// Copyright (C) 2007-2010 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH_I : idl implementation based on 'SMESH' unit's calsses // File : SMESH_2smeshpy.cxx // Created : Fri Nov 18 13:20:10 2005 // Author : Edward AGAPOV (eap) // #include "SMESH_2smeshpy.hxx" #include "utilities.h" #include "SMESH_PythonDump.hxx" #include "SMESH_NoteBook.hxx" #include "Resource_DataMapOfAsciiStringAsciiString.hxx" #include "SMESH_Gen_i.hxx" /* SALOME headers that include CORBA headers that include windows.h * that defines GetObject symbol as GetObjectA should stand before SALOME headers * that declare methods named GetObject - to apply the same rules of GetObject renaming * and thus to avoid mess with GetObject symbol on Windows */ IMPLEMENT_STANDARD_HANDLE (_pyObject ,Standard_Transient); IMPLEMENT_STANDARD_HANDLE (_pyCommand ,Standard_Transient); IMPLEMENT_STANDARD_HANDLE (_pyGen ,_pyObject); IMPLEMENT_STANDARD_HANDLE (_pyMesh ,_pyObject); IMPLEMENT_STANDARD_HANDLE (_pySubMesh ,_pyObject); IMPLEMENT_STANDARD_HANDLE (_pyMeshEditor ,_pyObject); IMPLEMENT_STANDARD_HANDLE (_pyHypothesis ,_pyObject); IMPLEMENT_STANDARD_HANDLE (_pySelfEraser ,_pyObject); IMPLEMENT_STANDARD_HANDLE (_pyAlgorithm ,_pyHypothesis); IMPLEMENT_STANDARD_HANDLE (_pyComplexParamHypo,_pyHypothesis); IMPLEMENT_STANDARD_HANDLE (_pyNumberOfSegmentsHyp,_pyHypothesis); IMPLEMENT_STANDARD_RTTIEXT(_pyObject ,Standard_Transient); IMPLEMENT_STANDARD_RTTIEXT(_pyCommand ,Standard_Transient); IMPLEMENT_STANDARD_RTTIEXT(_pyGen ,_pyObject); IMPLEMENT_STANDARD_RTTIEXT(_pyMesh ,_pyObject); IMPLEMENT_STANDARD_RTTIEXT(_pySubMesh ,_pyObject); IMPLEMENT_STANDARD_RTTIEXT(_pyMeshEditor ,_pyObject); IMPLEMENT_STANDARD_RTTIEXT(_pyHypothesis ,_pyObject); IMPLEMENT_STANDARD_RTTIEXT(_pySelfEraser ,_pyObject); IMPLEMENT_STANDARD_RTTIEXT(_pyAlgorithm ,_pyHypothesis); IMPLEMENT_STANDARD_RTTIEXT(_pyComplexParamHypo,_pyHypothesis); IMPLEMENT_STANDARD_RTTIEXT(_pyNumberOfSegmentsHyp,_pyHypothesis); IMPLEMENT_STANDARD_RTTIEXT(_pyLayerDistributionHypo,_pyHypothesis); IMPLEMENT_STANDARD_RTTIEXT(_pySegmentLengthAroundVertexHyp,_pyHypothesis); using namespace std; using SMESH::TPythonDump; /*! * \brief Container of commands into which the initial script is split. * It also contains data coresponding to SMESH_Gen contents */ static Handle(_pyGen) theGen; static TCollection_AsciiString theEmptyString; //#define DUMP_CONVERSION #if !defined(_DEBUG_) && defined(DUMP_CONVERSION) #undef DUMP_CONVERSION #endif namespace { //================================================================================ /*! * \brief Set of TCollection_AsciiString initialized by C array of C strings */ //================================================================================ struct TStringSet: public set { /*! * \brief Filling. The last string must be "" */ void Insert(const char* names[]) { for ( int i = 0; names[i][0] ; ++i ) insert( (char*) names[i] ); } /*! * \brief Check if a string is in */ bool Contains(const TCollection_AsciiString& name ) { return find( name ) != end(); } }; } //================================================================================ /*! * \brief Convert python script using commands of smesh.py * \param theScript - Input script * \retval TCollection_AsciiString - Convertion result * * Class SMESH_2smeshpy declared in SMESH_PythonDump.hxx */ //================================================================================ TCollection_AsciiString SMESH_2smeshpy::ConvertScript(const TCollection_AsciiString& theScript, Resource_DataMapOfAsciiStringAsciiString& theEntry2AccessorMethod, Resource_DataMapOfAsciiStringAsciiString& theObjectNames) { theGen = new _pyGen( theEntry2AccessorMethod, theObjectNames ); // split theScript into separate commands SMESH_NoteBook * aNoteBook = new SMESH_NoteBook(); int from = 1, end = theScript.Length(), to; while ( from < end && ( to = theScript.Location( "\n", from, end ))) { if ( to != from ) // cut out and store a command aNoteBook->AddCommand( theScript.SubString( from, to - 1 )); from = to + 1; } aNoteBook->ReplaceVariables(); TCollection_AsciiString aNoteScript = aNoteBook->GetResultScript(); delete aNoteBook; aNoteBook = 0; // split theScript into separate commands from = 1, end = aNoteScript.Length(); while ( from < end && ( to = aNoteScript.Location( "\n", from, end ))) { if ( to != from ) // cut out and store a command theGen->AddCommand( aNoteScript.SubString( from, to - 1 )); from = to + 1; } // finish conversion theGen->Flush(); #ifdef DUMP_CONVERSION MESSAGE_BEGIN ( std::endl << " ######## RESULT ######## " << std::endl<< std::endl ); #endif // reorder commands after conversion list< Handle(_pyCommand) >::iterator cmd; bool orderChanges; do { orderChanges = false; for ( cmd = theGen->GetCommands().begin(); cmd != theGen->GetCommands().end(); ++cmd ) if ( (*cmd)->SetDependentCmdsAfter() ) orderChanges = true; } while ( orderChanges ); // concat commands back into a script TCollection_AsciiString aScript; for ( cmd = theGen->GetCommands().begin(); cmd != theGen->GetCommands().end(); ++cmd ) { #ifdef DUMP_CONVERSION MESSAGE_ADD ( "## COM " << (*cmd)->GetOrderNb() << ": "<< (*cmd)->GetString() << std::endl ); #endif if ( !(*cmd)->IsEmpty() ) { aScript += "\n"; aScript += (*cmd)->GetString(); } } aScript += "\n"; theGen.Nullify(); return aScript; } //================================================================================ /*! * \brief _pyGen constructor */ //================================================================================ _pyGen::_pyGen(Resource_DataMapOfAsciiStringAsciiString& theEntry2AccessorMethod, Resource_DataMapOfAsciiStringAsciiString& theObjectNames) : _pyObject( new _pyCommand( TPythonDump::SMESHGenName(), 0 )), myID2AccessorMethod( theEntry2AccessorMethod ), myObjectNames( theObjectNames ) { myNbCommands = 0; // make that GetID() to return TPythonDump::SMESHGenName() GetCreationCmd()->GetString() += "="; } //================================================================================ /*! * \brief name of SMESH_Gen in smesh.py */ //================================================================================ const char* _pyGen::AccessorMethod() const { return SMESH_2smeshpy::GenName(); } //================================================================================ /*! * \brief Convert a command using a specific converter * \param theCommand - the command to convert */ //================================================================================ Handle(_pyCommand) _pyGen::AddCommand( const TCollection_AsciiString& theCommand) { // store theCommand in the sequence myCommands.push_back( new _pyCommand( theCommand, ++myNbCommands )); Handle(_pyCommand) aCommand = myCommands.back(); #ifdef DUMP_CONVERSION MESSAGE ( "## COM " << myNbCommands << ": "<< aCommand->GetString() ); #endif _pyID objID = aCommand->GetObject(); if ( objID.IsEmpty() ) return aCommand; // SMESH_Gen method? if ( objID == this->GetID() || objID == SMESH_2smeshpy::GenName()) { this->Process( aCommand ); return aCommand; } // SMESH_Mesh method? map< _pyID, Handle(_pyMesh) >::iterator id_mesh = myMeshes.find( objID ); if ( id_mesh != myMeshes.end() ) { // check for mesh editor object if ( aCommand->GetMethod() == "GetMeshEditor" ) { // MeshEditor creation _pyID editorID = aCommand->GetResultValue(); Handle(_pyMeshEditor) editor = new _pyMeshEditor( aCommand ); myMeshEditors.insert( make_pair( editorID, editor )); return aCommand; } // check for SubMesh objects else if ( aCommand->GetMethod() == "GetSubMesh" ) { // SubMesh creation _pyID subMeshID = aCommand->GetResultValue(); Handle(_pySubMesh) subMesh = new _pySubMesh( aCommand ); myObjects.insert( make_pair( subMeshID, subMesh )); } id_mesh->second->Process( aCommand ); return aCommand; } // SMESH_MeshEditor method? map< _pyID, Handle(_pyMeshEditor) >::iterator id_editor = myMeshEditors.find( objID ); if ( id_editor != myMeshEditors.end() ) { id_editor->second->Process( aCommand ); TCollection_AsciiString processedCommand = aCommand->GetString(); // some commands of SMESH_MeshEditor create meshes if ( aCommand->GetMethod().Search("MakeMesh") != -1 ) { Handle(_pyMesh) mesh = new _pyMesh( aCommand, aCommand->GetResultValue() ); aCommand->GetString() = processedCommand; // discard changes made by _pyMesh myMeshes.insert( make_pair( mesh->GetID(), mesh )); } return aCommand; } // SMESH_Hypothesis method? list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin(); for ( ; hyp != myHypos.end(); ++hyp ) if ( !(*hyp)->IsAlgo() && objID == (*hyp)->GetID() ) { (*hyp)->Process( aCommand ); return aCommand; } // other object method? map< _pyID, Handle(_pyObject) >::iterator id_obj = myObjects.find( objID ); if ( id_obj != myObjects.end() ) { id_obj->second->Process( aCommand ); return aCommand; } // if ( theCommand.Search( "aFilterManager" ) != -1 ) { // if ( theCommand.Search( "CreateFilterManager" ) != -1 ) // myFilterManager = new _pySelfEraser( aCommand ); // else if ( !myFilterManager.IsNull() ) // myFilterManager->Process( aCommand ); // return aCommand; // } // Add access to a wrapped mesh AddMeshAccessorMethod( aCommand ); // Add access to a wrapped algorithm // AddAlgoAccessorMethod( aCommand ); // ??? what if algo won't be wrapped at all ??? // PAL12227. PythonDump was not updated at proper time; result is // aCriteria.append(SMESH.Filter.Criterion(17,26,0,'L1',26,25,1e-07,SMESH.EDGE,-1)) // TypeError: __init__() takes exactly 11 arguments (10 given) char wrongCommand[] = "SMESH.Filter.Criterion("; if ( int beg = theCommand.Location( wrongCommand, 1, theCommand.Length() )) { _pyCommand tmpCmd( theCommand.SubString( beg, theCommand.Length() ), -1); // there must be 10 arguments, 5-th arg ThresholdID is missing, const int wrongNbArgs = 9, missingArg = 5; if ( tmpCmd.GetNbArgs() == wrongNbArgs ) { for ( int i = wrongNbArgs; i > missingArg; --i ) tmpCmd.SetArg( i + 1, tmpCmd.GetArg( i )); tmpCmd.SetArg( missingArg, "''"); aCommand->GetString().Trunc( beg - 1 ); aCommand->GetString() += tmpCmd.GetString(); } } return aCommand; } //================================================================================ /*! * \brief Convert the command or remember it for later conversion * \param theCommand - The python command calling a method of SMESH_Gen */ //================================================================================ void _pyGen::Process( const Handle(_pyCommand)& theCommand ) { // there are methods to convert: // CreateMesh( shape ) // Concatenate( [mesh1, ...], ... ) // CreateHypothesis( theHypType, theLibName ) // Compute( mesh, geom ) // mesh creation TCollection_AsciiString method = theCommand->GetMethod(); if ( method == "CreateMesh" || method == "CreateEmptyMesh") { Handle(_pyMesh) mesh = new _pyMesh( theCommand ); myMeshes.insert( make_pair( mesh->GetID(), mesh )); return; } if ( method == "CreateMeshesFromUNV" || method == "CreateMeshesFromSTL") { Handle(_pyMesh) mesh = new _pyMesh( theCommand, theCommand->GetResultValue() ); myMeshes.insert( make_pair( mesh->GetID(), mesh )); return; } if( method == "CreateMeshesFromMED") { for(int ind = 0;indGetNbResultValues();ind++) { Handle(_pyMesh) mesh = new _pyMesh( theCommand, theCommand->GetResultValue(ind)); myMeshes.insert( make_pair( theCommand->GetResultValue(ind), mesh )); } } // CreateHypothesis() if ( method == "CreateHypothesis" ) { // issue 199929, remove standard library name (default parameter) const TCollection_AsciiString & aLibName = theCommand->GetArg( 2 ); if ( aLibName.Search( "StdMeshersEngine" ) != -1 ) { // keep first argument TCollection_AsciiString arg = theCommand->GetArg( 1 ); theCommand->RemoveArgs(); theCommand->SetArg( 1, arg ); } myHypos.push_back( _pyHypothesis::NewHypothesis( theCommand )); return; } // smeshgen.Compute( mesh, geom ) --> mesh.Compute() if ( method == "Compute" ) { const _pyID& meshID = theCommand->GetArg( 1 ); map< _pyID, Handle(_pyMesh) >::iterator id_mesh = myMeshes.find( meshID ); if ( id_mesh != myMeshes.end() ) { theCommand->SetObject( meshID ); theCommand->RemoveArgs(); id_mesh->second->Flush(); return; } } // objects erasing creation command if no more it's commands invoked: // SMESH_Pattern, FilterManager if ( method == "GetPattern" || method == "CreateFilterManager" ) { Handle(_pyObject) obj = new _pySelfEraser( theCommand ); if ( !myObjects.insert( make_pair( obj->GetID(), obj )).second ) theCommand->Clear(); // already created } // Concatenate( [mesh1, ...], ... ) if ( method == "Concatenate" || method == "ConcatenateWithGroups") { if ( method == "ConcatenateWithGroups" ) { theCommand->SetMethod( "Concatenate" ); theCommand->SetArg( theCommand->GetNbArgs() + 1, "True" ); } Handle(_pyMesh) mesh = new _pyMesh( theCommand, theCommand->GetResultValue() ); myMeshes.insert( make_pair( mesh->GetID(), mesh )); AddMeshAccessorMethod( theCommand ); } // Replace name of SMESH_Gen // names of SMESH_Gen methods fully equal to methods defined in smesh.py static TStringSet smeshpyMethods; if ( smeshpyMethods.empty() ) { const char * names[] = { "SetEmbeddedMode","IsEmbeddedMode","SetCurrentStudy","GetCurrentStudy", "GetPattern","GetSubShapesId", "" }; // <- mark of array end smeshpyMethods.Insert( names ); } if ( smeshpyMethods.Contains( theCommand->GetMethod() )) // smeshgen.Method() --> smesh.Method() theCommand->SetObject( SMESH_2smeshpy::SmeshpyName() ); else // smeshgen.Method() --> smesh.smesh.Method() theCommand->SetObject( SMESH_2smeshpy::GenName() ); } //================================================================================ /*! * \brief Convert the remembered commands */ //================================================================================ void _pyGen::Flush() { // create empty command myLastCommand = new _pyCommand(); map< _pyID, Handle(_pyMesh) >::iterator id_mesh = myMeshes.begin(); for ( ; id_mesh != myMeshes.end(); ++id_mesh ) if ( ! id_mesh->second.IsNull() ) id_mesh->second->Flush(); list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin(); for ( ; hyp != myHypos.end(); ++hyp ) if ( !hyp->IsNull() ) { (*hyp)->Flush(); // smeshgen.CreateHypothesis() --> smesh.smesh.CreateHypothesis() if ( !(*hyp)->IsWrapped() ) (*hyp)->GetCreationCmd()->SetObject( SMESH_2smeshpy::GenName() ); } map< _pyID, Handle(_pyObject) >::iterator id_obj = myObjects.begin(); for ( ; id_obj != myObjects.end(); ++id_obj ) if ( ! id_obj->second.IsNull() ) id_obj->second->Flush(); myLastCommand->SetOrderNb( ++myNbCommands ); myCommands.push_back( myLastCommand ); } //================================================================================ /*! * \brief Add access method to mesh that is an argument * \param theCmd - command to add access method * \retval bool - true if added */ //================================================================================ bool _pyGen::AddMeshAccessorMethod( Handle(_pyCommand) theCmd ) const { bool added = false; map< _pyID, Handle(_pyMesh) >::const_iterator id_mesh = myMeshes.begin(); for ( ; id_mesh != myMeshes.end(); ++id_mesh ) { if ( theCmd->AddAccessorMethod( id_mesh->first, id_mesh->second->AccessorMethod() )) added = true; } return added; } //================================================================================ /*! * \brief Add access method to algo that is an object or an argument * \param theCmd - command to add access method * \retval bool - true if added */ //================================================================================ bool _pyGen::AddAlgoAccessorMethod( Handle(_pyCommand) theCmd ) const { bool added = false; list< Handle(_pyHypothesis) >::const_iterator hyp = myHypos.begin(); for ( ; hyp != myHypos.end(); ++hyp ) { if ( (*hyp)->IsAlgo() && /*(*hyp)->IsWrapped() &&*/ theCmd->AddAccessorMethod( (*hyp)->GetID(), (*hyp)->AccessorMethod() )) added = true; } return added; } //================================================================================ /*! * \brief Find hypothesis by ID (entry) * \param theHypID - The hypothesis ID * \retval Handle(_pyHypothesis) - The found hypothesis */ //================================================================================ Handle(_pyHypothesis) _pyGen::FindHyp( const _pyID& theHypID ) { list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin(); for ( ; hyp != myHypos.end(); ++hyp ) if ( !hyp->IsNull() && theHypID == (*hyp)->GetID() ) return *hyp; return Handle(_pyHypothesis)(); } //================================================================================ /*! * \brief Find algorithm the created algorithm * \param theGeom - The shape ID the algorithm was created on * \param theMesh - The mesh ID that created the algorithm * \param dim - The algo dimension * \retval Handle(_pyHypothesis) - The found algo */ //================================================================================ Handle(_pyHypothesis) _pyGen::FindAlgo( const _pyID& theGeom, const _pyID& theMesh, const Handle(_pyHypothesis)& theHypothesis ) { list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin(); for ( ; hyp != myHypos.end(); ++hyp ) if ( !hyp->IsNull() && (*hyp)->IsAlgo() && theHypothesis->CanBeCreatedBy( (*hyp)->GetAlgoType() ) && (*hyp)->GetGeom() == theGeom && (*hyp)->GetMesh() == theMesh ) return *hyp; return 0; } //================================================================================ /*! * \brief Find subMesh by ID (entry) * \param theSubMeshID - The subMesh ID * \retval Handle(_pySubMesh) - The found subMesh */ //================================================================================ Handle(_pySubMesh) _pyGen::FindSubMesh( const _pyID& theSubMeshID ) { map< _pyID, Handle(_pyObject) >::iterator id_subMesh = myObjects.find(theSubMeshID); if ( id_subMesh != myObjects.end() ) return Handle(_pySubMesh)::DownCast( id_subMesh->second ); return Handle(_pySubMesh)(); } //================================================================================ /*! * \brief Change order of commands in the script * \param theCmd1 - One command * \param theCmd2 - Another command */ //================================================================================ void _pyGen::ExchangeCommands( Handle(_pyCommand) theCmd1, Handle(_pyCommand) theCmd2 ) { list< Handle(_pyCommand) >::iterator pos1, pos2; pos1 = find( myCommands.begin(), myCommands.end(), theCmd1 ); pos2 = find( myCommands.begin(), myCommands.end(), theCmd2 ); myCommands.insert( pos1, theCmd2 ); myCommands.insert( pos2, theCmd1 ); myCommands.erase( pos1 ); myCommands.erase( pos2 ); int nb1 = theCmd1->GetOrderNb(); theCmd1->SetOrderNb( theCmd2->GetOrderNb() ); theCmd2->SetOrderNb( nb1 ); // cout << "BECOME " << theCmd1->GetOrderNb() << "\t" << theCmd1->GetString() << endl // << "BECOME " << theCmd2->GetOrderNb() << "\t" << theCmd2->GetString() << endl << endl; } //================================================================================ /*! * \brief Set one command after the other * \param theCmd - Command to move * \param theAfterCmd - Command ater which to insert the first one */ //================================================================================ void _pyGen::SetCommandAfter( Handle(_pyCommand) theCmd, Handle(_pyCommand) theAfterCmd ) { setNeighbourCommand( theCmd, theAfterCmd, true ); } //================================================================================ /*! * \brief Set one command before the other * \param theCmd - Command to move * \param theBeforeCmd - Command before which to insert the first one */ //================================================================================ void _pyGen::SetCommandBefore( Handle(_pyCommand) theCmd, Handle(_pyCommand) theBeforeCmd ) { setNeighbourCommand( theCmd, theBeforeCmd, false ); } //================================================================================ /*! * \brief Set one command before or after the other * \param theCmd - Command to move * \param theOtherCmd - Command ater or before which to insert the first one */ //================================================================================ void _pyGen::setNeighbourCommand( Handle(_pyCommand)& theCmd, Handle(_pyCommand)& theOtherCmd, const bool theIsAfter ) { list< Handle(_pyCommand) >::iterator pos; pos = find( myCommands.begin(), myCommands.end(), theCmd ); myCommands.erase( pos ); pos = find( myCommands.begin(), myCommands.end(), theOtherCmd ); myCommands.insert( (theIsAfter ? ++pos : pos), theCmd ); int i = 1; for ( pos = myCommands.begin(); pos != myCommands.end(); ++pos) (*pos)->SetOrderNb( i++ ); } //================================================================================ /*! * \brief Set command be last in list of commands * \param theCmd - Command to be last */ //================================================================================ Handle(_pyCommand)& _pyGen::GetLastCommand() { return myLastCommand; } //================================================================================ /*! * \brief Set method to access to object wrapped with python class * \param theID - The wrapped object entry * \param theMethod - The accessor method */ //================================================================================ void _pyGen::SetAccessorMethod(const _pyID& theID, const char* theMethod ) { myID2AccessorMethod.Bind( theID, (char*) theMethod ); } //================================================================================ /*! * \brief Generated new ID for object and assign with existing name * \param theID - ID of existing object */ //================================================================================ _pyID _pyGen::GenerateNewID( const _pyID& theID ) { int index = 1; _pyID aNewID; do { aNewID = theID + _pyID( ":" ) + _pyID( index++ ); } while ( myObjectNames.IsBound( aNewID ) ); myObjectNames.Bind( aNewID, myObjectNames.IsBound( theID ) ? (myObjectNames.Find( theID ) + _pyID( "_" ) + _pyID( index-1 )) : _pyID( "A" ) + aNewID ); return aNewID; } //================================================================================ /*! * \brief Find out type of geom group * \param grpID - The geom group entry * \retval int - The type */ //================================================================================ static bool sameGroupType( const _pyID& grpID, const TCollection_AsciiString& theType) { // define group type as smesh.Mesh.Group() does int type = -1; SALOMEDS::Study_var study = SMESH_Gen_i::GetSMESHGen()->GetCurrentStudy(); SALOMEDS::SObject_var aSObj = study->FindObjectID( grpID.ToCString() ); if ( !aSObj->_is_nil() ) { GEOM::GEOM_Object_var aGeomObj = GEOM::GEOM_Object::_narrow( aSObj->GetObject() ); if ( !aGeomObj->_is_nil() ) { switch ( aGeomObj->GetShapeType() ) { case GEOM::VERTEX: type = SMESH::NODE; break; case GEOM::EDGE: type = SMESH::EDGE; break; case GEOM::FACE: type = SMESH::FACE; break; case GEOM::SOLID: case GEOM::SHELL: type = SMESH::VOLUME; break; case GEOM::COMPOUND: { GEOM::GEOM_Gen_ptr aGeomGen = SMESH_Gen_i::GetSMESHGen()->GetGeomEngine(); if ( !aGeomGen->_is_nil() ) { GEOM::GEOM_IGroupOperations_var aGrpOp = aGeomGen->GetIGroupOperations( study->StudyId() ); if ( !aGrpOp->_is_nil() ) { switch ( aGrpOp->GetType( aGeomObj )) { case TopAbs_VERTEX: type = SMESH::NODE; break; case TopAbs_EDGE: type = SMESH::EDGE; break; case TopAbs_FACE: type = SMESH::FACE; break; case TopAbs_SOLID: type = SMESH::VOLUME; break; default:; } } } } default:; } } } if ( type < 0 ) { MESSAGE("Type of the group " << grpID << " not found"); return false; } if ( theType.IsIntegerValue() ) return type == theType.IntegerValue(); switch ( type ) { case SMESH::NODE: return theType.Location( "NODE", 1, theType.Length() ); case SMESH::EDGE: return theType.Location( "EDGE", 1, theType.Length() ); case SMESH::FACE: return theType.Location( "FACE", 1, theType.Length() ); case SMESH::VOLUME: return theType.Location( "VOLUME", 1, theType.Length() ); default:; } return false; } //================================================================================ /*! * \brief * \param theCreationCmd - */ //================================================================================ _pyMesh::_pyMesh(const Handle(_pyCommand) theCreationCmd) : _pyObject(theCreationCmd), myHasEditor(false) { // convert my creation command Handle(_pyCommand) creationCmd = GetCreationCmd(); //TCollection_AsciiString str = creationCmd->GetMethod(); // if(str != "CreateMeshesFromUNV" && // str != "CreateMeshesFromMED" && // str != "CreateMeshesFromSTL") creationCmd->SetObject( SMESH_2smeshpy::SmeshpyName() ); creationCmd->SetMethod( "Mesh" ); theGen->SetAccessorMethod( GetID(), "GetMesh()" ); } //================================================================================ /*! * \brief * \param theCreationCmd - */ //================================================================================ _pyMesh::_pyMesh(const Handle(_pyCommand) theCreationCmd, const TCollection_AsciiString& id): _pyObject(theCreationCmd), myHasEditor(false) { // convert my creation command Handle(_pyCommand) creationCmd = GetCreationCmd(); creationCmd->SetObject( SMESH_2smeshpy::SmeshpyName() ); theGen->SetAccessorMethod( id, "GetMesh()" ); } //================================================================================ /*! * \brief Convert a IDL API command of SMESH::Mesh to a method call of python Mesh * \param theCommand - Engine method called for this mesh */ //================================================================================ void _pyMesh::Process( const Handle(_pyCommand)& theCommand ) { // some methods of SMESH_Mesh interface needs special conversion // to methods of Mesh python class // // 1. GetSubMesh(geom, name) + AddHypothesis(geom, algo) // --> in Mesh_Algorithm.Create(mesh, geom, hypo, so) // 2. AddHypothesis(geom, hyp) // --> in Mesh_Algorithm.Hypothesis(hyp, args, so) // 3. CreateGroupFromGEOM(type, name, grp) // --> in Mesh.Group(grp, name="") // 4. ExportToMED(f, auto_groups, version) // --> in Mesh.ExportMED( f, auto_groups, version ) // 5. etc const TCollection_AsciiString method = theCommand->GetMethod(); // ---------------------------------------------------------------------- if ( method == "GetSubMesh" ) { Handle(_pySubMesh) subMesh = theGen->FindSubMesh( theCommand->GetResultValue() ); if ( !subMesh.IsNull() ) { subMesh->SetCreator( this ); mySubmeshes.push_back( subMesh ); } } // ---------------------------------------------------------------------- else if ( method == "AddHypothesis" ) { // mesh.AddHypothesis(geom, HYPO ) myAddHypCmds.push_back( theCommand ); // set mesh to hypo const _pyID& hypID = theCommand->GetArg( 2 ); Handle(_pyHypothesis) hyp = theGen->FindHyp( hypID ); if ( !hyp.IsNull() ) { myHypos.push_back( hyp ); if ( hyp->GetMesh().IsEmpty() ) hyp->SetMesh( this->GetID() ); } } // ---------------------------------------------------------------------- else if ( method == "CreateGroupFromGEOM" ) {// (type, name, grp) _pyID grp = theCommand->GetArg( 3 ); if ( sameGroupType( grp, theCommand->GetArg( 1 )) ) { // --> Group(grp) theCommand->SetMethod( "Group" ); theCommand->RemoveArgs(); theCommand->SetArg( 1, grp ); } else { _pyID type = theCommand->GetArg( 1 ); _pyID name = theCommand->GetArg( 2 ); theCommand->SetMethod( "GroupOnGeom" ); theCommand->RemoveArgs(); theCommand->SetArg( 1, grp ); theCommand->SetArg( 2, name ); theCommand->SetArg( 3, type ); } } // ---------------------------------------------------------------------- else if ( method == "ExportToMED" || // ExportToMED() --> ExportMED() method == "ExportToMEDX" ) { // ExportToMEDX() --> ExportMED() theCommand->SetMethod( "ExportMED" ); } // ---------------------------------------------------------------------- else if ( method == "CreateGroup" ) { // CreateGroup() --> CreateEmptyGroup() theCommand->SetMethod( "CreateEmptyGroup" ); } // ---------------------------------------------------------------------- else if ( method == "RemoveHypothesis" ) // (geom, hyp) { _pyID hypID = theCommand->GetArg( 2 ); // check if this mesh still has corresponding addition command bool hasAddCmd = false; list< Handle(_pyCommand) >::iterator cmd = myAddHypCmds.begin(); while ( cmd != myAddHypCmds.end() ) { // AddHypothesis(geom, hyp) if ( hypID == (*cmd)->GetArg( 2 )) { // erase both (add and remove) commands theCommand->Clear(); (*cmd)->Clear(); cmd = myAddHypCmds.erase( cmd ); hasAddCmd = true; } else { ++cmd; } } Handle(_pyHypothesis) hyp = theGen->FindHyp( hypID ); if ( ! hasAddCmd && hypID.Length() != 0 ) { // hypo addition already wrapped // RemoveHypothesis(geom, hyp) --> RemoveHypothesis( hyp, geom=0 ) _pyID geom = theCommand->GetArg( 1 ); theCommand->RemoveArgs(); theCommand->SetArg( 1, hypID ); if ( geom != GetGeom() ) theCommand->SetArg( 2, geom ); } // remove hyp from myHypos myHypos.remove( hyp ); } // check for SubMesh order commands else if ( theCommand->GetMethod() == "GetMeshOrder" || theCommand->GetMethod() == "SetMeshOrder" ) { // In fact arguments and result values does not support complex containers // such as list of list // So, here we parse it manually // GetMeshOrder //for(int ind = 0, n = theCommand->GetNbResultValues();indFindSubMesh( theCommand->GetResultValue(ind) ); // SetMeshOrder //for(int ind = 0, n = theCommand->GetNbArgs();indFindSubMesh( theCommand->GetArg(ind) ); const bool isArg = theCommand->GetMethod() == "SetMeshOrder"; const TCollection_AsciiString& cmdStr = theCommand->GetString(); int begPos = (/*isArg ? cmdStr.Search( "(" ) :*/ cmdStr.Search( "[" )) + 1; int endPos = (isArg ? cmdStr.Search( ")" ) : cmdStr.Search( "=" )) - 1; if ( begPos != -1 && begPos < endPos && endPos <= cmdStr.Length() ) { TCollection_AsciiString aSubStr = cmdStr.SubString( begPos, endPos ); Standard_Integer index = 1; TCollection_AsciiString anIDStr = aSubStr.Token("\t ,[]", index++); while ( !anIDStr.IsEmpty() ) { Handle(_pySubMesh) subMesh = theGen->FindSubMesh( anIDStr ); if ( !subMesh.IsNull() ) subMesh->Process( theCommand ); anIDStr = aSubStr.Token("\t ,[]", index++); } } } // add accessor method if necessary else { if ( NeedMeshAccess( theCommand )) // apply theCommand to the mesh wrapped by smeshpy mesh AddMeshAccess( theCommand ); } } //================================================================================ /*! * \brief Return True if addition of accesor method is needed */ //================================================================================ bool _pyMesh::NeedMeshAccess( const Handle(_pyCommand)& theCommand ) { // names of SMESH_Mesh methods fully equal to methods of class Mesh, so // no conversion is needed for them at all: static TStringSet sameMethods; if ( sameMethods.empty() ) { const char * names[] = { "ExportDAT","ExportUNV","ExportSTL", "RemoveGroup","RemoveGroupWithContents", "GetGroups","UnionGroups","IntersectGroups","CutGroups","GetLog","GetId","ClearLog", "GetStudyId","HasDuplicatedGroupNamesMED","GetMEDMesh","NbNodes","NbElements", "NbEdges","NbEdgesOfOrder","NbFaces","NbFacesOfOrder","NbTriangles", "NbTrianglesOfOrder","NbQuadrangles","NbQuadranglesOfOrder","NbPolygons","NbVolumes", "NbVolumesOfOrder","NbTetras","NbTetrasOfOrder","NbHexas","NbHexasOfOrder", "NbPyramids","NbPyramidsOfOrder","NbPrisms","NbPrismsOfOrder","NbPolyhedrons", "NbSubMesh","GetElementsId","GetElementsByType","GetNodesId","GetElementType", "GetSubMeshElementsId","GetSubMeshNodesId","GetSubMeshElementType","Dump","GetNodeXYZ", "GetNodeInverseElements","GetShapeID","GetShapeIDForElem","GetElemNbNodes", "GetElemNode","IsMediumNode","IsMediumNodeOfAnyElem","ElemNbEdges","ElemNbFaces", "IsPoly","IsQuadratic","BaryCenter","GetHypothesisList", "SetAutoColor", "GetAutoColor", "Clear", "ConvertToStandalone", "GetMeshOrder", "SetMeshOrder" ,"" }; // <- mark of end sameMethods.Insert( names ); } return !sameMethods.Contains( theCommand->GetMethod() ); } //================================================================================ /*! * \brief Convert creation and addition of all algos and hypos */ //================================================================================ void _pyMesh::Flush() { list < Handle(_pyCommand) >::iterator cmd; // try to convert algo addition like this: // mesh.AddHypothesis(geom, ALGO ) --> ALGO = mesh.Algo() for ( cmd = myAddHypCmds.begin(); cmd != myAddHypCmds.end(); ++cmd ) { Handle(_pyCommand) addCmd = *cmd; _pyID algoID = addCmd->GetArg( 2 ); Handle(_pyHypothesis) algo = theGen->FindHyp( algoID ); if ( algo.IsNull() || !algo->IsAlgo() ) continue; // check and create new algorithm instance if it is already wrapped if ( algo->IsWrapped() ) { _pyID localAlgoID = theGen->GenerateNewID( algoID ); TCollection_AsciiString aNewCmdStr = localAlgoID + TCollection_AsciiString( " = " ) + theGen->GetID() + TCollection_AsciiString( ".CreateHypothesis( \"" ) + algo->GetAlgoType() + TCollection_AsciiString( "\" )" ); Handle(_pyCommand) newCmd = theGen->AddCommand( aNewCmdStr ); Handle(_pyAlgorithm) newAlgo = Handle(_pyAlgorithm)::DownCast(theGen->FindHyp( localAlgoID )); if ( !newAlgo.IsNull() ) { newAlgo->Assign( algo, this->GetID() ); newAlgo->SetCreationCmd( newCmd ); algo = newAlgo; // set algorithm creation theGen->SetCommandBefore( newCmd, addCmd ); } else newCmd->Clear(); } _pyID geom = addCmd->GetArg( 1 ); bool isLocalAlgo = ( geom != GetGeom() ); // try to convert if ( algo->Addition2Creation( addCmd, this->GetID() )) // OK { // wrapped algo is created atfer mesh creation GetCreationCmd()->AddDependantCmd( addCmd ); if ( isLocalAlgo ) { // mesh.AddHypothesis(geom, ALGO ) --> mesh.AlgoMethod(geom) addCmd->SetArg( addCmd->GetNbArgs() + 1, TCollection_AsciiString( "geom=" ) + geom ); // sm = mesh.GetSubMesh(geom, name) --> sm = ALGO.GetSubMesh() list < Handle(_pySubMesh) >::iterator smIt; for ( smIt = mySubmeshes.begin(); smIt != mySubmeshes.end(); ++smIt ) { Handle(_pySubMesh) subMesh = *smIt; Handle(_pyCommand) subCmd = subMesh->GetCreationCmd(); if ( geom == subCmd->GetArg( 1 )) { subCmd->SetObject( algo->GetID() ); subCmd->RemoveArgs(); subMesh->SetCreator( algo ); } } } } else // KO - ALGO was already created { // mesh.AddHypothesis(geom, ALGO) --> mesh.AddHypothesis(ALGO, geom=0) addCmd->RemoveArgs(); addCmd->SetArg( 1, algoID ); if ( isLocalAlgo ) addCmd->SetArg( 2, geom ); } } // try to convert hypo addition like this: // mesh.AddHypothesis(geom, HYPO ) --> HYPO = algo.Hypo() for ( cmd = myAddHypCmds.begin(); cmd != myAddHypCmds.end(); ++cmd ) { Handle(_pyCommand) addCmd = *cmd; _pyID hypID = addCmd->GetArg( 2 ); Handle(_pyHypothesis) hyp = theGen->FindHyp( hypID ); if ( hyp.IsNull() || hyp->IsAlgo() ) continue; bool converted = hyp->Addition2Creation( addCmd, this->GetID() ); if ( !converted ) { // mesh.AddHypothesis(geom, HYP) --> mesh.AddHypothesis(HYP, geom=0) _pyID geom = addCmd->GetArg( 1 ); addCmd->RemoveArgs(); addCmd->SetArg( 1, hypID ); if ( geom != GetGeom() ) addCmd->SetArg( 2, geom ); } } // sm = mesh.GetSubMesh(geom, name) --> sm = mesh.GetMesh().GetSubMesh(geom, name) // for ( cmd = mySubmeshes.begin(); cmd != mySubmeshes.end(); ++cmd ) { // Handle(_pyCommand) subCmd = *cmd; // if ( subCmd->GetNbArgs() > 0 ) // AddMeshAccess( subCmd ); // } myAddHypCmds.clear(); mySubmeshes.clear(); // flush hypotheses list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin(); for ( ; hyp != myHypos.end(); ++hyp ) (*hyp)->Flush(); } //================================================================================ /*! * \brief MeshEditor convert its commands to ones of mesh */ //================================================================================ _pyMeshEditor::_pyMeshEditor(const Handle(_pyCommand)& theCreationCmd): _pyObject( theCreationCmd ) { myMesh = theCreationCmd->GetObject(); myCreationCmdStr = theCreationCmd->GetString(); theCreationCmd->Clear(); } //================================================================================ /*! * \brief convert its commands to ones of mesh */ //================================================================================ void _pyMeshEditor::Process( const Handle(_pyCommand)& theCommand) { // names of SMESH_MeshEditor methods fully equal to methods of class Mesh, so // commands calling this methods are converted to calls of methods of Mesh static TStringSet sameMethods; if ( sameMethods.empty() ) { const char * names[] = { "RemoveElements","RemoveNodes","RemoveOrphanNodes","AddNode","Add0DElement","AddEdge","AddFace","AddPolygonalFace", "AddVolume","AddPolyhedralVolume","AddPolyhedralVolumeByFaces","MoveNode", "MoveClosestNodeToPoint", "InverseDiag","DeleteDiag","Reorient","ReorientObject","TriToQuad","SplitQuad","SplitQuadObject", "BestSplit","Smooth","SmoothObject","SmoothParametric","SmoothParametricObject", "ConvertToQuadratic","ConvertFromQuadratic","RenumberNodes","RenumberElements", "RotationSweep","RotationSweepObject","RotationSweepObject1D","RotationSweepObject2D", "ExtrusionSweep","AdvancedExtrusion","ExtrusionSweepObject","ExtrusionSweepObject1D","ExtrusionSweepObject2D", "ExtrusionAlongPath","ExtrusionAlongPathObject","ExtrusionAlongPathObject1D","ExtrusionAlongPathObject2D", "Mirror","MirrorObject","Translate","TranslateObject","Rotate","RotateObject", "FindCoincidentNodes","FindCoincidentNodesOnPart","MergeNodes","FindEqualElements", "MergeElements","MergeEqualElements","SewFreeBorders","SewConformFreeBorders", "SewBorderToSide","SewSideElements","ChangeElemNodes","GetLastCreatedNodes", "GetLastCreatedElems", "MirrorMakeMesh","MirrorObjectMakeMesh","TranslateMakeMesh", "TranslateObjectMakeMesh","RotateMakeMesh","RotateObjectMakeMesh" ,"" }; // <- mark of the end sameMethods.Insert( names ); } // names of SMESH_MeshEditor methods which differ from methods of class Mesh // only last two arguments static TStringSet diffLastTwoArgsMethods; if (diffLastTwoArgsMethods.empty() ){ const char * names[] = { "MirrorMakeGroups","MirrorObjectMakeGroups", "TranslateMakeGroups","TranslateObjectMakeGroups", "RotateMakeGroups","RotateObjectMakeGroups", ""};// <- mark of the end diffLastTwoArgsMethods.Insert( names ); } if ( sameMethods.Contains( theCommand->GetMethod() )) { theCommand->SetObject( myMesh ); // meshes made by *MakeMesh() methods are not wrapped by _pyMesh, // so let _pyMesh care of it (TMP?) // if ( theCommand->GetMethod().Search("MakeMesh") != -1 ) // _pyMesh( new _pyCommand( theCommand->GetString(), 0 )); // for theGen->SetAccessorMethod() } else { //Replace SMESH_MeshEditor "MakeGroups" functions on the Mesh //functions with the flag "theMakeGroups = True" like: //SMESH_MeshEditor.CmdMakeGroups => Mesh.Cmd(...,True) int pos = theCommand->GetMethod().Search("MakeGroups"); if( pos != -1) { // 1. Remove "MakeGroups" from the Command TCollection_AsciiString aMethod = theCommand->GetMethod(); int nbArgsToAdd = diffLastTwoArgsMethods.Contains(aMethod) ? 2 : 1; aMethod.Trunc(pos-1); theCommand->SetMethod(aMethod); // 2. Set Mesh object instead of SMESH_MeshEditor theCommand->SetObject( myMesh ); // 3. And add last "True" argument while(nbArgsToAdd--) theCommand->SetArg(theCommand->GetNbArgs()+1,"True "); } else { // editor creation command is needed only if any editor function is called theGen->AddMeshAccessorMethod( theCommand ); // for *Object() if ( !myCreationCmdStr.IsEmpty() ) { GetCreationCmd()->GetString() = myCreationCmdStr; myCreationCmdStr.Clear(); } } } } //================================================================================ /*! * \brief _pyHypothesis constructor * \param theCreationCmd - */ //================================================================================ _pyHypothesis::_pyHypothesis(const Handle(_pyCommand)& theCreationCmd): _pyObject( theCreationCmd ) { myIsAlgo = myIsWrapped = /*myIsConverted = myIsLocal = myDim = */false; } //================================================================================ /*! * \brief Creates algorithm or hypothesis * \param theCreationCmd - The engine command creating a hypothesis * \retval Handle(_pyHypothesis) - Result _pyHypothesis */ //================================================================================ Handle(_pyHypothesis) _pyHypothesis::NewHypothesis( const Handle(_pyCommand)& theCreationCmd) { // theCreationCmd: CreateHypothesis( "theHypType", "theLibName" ) ASSERT (( theCreationCmd->GetMethod() == "CreateHypothesis")); Handle(_pyHypothesis) hyp, algo; // "theHypType" const TCollection_AsciiString & hypTypeQuoted = theCreationCmd->GetArg( 1 ); if ( hypTypeQuoted.IsEmpty() ) return hyp; // theHypType TCollection_AsciiString hypType = hypTypeQuoted.SubString( 2, hypTypeQuoted.Length() - 1 ); algo = new _pyAlgorithm( theCreationCmd ); hyp = new _pyHypothesis( theCreationCmd ); // 1D Regular_1D ---------- if ( hypType == "Regular_1D" ) { // set mesh's method creating algo, // i.e. convertion result will be "regular1d = Mesh.Segment()", // and set hypType by which algo creating a hypothesis is searched for algo->SetConvMethodAndType("Segment", hypType.ToCString()); } else if ( hypType == "CompositeSegment_1D" ) { algo->SetConvMethodAndType("Segment", "Regular_1D"); algo->myArgs.Append( "algo=smesh.COMPOSITE"); } else if ( hypType == "LocalLength" ) { // set algo's method creating hyp, and algo type hyp->SetConvMethodAndType( "LocalLength", "Regular_1D"); // set method whose 1 arg will become the 1-st arg of hyp creation command // i.e. convertion result will be "locallength = regular1d.LocalLength()" hyp->AddArgMethod( "SetLength" ); } else if ( hypType == "MaxLength" ) { // set algo's method creating hyp, and algo type hyp->SetConvMethodAndType( "MaxSize", "Regular_1D"); // set method whose 1 arg will become the 1-st arg of hyp creation command // i.e. convertion result will be "maxsize = regular1d.MaxSize()" hyp->AddArgMethod( "SetLength" ); } else if ( hypType == "NumberOfSegments" ) { hyp = new _pyNumberOfSegmentsHyp( theCreationCmd ); hyp->SetConvMethodAndType( "NumberOfSegments", "Regular_1D"); // arg of SetNumberOfSegments() will become the 1-st arg of hyp creation command hyp->AddArgMethod( "SetNumberOfSegments" ); // arg of SetScaleFactor() will become the 2-nd arg of hyp creation command hyp->AddArgMethod( "SetScaleFactor" ); hyp->AddArgMethod( "SetReversedEdges" ); } else if ( hypType == "Arithmetic1D" ) { hyp = new _pyComplexParamHypo( theCreationCmd ); hyp->SetConvMethodAndType( "Arithmetic1D", "Regular_1D"); hyp->AddArgMethod( "SetStartLength" ); hyp->AddArgMethod( "SetEndLength" ); hyp->AddArgMethod( "SetReversedEdges" ); } else if ( hypType == "StartEndLength" ) { hyp = new _pyComplexParamHypo( theCreationCmd ); hyp->SetConvMethodAndType( "StartEndLength", "Regular_1D"); hyp->AddArgMethod( "SetStartLength" ); hyp->AddArgMethod( "SetEndLength" ); hyp->AddArgMethod( "SetReversedEdges" ); } else if ( hypType == "Deflection1D" ) { hyp->SetConvMethodAndType( "Deflection1D", "Regular_1D"); hyp->AddArgMethod( "SetDeflection" ); } else if ( hypType == "Propagation" ) { hyp->SetConvMethodAndType( "Propagation", "Regular_1D"); } else if ( hypType == "QuadraticMesh" ) { hyp->SetConvMethodAndType( "QuadraticMesh", "Regular_1D"); } else if ( hypType == "AutomaticLength" ) { hyp->SetConvMethodAndType( "AutomaticLength", "Regular_1D"); hyp->AddArgMethod( "SetFineness"); } else if ( hypType == "SegmentLengthAroundVertex" ) { hyp = new _pySegmentLengthAroundVertexHyp( theCreationCmd ); hyp->SetConvMethodAndType( "LengthNearVertex", "Regular_1D" ); hyp->AddArgMethod( "SetLength" ); } // 1D Python_1D ---------- else if ( hypType == "Python_1D" ) { algo->SetConvMethodAndType( "Segment", hypType.ToCString()); algo->myArgs.Append( "algo=smesh.PYTHON"); } else if ( hypType == "PythonSplit1D" ) { hyp->SetConvMethodAndType( "PythonSplit1D", "Python_1D"); hyp->AddArgMethod( "SetNumberOfSegments"); hyp->AddArgMethod( "SetPythonLog10RatioFunction"); } // MEFISTO_2D ---------- else if ( hypType == "MEFISTO_2D" ) { // MEFISTO_2D algo->SetConvMethodAndType( "Triangle", hypType.ToCString()); } else if ( hypType == "MaxElementArea" ) { hyp->SetConvMethodAndType( "MaxElementArea", "MEFISTO_2D"); hyp->SetConvMethodAndType( "MaxElementArea", "NETGEN_2D_ONLY"); hyp->AddArgMethod( "SetMaxElementArea"); } else if ( hypType == "LengthFromEdges" ) { hyp->SetConvMethodAndType( "LengthFromEdges", "MEFISTO_2D"); hyp->SetConvMethodAndType( "LengthFromEdges", "NETGEN_2D_ONLY"); } // Quadrangle_2D ---------- else if ( hypType == "Quadrangle_2D" ) { algo->SetConvMethodAndType( "Quadrangle" , hypType.ToCString()); } else if ( hypType == "QuadranglePreference" ) { hyp->SetConvMethodAndType( "QuadranglePreference", "Quadrangle_2D"); hyp->SetConvMethodAndType( "SetQuadAllowed", "NETGEN_2D_ONLY"); } else if ( hypType == "TrianglePreference" ) { hyp->SetConvMethodAndType( "TrianglePreference", "Quadrangle_2D"); } // RadialQuadrangle_1D2D ---------- else if ( hypType == "RadialQuadrangle_1D2D" ) { algo->SetConvMethodAndType( "Quadrangle" , hypType.ToCString()); algo->myArgs.Append( "algo=smesh.RADIAL_QUAD" ); } else if ( hypType == "NumberOfLayers2D" ) { hyp->SetConvMethodAndType( "NumberOfLayers", "RadialQuadrangle_1D2D"); hyp->AddArgMethod( "SetNumberOfLayers" ); } else if ( hypType == "LayerDistribution2D" ) { hyp = new _pyLayerDistributionHypo( theCreationCmd, "Get2DHypothesis" ); hyp->SetConvMethodAndType( "LayerDistribution", "RadialQuadrangle_1D2D"); } // BLSURF ---------- else if ( hypType == "BLSURF" ) { algo->SetConvMethodAndType( "Triangle", hypType.ToCString()); algo->myArgs.Append( "algo=smesh.BLSURF" ); } else if ( hypType == "BLSURF_Parameters") { hyp->SetConvMethodAndType( "Parameters", "BLSURF"); } // NETGEN ---------- else if ( hypType == "NETGEN_2D") { // 1D-2D algo->SetConvMethodAndType( "Triangle" , hypType.ToCString()); algo->myArgs.Append( "algo=smesh.NETGEN" ); } else if ( hypType == "NETGEN_Parameters_2D") { hyp->SetConvMethodAndType( "Parameters", "NETGEN_2D"); } else if ( hypType == "NETGEN_SimpleParameters_2D") { hyp->SetConvMethodAndType( "Parameters", "NETGEN_2D"); hyp->myArgs.Append( "which=smesh.SIMPLE" ); } else if ( hypType == "NETGEN_2D3D") { // 1D-2D-3D algo->SetConvMethodAndType( "Tetrahedron" , hypType.ToCString()); algo->myArgs.Append( "algo=smesh.FULL_NETGEN" ); } else if ( hypType == "NETGEN_Parameters") { hyp->SetConvMethodAndType( "Parameters", "NETGEN_2D3D"); } else if ( hypType == "NETGEN_SimpleParameters_3D") { hyp->SetConvMethodAndType( "Parameters", "NETGEN_2D3D"); hyp->myArgs.Append( "which=smesh.SIMPLE" ); } else if ( hypType == "NETGEN_2D_ONLY") { // 2D algo->SetConvMethodAndType( "Triangle" , hypType.ToCString()); algo->myArgs.Append( "algo=smesh.NETGEN_2D" ); } else if ( hypType == "NETGEN_3D") { // 3D algo->SetConvMethodAndType( "Tetrahedron" , hypType.ToCString()); algo->myArgs.Append( "algo=smesh.NETGEN" ); } else if ( hypType == "MaxElementVolume") { hyp->SetConvMethodAndType( "MaxElementVolume", "NETGEN_3D"); hyp->AddArgMethod( "SetMaxElementVolume" ); } // GHS3D_3D ---------- else if ( hypType == "GHS3D_3D" ) { algo->SetConvMethodAndType( "Tetrahedron", hypType.ToCString()); algo->myArgs.Append( "algo=smesh.GHS3D" ); } else if ( hypType == "GHS3D_Parameters") { hyp->SetConvMethodAndType( "Parameters", "GHS3D_3D"); } // Hexa_3D --------- else if ( hypType == "BLSURF" ) { algo->SetConvMethodAndType( "Hexahedron", hypType.ToCString()); } // Repetitive Projection_1D --------- else if ( hypType == "Projection_1D" ) { algo->SetConvMethodAndType( "Projection1D", hypType.ToCString()); } else if ( hypType == "ProjectionSource1D" ) { hyp->SetConvMethodAndType( "SourceEdge", "Projection_1D"); hyp->AddArgMethod( "SetSourceEdge"); hyp->AddArgMethod( "SetSourceMesh"); // 2 args of SetVertexAssociation() will become the 3-th and 4-th args of hyp creation command hyp->AddArgMethod( "SetVertexAssociation", 2 ); } // Projection_2D --------- else if ( hypType == "Projection_2D" ) { algo->SetConvMethodAndType( "Projection2D", hypType.ToCString()); } else if ( hypType == "ProjectionSource2D" ) { hyp->SetConvMethodAndType( "SourceFace", "Projection_2D"); hyp->AddArgMethod( "SetSourceFace"); hyp->AddArgMethod( "SetSourceMesh"); hyp->AddArgMethod( "SetVertexAssociation", 4 ); } // Projection_3D --------- else if ( hypType == "Projection_3D" ) { algo->SetConvMethodAndType( "Projection3D", hypType.ToCString()); } else if ( hypType == "ProjectionSource3D" ) { hyp->SetConvMethodAndType( "SourceShape3D", "Projection_3D"); hyp->AddArgMethod( "SetSource3DShape"); hyp->AddArgMethod( "SetSourceMesh"); hyp->AddArgMethod( "SetVertexAssociation", 4 ); } // Prism_3D --------- else if ( hypType == "Prism_3D" ) { algo->SetConvMethodAndType( "Prism", hypType.ToCString()); } // RadialPrism_3D --------- else if ( hypType == "RadialPrism_3D" ) { algo->SetConvMethodAndType( "Prism", hypType.ToCString()); } else if ( hypType == "NumberOfLayers" ) { hyp->SetConvMethodAndType( "NumberOfLayers", "RadialPrism_3D"); hyp->AddArgMethod( "SetNumberOfLayers" ); } else if ( hypType == "LayerDistribution" ) { hyp = new _pyLayerDistributionHypo( theCreationCmd, "Get3DHypothesis" ); hyp->SetConvMethodAndType( "LayerDistribution", "RadialPrism_3D"); } return algo->IsValid() ? algo : hyp; } //================================================================================ /*! * \brief Convert the command adding a hypothesis to mesh into a smesh command * \param theCmd - The command like mesh.AddHypothesis( geom, hypo ) * \param theAlgo - The algo that can create this hypo * \retval bool - false if the command cant be converted */ //================================================================================ bool _pyHypothesis::Addition2Creation( const Handle(_pyCommand)& theCmd, const _pyID& theMesh) { ASSERT(( theCmd->GetMethod() == "AddHypothesis" )); if ( !IsWrappable( theMesh )) return false; myGeom = theCmd->GetArg( 1 ); Handle(_pyHypothesis) algo; if ( !IsAlgo() ) { // find algo created on myGeom in theMesh algo = theGen->FindAlgo( myGeom, theMesh, this ); if ( algo.IsNull() ) return false; // attach hypothesis creation command to be after algo creation command // because it can be new created instance of algorithm algo->GetCreationCmd()->AddDependantCmd( theCmd ); } myIsWrapped = true; // mesh.AddHypothesis(geom,hyp) --> hyp = .myCreationMethod(args) theCmd->SetResultValue( GetID() ); theCmd->SetObject( IsAlgo() ? theMesh : algo->GetID()); theCmd->SetMethod( IsAlgo() ? GetAlgoCreationMethod() : GetCreationMethod( algo->GetAlgoType() )); // set args theCmd->RemoveArgs(); for ( int i = 1; i <= myArgs.Length(); ++i ) { if ( !myArgs( i ).IsEmpty() ) theCmd->SetArg( i, myArgs( i )); else theCmd->SetArg( i, "[]"); } // set a new creation command GetCreationCmd()->Clear(); // replace