// Copyright (C) 2007-2022 CEA/DEN, EDF R&D, OPEN CASCADE // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : StdMeshers_ViscousLayers2D.cxx // Created : 23 Jul 2012 // Author : Edward AGAPOV (eap) #include "StdMeshers_ViscousLayers2D.hxx" #include "SMDS_EdgePosition.hxx" #include "SMDS_FaceOfNodes.hxx" #include "SMDS_FacePosition.hxx" #include "SMDS_MeshNode.hxx" #include "SMDS_SetIterator.hxx" #include "SMESHDS_Group.hxx" #include "SMESHDS_Hypothesis.hxx" #include "SMESHDS_Mesh.hxx" #include "SMESH_Algo.hxx" #include "SMESH_ComputeError.hxx" #include "SMESH_ControlsDef.hxx" #include "SMESH_Gen.hxx" #include "SMESH_Group.hxx" #include "SMESH_HypoFilter.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_MeshEditor.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_ProxyMesh.hxx" #include "SMESH_Quadtree.hxx" #include "SMESH_subMesh.hxx" #include "SMESH_subMeshEventListener.hxx" #include "StdMeshers_FaceSide.hxx" #include "utilities.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _DEBUG_ //#define __myDEBUG #endif using namespace std; //================================================================================ namespace VISCOUS_2D { typedef int TGeomID; //-------------------------------------------------------------------------------- /*! * \brief Proxy Mesh of FACE with viscous layers. It's needed only to * redefine newSubmesh(). */ struct _ProxyMeshOfFace : public SMESH_ProxyMesh { //--------------------------------------------------- // Proxy sub-mesh of an EDGE. It contains nodes in _uvPtStructVec. struct _EdgeSubMesh : public SMESH_ProxyMesh::SubMesh { _EdgeSubMesh(const SMDS_Mesh* mesh, int index=0): SubMesh(mesh,index) {} //virtual int NbElements() const { return _elements.size()+1; } virtual smIdType NbNodes() const { return Max( 0, _uvPtStructVec.size()-2 ); } void SetUVPtStructVec(UVPtStructVec& vec) { _uvPtStructVec.swap( vec ); } UVPtStructVec& GetUVPtStructVec() { return _uvPtStructVec; } }; _ProxyMeshOfFace(const SMESH_Mesh& mesh): SMESH_ProxyMesh(mesh) {} _EdgeSubMesh* GetEdgeSubMesh(int ID) { return (_EdgeSubMesh*) getProxySubMesh(ID); } virtual SubMesh* newSubmesh(int index=0) const { return new _EdgeSubMesh( GetMeshDS(), index); } }; //-------------------------------------------------------------------------------- /*! * \brief SMESH_subMeshEventListener used to store _ProxyMeshOfFace, computed * by _ViscousBuilder2D, in a SMESH_subMesh of the FACE. * This is to delete _ProxyMeshOfFace when StdMeshers_ViscousLayers2D * hypothesis is modified */ struct _ProxyMeshHolder : public SMESH_subMeshEventListener { _ProxyMeshHolder( const TopoDS_Face& face, SMESH_ProxyMesh::Ptr& mesh) : SMESH_subMeshEventListener( /*deletable=*/true, Name() ) { SMESH_subMesh* faceSM = mesh->GetMesh()->GetSubMesh( face ); faceSM->SetEventListener( this, new _Data( mesh ), faceSM ); } // Finds a proxy mesh of face static SMESH_ProxyMesh::Ptr FindProxyMeshOfFace( const TopoDS_Shape& face, SMESH_Mesh& mesh ) { SMESH_ProxyMesh::Ptr proxy; SMESH_subMesh* faceSM = mesh.GetSubMesh( face ); if ( EventListenerData* ld = faceSM->GetEventListenerData( Name() )) proxy = static_cast< _Data* >( ld )->_mesh; return proxy; } // Treat events void ProcessEvent(const int event, const int eventType, SMESH_subMesh* /*subMesh*/, EventListenerData* data, const SMESH_Hypothesis* /*hyp*/) { if ( event == SMESH_subMesh::CLEAN && eventType == SMESH_subMesh::COMPUTE_EVENT) ((_Data*) data)->_mesh.reset(); } private: // holder of a proxy mesh struct _Data : public SMESH_subMeshEventListenerData { SMESH_ProxyMesh::Ptr _mesh; _Data( SMESH_ProxyMesh::Ptr& mesh ) :SMESH_subMeshEventListenerData( /*isDeletable=*/true), _mesh( mesh ) {} }; // Returns identifier string static const char* Name() { return "VISCOUS_2D::_ProxyMeshHolder"; } }; struct _PolyLine; //-------------------------------------------------------------------------------- /*! * \brief Segment connecting inner ends of two _LayerEdge's. */ struct _Segment { const gp_XY* _uv[2]; // pointer to _LayerEdge::_uvIn int _indexInLine; // position in _PolyLine _Segment() {} _Segment(const gp_XY& p1, const gp_XY& p2):_indexInLine(-1) { _uv[0] = &p1; _uv[1] = &p2; } const gp_XY& p1() const { return *_uv[0]; } const gp_XY& p2() const { return *_uv[1]; } }; //-------------------------------------------------------------------------------- /*! * \brief Tree of _Segment's used for a faster search of _Segment's. */ struct _SegmentTree : public SMESH_Quadtree { typedef boost::shared_ptr< _SegmentTree > Ptr; _SegmentTree( const vector< _Segment >& segments ); void GetSegmentsNear( const _Segment& seg, vector< const _Segment* >& found ); void GetSegmentsNear( const gp_Ax2d& ray, vector< const _Segment* >& found ); protected: _SegmentTree() {} _SegmentTree* newChild() const { return new _SegmentTree; } void buildChildrenData(); Bnd_B2d* buildRootBox(); private: static int maxNbSegInLeaf() { return 5; } struct _SegBox { const _Segment* _seg; bool _iMin[2]; void Set( const _Segment& seg ) { _seg = &seg; _iMin[0] = ( seg._uv[1]->X() < seg._uv[0]->X() ); _iMin[1] = ( seg._uv[1]->Y() < seg._uv[0]->Y() ); } bool IsOut( const _Segment& seg ) const; bool IsOut( const gp_Ax2d& ray ) const; }; vector< _SegBox > _segments; }; //-------------------------------------------------------------------------------- /*! * \brief Edge normal to FACE boundary, connecting a point on EDGE (_uvOut) * and a point of a layer internal boundary (_uvIn) */ struct _LayerEdge { gp_XY _uvOut; // UV on the FACE boundary gp_XY _uvIn; // UV inside the FACE double _length2D; // distance between _uvOut and _uvIn bool _isBlocked;// is more inflation possible or not gp_XY _normal2D; // to curve double _len2dTo3dRatio; // to pass 2D <--> 3D gp_Ax2d _ray; // a ray starting at _uvOut vector _uvRefined; // divisions by layers bool SetNewLength( const double length ); int _ID; // debug }; //-------------------------------------------------------------------------------- /*! * \brief Poly line composed of _Segment's of one EDGE. * It's used to detect intersection of inflated layers by intersecting * _Segment's in 2D. */ struct _PolyLine { StdMeshers_FaceSide* _wire; int _edgeInd; // index of my EDGE in _wire bool _advancable; // true if there is a viscous layer on my EDGE bool _isStraight2D;// pcurve type _PolyLine* _leftLine; // lines of neighbour EDGE's _PolyLine* _rightLine; int _firstPntInd; // index in vector of _wire int _lastPntInd; int _index; // index in _ViscousBuilder2D::_polyLineVec vector< _LayerEdge > _lEdges; /* _lEdges[0] is usually is not treated as it is equal to the last one of the _leftLine */ vector< _Segment > _segments; // segments connecting _uvIn's of _lEdges _SegmentTree::Ptr _segTree; vector< _PolyLine* > _reachableLines; // lines able to interfere with my layer vector< const SMDS_MeshNode* > _leftNodes; // nodes built from a left VERTEX vector< const SMDS_MeshNode* > _rightNodes; // nodes built from a right VERTEX typedef vector< _Segment >::iterator TSegIterator; typedef vector< _LayerEdge >::iterator TEdgeIterator; TIDSortedElemSet _newFaces; // faces generated from this line bool IsCommonEdgeShared( const _PolyLine& other ); size_t FirstLEdge() const { return ( _leftLine->_advancable && _lEdges.size() > 2 ) ? 