( hypType == "LocalLength" ) { hyp->SetDimMethodType( 1, "LocalLength", "Regular_1D"); hyp->AddArgMethod( "SetLength" ); } else if ( hypType == "NumberOfSegments" ) { hyp = new _pyNumberOfSegmentsHyp( theCreationCmd ); hyp->SetDimMethodType( 1, "NumberOfSegments", "Regular_1D"); hyp->AddArgMethod( "SetNumberOfSegments" ); hyp->AddArgMethod( "SetScaleFactor" ); } else if ( hypType == "Arithmetic1D" ) { hyp = new _pyComplexParamHypo( theCreationCmd ); hyp->SetDimMethodType( 1, "Arithmetic1D", "Regular_1D"); } else if ( hypType == "StartEndLength" ) { hyp = new _pyComplexParamHypo( theCreationCmd ); hyp->SetDimMethodType( 1, "StartEndLength", "Regular_1D"); } else if ( hypType == "Deflection1D" ) { hyp->SetDimMethodType( 1, "Deflection1D", "Regular_1D"); hyp->AddArgMethod( "SetDeflection" ); } else if ( hypType == "Propagation" ) { hyp->SetDimMethodType( 1, "Propagation", "Regular_1D"); } else if ( hypType == "QuadraticMesh" ) { hyp->SetDimMethodType( 1, "QuadraticMesh", "Regular_1D"); } else if ( hypType == "AutomaticLength" ) { hyp->SetDimMethodType( 1, "AutomaticLength", "Regular_1D"); hyp->AddArgMethod( "SetFineness"); } // 1D Python_1D ---------- else if ( hypType == "Python_1D" ) { algo->SetDimMethodType( 1, "Segment"); algo->myArgs.Append( "algo=smesh.PYTHON"); } else if ( hypType == "PythonSplit1D" ) { hyp->SetDimMethodType( 1, "PythonSplit1D", "Python_1D"); hyp->AddArgMethod( "SetNumberOfSegments"); hyp->AddArgMethod( "SetPythonLog10RatioFunction"); } // 2D ---------- else if ( hypType == "MEFISTO_2D" ) { algo->SetDimMethodType( 2, "Triangle"); } else if ( hypType == "MaxElementArea" ) { hyp->SetDimMethodType( 2, "MaxElementArea", "MEFISTO_2D"); hyp->AddArgMethod( "SetMaxElementArea"); } else if ( hypType == "LengthFromEdges" ) { hyp->SetDimMethodType( 2, "LengthFromEdges", "MEFISTO_2D"); } else if ( hypType == "Quadrangle_2D" ) { algo->SetDimMethodType( 2, "Quadrangle" ); } else if ( hypType == "QuadranglePreference" ) { hyp->SetDimMethodType( 2, "QuadranglePreference", "Quadrangle_2D"); } // 3D ---------- else if ( hypType == "NETGEN_3D") { algo->SetDimMethodType( 3, "Tetrahedron" ); algo->myArgs.Append( "algo=smesh.NETGEN" ); } else if ( hypType == "MaxElementVolume") { hyp->SetDimMethodType( 3, "MaxElementVolume", "NETGEN_3D"); hyp->AddArgMethod( "SetMaxElementVolume" ); } else if ( hypType == "GHS3D_3D" ) { algo->SetDimMethodType( 3, "Tetrahedron"); algo->myArgs.Append( "algo=smesh.GHS3D" ); } else if ( hypType == "Hexa_3D" ) { algo->SetDimMethodType( 3, "Hexahedron"); } // Repetitive --------- else if ( hypType == "Projection_1D" ) { algo->SetDimMethodType( 1, "Projection1D"); } else if ( hypType == "ProjectionSource1D" ) { hyp->SetDimMethodType( 1, "SourceEdge", "Projection_1D"); hyp->AddArgMethod( "SetSourceEdge"); hyp->AddArgMethod( "SetSourceMesh"); hyp->AddArgMethod( "SetVertexAssociation", 2 ); } else if ( hypType == "Projection_2D" ) { algo->SetDimMethodType( 2, "Projection2D"); } else if ( hypType == "ProjectionSource2D" ) { hyp->SetDimMethodType( 2, "SourceFace", "Projection_2D"); hyp->AddArgMethod( "SetSourceFace"); hyp->AddArgMethod( "SetSourceMesh"); hyp->AddArgMethod( "SetVertexAssociation", 4 ); } else if ( hypType == "Projection_3D" ) { algo->SetDimMethodType( 3, "Projection3D"); } else if ( hypType == "ProjectionSource3D" ) { hyp->SetDimMethodType( 3, "SourceShape3D", "Projection_3D"); hyp->AddArgMethod( "SetSource3DShape"); hyp->AddArgMethod( "SetSourceMesh"); hyp->AddArgMethod( "SetVertexAssociation", 4 ); } else if ( hypType == "Prism_3D" ) { algo->SetDimMethodType( 3, "Prism"); } else if ( hypType == "RadialPrism_3D" ) { algo->SetDimMethodType( 3, "Prism"); } else if ( hypType == "NumberOfLayers" ) { hyp->SetDimMethodType( 3, "NumberOfLayers", "RadialPrism_3D"); hyp->AddArgMethod( "SetNumberOfLayers" ); } else if ( hypType == "LayerDistribution" ) { hyp = new _pyLayerDistributionHypo( theCreationCmd ); hyp->SetDimMethodType( 3, "LayerDistribution", "RadialPrism_3D"); // hyp->AddArgMethod( "SetSource3DShape"); // hyp->AddArgMethod( "SetSourceMesh"); // hyp->AddArgMethod( "SetVertexAssociation", 4 ); } if ( algo->GetDim() ) { algo->myType = hypType; return algo; } return hyp; } //================================================================================ /*! * \brief Convert the command adding a hypothesis to mesh into a smesh command * \param theCmd - The command like mesh.AddHypothesis( geom, hypo ) * \param theAlgo - The algo that can create this hypo * \retval bool - false if the command cant be converted */ //================================================================================ bool _pyHypothesis::Addition2Creation( const Handle(_pyCommand)& theCmd, const _pyID& theMesh) { ASSERT(( theCmd->GetMethod() == "AddHypothesis" )); if ( !IsWrappable( theMesh )) return false; myIsWrapped = true; if ( myIsWrapped ) { // mesh.AddHypothesis(geom,hyp) --> hyp = theMesh.myCreationMethod(args) theCmd->SetResultValue( GetID() ); theCmd->SetObject( theMesh ); theCmd->SetMethod( myCreationMethod ); // set args theCmd->RemoveArgs(); for ( int i = 1; i <= myArgs.Length(); ++i ) { if ( !myArgs( i ).IsEmpty() ) theCmd->SetArg( i, myArgs( i )); else theCmd->SetArg( i, "[]"); } // set a new creation command GetCreationCmd()->Clear(); SetCreationCmd( theCmd ); // clear commands setting arg values list < Handle(_pyCommand) >::iterator argCmd = myArgCommands.begin(); for ( ; argCmd != myArgCommands.end(); ++argCmd ) (*argCmd)->Clear(); } else { // // set arg commands after hypo creation // list::iterator argCmd = myArgCommands.begin(); // for ( ; argCmd != myArgCommands.end(); ++argCmd ) // if ( !(*argCmd)->IsEmpty() && GetCommandNb() > (*argCmd)->GetOrderNb() ) // theGen->ExchangeCommands( GetCreationCmd(), *argCmd ); } // set unknown arg commands after hypo creation Handle(_pyCommand) afterCmd = myIsWrapped ? theCmd : GetCreationCmd(); list::iterator cmd = myUnknownCommands.begin(); for ( ; cmd != myUnknownCommands.end(); ++cmd ) { afterCmd->AddDependantCmd( *cmd ); } return myIsWrapped; } //================================================================================ /*! * \brief Remember hypothesis parameter values * \param theCommand - The called hypothesis method */ //================================================================================ void _pyHypothesis::Process( const Handle(_pyCommand)& theCommand) { ASSERT( !myIsAlgo ); // set args int nbArgs = 0; for ( int i = 1; i <= myArgMethods.Length(); ++i ) { if ( myArgMethods( i ) == theCommand->GetMethod() ) { while ( myArgs.Length() < nbArgs + myNbArgsByMethod( i )) myArgs.Append( "[]" ); for ( int iArg = 1; iArg <= myNbArgsByMethod( i ); ++iArg ) myArgs( nbArgs + iArg ) = theCommand->GetArg( iArg ); // arg value myArgCommands.push_back( theCommand ); return; } nbArgs += myNbArgsByMethod( i ); } myUnknownCommands.push_back( theCommand ); } //================================================================================ /*! * \brief Finish conversion */ //================================================================================ void _pyHypothesis::Flush() { if ( IsWrapped() ) { // forget previous hypothesis modifications myArgCommands.clear(); myUnknownCommands.clear(); } } //================================================================================ /*! * \brief clear creation, arg and unkown commands */ //================================================================================ void _pyHypothesis::ClearAllCommands() { GetCreationCmd()->Clear(); list::iterator cmd = myArgCommands.begin(); for ( ; cmd != myArgCommands.end(); ++cmd ) ( *cmd )->Clear(); cmd = myUnknownCommands.begin(); for ( ; cmd != myUnknownCommands.end(); ++cmd ) ( *cmd )->Clear(); } //================================================================================ /*! * \brief Remember hypothesis parameter values * \param theCommand - The called hypothesis method */ //================================================================================ void _pyComplexParamHypo::Process( const Handle(_pyCommand)& theCommand) { // ex: hyp.SetLength(start, 1) // hyp.SetLength(end, 0) ASSERT(( theCommand->GetMethod() == "SetLength" )); ASSERT(( theCommand->GetArg( 2 ).IsIntegerValue() )); int i = 2 - theCommand->GetArg( 2 ).IntegerValue(); while ( myArgs.Length() < i ) myArgs.Append( "[]" ); myArgs( i ) = theCommand->GetArg( 1 ); // arg value myArgCommands.push_back( theCommand ); } //================================================================================ /*! * \brief Convert methods of 1D hypotheses to my own methods * \param theCommand - The called hypothesis method */ //================================================================================ void _pyLayerDistributionHypo::Process( const Handle(_pyCommand)& theCommand) { if ( theCommand->GetMethod() != "SetLayerDistribution" ) return; _pyID newName; // name for 1D hyp = "HypType" + "_Distribution" const _pyID& hyp1dID = theCommand->GetArg( 1 ); Handle(_pyHypothesis) hyp1d = theGen->FindHyp( hyp1dID ); if ( hyp1d.IsNull() ) // apparently hypId changed at study restoration hyp1d = my1dHyp; else if ( !my1dHyp.IsNull() && hyp1dID != my1dHyp->GetID() ) { // 1D hypo is already set, so distribution changes and the old // 1D hypo is thrown away my1dHyp->ClearAllCommands(); } my1dHyp = hyp1d; if ( my1dHyp.IsNull() ) return; // something wrong :( // make a new name for 1D hyp = "HypType" + "_Distribution" if ( my1dHyp->GetCreationCmd()->GetMethod() == "CreateHypothesis" ) { // not yet converted creation cmd TCollection_AsciiString hypTypeQuoted = my1dHyp->GetCreationCmd()->GetArg(1); TCollection_AsciiString hypType = hypTypeQuoted.SubString( 2, hypTypeQuoted.Length() - 1 ); newName = hypType + "_Distribution"; my1dHyp->GetCreationCmd()->SetResultValue( newName ); } else { // already converted creation cmd newName = my1dHyp->GetCreationCmd()->GetResultValue(); } // as creation of 1D hyp was written later then it's edition, // we need to find all it's edition calls and process them list< Handle(_pyCommand) >& cmds = theGen->GetCommands(); list< Handle(_pyCommand) >::iterator cmdIt = cmds.begin(); for ( ; cmdIt != cmds.end(); ++cmdIt ) { const _pyID& objID = (*cmdIt)->GetObject(); if ( objID == hyp1dID ) { my1dHyp->Process( *cmdIt ); my1dHyp->GetCreationCmd()->AddDependantCmd( *cmdIt ); ( *cmdIt )->SetObject( newName ); } } if ( !myArgCommands.empty() ) myArgCommands.front()->Clear(); theCommand->SetArg( 1, newName ); myArgCommands.push_back( theCommand ); // copy hyp1d's creation method and args // myCreationMethod = hyp1d->GetCreationMethod(); // myArgs = hyp1d->GetArgs(); // // make them cleared at conversion // myArgCommands = hyp1d->GetArgCommands(); // // to be cleared at convertion only // myArgCommands.push_back( theCommand ); } //================================================================================ /*! * \brief * \param theAdditionCmd - * \param theMesh - * \retval bool - */ //================================================================================ bool _pyLayerDistributionHypo::Addition2Creation( const Handle(_pyCommand)& theAdditionCmd, const _pyID& theMesh) { myIsWrapped = false; if ( my1dHyp.IsNull() ) return false; // set "SetLayerDistribution()" after addition cmd theAdditionCmd->AddDependantCmd( myArgCommands.front() ); _pyID geom = theAdditionCmd->GetArg( 1 ); my1dHyp->SetMesh( theMesh ); if ( !my1dHyp->Addition2Creation( theAdditionCmd, theMesh )) return false; // clear "SetLayerDistribution()" cmd myArgCommands.front()->Clear(); // Convert my creation => me = RadialPrismAlgo.Get3DHypothesis() // find