creation command by wrapped instance // please note, that hypothesis attaches to algo creation command (see upper) SetCreationCmd( theCmd ); // clear commands setting arg values list < Handle(_pyCommand) >::iterator argCmd = myArgCommands.begin(); for ( ; argCmd != myArgCommands.end(); ++argCmd ) (*argCmd)->Clear(); // set unknown arg commands after hypo creation Handle(_pyCommand) afterCmd = myIsWrapped ? theCmd : GetCreationCmd(); list::iterator cmd = myUnknownCommands.begin(); for ( ; cmd != myUnknownCommands.end(); ++cmd ) { afterCmd->AddDependantCmd( *cmd ); } return myIsWrapped; } //================================================================================ /*! * \brief Remember hypothesis parameter values * \param theCommand - The called hypothesis method */ //================================================================================ void _pyHypothesis::Process( const Handle(_pyCommand)& theCommand) { ASSERT( !myIsAlgo ); // set args int nbArgs = 0; for ( int i = 1; i <= myArgMethods.Length(); ++i ) { if ( myArgMethods( i ) == theCommand->GetMethod() ) { while ( myArgs.Length() < nbArgs + myNbArgsByMethod( i )) myArgs.Append( "[]" ); for ( int iArg = 1; iArg <= myNbArgsByMethod( i ); ++iArg ) myArgs( nbArgs + iArg ) = theCommand->GetArg( iArg ); // arg value myArgCommands.push_back( theCommand ); return; } nbArgs += myNbArgsByMethod( i ); } myUnknownCommands.push_back( theCommand ); } //================================================================================ /*! * \brief Finish conversion */ //================================================================================ void _pyHypothesis::Flush() { if ( IsWrapped() ) { } else { list < Handle(_pyCommand) >::iterator cmd = myArgCommands.begin(); for ( ; cmd != myArgCommands.end(); ++cmd ) { // Add access to a wrapped mesh theGen->AddMeshAccessorMethod( *cmd ); // Add access to a wrapped algorithm theGen->AddAlgoAccessorMethod( *cmd ); } cmd = myUnknownCommands.begin(); for ( ; cmd != myUnknownCommands.end(); ++cmd ) { // Add access to a wrapped mesh theGen->AddMeshAccessorMethod( *cmd ); // Add access to a wrapped algorithm theGen->AddAlgoAccessorMethod( *cmd ); } } // forget previous hypothesis modifications myArgCommands.clear(); myUnknownCommands.clear(); } //================================================================================ /*! * \brief clear creation, arg and unkown commands */ //================================================================================ void _pyHypothesis::ClearAllCommands() { GetCreationCmd()->Clear(); list::iterator cmd = myArgCommands.begin(); for ( ; cmd != myArgCommands.end(); ++cmd ) ( *cmd )->Clear(); cmd = myUnknownCommands.begin(); for ( ; cmd != myUnknownCommands.end(); ++cmd ) ( *cmd )->Clear(); } //================================================================================ /*! * \brief Assign fields of theOther to me except myIsWrapped */ //================================================================================ void _pyHypothesis::Assign( const Handle(_pyHypothesis)& theOther, const _pyID& theMesh ) { myIsWrapped = false; myMesh = theMesh; // myCreationCmd = theOther->myCreationCmd; myIsAlgo = theOther->myIsAlgo; myGeom = theOther->myGeom; myType2CreationMethod = theOther->myType2CreationMethod; myArgs = theOther->myArgs; myArgMethods = theOther->myArgMethods; myNbArgsByMethod = theOther->myNbArgsByMethod; myArgCommands = theOther->myArgCommands; myUnknownCommands = theOther->myUnknownCommands; } //================================================================================ /*! * \brief Remember hypothesis parameter values * \param theCommand - The called hypothesis method */ //================================================================================ void _pyComplexParamHypo::Process( const Handle(_pyCommand)& theCommand) { if( theCommand->GetMethod() == "SetLength" ) { // NOW it becomes OBSOLETE // ex: hyp.SetLength(start, 1) // hyp.SetLength(end, 0) ASSERT(( theCommand->GetArg( 2 ).IsIntegerValue() )); int i = 2 - theCommand->GetArg( 2 ).IntegerValue(); while ( myArgs.Length() < i ) myArgs.Append( "[]" ); myArgs( i ) = theCommand->GetArg( 1 ); // arg value myArgCommands.push_back( theCommand ); } else { _pyHypothesis::Process( theCommand ); } } //================================================================================ /*! * \brief Clear SetObjectEntry() as it is called by methods of Mesh_Segment */ //================================================================================ void _pyComplexParamHypo::Flush() { if ( IsWrapped() ) { list < Handle(_pyCommand) >::iterator cmd = myUnknownCommands.begin(); for ( ; cmd != myUnknownCommands.end(); ++cmd ) if ((*cmd)->GetMethod() == "SetObjectEntry" ) (*cmd)->Clear(); } } //================================================================================ /*! * \brief Convert methods of 1D hypotheses to my own methods * \param theCommand - The called hypothesis method */ //================================================================================ void _pyLayerDistributionHypo::Process( const Handle(_pyCommand)& theCommand) { if ( theCommand->GetMethod() != "SetLayerDistribution" ) return; _pyID newName; // name for 1D hyp = "HypType" + "_Distribution" const _pyID& hyp1dID = theCommand->GetArg( 1 ); Handle(_pyHypothesis) hyp1d = theGen->FindHyp( hyp1dID ); if ( hyp1d.IsNull() ) // apparently hypId changed at study restoration hyp1d = my1dHyp; else if ( !my1dHyp.IsNull() && hyp1dID != my1dHyp->GetID() ) { // 1D hypo is already set, so distribution changes and the old // 1D hypo is thrown away my1dHyp->ClearAllCommands(); } my1dHyp = hyp1d; if ( !myArgCommands.empty() ) myArgCommands.front()->Clear(); myArgCommands.push_back( theCommand ); } //================================================================================ /*! * \brief * \param theAdditionCmd - command to be converted * \param theMesh - mesh instance * \retval bool - status */ //================================================================================ bool _pyLayerDistributionHypo::Addition2Creation( const Handle(_pyCommand)& theAdditionCmd, const _pyID& theMesh) { myIsWrapped = false; if ( my1dHyp.IsNull() ) return false; // set "SetLayerDistribution()" after addition cmd theAdditionCmd->AddDependantCmd( myArgCommands.front() ); _pyID geom = theAdditionCmd->GetArg( 1 ); Handle(_pyHypothesis) algo = theGen->FindAlgo( geom, theMesh, this ); if ( !algo.IsNull() ) { my1dHyp->SetMesh( theMesh ); my1dHyp->SetConvMethodAndType(my1dHyp->GetAlgoCreationMethod().ToCString(), algo->GetAlgoType().ToCString()); if ( !my1dHyp->Addition2Creation( theAdditionCmd, theMesh )) return false; // clear "SetLayerDistribution()" cmd myArgCommands.back()->Clear(); // Convert my creation => me = RadialPrismAlgo.Get3DHypothesis() // find RadialPrism algo created on for theMesh GetCreationCmd()->SetObject( algo->GetID() ); GetCreationCmd()->SetMethod( myAlgoMethod ); GetCreationCmd()->RemoveArgs(); theAdditionCmd->AddDependantCmd( GetCreationCmd() ); myIsWrapped = true; } return myIsWrapped; } //================================================================================ /*! * \brief */ //================================================================================ void _pyLayerDistributionHypo::Flush() { // as creation of 1D hyp was written later then it's edition, // we need to find all it's edition calls and process them if ( !my1dHyp.IsNull() ) { _pyID hyp1dID = my1dHyp->GetCreationCmd()->GetResultValue(); // make a new name for 1D hyp = "HypType" + "_Distribution" _pyID newName; if ( my1dHyp->IsWrapped() ) { newName = my1dHyp->GetCreationCmd()->GetMethod(); } else { TCollection_AsciiString hypTypeQuoted = my1dHyp->GetCreationCmd()->GetArg(1); newName = hypTypeQuoted.SubString( 2, hypTypeQuoted.Length() - 1 ); } newName += "_Distribution"; my1dHyp->GetCreationCmd()->SetResultValue( newName ); list< Handle(_pyCommand) >& cmds = theGen->GetCommands(); list< Handle(_pyCommand) >::iterator cmdIt = cmds.begin(); for ( ; cmdIt != cmds.end(); ++cmdIt ) { const _pyID& objID = (*cmdIt)->GetObject(); if ( objID == hyp1dID ) { my1dHyp->Process( *cmdIt ); my1dHyp->GetCreationCmd()->AddDependantCmd( *cmdIt ); ( *cmdIt )->SetObject( newName ); } } // Set new hyp name to SetLayerDistribution() cmd if ( !myArgCommands.empty() && !myArgCommands.back()->IsEmpty() ) myArgCommands.back()->SetArg( 1, newName ); } } //================================================================================ /*! * \brief additionally to Addition2Creation, clears SetDistrType() command * \param theCmd - AddHypothesis() command * \param theMesh - mesh to which a hypothesis is added * \retval bool - convertion result */ //================================================================================ bool _pyNumberOfSegmentsHyp::Addition2Creation( const Handle(_pyCommand)& theCmd, const _pyID& theMesh) { if ( IsWrappable( theMesh ) && myArgs.Length() > 1 ) { // scale factor (2-nd arg) is provided: clear SetDistrType(1) command bool scaleDistrType = false; list::reverse_iterator cmd = myUnknownCommands.rbegin(); for ( ; cmd != myUnknownCommands.rend(); ++cmd ) { if ( (*cmd)->GetMethod() == "SetDistrType" ) { if ( (*cmd)->GetArg( 1 ) == "1" ) { scaleDistrType = true; (*cmd)->Clear(); } else if ( !scaleDistrType ) { // distribution type changed: remove scale factor from args myArgs.Remove( 2, myArgs.Length() ); break; } } } } return _pyHypothesis::Addition2Creation( theCmd, theMesh ); } //================================================================================ /*! * \brief remove repeated commands defining distribution */ //================================================================================ void _pyNumberOfSegmentsHyp::Flush() { // find number of the last SetDistrType() command list::reverse_iterator cmd = myUnknownCommands.rbegin(); int distrTypeNb = 0; for ( ; !distrTypeNb && cmd != myUnknownCommands.rend(); ++cmd ) if ( (*cmd)->GetMethod() == "SetDistrType" ) distrTypeNb = (*cmd)->GetOrderNb(); else if (IsWrapped() && (*cmd)->GetMethod() == "SetObjectEntry" ) (*cmd)->Clear(); // clear