1 : 0; } bool IsAdjacent( const _Segment& seg, const _LayerEdge* LE=0 ) const { if ( LE /*&& seg._indexInLine < _lEdges.size()*/ ) return ( seg._uv[0] == & LE->_uvIn || seg._uv[1] == & LE->_uvIn ); return ( & seg == &_leftLine->_segments.back() || & seg == &_rightLine->_segments[0] ); } bool IsConcave() const; }; //-------------------------------------------------------------------------------- /*! * \brief Intersector of _Segment's */ struct _SegmentIntersection { gp_XY _vec1, _vec2; // Vec( _seg.p1(), _seg.p2() ) gp_XY _vec21; // Vec( _seg2.p1(), _seg1.p1() ) double _D; // _vec1.Crossed( _vec2 ) double _param1, _param2; // intersection param on _seg1 and _seg2 _SegmentIntersection(): _D(0), _param1(0), _param2(0) {} bool Compute(const _Segment& seg1, const _Segment& seg2, bool seg2IsRay = false ) { // !!! If seg2IsRay, returns true at any _param2 !!! const double eps = 1e-10; _vec1 = seg1.p2() - seg1.p1(); _vec2 = seg2.p2() - seg2.p1(); _vec21 = seg1.p1() - seg2.p1(); _D = _vec1.Crossed(_vec2); if ( fabs(_D) < std::numeric_limits::min()) return false; _param1 = _vec2.Crossed(_vec21) / _D; if (_param1 < -eps || _param1 > 1 + eps ) return false; _param2 = _vec1.Crossed(_vec21) / _D; return seg2IsRay || ( _param2 > -eps && _param2 < 1 + eps ); } bool Compute( const _Segment& seg1, const gp_Ax2d& ray ) { gp_XY segEnd = ray.Location().XY() + ray.Direction().XY(); _Segment seg2( ray.Location().XY(), segEnd ); return Compute( seg1, seg2, true ); } //gp_XY GetPoint() { return _seg1.p1() + _param1 * _vec1; } }; //-------------------------------------------------------------------------------- typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge; typedef StdMeshers_ViscousLayers2D THypVL; //-------------------------------------------------------------------------------- /*! * \brief Builder of viscous layers */ class _ViscousBuilder2D { public: _ViscousBuilder2D(SMESH_Mesh& theMesh, const TopoDS_Face& theFace, vector< const THypVL* > & theHyp, vector< TopoDS_Shape > & theHypShapes); SMESH_ComputeErrorPtr GetError() const { return _error; } // does it's job SMESH_ProxyMesh::Ptr Compute(); private: friend class ::StdMeshers_ViscousLayers2D; bool findEdgesWithLayers(); bool makePolyLines(); bool inflate(); bool fixCollisions(); bool refine(); bool shrink(); bool improve(); bool toShrinkForAdjacent( const TopoDS_Face& adjFace, const TopoDS_Edge& E, const TopoDS_Vertex& V); void setLenRatio( _LayerEdge& LE, const gp_Pnt& pOut ); void setLayerEdgeData( _LayerEdge& lEdge, const double u, Handle(Geom2d_Curve)& pcurve, Handle(Geom_Curve)& curve, const gp_Pnt pOut, const bool reverse, GeomAPI_ProjectPointOnSurf* faceProj); void adjustCommonEdge( _PolyLine& LL, _PolyLine& LR ); void calcLayersHeight(const double totalThick, vector& heights, const THypVL* hyp); bool removeMeshFaces(const TopoDS_Shape& face); const THypVL* getLineHypothesis(int iPL); double getLineThickness (int iPL); bool error( const string& text ); SMESHDS_Mesh* getMeshDS() { return _mesh->GetMeshDS(); } _ProxyMeshOfFace* getProxyMesh(); // debug //void makeGroupOfLE(); private: // input data SMESH_Mesh* _mesh; TopoDS_Face _face; vector< const THypVL* > _hyps; vector< TopoDS_Shape > _hypShapes; // result data SMESH_ProxyMesh::Ptr _proxyMesh; SMESH_ComputeErrorPtr _error; // working data Handle(Geom_Surface) _surface; SMESH_MesherHelper _helper; TSideVector _faceSideVec; // wires (StdMeshers_FaceSide) of _face vector<_PolyLine> _polyLineVec; // fronts to advance vector< const THypVL* > _hypOfEdge; // a hyp per an EDGE of _faceSideVec bool _is2DIsotropic; // is same U and V resoulution of _face vector _clearedFaces; // FACEs whose mesh was removed by shrink() //double _fPowN; // to compute thickness of layers double _maxThickness; // max possible layers thickness // sub-shapes of _face set _ignoreShapeIds; // ids of EDGEs w/o layers set _noShrinkVert; // ids of VERTEXes that are extremities // of EDGEs along which _LayerEdge can't be inflated because no viscous layers // defined on neighbour FACEs sharing an EDGE. Nonetheless _LayerEdge's // are inflated along such EDGEs but then such _LayerEdge's are turned into // a node on VERTEX, i.e. all nodes on a _LayerEdge are melded into one node. int _nbLE; // for DEBUG }; //================================================================================ /*! * \brief Returns StdMeshers_ViscousLayers2D for the FACE */ bool findHyps(SMESH_Mesh& theMesh, const TopoDS_Face& theFace, vector< const StdMeshers_ViscousLayers2D* > & theHyps, vector< TopoDS_Shape > & theAssignedTo) { theHyps.clear(); theAssignedTo.clear(); SMESH_HypoFilter hypFilter ( SMESH_HypoFilter::HasName( StdMeshers_ViscousLayers2D::GetHypType() )); list< const SMESHDS_Hypothesis * > hypList; list< TopoDS_Shape > hypShapes; int nbHyps = theMesh.GetHypotheses ( theFace, hypFilter, hypList, /*ancestors=*/true, &hypShapes ); if ( nbHyps ) { theHyps.reserve( nbHyps ); theAssignedTo.reserve( nbHyps ); list< const SMESHDS_Hypothesis * >::iterator hyp = hypList.begin(); list< TopoDS_Shape >::iterator shape = hypShapes.begin(); for ( ; hyp != hypList.end(); ++hyp, ++shape ) { theHyps.push_back( static_cast< const StdMeshers_ViscousLayers2D* > ( *hyp )); theAssignedTo.push_back( *shape ); } } return nbHyps; } //================================================================================ /*! * \brief Returns ids of EDGEs not to create Viscous Layers on * \param [in] theHyp - the hypothesis, holding edges either to ignore or not to. * \param [in] theFace - the FACE whose EDGEs are checked. * \param [in] theMesh - the mesh. * \param [in,out] theEdgeIds - container returning EDGEs to ignore. * \return int - number of found EDGEs of the FACE. */ //================================================================================ int getEdgesToIgnore( const StdMeshers_ViscousLayers2D* theHyp, const TopoDS_Shape& theFace, const SMESHDS_Mesh* theMesh, set< int > & theEdgeIds) { int nbEdgesToIgnore = 0; vector ids = theHyp->GetBndShapes(); if ( theHyp->IsToIgnoreShapes() ) // EDGEs to ignore are given { for ( size_t i = 0; i < ids.size(); ++i ) { const TopoDS_Shape& E = theMesh->IndexToShape( ids[i] ); if ( !E.IsNull() && E.ShapeType() == TopAbs_EDGE && SMESH_MesherHelper::IsSubShape( E, theFace )) { theEdgeIds.insert( ids[i] ); ++nbEdgesToIgnore; } } } else // EDGEs to make the Viscous Layers on are given { TopExp_Explorer E( theFace, TopAbs_EDGE ); for ( ; E.More(); E.Next(), ++nbEdgesToIgnore ) theEdgeIds.insert( theMesh->ShapeToIndex( E.Current() )); for ( size_t i = 0; i < ids.size(); ++i ) nbEdgesToIgnore -= theEdgeIds.erase( ids[i] ); } return nbEdgesToIgnore; } } // namespace VISCOUS_2D //================================================================================ // StdMeshers_ViscousLayers hypothesis // StdMeshers_ViscousLayers2D::StdMeshers_ViscousLayers2D(int hypId, SMESH_Gen* gen) :StdMeshers_ViscousLayers(hypId, gen) { _name = StdMeshers_ViscousLayers2D::GetHypType(); _param_algo_dim = -2; // auxiliary hyp used by 2D algos } // -------------------------------------------------------------------------------- bool StdMeshers_ViscousLayers2D::SetParametersByMesh(const SMESH_Mesh* /*theMesh*/, const TopoDS_Shape& /*theShape*/) { // TODO ??? return false; } // -------------------------------------------------------------------------------- SMESH_ProxyMesh::Ptr StdMeshers_ViscousLayers2D::Compute(SMESH_Mesh& theMesh, const TopoDS_Face& theFace) { using namespace VISCOUS_2D; vector< const StdMeshers_ViscousLayers2D* > hyps; vector< TopoDS_Shape > hypShapes; SMESH_ProxyMesh::Ptr pm = _ProxyMeshHolder::FindProxyMeshOfFace( theFace, theMesh ); if ( !pm ) { if ( findHyps( theMesh, theFace, hyps, hypShapes )) { VISCOUS_2D::_ViscousBuilder2D