RadialPrism algo created on for theMesh Handle(_pyHypothesis) algo = theGen->FindAlgo( geom, theMesh, this->GetType() ); if ( !algo.IsNull() ) { GetCreationCmd()->SetObject( algo->GetID() ); GetCreationCmd()->SetMethod( "Get3DHypothesis" ); GetCreationCmd()->RemoveArgs(); theAdditionCmd->AddDependantCmd( GetCreationCmd() ); myIsWrapped = true; } return myIsWrapped; } //================================================================================ /*! * \brief */ //================================================================================ void _pyLayerDistributionHypo::Flush() { //my1dHyp.Nullify(); //_pyHypothesis::Flush(); } //================================================================================ /*! * \brief additionally to Addition2Creation, clears SetDistrType() command * \param theCmd - AddHypothesis() command * \param theMesh - mesh to which a hypothesis is added * \retval bool - convertion result */ //================================================================================ bool _pyNumberOfSegmentsHyp::Addition2Creation( const Handle(_pyCommand)& theCmd, const _pyID& theMesh) { if ( IsWrappable( theMesh ) && myArgs.Length() > 1 ) { // scale factor (2-nd arg) is provided: clear SetDistrType(1) command bool scaleDistrType = false; list::reverse_iterator cmd = myUnknownCommands.rbegin(); for ( ; cmd != myUnknownCommands.rend(); ++cmd ) { if ( (*cmd)->GetMethod() == "SetDistrType" ) { if ( (*cmd)->GetArg( 1 ) == "1" ) { scaleDistrType = true; (*cmd)->Clear(); } else if ( !scaleDistrType ) { // distribution type changed: remove scale factor from args myArgs.Remove( 2, myArgs.Length() ); break; } } } } return _pyHypothesis::Addition2Creation( theCmd, theMesh ); } //================================================================================ /*! * \brief remove repeated commands defining distribution */ //================================================================================ void _pyNumberOfSegmentsHyp::Flush() { const int nbCmdLists = 2; list * cmds[nbCmdLists] = { &myArgCommands, &myUnknownCommands }; for ( int i = 0; i < nbCmdLists; ++i ) { set uniqueMethods; list & cmdList = *cmds[i]; list::reverse_iterator cmd = cmdList.rbegin(); for ( ; cmd != cmdList.rend(); ++cmd ) { bool isNewInSet = uniqueMethods.insert( (*cmd)->GetMethod() ).second; if ( ! isNewInSet ) (*cmd)->Clear(); } cmdList.clear(); } } //================================================================================ /*! * \brief _pyAlgorithm constructor * \param theCreationCmd - The command like "algo = smeshgen.CreateHypothesis(type,lib)" */ //================================================================================ _pyAlgorithm::_pyAlgorithm(const Handle(_pyCommand)& theCreationCmd) : _pyHypothesis( theCreationCmd ) { myIsAlgo = true; } //================================================================================ /*! * \brief Convert the command adding an algorithm to mesh * \param theCmd - The command like mesh.AddHypothesis( geom, algo ) * \param theMesh - The mesh needing this algo * \retval bool - false if the command cant be converted */ //================================================================================ bool _pyAlgorithm::Addition2Creation( const Handle(_pyCommand)& theCmd, const _pyID& theMeshID) { if ( IsWrappable( theMeshID )) { myGeom = theCmd->GetArg( 1 ); // mesh.AddHypothesis(geom,algo) --> theMeshID.myCreationMethod() if ( _pyHypothesis::Addition2Creation( theCmd, theMeshID )) { theGen->SetAccessorMethod( GetID(), "GetAlgorithm()" ); return true; } } return false; } //================================================================================ /*! * \brief Return starting position of a part of python command * \param thePartIndex - The index of command part * \retval int - Part position */ //================================================================================ int _pyCommand::GetBegPos( int thePartIndex ) { if ( IsEmpty() ) return EMPTY; if ( myBegPos.Length() < thePartIndex ) return UNKNOWN; return myBegPos( thePartIndex ); } //================================================================================ /*! * \brief Store starting position of a part of python command * \param thePartIndex - The index of command part * \param thePosition - Part position */ //================================================================================ void _pyCommand::SetBegPos( int thePartIndex, int thePosition ) { while ( myBegPos.Length() < thePartIndex ) myBegPos.Append( UNKNOWN ); myBegPos( thePartIndex ) = thePosition; } //================================================================================ /*! * \brief Return substring of python command looking like ResultValue = Obj.Meth() * \retval const TCollection_AsciiString & - ResultValue substring */ //================================================================================ const TCollection_AsciiString & _pyCommand::GetResultValue() { if ( GetBegPos( RESULT_IND ) == UNKNOWN ) { int begPos = myString.Location( "=", 1, Length() ); if ( begPos ) myRes = GetWord( myString, begPos, false ); else begPos = EMPTY; SetBegPos( RESULT_IND, begPos ); } return myRes; } //================================================================================ /*! * \brief Return substring of python command looking like ResVal = Object.Meth() * \retval const TCollection_AsciiString & - Object substring */ //================================================================================ const TCollection_AsciiString & _pyCommand::GetObject() { if ( GetBegPos( OBJECT_IND ) == UNKNOWN ) { // beginning int begPos = GetBegPos( RESULT_IND ) + myRes.Length(); if ( begPos < 1 ) begPos = myString.Location( "=", 1, Length() ) + 1; // store myObj = GetWord( myString, begPos, true ); SetBegPos( OBJECT_IND, begPos ); } //SCRUTE(myObj); return myObj; } //================================================================================ /*! * \brief Return substring of python command looking like ResVal = Obj.Method() * \retval const TCollection_AsciiString & - Method substring */ //================================================================================ const TCollection_AsciiString & _pyCommand::GetMethod() { if ( GetBegPos( METHOD_IND ) == UNKNOWN ) { // beginning int begPos = GetBegPos( OBJECT_IND ) + myObj.Length(); bool forward = true; if ( begPos < 1 ) { begPos = myString.Location( "(", 1, Length() ) - 1; forward = false; } // store myMeth = GetWord( myString, begPos, forward ); SetBegPos( METHOD_IND, begPos ); } //SCRUTE(myMeth); return myMeth; } //================================================================================ /*! * \brief Return substring of python command looking like ResVal = Obj.Meth(Arg1,...) * \retval const TCollection_AsciiString & - Arg substring */ //================================================================================ const TCollection_AsciiString & _pyCommand::GetArg( int index ) { if ( GetBegPos( ARG1_IND ) == UNKNOWN ) { // find all args int begPos = GetBegPos( METHOD_IND ) + myMeth.Length(); if ( begPos < 1 ) begPos = myString.Location( "(", 1, Length() ) + 1; int i = 0, prevLen = 0; while ( begPos != EMPTY ) { begPos += prevLen; // check if we are looking at the closing parenthesis while ( begPos <= Length() && isspace( myString.Value( begPos ))) ++begPos; if ( begPos > Length() || myString.Value( begPos ) == ')' ) break; myArgs.Append( GetWord( myString, begPos, true, true )); SetBegPos( ARG1_IND + i, begPos ); prevLen = myArgs.Last().Length(); if ( prevLen == 0 ) myArgs.Remove( myArgs.Length() ); // no more args i++; } } if ( myArgs.Length() < index ) return theEmptyString; return myArgs( index ); } //================================================================================ /*! * \brief Check if char is a word part * \param c - The character to check * \retval bool - The check result */ //================================================================================ static inline bool isWord(const char c, const bool dotIsWord) { return !isspace(c) && c != ',' && c != '=' && c != ')' && c != '(' && ( dotIsWord || c != '.'); } //================================================================================ /*! * \brief Looks for a word in the string and returns word's beginning * \param theString - The input string * \param theStartPos - The position to start the search, returning word's beginning * \param theForward - The search direction * \retval TCollection_AsciiString - The found word */ //================================================================================ TCollection_AsciiString _pyCommand::GetWord( const TCollection_AsciiString & theString, int & theStartPos, const bool theForward, const bool dotIsWord ) { int beg = theStartPos, end = theStartPos; theStartPos = EMPTY; if ( beg < 1 || beg > theString.Length() ) return theEmptyString; if ( theForward ) { // search forward // beg while ( beg <= theString.Length() && !isWord( theString.Value( beg ), dotIsWord)) ++beg; if ( beg > theString.Length() ) return theEmptyString; // no word found // end end = beg + 1; while ( end <= theString.Length() && isWord( theString.Value( end ), dotIsWord)) ++end; --end; } else { // search backward // end while ( end > 0 && !isWord( theString.Value( end ), dotIsWord)) --end; if ( end == 0 ) return theEmptyString; // no word found beg = end - 1; while ( beg > 0 && isWord( theString.Value( beg ), dotIsWord)) --beg; ++beg; } theStartPos = beg; //cout << theString << " ---- " << beg << " - " << end << endl; return theString.SubString( beg, end ); } //================================================================================ /*! * \brief Look for position where not space char is * \param theString - The string * \param thePos - The position to search from and which returns result * \retval bool - false if there are only space after thePos in theString * * */ //================================================================================ bool _pyCommand::SkipSpaces( const TCollection_AsciiString & theString, int & thePos ) { if ( thePos < 1 || thePos > theString.Length() ) return false; while ( thePos <= theString.Length() && isspace( theString.Value( thePos ))) ++thePos; return thePos <= theString.Length(); } //================================================================================ /*! * \brief Modify a part of the command * \param thePartIndex - The index of the part * \param thePart - The new part string * \param theOldPart - The old part */ //================================================================================ void _pyCommand::SetPart(int thePartIndex, const TCollection_AsciiString& thePart, TCollection_AsciiString& theOldPart) { int pos = GetBegPos( thePartIndex ); if ( pos <= Length() && theOldPart != thePart) { TCollection_AsciiString seperator; if ( pos < 1 ) { pos = GetBegPos( thePartIndex + 1 ); if ( pos < 1 ) return; switch ( thePartIndex ) { case RESULT_IND: seperator = " = "; break; case OBJECT_IND: seperator = "."; break; case METHOD_IND: seperator = "()"; break; default:; } } myString.Remove( pos, theOldPart.Length() ); if ( !seperator.IsEmpty() ) myString.Insert( pos , seperator ); myString.Insert( pos, thePart ); // update starting positions of the following parts int posDelta = thePart.Length() + seperator.Length() - theOldPart.Length(); for ( int i = thePartIndex + 1; i <= myBegPos.Length(); ++i ) { if ( myBegPos( i ) > 0 ) myBegPos( i ) += posDelta; } theOldPart = thePart; } } //================================================================================ /*! * \brief Set agrument * \param index - The argument index, it counts from 1 * \param theArg - The argument string */ //================================================================================ void _pyCommand::SetArg( int index, const TCollection_AsciiString& theArg) { FindAllArgs(); int argInd = ARG1_IND + index - 1; int pos = GetBegPos( argInd ); if ( pos < 1 ) // no index-th arg exist, append inexistent args { // find a closing parenthesis if ( int lastArgInd = GetNbArgs() ) { pos = GetBegPos( ARG1_IND + lastArgInd - 1 ) + GetArg( lastArgInd ).Length(); while ( pos > 0 && pos <= Length() && myString.Value( pos ) != ')' ) ++pos; } else { pos = Length(); while ( pos > 0 && myString.Value( pos ) != ')' ) --pos; } if ( pos < 1 || myString.Value( pos ) != ')' ) { // no parentheses at all myString += "()"; pos = Length(); } while ( myArgs.Length() < index ) { if ( myArgs.Length() ) myString.Insert( pos++, "," ); myArgs.Append("None"); myString.Insert( pos, myArgs.Last() ); SetBegPos( ARG1_IND + myArgs.Length() - 1, pos ); pos += myArgs.Last().Length(); } } SetPart( argInd, theArg, myArgs( index )); } //================================================================================ /*! * \brief Empty arg list */ //================================================================================ void _pyCommand::RemoveArgs() { if ( int pos = myString.Location( '(', 1, Length() )) myString.Trunc( pos ); myString += ")"; myArgs.Clear(); if ( myBegPos.Length() >= ARG1_IND ) myBegPos.Remove( ARG1_IND, myBegPos.Length() ); } //================================================================================ /*! * \brief Set dependent commands after this one */ //================================================================================ bool _pyCommand::SetDependentCmdsAfter() const { bool orderChanged = false; list< Handle(_pyCommand)>::const_reverse_iterator cmd = myDependentCmds.rbegin(); for ( ; cmd != myDependentCmds.rend(); ++cmd ) { if ( (*cmd)->GetOrderNb() < GetOrderNb() ) { orderChanged = true; theGen->SetCommandAfter( *cmd, this ); (*cmd)->SetDependentCmdsAfter(); } } return orderChanged; } //================================================================================ /*! * \brief Insert accessor method after theObjectID * \param theObjectID - id of the accessed object * \param theAcsMethod - name of the method giving access to the object * \retval bool - false if theObjectID is not found in the command string */ //================================================================================ bool _pyCommand::AddAccessorMethod( _pyID theObjectID, const char* theAcsMethod ) { if ( !theAcsMethod ) return false; // start object search from the object, i.e. ignore result GetObject(); int beg = GetBegPos( OBJECT_IND ); if ( beg < 1 || beg > Length() ) return false; while (( beg = myString.Location( theObjectID, beg, Length() ))) { // check that theObjectID is not just a part of a longer ID int afterEnd = beg + theObjectID.Length(); Standard_Character c = myString.Value( afterEnd ); if ( !isalnum( c ) && c != ':' ) { // insertion int oldLen = Length(); myString.Insert( afterEnd, (char*) theAcsMethod ); myString.Insert( afterEnd, "." ); // update starting positions of the parts following the modified one int posDelta = Length() - oldLen; for ( int i = 1; i <= myBegPos.Length(); ++i ) { if ( myBegPos( i ) > afterEnd ) myBegPos( i ) += posDelta; } return true; } beg = afterEnd; // is a part - next search } return false; } //================================================================================ /*! * \brief Return method name giving access to an interaface object wrapped by python class * \retval const char* - method name */ //================================================================================ const char* _pyObject::AccessorMethod() const { return 0; }