commands before the last SetDistrType() list * cmds[2] = { &myArgCommands, &myUnknownCommands }; for ( int i = 0; i < 2; ++i ) { set uniqueMethods; list & cmdList = *cmds[i]; for ( cmd = cmdList.rbegin(); cmd != cmdList.rend(); ++cmd ) { bool clear = ( (*cmd)->GetOrderNb() < distrTypeNb ); const TCollection_AsciiString& method = (*cmd)->GetMethod(); if ( !clear || method == "SetNumberOfSegments" ) { bool isNewInSet = uniqueMethods.insert( method ).second; clear = !isNewInSet; } if ( clear ) (*cmd)->Clear(); } cmdList.clear(); } } //================================================================================ /*! * \brief Convert the command adding "SegmentLengthAroundVertex" to mesh * into regular1D.LengthNearVertex( length, vertex ) * \param theCmd - The command like mesh.AddHypothesis( vertex, SegmentLengthAroundVertex ) * \param theMesh - The mesh needing this hypo * \retval bool - false if the command cant be converted */ //================================================================================ bool _pySegmentLengthAroundVertexHyp::Addition2Creation( const Handle(_pyCommand)& theCmd, const _pyID& theMeshID) { if ( IsWrappable( theMeshID )) { _pyID vertex = theCmd->GetArg( 1 ); // the problem here is that segment algo will not be found // by pyHypothesis::Addition2Creation() for , so we try to find // geometry where segment algorithm is assigned Handle(_pyHypothesis) algo; _pyID geom = vertex; while ( algo.IsNull() && !geom.IsEmpty()) { // try to find geom as a father of geom = FatherID( geom ); algo = theGen->FindAlgo( geom, theMeshID, this ); } if ( algo.IsNull() ) return false; // also possible to find geom as brother of veretex... // set geom instead of vertex theCmd->SetArg( 1, geom ); // set vertex as a second arg if ( myArgs.Length() < 1) myArgs.Append( "1" ); // :( myArgs.Append( vertex ); // mesh.AddHypothesis(vertex, SegmentLengthAroundVertex) --> // theMeshID.LengthNearVertex( length, vertex ) return _pyHypothesis::Addition2Creation( theCmd, theMeshID ); } return false; } //================================================================================ /*! * \brief _pyAlgorithm constructor * \param theCreationCmd - The command like "algo = smeshgen.CreateHypothesis(type,lib)" */ //================================================================================ _pyAlgorithm::_pyAlgorithm(const Handle(_pyCommand)& theCreationCmd) : _pyHypothesis( theCreationCmd ) { myIsAlgo = true; } //================================================================================ /*! * \brief Convert the command adding an algorithm to mesh * \param theCmd - The command like mesh.AddHypothesis( geom, algo ) * \param theMesh - The mesh needing this algo * \retval bool - false if the command cant be converted */ //================================================================================ bool _pyAlgorithm::Addition2Creation( const Handle(_pyCommand)& theCmd, const _pyID& theMeshID) { // mesh.AddHypothesis(geom,algo) --> theMeshID.myCreationMethod() if ( _pyHypothesis::Addition2Creation( theCmd, theMeshID )) { theGen->SetAccessorMethod( GetID(), "GetAlgorithm()" ); return true; } return false; } //================================================================================ /*! * \brief Return starting position of a part of python command * \param thePartIndex - The index of command part * \retval int - Part position */ //================================================================================ int _pyCommand::GetBegPos( int thePartIndex ) { if ( IsEmpty() ) return EMPTY; if ( myBegPos.Length() < thePartIndex ) return UNKNOWN; return myBegPos( thePartIndex ); } //================================================================================ /*! * \brief Store starting position of a part of python command * \param thePartIndex - The index of command part * \param thePosition - Part position */ //================================================================================ void _pyCommand::SetBegPos( int thePartIndex, int thePosition ) { while ( myBegPos.Length() < thePartIndex ) myBegPos.Append( UNKNOWN ); myBegPos( thePartIndex ) = thePosition; } //================================================================================ /*! * \brief Returns whitespace symbols at the line beginning * \retval TCollection_AsciiString - result */ //================================================================================ TCollection_AsciiString _pyCommand::GetIndentation() { int end = 1; if ( GetBegPos( RESULT_IND ) == UNKNOWN ) GetWord( myString, end, true ); else end = GetBegPos( RESULT_IND ); return myString.SubString( 1, end - 1 ); } //================================================================================ /*! * \brief Return substring of python command looking like ResultValue = Obj.Meth() * \retval const TCollection_AsciiString & - ResultValue substring */ //================================================================================ const TCollection_AsciiString & _pyCommand::GetResultValue() { if ( GetBegPos( RESULT_IND ) == UNKNOWN ) { int begPos = myString.Location( "=", 1, Length() ); if ( begPos ) myRes = GetWord( myString, begPos, false ); else begPos = EMPTY; SetBegPos( RESULT_IND, begPos ); } return myRes; } //================================================================================ /*! * \brief Return number of python command result value ResultValue = Obj.Meth() * \retval const int */ //================================================================================ const int _pyCommand::GetNbResultValues() { int begPos = 1; int Nb=0; int endPos = myString.Location( "=", 1, Length() ); TCollection_AsciiString str = ""; while ( begPos < endPos) { str = GetWord( myString, begPos, true ); begPos = begPos+ str.Length(); Nb++; } return (Nb-1); } //================================================================================ /*! * \brief Return substring of python command looking like * ResultValue1 , ResultValue1,... = Obj.Meth() with res index * \retval const TCollection_AsciiString & - ResultValue with res index substring */ //================================================================================ const TCollection_AsciiString & _pyCommand::GetResultValue(int res) { int begPos = 1; int Nb=0; int endPos = myString.Location( "=", 1, Length() ); while ( begPos < endPos) { myRes = GetWord( myString, begPos, true ); begPos = begPos + myRes.Length(); Nb++; if(res == Nb){ myRes.RemoveAll('[');myRes.RemoveAll(']'); return myRes; } if(Nb>res) break; } return theEmptyString; } //================================================================================ /*! * \brief Return substring of python command looking like ResVal = Object.Meth() * \retval const TCollection_AsciiString & - Object substring */ //================================================================================ const TCollection_AsciiString & _pyCommand::GetObject() { if ( GetBegPos( OBJECT_IND ) == UNKNOWN ) { // beginning int begPos = GetBegPos( RESULT_IND ) + myRes.Length(); if ( begPos < 1 ) { begPos = myString.Location( "=", 1, Length() ) + 1; // is '=' in the string argument (for example, name) or not int nb1 = 0; // number of ' character at the left of = int nb2 = 0; // number of " character at the left of = for ( int i = 1; i < begPos-1; i++ ) { if ( myString.Value( i )=='\'' ) nb1 += 1; else if ( myString.Value( i )=='"' ) nb2 += 1; } // if number of ' or " is not divisible by 2, // then get an object at the start of the command if ( nb1 % 2 != 0 || nb2 % 2 != 0 ) begPos = 1; } myObj = GetWord( myString, begPos, true ); // check if object is complex, // so far consider case like "smesh.smesh.Method()" if ( int bracketPos = myString.Location( "(", begPos, Length() )) { //if ( bracketPos==0 ) bracketPos = Length(); int dotPos = begPos+myObj.Length(); while ( dotPos+1 < bracketPos ) { if ( int pos = myString.Location( ".", dotPos+1, bracketPos )) dotPos = pos; else break; } if ( dotPos > begPos+myObj.Length() ) myObj = myString.SubString( begPos, dotPos-1 ); } // store SetBegPos( OBJECT_IND, begPos ); } //SCRUTE(myObj); return myObj; } //================================================================================ /*! * \brief Return substring of python command looking like ResVal = Obj.Method() * \retval const TCollection_AsciiString & - Method substring */ //================================================================================ const TCollection_AsciiString & _pyCommand::GetMethod() { if ( GetBegPos( METHOD_IND ) == UNKNOWN ) { // beginning int begPos = GetBegPos( OBJECT_IND ) + myObj.Length(); bool forward = true; if ( begPos < 1 ) { begPos = myString.Location( "(", 1, Length() ) - 1; forward = false; } // store myMeth = GetWord( myString, begPos, forward ); SetBegPos( METHOD_IND, begPos ); } //SCRUTE(myMeth); return myMeth; } //================================================================================ /*! * \brief Return substring of python command looking like ResVal = Obj.Meth(Arg1,...) * \retval const TCollection_AsciiString & - Arg substring */ //================================================================================ const TCollection_AsciiString & _pyCommand::GetArg( int index ) { if ( GetBegPos( ARG1_IND ) == UNKNOWN ) { // find all args int begPos = GetBegPos( METHOD_IND ) + myMeth.Length(); if ( begPos < 1 ) begPos = myString.Location( "(", 1, Length() ) + 1; int i = 0, prevLen = 0, nbNestings = 0; while ( begPos != EMPTY ) { begPos += prevLen; if( myString.Value( begPos ) == '(' ) nbNestings++; // check if we are looking at the closing parenthesis while ( begPos <= Length() && isspace( myString.Value( begPos ))) ++begPos; if ( begPos > Length() ) break; if ( myString.Value( begPos ) == ')' ) { nbNestings--; if( nbNestings == 0 ) break; } myArgs.Append( GetWord( myString, begPos, true, true )); SetBegPos( ARG1_IND + i, begPos ); prevLen = myArgs.Last().Length(); if ( prevLen == 0 ) myArgs.Remove( myArgs.Length() ); // no more args i++; } } if ( myArgs.Length() < index ) return theEmptyString; return myArgs( index ); } //================================================================================ /*! * \brief Check if char is a word part * \param c - The character to check * \retval bool - The check result */ //================================================================================ static inline bool isWord(const char c, const bool dotIsWord) { return !isspace(c) && c != ',' && c != '=' && c != ')' && c != '(' && ( dotIsWord || c != '.'); } //================================================================================ /*! * \brief Looks for a word in the string and returns word's beginning * \param theString - The input string * \param theStartPos - The position to start the search, returning word's beginning * \param theForward - The search direction * \retval TCollection_AsciiString - The found word */ //================================================================================ TCollection_AsciiString _pyCommand::GetWord( const TCollection_AsciiString & theString, int & theStartPos, const bool theForward, const bool dotIsWord ) { int beg = theStartPos, end = theStartPos; theStartPos = EMPTY; if ( beg < 1 || beg > theString.Length() ) return theEmptyString; if ( theForward ) { // search forward // beg while ( beg <= theString.Length() && !isWord( theString.Value( beg ), dotIsWord)) ++beg; if ( beg > theString.Length() ) return theEmptyString; // no word found // end end = beg + 1; char begChar = theString.Value( beg ); if ( begChar == '"' || begChar == '\'' || begChar == '[') { char endChar = ( begChar == '[' ) ? ']' : begChar; // end is at the corresponding quoting mark or bracket while ( end < theString.Length() && ( theString.Value( end ) != endChar || theString.Value( end-1 ) == '\\')) ++end; } else { while ( end <= theString.Length() && isWord( theString.Value( end ), dotIsWord)) ++end; --end; } } else { // search backward // end while ( end > 0 && !isWord( theString.Value( end ), dotIsWord)) --end; if ( end == 0 ) return theEmptyString; // no word found beg = end - 1; char endChar = theString.Value( end ); if ( endChar == '"' || endChar == '\'' ) { // beg is at the corresponding quoting mark while ( beg > 1 && ( theString.Value( beg ) != endChar || theString.Value( beg-1 ) == '\\')) --beg; } else { while ( beg > 0 && isWord( theString.Value( beg ), dotIsWord)) --beg; ++beg; } } theStartPos = beg; //cout << theString << " ---- " << beg << " - " << end << endl; return theString.SubString( beg, end ); } //================================================================================ /*! * \brief Look for position where not space char is * \param theString - The string * \param thePos - The position to search from and which returns result * \retval bool - false if there are only space after thePos in theString * * */ //================================================================================ bool _pyCommand::SkipSpaces( const TCollection_AsciiString & theString, int & thePos ) { if ( thePos < 1 || thePos > theString.Length() ) return false; while ( thePos <= theString.Length() && isspace( theString.Value( thePos ))) ++thePos; return thePos <= theString.Length(); } //================================================================================ /*! * \brief Modify a part of the command * \param thePartIndex - The index of the part * \param thePart - The new part string * \param theOldPart - The old part */ //================================================================================ void _pyCommand::SetPart(int thePartIndex, const TCollection_AsciiString& thePart, TCollection_AsciiString& theOldPart) { int pos = GetBegPos( thePartIndex ); if ( pos <= Length() && theOldPart != thePart) { TCollection_AsciiString seperator; if ( pos < 1 ) { pos = GetBegPos( thePartIndex + 1 ); if ( pos < 1 ) return; switch ( thePartIndex ) { case RESULT_IND: seperator = " = "; break; case OBJECT_IND: seperator = "."; break; case METHOD_IND: seperator = "()"; break; default:; } } myString.Remove( pos, theOldPart.Length() ); if ( !seperator.IsEmpty() ) myString.Insert( pos , seperator ); myString.Insert( pos, thePart ); // update starting positions of the following parts int posDelta = thePart.Length() + seperator.Length() - theOldPart.Length(); for ( int i = thePartIndex + 1; i <= myBegPos.Length(); ++i ) { if ( myBegPos( i ) > 0 ) myBegPos( i ) += posDelta; } theOldPart = thePart; } } //================================================================================ /*! * \brief Set agrument * \param index - The argument index, it counts from 1 * \param theArg - The argument string */ //================================================================================ void _pyCommand::SetArg( int index, const TCollection_AsciiString& theArg) { FindAllArgs(); int argInd = ARG1_IND + index - 1; int pos = GetBegPos( argInd ); if ( pos < 1 ) // no index-th arg exist, append inexistent args { // find a closing parenthesis if ( GetNbArgs() != 0 && index <= GetNbArgs() ) { int lastArgInd = GetNbArgs(); pos = GetBegPos( ARG1_IND + lastArgInd - 1 ) + GetArg( lastArgInd ).Length(); while ( pos > 0 && pos <= Length() && myString.Value( pos ) != ')' ) ++pos; } else { pos = Length(); while ( pos > 0 && myString.Value( pos ) != ')' ) --pos; } if ( pos < 1 || myString.Value( pos ) != ')' ) { // no parentheses at all myString += "()"; pos = Length(); } while ( myArgs.Length() < index ) { if ( myArgs.Length() ) myString.Insert( pos++, "," ); myArgs.Append("None"); myString.Insert( pos, myArgs.Last() ); SetBegPos( ARG1_IND + myArgs.Length() - 1, pos ); pos += myArgs.Last().Length(); } } SetPart( argInd, theArg, myArgs( index )); } //================================================================================ /*! * \brief Empty arg list */ //================================================================================ void _pyCommand::RemoveArgs() { if ( int pos = myString.Location( '(', 1, Length() )) myString.Trunc( pos ); myString += ")"; myArgs.Clear(); if ( myBegPos.Length() >= ARG1_IND ) myBegPos.Remove( ARG1_IND, myBegPos.Length() ); } //================================================================================ /*! * \brief Set dependent commands after this one */ //================================================================================ bool _pyCommand::SetDependentCmdsAfter() const { bool orderChanged = false; list< Handle(_pyCommand)>::const_reverse_iterator cmd = myDependentCmds.rbegin(); for ( ; cmd != myDependentCmds.rend(); ++cmd ) { if ( (*cmd)->GetOrderNb() < GetOrderNb() ) { orderChanged = true; theGen->SetCommandAfter( *cmd, this ); (*cmd)->SetDependentCmdsAfter(); } } return orderChanged; } //================================================================================ /*! * \brief Insert accessor method after theObjectID * \param theObjectID - id of the accessed object * \param theAcsMethod - name of the method giving access to the object * \retval bool - false if theObjectID is not found in the command string */ //================================================================================ bool _pyCommand::AddAccessorMethod( _pyID theObjectID, const char* theAcsMethod ) { if ( !theAcsMethod ) return false; // start object search from the object, i.e. ignore result GetObject(); int beg = GetBegPos( OBJECT_IND ); if ( beg < 1 || beg > Length() ) return false; bool added = false; while (( beg = myString.Location( theObjectID, beg, Length() ))) { // check that theObjectID is not just a part of a longer ID int afterEnd = beg + theObjectID.Length(); Standard_Character c = myString.Value( afterEnd ); if ( !isalnum( c ) && c != ':' ) { // check if accessor method already present if ( c != '.' || myString.Location( (char*) theAcsMethod, afterEnd, Length() ) != afterEnd+1) { // insertion int oldLen = Length(); myString.Insert( afterEnd, (char*) theAcsMethod ); myString.Insert( afterEnd, "." ); // update starting positions of the parts following the modified one int posDelta = Length() - oldLen; for ( int i = 1; i <= myBegPos.Length(); ++i ) { if ( myBegPos( i ) > afterEnd ) myBegPos( i ) += posDelta; } added = true; } } beg = afterEnd; // is a part - next search } return added; } //================================================================================ /*! * \brief Return method name giving access to an interaface object wrapped by python class * \retval const char* - method name */ //================================================================================ const char* _pyObject::AccessorMethod() const { return 0; } //================================================================================ /*! * \brief Return ID of a father */ //================================================================================ _pyID _pyObject::FatherID(const _pyID & childID) { int colPos = childID.SearchFromEnd(':'); if ( colPos > 0 ) return childID.SubString( 1, colPos-1 ); return ""; } //================================================================================ /*! * \brief SelfEraser erases creation command if no more it's commands invoked */ //================================================================================ void _pySelfEraser::Flush() { if ( GetNbCalls() == 0 ) GetCreationCmd()->Clear(); } //================================================================================ /*! * \brief count invoked commands */ //================================================================================ void _pySubMesh::Process( const Handle(_pyCommand)& theCommand ) { _pyObject::Process(theCommand); // count calls of Process() GetCreationCmd()->AddDependantCmd( theCommand ); } //================================================================================ /*! * \brief Clear creatin command if no commands invoked */ //================================================================================ void _pySubMesh::Flush() { if ( GetNbCalls() == 0 ) // move to the end of all commands theGen->GetLastCommand()->AddDependantCmd( GetCreationCmd() ); else if ( !myCreator.IsNull() ) // move to be just after creator myCreator->GetCreationCmd()->AddDependantCmd( GetCreationCmd() ); }