builder( theMesh, theFace, hyps, hypShapes ); pm = builder.Compute(); SMESH_ComputeErrorPtr error = builder.GetError(); if ( error && !error->IsOK() ) theMesh.GetSubMesh( theFace )->GetComputeError() = error; else if ( !pm ) pm.reset( new SMESH_ProxyMesh( theMesh )); if ( getenv("__ONLY__VL2D__")) pm.reset(); } else { pm.reset( new SMESH_ProxyMesh( theMesh )); } } return pm; } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( const StdMeshers_FaceSide& edgeNodes ) { using namespace VISCOUS_2D; SMESH_ProxyMesh::Ptr pm = _ProxyMeshHolder::FindProxyMeshOfFace( edgeNodes.Face(), *edgeNodes.GetMesh() ); if ( !pm ) { _ProxyMeshOfFace* proxyMeshOfFace = new _ProxyMeshOfFace( *edgeNodes.GetMesh() ); pm.reset( proxyMeshOfFace ); new _ProxyMeshHolder( edgeNodes.Face(), pm ); } _ProxyMeshOfFace* proxyMeshOfFace = static_cast<_ProxyMeshOfFace*>( pm.get() ); _ProxyMeshOfFace::_EdgeSubMesh* sm = proxyMeshOfFace->GetEdgeSubMesh( edgeNodes.EdgeID(0) ); sm->GetUVPtStructVec() = edgeNodes.GetUVPtStruct(); } // -------------------------------------------------------------------------------- bool StdMeshers_ViscousLayers2D::HasProxyMesh( const TopoDS_Face& face, SMESH_Mesh& mesh ) { return VISCOUS_2D::_ProxyMeshHolder::FindProxyMeshOfFace( face, mesh ).get(); } // -------------------------------------------------------------------------------- SMESH_ComputeErrorPtr StdMeshers_ViscousLayers2D::CheckHypothesis(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape, SMESH_Hypothesis::Hypothesis_Status& theStatus) { SMESH_ComputeErrorPtr error = SMESH_ComputeError::New(COMPERR_OK); theStatus = SMESH_Hypothesis::HYP_OK; TopExp_Explorer exp( theShape, TopAbs_FACE ); for ( ; exp.More() && theStatus == SMESH_Hypothesis::HYP_OK; exp.Next() ) { const TopoDS_Face& face = TopoDS::Face( exp.Current() ); vector< const StdMeshers_ViscousLayers2D* > hyps; vector< TopoDS_Shape > hypShapes; if ( VISCOUS_2D::findHyps( theMesh, face, hyps, hypShapes )) { VISCOUS_2D::_ViscousBuilder2D builder( theMesh, face, hyps, hypShapes ); builder._faceSideVec = StdMeshers_FaceSide::GetFaceWires( face, theMesh, true, error, NULL, SMESH_ProxyMesh::Ptr(), /*theCheckVertexNodes=*/false); if ( error->IsOK() && !builder.findEdgesWithLayers()) { error = builder.GetError(); if ( error && !error->IsOK() ) theStatus = SMESH_Hypothesis::HYP_INCOMPAT_HYPS; } } } return error; } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers2D::RestoreListeners() const { StudyContextStruct* sc = _gen->GetStudyContext(); std::map < int, SMESH_Mesh * >::iterator i_smesh = sc->mapMesh.begin(); for ( ; i_smesh != sc->mapMesh.end(); ++i_smesh ) { SMESH_Mesh* smesh = i_smesh->second; if ( !smesh || !smesh->HasShapeToMesh() || !smesh->GetMeshDS() || !smesh->GetMeshDS()->IsUsedHypothesis( this )) continue; // set event listeners to EDGE's of FACE where this hyp is used TopoDS_Shape shape = i_smesh->second->GetShapeToMesh(); for ( TopExp_Explorer face( shape, TopAbs_FACE); face.More(); face.Next() ) if ( SMESH_Algo* algo = _gen->GetAlgo( *smesh, face.Current() )) { const std::list & usedHyps = algo->GetUsedHypothesis( *smesh, face.Current(), /*ignoreAuxiliary=*/false ); if ( std::find( usedHyps.begin(), usedHyps.end(), this ) != usedHyps.end() ) for ( TopExp_Explorer edge( face.Current(), TopAbs_EDGE); edge.More(); edge.Next() ) VISCOUS_3D::ToClearSubWithMain( smesh->GetSubMesh( edge.Current() ), face.Current() ); } } } // END StdMeshers_ViscousLayers2D hypothesis //================================================================================ using namespace VISCOUS_2D; //================================================================================ /*! * \brief Constructor of _ViscousBuilder2D */ //================================================================================ _ViscousBuilder2D::_ViscousBuilder2D(SMESH_Mesh& theMesh, const TopoDS_Face& theFace, vector< const THypVL* > & theHyps, vector< TopoDS_Shape > & theAssignedTo): _mesh( &theMesh ), _face( theFace ), _helper( theMesh ) { _hyps.swap( theHyps ); _hypShapes.swap( theAssignedTo ); _helper.SetSubShape( _face ); _helper.SetElementsOnShape( true ); _face.Orientation( TopAbs_FORWARD ); // 2D logic works only in this case _surface = BRep_Tool::Surface( _face ); _error = SMESH_ComputeError::New(COMPERR_OK); _nbLE = 0; } //================================================================================ /*! * \brief Stores error description and returns false */ //================================================================================ bool _ViscousBuilder2D::error(const string& text ) { _error->myName = COMPERR_ALGO_FAILED; _error->myComment = string("Viscous layers builder 2D: ") + text; if ( SMESH_subMesh* sm = _mesh->GetSubMesh( _face ) ) { SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); if ( smError && smError->myAlgo ) _error->myAlgo = smError->myAlgo; smError = _error; } if (SALOME::VerbosityActivated()) cout << "_ViscousBuilder2D::error " << text << endl; return false; } //================================================================================ /*! * \brief Does its job */ //================================================================================ SMESH_ProxyMesh::Ptr _ViscousBuilder2D::Compute() { _faceSideVec = StdMeshers_FaceSide::GetFaceWires( _face, *_mesh, true, _error, &_helper ); if ( !_error->IsOK() ) return _proxyMesh; if ( !findEdgesWithLayers() ) // analysis of a shape return _proxyMesh; if ( ! makePolyLines() ) // creation of fronts return _proxyMesh; if ( ! inflate() ) // advance fronts return _proxyMesh; // remove elements and nodes from _face removeMeshFaces( _face ); if ( !shrink() ) // shrink segments on edges w/o layers return _proxyMesh; if ( ! refine() ) // make faces return _proxyMesh; //improve(); return _proxyMesh; } //================================================================================ /*! * \brief Finds EDGE's to make viscous layers on. */ //================================================================================ bool _ViscousBuilder2D::findEdgesWithLayers() { // collect all EDGEs to ignore defined by _hyps typedef std::pair< set, const THypVL* > TEdgesOfHyp; vector< TEdgesOfHyp > ignoreEdgesOfHyp( _hyps.size() ); for ( size_t i = 0; i < _hyps.size(); ++i ) { ignoreEdgesOfHyp[i].second = _hyps[i]; getEdgesToIgnore( _hyps[i], _face, getMeshDS(), ignoreEdgesOfHyp[i].first ); } // get all shared EDGEs TopTools_MapOfShape sharedEdges; TopTools_IndexedMapOfShape hypFaces; // faces with VL hyps for ( size_t i = 0; i < _hypShapes.size(); ++i ) TopExp::MapShapes( _hypShapes[i], TopAbs_FACE, hypFaces ); TopTools_IndexedDataMapOfShapeListOfShape facesOfEdgeMap; for ( int iF = 1; iF <= hypFaces.Extent(); ++iF ) TopExp::MapShapesAndAncestors( hypFaces(iF), TopAbs_EDGE, TopAbs_FACE, facesOfEdgeMap); for ( int iE = 1; iE <= facesOfEdgeMap.Extent(); ++iE ) if ( facesOfEdgeMap( iE ).Extent() > 1 ) sharedEdges.Add( facesOfEdgeMap.FindKey( iE )); // fill _hypOfEdge if ( _hyps.size() > 1 ) { // check if two hypotheses define different parameters for the same EDGE for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire ) { StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ]; for ( int iE = 0; iE < wire->NbEdges(); ++iE ) { const THypVL* hyp = 0; const TGeomID edgeID = wire->EdgeID( iE ); if ( !sharedEdges.Contains( wire->Edge( iE ))) { for ( size_t i = 0; i < ignoreEdgesOfHyp.size(); ++i ) if ( ! ignoreEdgesOfHyp[i].first.count( edgeID )) { if ( hyp ) return error(SMESH_Comment("Several hypotheses define " "Viscous Layers on the edge #") << edgeID ); hyp = ignoreEdgesOfHyp[i].second; } } _hypOfEdge.push_back( hyp ); if ( !hyp ) _ignoreShapeIds.insert( edgeID ); } // check if two hypotheses define different number of viscous layers for // adjacent EDGEs const THypVL *hyp, *prevHyp = _hypOfEdge.back(); size_t iH = _hypOfEdge.size() - wire->NbEdges(); for ( ; iH < _hypOfEdge.size(); ++iH ) { hyp = _hypOfEdge[ iH ]; if ( hyp && prevHyp && hyp->GetNumberLayers() != prevHyp->GetNumberLayers() ) { return error("Two hypotheses define different number of " "viscous layers on adjacent edges"); } prevHyp = hyp; } } } else if ( _hyps.size() == 1 ) { _ignoreShapeIds.swap( ignoreEdgesOfHyp[0].first ); } // check all EDGEs of the _face to fill _ignoreShapeIds and _noShrinkVert int totalNbEdges = 0; for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire ) { StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ]; totalNbEdges += wire->NbEdges(); for ( int iE = 0; iE < wire->NbEdges(); ++iE ) { if ( sharedEdges.Contains( wire->Edge( iE ))) { // ignore internal EDGEs (shared by several FACEs) const TGeomID edgeID = wire->EdgeID( iE ); _ignoreShapeIds.insert( edgeID ); // check if ends of an EDGE are to be added to _noShrinkVert const TopTools_ListOfShape& faceList = facesOfEdgeMap.FindFromKey( wire->Edge( iE )); TopTools_ListIteratorOfListOfShape faceIt( faceList ); for ( ; faceIt.More(); faceIt.Next() ) { const TopoDS_Shape& neighbourFace = faceIt.Value(); if ( neighbourFace.IsSame( _face )) continue; SMESH_Algo* algo = _mesh->GetGen()->GetAlgo( *_mesh, neighbourFace ); if ( !algo ) continue; const StdMeshers_ViscousLayers2D* viscHyp = 0; const list & allHyps = algo->GetUsedHypothesis(*_mesh, neighbourFace, /*noAuxiliary=*/false); list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin(); for ( ; hyp != allHyps.end() && !viscHyp; ++hyp ) viscHyp = dynamic_cast( *hyp ); // set neighbourIgnoreEdges; // if (viscHyp) // getEdgesToIgnore( viscHyp, neighbourFace, getMeshDS(), neighbourIgnoreEdges ); for ( int iV = 0; iV < 2; ++iV ) { TopoDS_Vertex vertex = iV ? wire->LastVertex(iE) : wire->FirstVertex(iE); if ( !viscHyp ) _noShrinkVert.insert( getMeshDS()->ShapeToIndex( vertex )); else { PShapeIteratorPtr edgeIt = _helper.GetAncestors( vertex, *_mesh, TopAbs_EDGE ); while ( const TopoDS_Shape* edge = edgeIt->next() ) if ( !edge->IsSame( wire->Edge( iE )) && _helper.IsSubShape( *edge, neighbourFace )) { const TGeomID neighbourID = getMeshDS()->ShapeToIndex( *edge ); bool hasVL = !sharedEdges.Contains( *edge ); if ( hasVL ) { hasVL = false; for ( hyp = allHyps.begin(); hyp != allHyps.end() && !hasVL; ++hyp ) if (( viscHyp = dynamic_cast( *hyp ))) hasVL = viscHyp->IsShapeWithLayers( neighbourID ); } if ( !hasVL ) { _noShrinkVert.insert( getMeshDS()->ShapeToIndex( vertex )); break; } } } } } } } } int nbMyEdgesIgnored = _ignoreShapeIds.size(); // add VERTEXes w/o layers to _ignoreShapeIds (this is used by toShrinkForAdjacent()) // for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire ) // { // StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ]; // for ( int iE = 0; iE < wire->NbEdges(); ++iE ) // { // TGeomID edge1 = wire->EdgeID( iE ); // TGeomID edge2 = wire->EdgeID( iE+1 ); // if ( _ignoreShapeIds.count( edge1 ) && _ignoreShapeIds.count( edge2 )) // _ignoreShapeIds.insert( getMeshDS()->ShapeToIndex( wire->LastVertex( iE ))); // } // } return ( nbMyEdgesIgnored < totalNbEdges ); } //================================================================================ /*! * \brief Create the inner front of the viscous layers and prepare data for inflation */ //================================================================================ bool _ViscousBuilder2D::makePolyLines() { // Create _PolyLines and _LayerEdge's // count total nb of EDGEs to allocate _polyLineVec int nbEdges = 0; for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire ) { StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ]; nbEdges += wire->NbEdges(); if ( wire->GetUVPtStruct().empty() && wire->NbPoints() > 0 ) return error("Invalid node parameters on some EDGE"); } _polyLineVec.resize( nbEdges ); // check if 2D normal should be computed by 3D one by means of projection GeomAPI_ProjectPointOnSurf* faceProj = 0; TopLoc_Location loc; { _LayerEdge tmpLE; const UVPtStruct& uv = _faceSideVec[0]->GetUVPtStruct()[0]; gp_Pnt p = SMESH_TNodeXYZ( uv.node ); tmpLE._uvOut.SetCoord( uv.u, uv.v ); tmpLE._normal2D.SetCoord( 1., 0. ); setLenRatio( tmpLE, p ); const double r1 = tmpLE._len2dTo3dRatio; tmpLE._normal2D.SetCoord( 0., 1. ); setLenRatio( tmpLE, p ); const double r2 = tmpLE._len2dTo3dRatio; // projection is needed if two _len2dTo3dRatio's differ too much const double maxR = Max( r2, r1 ); if ( Abs( r2-r1 )/maxR > 0.2*maxR ) faceProj = & _helper.GetProjector( _face, loc ); } _is2DIsotropic = !faceProj; // Assign data to _PolyLine's // --------------------------- size_t iPoLine = 0; for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire ) { StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ]; const vector& points = wire->GetUVPtStruct(); int iPnt = 0; for ( int iE = 0; iE < wire->NbEdges(); ++iE ) { _PolyLine& L = _polyLineVec[ iPoLine++ ]; L._index = iPoLine-1; L._wire = wire.get(); L._edgeInd = iE; L._advancable = !_ignoreShapeIds.count( wire->EdgeID( iE )); int iRight = iPoLine - (( iE+1 < wire->NbEdges() ) ? 0 : wire->NbEdges() ); L._rightLine = &_polyLineVec[ iRight ]; _polyLineVec[ iRight ]._leftLine = &L; L._firstPntInd = iPnt; double lastNormPar = wire->LastParameter( iE ) - 1e-10; while ( points[ iPnt ].normParam < lastNormPar ) ++iPnt; L._lastPntInd = iPnt; L._lEdges.resize( Max( 3, L._lastPntInd - L._firstPntInd + 1 )); // 3 edges minimum // TODO: add more _LayerEdge's to strongly curved EDGEs // in order not to miss collisions double u; gp_Pnt p; Handle(Geom_Curve) curve = BRep_Tool::Curve( L._wire->Edge( iE ), loc, u, u ); Handle(Geom2d_Curve) pcurve = L._wire->Curve2d( L._edgeInd ); const bool reverse = (( L._wire->Edge( iE ).Orientation() == TopAbs_REVERSED ) ^ (_face.Orientation() == TopAbs_REVERSED )); for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i ) { _LayerEdge& lEdge = L._lEdges[ i - L._firstPntInd ]; u = ( i == L._firstPntInd ? wire->FirstU(iE) : points[ i ].param ); p = SMESH_TNodeXYZ( points[ i ].node ); setLayerEdgeData( lEdge, u, pcurve, curve, p, reverse, faceProj ); setLenRatio( lEdge, p ); } if ( L._lastPntInd - L._firstPntInd + 1 < 3 ) // add 3-d _LayerEdge in the middle { L._lEdges[2] = L._lEdges[1]; u = 0.5 * ( wire->FirstU(iE) + wire->LastU(iE) ); if ( !curve.IsNull() ) p = curve->Value( u ); else p = 0.5 * ( SMESH_TNodeXYZ( points[ L._firstPntInd ].node ) + SMESH_TNodeXYZ( points[ L._lastPntInd ].node )); setLayerEdgeData( L._lEdges[1], u, pcurve, curve, p, reverse, faceProj ); setLenRatio( L._lEdges[1], p ); } } } // Fill _PolyLine's with _segments // -------------------------------- double maxLen2dTo3dRatio = 0; for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine ) { _PolyLine& L = _polyLineVec[ iPoLine ]; L._segments.resize( L._lEdges.size() - 1 ); for ( size_t i = 1; i < L._lEdges.size(); ++i ) { _Segment & S = L._segments[i-1]; S._uv[0] = & L._lEdges[i-1]._uvIn; S._uv[1] = & L._lEdges[i ]._uvIn; S._indexInLine = i-1; if ( maxLen2dTo3dRatio < L._lEdges[i]._len2dTo3dRatio ) maxLen2dTo3dRatio = L._lEdges[i]._len2dTo3dRatio; } // // connect _PolyLine's with segments, the 1st _LayerEdge of every _PolyLine // // becomes not connected to any segment // if ( L._leftLine->_advancable ) // L._segments[0]._uv[0] = & L._leftLine->_lEdges.back()._uvIn; L._segTree.reset( new _SegmentTree( L._segments )); } // Evaluate max possible _thickness if required layers thickness seems too high // ---------------------------------------------------------------------------- _maxThickness = _hyps[0]->GetTotalThickness(); for ( size_t iH = 1; iH < _hyps.size(); ++iH ) _maxThickness = Max( _maxThickness, _hyps[iH]->GetTotalThickness() ); _SegmentTree::box_type faceBndBox2D; for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine ) faceBndBox2D.Add( *_polyLineVec[ iPoLine]._segTree->getBox() ); const double boxTol = 1e-3 * sqrt( faceBndBox2D.SquareExtent() ); if ( _maxThickness * maxLen2dTo3dRatio > sqrt( faceBndBox2D.SquareExtent() ) / 10 ) { vector< const _Segment* > foundSegs; double maxPossibleThick = 0; _SegmentIntersection intersection; for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 ) { _PolyLine& L1 = _polyLineVec[ iL1 ]; _SegmentTree::box_type boxL1 = * L1._segTree->getBox(); boxL1.Enlarge( boxTol ); // consider case of a circle as well! for ( size_t iL2 = iL1; iL2 < _polyLineVec.size(); ++iL2 ) { _PolyLine& L2 = _polyLineVec[ iL2 ]; _SegmentTree::box_type boxL2 = * L2._segTree->getBox(); boxL2.Enlarge( boxTol ); if ( boxL1.IsOut( boxL2 )) continue; for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE ) { foundSegs.clear(); L2._segTree->GetSegmentsNear( L1._lEdges[iLE]._ray, foundSegs ); for ( size_t i = 0; i < foundSegs.size(); ++i ) if ( intersection.Compute( *foundSegs[i], L1._lEdges[iLE]._ray )) { double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio; double psblThick = distToL2 / ( 1 + L1._advancable + L2._advancable ); maxPossibleThick = Max( psblThick, maxPossibleThick ); } } } } if ( maxPossibleThick > 0. ) _maxThickness = Min( _maxThickness, maxPossibleThick ); } // Adjust _LayerEdge's at _PolyLine's extremities // ----------------------------------------------- for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine ) { _PolyLine& LL = _polyLineVec[ iPoLine ]; _PolyLine& LR = *LL._rightLine; adjustCommonEdge( LL, LR ); } // recreate _segments if some _LayerEdge's have been removed by adjustCommonEdge() for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine ) { _PolyLine& L = _polyLineVec[ iPoLine ]; // if ( L._segments.size() == L._lEdges.size() - 1 ) // continue; L._segments.resize( L._lEdges.size() - 1 ); for ( size_t i = 1; i < L._lEdges.size(); ++i ) { _Segment & S = L._segments[i-1]; S._uv[0] = & L._lEdges[i-1]._uvIn; S._uv[1] = & L._lEdges[i ]._uvIn; S._indexInLine = i-1; } L._segTree.reset( new _SegmentTree( L._segments )); } // connect _PolyLine's with segments, the 1st _LayerEdge of every _PolyLine // becomes not connected to any segment for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine ) { _PolyLine& L = _polyLineVec[ iPoLine ]; if ( L._leftLine->_advancable ) L._segments[0]._uv[0] = & L._leftLine->_lEdges.back()._uvIn; } // Fill _reachableLines. // ---------------------- // compute bnd boxes taking into account the layers total thickness vector< _SegmentTree::box_type > lineBoxes( _polyLineVec.size() ); for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine ) { lineBoxes[ iPoLine ] = *_polyLineVec[ iPoLine ]._segTree->getBox(); lineBoxes[ iPoLine ].Enlarge( maxLen2dTo3dRatio * getLineThickness( iPoLine ) * ( _polyLineVec[ iPoLine ]._advancable ? 2. : 1.2 )); } // _reachableLines for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine ) { _PolyLine& L1 = _polyLineVec[ iPoLine ]; const double thick1 = getLineThickness( iPoLine ); for ( size_t iL2 = 0; iL2 < _polyLineVec.size(); ++iL2 ) { _PolyLine& L2 = _polyLineVec[ iL2 ]; if ( iPoLine == iL2 || lineBoxes[ iPoLine ].IsOut( lineBoxes[ iL2 ])) continue; if ( !L1._advancable && ( L1._leftLine == &L2 || L1._rightLine == &L2 )) continue; // check reachability by _LayerEdge's int iDelta = 1; //Max( 1, L1._lEdges.size() / 100 ); for ( size_t iLE = 1; iLE < L1._lEdges.size(); iLE += iDelta ) { _LayerEdge& LE = L1._lEdges[iLE]; if ( !lineBoxes[ iL2 ].IsOut ( LE._uvOut, LE._uvOut + LE._normal2D * thick1 * LE._len2dTo3dRatio )) { L1._reachableLines.push_back( & L2 ); break; } } } // add self to _reachableLines Geom2dAdaptor_Curve pcurve( L1._wire->Curve2d( L1._edgeInd )); L1._isStraight2D = ( pcurve.GetType() == GeomAbs_Line ); if ( !L1._isStraight2D ) { // TODO: check carefully L1._reachableLines.push_back( & L1 ); } } return true; } //================================================================================ /*! * \brief adjust common _LayerEdge of two adjacent _PolyLine's * \param LL - left _PolyLine * \param LR - right _PolyLine */ //================================================================================ void _ViscousBuilder2D::adjustCommonEdge( _PolyLine& LL, _PolyLine& LR ) { int nbAdvancableL = LL._advancable + LR._advancable; if ( nbAdvancableL == 0 ) return; _LayerEdge& EL = LL._lEdges.back(); _LayerEdge& ER = LR._lEdges.front(); gp_XY normL = EL._normal2D; gp_XY normR = ER._normal2D; gp_XY tangL ( normL.Y(), -normL.X() ); // set common direction to a VERTEX _LayerEdge shared by two _PolyLine's gp_XY normCommon = ( normL * int( LL._advancable ) + normR * int( LR._advancable )).Normalized(); EL._normal2D = normCommon; EL._ray.SetLocation ( EL._uvOut ); EL._ray.SetDirection( EL._normal2D ); if ( nbAdvancableL == 1 ) { // _normal2D is true normal (not average) EL._isBlocked = true; // prevent intersecting with _Segments of _advancable line EL._length2D = 0; } // update _LayerEdge::_len2dTo3dRatio according to a new direction const vector& points = LL._wire->GetUVPtStruct(); setLenRatio( EL, SMESH_TNodeXYZ( points[ LL._lastPntInd ].node )); ER = EL; const double dotNormTang = normR * tangL; const bool largeAngle = Abs( dotNormTang ) > 0.2; if ( largeAngle ) // not 180 degrees { // recompute _len2dTo3dRatio to take into account angle between EDGEs gp_Vec2d oldNorm( LL._advancable ? normL : normR ); double angleFactor = 1. / Max( 0.3, Cos( oldNorm.Angle( normCommon ))); EL._len2dTo3dRatio *= angleFactor; ER._len2dTo3dRatio = EL._len2dTo3dRatio; gp_XY normAvg = ( normL + normR ).Normalized(); // average normal at VERTEX if ( dotNormTang < 0. ) // ---------------------------- CONVEX ANGLE { // Remove _LayerEdge's intersecting the normAvg to avoid collisions // during inflate(). // // find max length of the VERTEX-based _LayerEdge whose direction is normAvg double maxLen2D = _maxThickness * EL._len2dTo3dRatio; const gp_XY& pCommOut = ER._uvOut; gp_XY pCommIn = pCommOut + normAvg * maxLen2D; _Segment segCommon( pCommOut, pCommIn ); _SegmentIntersection intersection; vector< const _Segment* > foundSegs; for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 ) { _PolyLine& L1 = _polyLineVec[ iL1 ]; const _SegmentTree::box_type* boxL1 = L1._segTree->getBox(); if ( boxL1->IsOut ( pCommOut, pCommIn )) continue; for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE ) { foundSegs.clear(); L1._segTree->GetSegmentsNear( segCommon, foundSegs ); for ( size_t i = 0; i < foundSegs.size(); ++i ) if ( intersection.Compute( *foundSegs[i], segCommon ) && intersection._param2 > 1e-10 ) { double len2D = intersection._param2 * maxLen2D / ( 2 + L1._advancable ); if ( len2D < maxLen2D ) { maxLen2D = len2D; pCommIn = pCommOut + normAvg * maxLen2D; // here length of segCommon changes } } } } // remove _LayerEdge's intersecting segCommon for ( int isR = 0; isR < 2; ++isR ) // loop on [ LL, LR ] { _PolyLine& L = isR ? LR : LL; _PolyLine::TEdgeIterator eIt = isR ? L._lEdges.begin()+1 : L._lEdges.end()-2; int dIt = isR ? +1 : -1; if ( nbAdvancableL == 1 && L._advancable && normL * normR > -0.01 ) continue; // obtuse internal angle // at least 3 _LayerEdge's should remain in a _PolyLine if ( L._lEdges.size() < 4 ) continue; size_t iLE = 1; _SegmentIntersection lastIntersection; for ( ; iLE < L._lEdges.size(); ++iLE, eIt += dIt ) { gp_XY uvIn = eIt->_uvOut + eIt->_normal2D * _maxThickness * eIt->_len2dTo3dRatio; _Segment segOfEdge( eIt->_uvOut, uvIn ); if ( !intersection.Compute( segCommon, segOfEdge )) break; lastIntersection._param1 = intersection._param1; lastIntersection._param2 = intersection._param2; } if ( iLE >= L._lEdges.size() - 1 ) { // all _LayerEdge's intersect the segCommon, limit inflation // of remaining 3 _LayerEdge's vector< _LayerEdge > newEdgeVec( Min( 3, L._lEdges.size() )); newEdgeVec.front() = L._lEdges.front(); newEdgeVec.back() = L._lEdges.back(); if ( newEdgeVec.size() == 3 ) { newEdgeVec[1] = L._lEdges[ isR ? (L._lEdges.size() - 2) : 1 ]; newEdgeVec[1]._len2dTo3dRatio *= lastIntersection._param2; } L._lEdges.swap( newEdgeVec ); if ( !isR ) std::swap( lastIntersection._param1 , lastIntersection._param2 ); L._lEdges.front()._len2dTo3dRatio *= lastIntersection._param1; // ?? L._lEdges.back ()._len2dTo3dRatio *= lastIntersection._param2; } else if ( iLE != 1 ) { // eIt points to the _LayerEdge not intersecting with segCommon if ( isR ) LR._lEdges.erase( LR._lEdges.begin()+1, eIt ); else LL._lEdges.erase( eIt+1, --LL._lEdges.end() ); // eIt = isR ? L._lEdges.begin()+1 : L._lEdges.end()-2; // for ( size_t i = 1; i < iLE; ++i, eIt += dIt ) // eIt->_isBlocked = true; } } } else // ------------------------------------------ CONCAVE ANGLE { if ( nbAdvancableL == 1 ) { // make that the _LayerEdge at VERTEX is not shared by LL and LR: // different normals is a sign that they are not shared _LayerEdge& notSharedEdge = LL._advancable ? LR._lEdges[0] : LL._lEdges.back(); _LayerEdge& sharedEdge = LR._advancable ? LR._lEdges[0] : LL._lEdges.back(); notSharedEdge._normal2D.SetCoord( 0.,0. ); sharedEdge._normal2D = normAvg; sharedEdge._isBlocked = false; notSharedEdge._isBlocked = true; } } } } //================================================================================ /*! * \brief initialize data of a _LayerEdge */ //================================================================================ void _ViscousBuilder2D::setLayerEdgeData( _LayerEdge& lEdge, const double u, Handle(Geom2d_Curve)& pcurve, Handle(Geom_Curve)& curve, const gp_Pnt pOut, const bool reverse, GeomAPI_ProjectPointOnSurf* faceProj) { gp_Pnt2d uv; if ( faceProj && !curve.IsNull() ) { uv = pcurve->Value( u ); gp_Vec tangent; gp_Pnt p; gp_Vec du, dv; curve->D1( u, p, tangent ); if ( reverse ) tangent.Reverse(); _surface->D1( uv.X(), uv.Y(), p, du, dv ); gp_Vec faceNorm = du ^ dv; gp_Vec normal = faceNorm ^ tangent; normal.Normalize(); p = pOut.XYZ() + normal.XYZ() * /*1e-2 * */_hyps[0]->GetTotalThickness() / _hyps[0]->GetNumberLayers(); faceProj->Perform( p ); if ( !faceProj->IsDone() || faceProj->NbPoints() < 1 ) return setLayerEdgeData( lEdge, u, pcurve, curve, p, reverse, NULL ); Standard_Real U,V; faceProj->LowerDistanceParameters(U,V); lEdge._normal2D.SetCoord( U - uv.X(), V - uv.Y() ); lEdge._normal2D.Normalize(); } else { gp_Vec2d tangent; pcurve->D1( u, uv, tangent ); tangent.Normalize(); if ( reverse ) tangent.Reverse(); lEdge._normal2D.SetCoord( -tangent.Y(), tangent.X() ); } lEdge._uvOut = lEdge._uvIn = uv.XY(); lEdge._ray.SetLocation ( lEdge._uvOut ); lEdge._ray.SetDirection( lEdge._normal2D ); lEdge._isBlocked = false; lEdge._length2D = 0; if (SALOME::VerbosityActivated()) lEdge._ID = _nbLE++; } //================================================================================ /*! * \brief Compute and set _LayerEdge::_len2dTo3dRatio */ //================================================================================ void _ViscousBuilder2D::setLenRatio( _LayerEdge& LE, const gp_Pnt& pOut ) { const double probeLen2d = 1e-3; gp_Pnt2d p2d = LE._uvOut + LE._normal2D * probeLen2d; gp_Pnt p3d = _surface->Value( p2d.X(), p2d.Y() ); double len3d = p3d.Distance( pOut ); if ( len3d < std::numeric_limits::min() ) LE._len2dTo3dRatio = std::numeric_limits::min(); else LE._len2dTo3dRatio = probeLen2d / len3d; } //================================================================================ /*! * \brief Increase length of _LayerEdge's to reach the required thickness of layers */ //================================================================================ bool _ViscousBuilder2D::inflate() { // Limit size of inflation step by geometry size found by // itersecting _LayerEdge's with _Segment's double minSize = _maxThickness, maxSize = 0; vector< const _Segment* > foundSegs; _SegmentIntersection intersection; for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 ) { _PolyLine& L1 = _polyLineVec[ iL1 ]; for ( size_t iL2 = 0; iL2 < L1._reachableLines.size(); ++iL2 ) { _PolyLine& L2 = * L1._reachableLines[ iL2 ]; for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE ) { foundSegs.clear(); L2._segTree->GetSegmentsNear( L1._lEdges[iLE]._ray, foundSegs ); for ( size_t i = 0; i < foundSegs.size(); ++i ) if ( ! L1.IsAdjacent( *foundSegs[i], & L1._lEdges[iLE] ) && intersection.Compute( *foundSegs[i], L1._lEdges[iLE]._ray )) { double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio; double size = distToL2 / ( 1 + L1._advancable + L2._advancable ); if ( 1e-10 < size && size < minSize ) minSize = size; if ( size > maxSize ) maxSize = size; } } } } if ( minSize > maxSize ) // no collisions possible maxSize = _maxThickness; #ifdef __myDEBUG cout << "-- minSize = " << minSize << ", maxSize = " << maxSize << endl; #endif double curThick = 0, stepSize = minSize; int nbSteps = 0; if ( maxSize > _maxThickness ) maxSize = _maxThickness; while ( curThick < maxSize ) { curThick += stepSize * 1.25; if ( curThick > _maxThickness ) curThick = _maxThickness; // Elongate _LayerEdge's for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL ) { _PolyLine& L = _polyLineVec[ iL ]; if ( !L._advancable ) continue; const double lineThick = Min( curThick, getLineThickness( iL )); bool lenChange = false; for ( size_t iLE = L.FirstLEdge(); iLE < L._lEdges.size(); ++iLE ) lenChange |= L._lEdges[iLE].SetNewLength( lineThick ); // for ( int k=0; k_advancable &&*/ L.IsCommonEdgeShared( *L._leftLine ) ) { L._lEdges[0] = L._leftLine->_lEdges.back(); } if ( !L._rightLine->_advancable && L.IsCommonEdgeShared( *L._rightLine ) ) { L._lEdges.back() = L._rightLine->_lEdges[0]; } _SegmentIntersection intersection; for ( int isR = 0; ( isR < 2 && L._lEdges.size() > 2 ); ++isR ) { int nbRemove = 0, deltaIt = isR ? -1 : +1; _PolyLine::TEdgeIterator eIt = isR ? L._lEdges.end()-1 : L._lEdges.begin(); if ( eIt->_length2D == 0 ) continue; _Segment seg1( eIt->_uvOut, eIt->_uvIn ); for ( eIt += deltaIt; nbRemove < (int)L._lEdges.size()-1; eIt += deltaIt ) { _Segment seg2( eIt->_uvOut, eIt->_uvIn ); if ( !intersection.Compute( seg1, seg2 )) break; ++nbRemove; } if ( nbRemove > 0 ) { if ( nbRemove == (int)L._lEdges.size()-1 ) // 1st and last _LayerEdge's intersect { --nbRemove; _LayerEdge& L0 = L._lEdges.front(); _LayerEdge& L1 = L._lEdges.back(); L0._length2D *= intersection._param1 * 0.5; L1._length2D *= intersection._param2 * 0.5; L0._uvIn = L0._uvOut + L0._normal2D * L0._length2D; L1._uvIn = L1._uvOut + L1._normal2D * L1._length2D; if ( L.IsCommonEdgeShared( *L._leftLine )) L._leftLine->_lEdges.back() = L0; } if ( isR ) L._lEdges.erase( L._lEdges.end()-nbRemove-1, L._lEdges.end()-nbRemove ); else L._lEdges.erase( L._lEdges.begin()+1, L._lEdges.begin()+1+nbRemove ); } } } return true; } //================================================================================ /*! * \brief Remove intersection of _PolyLine's */ //================================================================================ bool _ViscousBuilder2D::fixCollisions() { // look for intersections of _Segment's by intersecting _LayerEdge's with // _Segment's vector< const _Segment* > foundSegs; _SegmentIntersection intersection; list< pair< _LayerEdge*, double > > edgeLenLimitList; list< _LayerEdge* > blockedEdgesList; for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 ) { _PolyLine& L1 = _polyLineVec[ iL1 ]; //if ( !L1._advancable ) continue; for ( size_t iL2 = 0; iL2 < L1._reachableLines.size(); ++iL2 ) { _PolyLine& L2 = * L1._reachableLines[ iL2 ]; for ( size_t iLE = L1.FirstLEdge(); iLE < L1._lEdges.size(); ++iLE ) { _LayerEdge& LE1 = L1._lEdges[iLE]; if ( LE1._isBlocked ) continue; foundSegs.clear(); L2._segTree->GetSegmentsNear( LE1._ray, foundSegs ); for ( size_t i = 0; i < foundSegs.size(); ++i ) { if ( ! L1.IsAdjacent( *foundSegs[i], &LE1 ) && intersection.Compute( *foundSegs[i], LE1._ray )) { const double dist2DToL2 = intersection._param2; double newLen2D = dist2DToL2 / 2; if ( newLen2D < 1.1 * LE1._length2D ) // collision! { if ( newLen2D > 0 || !L1._advancable ) { blockedEdgesList.push_back( &LE1 ); if ( L1._advancable && newLen2D > 0 ) { edgeLenLimitList.push_back( make_pair( &LE1, newLen2D )); blockedEdgesList.push_back( &L2._lEdges[ foundSegs[i]->_indexInLine ]); blockedEdgesList.push_back( &L2._lEdges[ foundSegs[i]->_indexInLine + 1 ]); } else // here dist2DToL2 < 0 and LE1._length2D == 0 { _LayerEdge* LE2[2] = { & L2._lEdges[ foundSegs[i]->_indexInLine ], & L2._lEdges[ foundSegs[i]->_indexInLine + 1 ] }; _Segment outSeg2( LE2[0]->_uvOut, LE2[1]->_uvOut ); intersection.Compute( outSeg2, LE1._ray ); newLen2D = intersection._param2 / 2; if ( newLen2D > 0 ) { edgeLenLimitList.push_back( make_pair( LE2[0], newLen2D )); edgeLenLimitList.push_back( make_pair( LE2[1], newLen2D )); } } } } } } } } } // limit length of _LayerEdge's that are extrema of _PolyLine's // to avoid intersection of these _LayerEdge's for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 ) { _PolyLine& L = _polyLineVec[ iL1 ]; if ( L._lEdges.size() < 4 ) // all intermediate _LayerEdge's intersect with extremum ones { _LayerEdge& LEL = L._leftLine->_lEdges.back(); _LayerEdge& LER = L._lEdges.back(); _Segment segL( LEL._uvOut, LEL._uvIn ); _Segment segR( LER._uvOut, LER._uvIn ); double newLen2DL, newLen2DR; if ( intersection.Compute( segL, LER._ray )) { newLen2DR = intersection._param2 / 2; newLen2DL = LEL._length2D * intersection._param1 / 2; } else if ( intersection.Compute( segR, LEL._ray )) { newLen2DL = intersection._param2 / 2; newLen2DR = LER._length2D * intersection._param1 / 2; } else { continue; } if ( newLen2DL > 0 && newLen2DR > 0 ) { if ( newLen2DL < 1.1 * LEL._length2D ) edgeLenLimitList.push_back( make_pair( &LEL, newLen2DL )); if ( newLen2DR < 1.1 * LER._length2D ) edgeLenLimitList.push_back( make_pair( &LER, newLen2DR )); } } } // set limited length to _LayerEdge's list< pair< _LayerEdge*, double > >::iterator edge2Len = edgeLenLimitList.begin(); for ( ; edge2Len != edgeLenLimitList.end(); ++edge2Len ) { _LayerEdge* LE = edge2Len->first; if ( LE->_length2D > edge2Len->second ) { LE->_isBlocked = false; LE->SetNewLength( edge2Len->second / LE->_len2dTo3dRatio ); } LE->_isBlocked = true; } // block inflation of _LayerEdge's list< _LayerEdge* >::iterator edge = blockedEdgesList.begin(); for ( ; edge != blockedEdgesList.end(); ++edge ) (*edge)->_isBlocked = true; // find a not blocked _LayerEdge for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL ) { _PolyLine& L = _polyLineVec[ iL ]; if ( !L._advancable ) continue; for ( size_t iLE = L.FirstLEdge(); iLE < L._lEdges.size(); ++iLE ) if ( !L._lEdges[ iLE ]._isBlocked ) return false; } return true; } //================================================================================ /*! * \brief Create new edges and shrink edges existing on a non-advancable _PolyLine * adjacent to an advancable one. */ //================================================================================ bool _ViscousBuilder2D::shrink() { gp_Pnt2d uv; //gp_Vec2d tangent; _SegmentIntersection intersection; double sign; for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 ) { _PolyLine& L = _polyLineVec[ iL1 ]; // line with no layers if ( L._advancable ) continue; const int nbAdvancable = ( L._rightLine->_advancable + L._leftLine->_advancable ); if ( nbAdvancable == 0 ) continue; const TopoDS_Vertex& V1 = L._wire->FirstVertex( L._edgeInd ); const TopoDS_Vertex& V2 = L._wire->LastVertex ( L._edgeInd ); const int v1ID = getMeshDS()->ShapeToIndex( V1 ); const int v2ID = getMeshDS()->ShapeToIndex( V2 ); const bool isShrinkableL = ! _noShrinkVert.count( v1ID ) && L._leftLine->_advancable; const bool isShrinkableR = ! _noShrinkVert.count( v2ID ) && L._rightLine->_advancable; if ( !isShrinkableL && !isShrinkableR ) continue; const TopoDS_Edge& E = L._wire->Edge ( L._edgeInd ); const int edgeID = L._wire->EdgeID ( L._edgeInd ); const double edgeLen = L._wire->EdgeLength ( L._edgeInd ); Handle(Geom2d_Curve) pcurve = L._wire->Curve2d ( L._edgeInd ); const bool edgeReversed = ( E.Orientation() == TopAbs_REVERSED ); SMESH_MesherHelper helper( *_mesh ); // to create nodes and edges on E helper.SetSubShape( E ); helper.SetElementsOnShape( true ); // Check a FACE adjacent to _face by E bool existingNodesFound = false; TopoDS_Face adjFace; PShapeIteratorPtr faceIt = _helper.GetAncestors( E, *_mesh, TopAbs_FACE ); while ( const TopoDS_Shape* f = faceIt->next() ) if ( !_face.IsSame( *f )) { adjFace = TopoDS::Face( *f ); SMESH_ProxyMesh::Ptr pm = _ProxyMeshHolder::FindProxyMeshOfFace( adjFace, *_mesh ); if ( !pm || pm->NbProxySubMeshes() == 0 /*|| !pm->GetProxySubMesh( E )*/) { // There are no viscous layers on an adjacent FACE, clear it's 2D mesh removeMeshFaces( adjFace ); // if ( removeMeshFaces( adjFace )) // _clearedFaces.push_back( adjFace ); // to re-compute after all } else { // There are viscous layers on the adjacent FACE; shrink must be already done; // // copy layer nodes // const vector& points = L._wire->GetUVPtStruct(); int iPFrom = L._firstPntInd, iPTo = L._lastPntInd; if ( isShrinkableL ) { const THypVL* hyp = getLineHypothesis( L._leftLine->_index ); vector& uvVec = L._lEdges.front()._uvRefined; for ( int i = 0; i < hyp->GetNumberLayers(); ++i ) { const UVPtStruct& uvPt = points[ iPFrom + i + 1 ]; L._leftNodes.push_back( uvPt.node ); uvVec.push_back ( pcurve->Value( uvPt.param ).XY() ); } iPFrom += hyp->GetNumberLayers(); } if ( isShrinkableR ) { const THypVL* hyp = getLineHypothesis( L._rightLine->_index ); vector& uvVec = L._lEdges.back()._uvRefined; for ( int i = 0; i < hyp->GetNumberLayers(); ++i ) { const UVPtStruct& uvPt = points[ iPTo - i - 1 ]; L._rightNodes.push_back( uvPt.node ); uvVec.push_back ( pcurve->Value( uvPt.param ).XY() ); } iPTo -= hyp->GetNumberLayers(); } // make proxy sub-mesh data of present nodes // UVPtStructVec nodeDataVec( & points[ iPFrom ], & points[ iPTo + 1 ]); double normSize = nodeDataVec.back().normParam - nodeDataVec.front().normParam; for ( int iP = nodeDataVec.size()-1; iP >= 0 ; --iP ) nodeDataVec[iP].normParam = ( nodeDataVec[iP].normParam - nodeDataVec[0].normParam ) / normSize; const SMDS_MeshNode* n = nodeDataVec.front().node; if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX ) nodeDataVec.front().param = L._wire->FirstU( L._edgeInd ); n = nodeDataVec.back().node; if ( n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX ) nodeDataVec.back().param = L._wire->LastU( L._edgeInd ); _ProxyMeshOfFace::_EdgeSubMesh* myEdgeSM = getProxyMesh()->GetEdgeSubMesh( edgeID ); myEdgeSM->SetUVPtStructVec( nodeDataVec ); existingNodesFound = true; break; } } // loop on FACEs sharing E // Check if L is an already shrinked seam if ( adjFace.IsNull() && _helper.IsRealSeam( edgeID )) if ( L._wire->Edge( L._edgeInd ).Orientation() == TopAbs_FORWARD ) continue; // Commented as a case with a seam EDGE (issue 0052461) is hard to support // because SMESH_ProxyMesh can't hold different sub-meshes for two // 2D representations of the seam. But such a case is not a real practice one. // { // for ( int iL2 = iL1-1; iL2 > -1; --iL2 ) // { // _PolyLine& L2 = _polyLineVec[ iL2 ]; // if ( edgeID == L2._wire->EdgeID( L2._edgeInd )) // { // // copy layer nodes // const int seamPar = _helper.GetPeriodicIndex(); // vector& uvVec = L._lEdges.front()._uvRefined; // if ( isShrinkableL ) // { // L._leftNodes = L2._rightNodes; // uvVec = L2._lEdges.back()._uvRefined; // } // if ( isShrinkableR ) // { // L._rightNodes = L2._leftNodes; // uvVec = L2._lEdges.front()._uvRefined; // } // for ( size_t i = 0; i < uvVec.size(); ++i ) // { // gp_XY & uv = uvVec[i]; // uv.SetCoord( seamPar, _helper.GetOtherParam( uv.Coord( seamPar ))); // } // existingNodesFound = true; // break; // } // } // } if ( existingNodesFound ) continue; // nothing more to do in this case double u1 = L._wire->FirstU( L._edgeInd ), uf = u1; double u2 = L._wire->LastU ( L._edgeInd ), ul = u2; // a ratio to pass 2D <--> 1D const double len1D = 1e-3; const double len2D = pcurve->Value(uf).Distance( pcurve->Value(uf+len1D)); double len1dTo2dRatio = len1D / len2D; // create a vector of proxy nodes const vector& points = L._wire->GetUVPtStruct(); UVPtStructVec nodeDataVec( & points[ L._firstPntInd ], & points[ L._lastPntInd + 1 ]); nodeDataVec.front().param = u1; // U on vertex is correct on only one of shared edges nodeDataVec.back ().param = u2; nodeDataVec.front().normParam = 0; nodeDataVec.back ().normParam = 1; // Get length of existing segments (from an edge start to a node) and their nodes vector< double > segLengths( nodeDataVec.size() - 1 ); BRepAdaptor_Curve curve( E ); for ( size_t iP = 1; iP < nodeDataVec.size(); ++iP ) { const double len = GCPnts_AbscissaPoint::Length( curve, uf, nodeDataVec[iP].param ); segLengths[ iP-1 ] = len; } // Move first and last parameters on EDGE (U of n1) according to layers' thickness // and create nodes of layers on EDGE ( -x-x-x ) // Before // n1 n2 n3 n4 // x-----x-----x-----x----- // | e1 e2 e3 e4 // After // n1 n2 n3 // x-x-x-x-----x-----x---- // | | | | e1 e2 e3 int isRShrinkedForAdjacent = 0; UVPtStructVec nodeDataForAdjacent; for ( int isR = 0; isR < 2; ++isR ) { _PolyLine* L2 = isR ? L._rightLine : L._leftLine; // line with layers if ( !L2->_advancable && !toShrinkForAdjacent( adjFace, E, L._wire->FirstVertex( L._edgeInd + isR ))) continue; if ( isR ? !isShrinkableR : !isShrinkableL ) continue; double & u = isR ? u2 : u1; // param to move double u0 = isR ? ul : uf; // init value of the param to move int iPEnd = isR ? nodeDataVec.size() - 1 : 0; _LayerEdge& nearLE = isR ? L._lEdges.back() : L._lEdges.front(); _LayerEdge& farLE = isR ? L._lEdges.front() : L._lEdges.back(); // try to find length of advancement along L by intersecting L with // an adjacent _Segment of L2 double& length2D = nearLE._length2D; double length1D = 0; sign = ( isR ^ edgeReversed ) ? -1. : 1.; bool isConvex = false; if ( L2->_advancable ) { const uvPtStruct& tang2P1 = points[ isR ? L2->_firstPntInd : L2->_lastPntInd ]; const uvPtStruct& tang2P2 = points[ isR ? L2->_firstPntInd+1 : L2->_lastPntInd-1 ]; gp_XY seg2Dir( tang2P2.u - tang2P1.u, tang2P2.v - tang2P1.v ); int iFSeg2 = isR ? 0 : L2->_segments.size() - 1; int iLSeg2 = isR ? 1 : L2->_segments.size() - 2; gp_XY uvLSeg2In = L2->_lEdges[ iLSeg2 ]._uvIn; Handle(Geom2d_Line) seg2Line = new Geom2d_Line( uvLSeg2In, seg2Dir ); Geom2dAdaptor_Curve edgeCurve( pcurve, Min( uf, ul ), Max( uf, ul )); Geom2dAdaptor_Curve seg2Curve( seg2Line ); Geom2dInt_GInter curveInt( edgeCurve, seg2Curve, 1e-7, 1e-7 ); isConvex = ( curveInt.IsDone() && !curveInt.IsEmpty() ); if ( isConvex ) { /* convex VERTEX */ length1D = Abs( u - curveInt.Point( 1 ).ParamOnFirst() ); double maxDist2d = 2 * L2->_lEdges[ iLSeg2 ]._length2D; isConvex = ( length1D < maxDist2d * len1dTo2dRatio ); /* |L seg2 * | o---o--- * | / | * |/ | L2 * x------x--- */ } if ( !isConvex ) { /* concave VERTEX */ /* o-----o--- * \ | * \ | L2 * x--x--- * / * L / */ length2D = L2->_lEdges[ iFSeg2 ]._length2D; //if ( L2->_advancable ) continue; } } else // L2 is advancable but in the face adjacent by L { length2D = farLE._length2D; if ( length2D == 0 ) { _LayerEdge& neighborLE = ( isR ? L._leftLine->_lEdges.back() : L._rightLine->_lEdges.front() ); length2D = neighborLE._length2D; if ( length2D == 0 ) length2D = _maxThickness * nearLE._len2dTo3dRatio; } } // move u to the internal boundary of layers // u --> u // x-x-x-x-----x-----x---- double maxLen3D = Min( _maxThickness, edgeLen / ( 1 + nbAdvancable )); double maxLen2D = maxLen3D * nearLE._len2dTo3dRatio; if ( !length2D ) length2D = length1D / len1dTo2dRatio; if ( Abs( length2D ) > maxLen2D ) length2D = maxLen2D; nearLE._uvIn = nearLE._uvOut + nearLE._normal2D * length2D; u += length2D * len1dTo2dRatio * sign; nodeDataVec[ iPEnd ].param = u; gp_Pnt2d newUV = pcurve->Value( u ); nodeDataVec[ iPEnd ].u = newUV.X(); nodeDataVec[ iPEnd ].v = newUV.Y(); // compute params of layers on L vector heights; const THypVL* hyp = getLineHypothesis( L2->_index ); calcLayersHeight( u - u0, heights, hyp ); // vector< double > params( heights.size() ); for ( size_t i = 0; i < params.size(); ++i ) params[ i ] = u0 + heights[ i ]; // create nodes of layers and edges between them // x-x-x-x--- vector< const SMDS_MeshNode* >& layersNode = isR ? L._rightNodes : L._leftNodes; vector& nodeUV = ( isR ? L._lEdges.back() : L._lEdges[0] )._uvRefined; nodeUV.resize ( hyp->GetNumberLayers() ); layersNode.resize( hyp->GetNumberLayers() ); const SMDS_MeshNode* vertexNode = nodeDataVec[ iPEnd ].node; const SMDS_MeshNode * prevNode = vertexNode; for ( size_t i = 0; i < params.size(); ++i ) { const gp_Pnt p = curve.Value( params[i] ); layersNode[ i ] = helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, params[i] ); nodeUV [ i ] = pcurve->Value( params[i] ).XY(); helper.AddEdge( prevNode, layersNode[ i ] ); prevNode = layersNode[ i ]; } // store data of layer nodes made for adjacent FACE if ( !L2->_advancable ) { isRShrinkedForAdjacent = isR; nodeDataForAdjacent.resize( hyp->GetNumberLayers() ); size_t iFrw = 0, iRev = nodeDataForAdjacent.size()-1, *i = isR ? &iRev : &iFrw; nodeDataForAdjacent[ *i ] = points[ isR ? L._lastPntInd : L._firstPntInd ]; nodeDataForAdjacent[ *i ].param = u0; nodeDataForAdjacent[ *i ].normParam = isR; for ( ++iFrw, --iRev; iFrw < layersNode.size(); ++iFrw, --iRev ) { nodeDataForAdjacent[ *i ].node = layersNode[ iFrw - 1 ]; nodeDataForAdjacent[ *i ].u = nodeUV [ iFrw - 1 ].X(); nodeDataForAdjacent[ *i ].v = nodeUV [ iFrw - 1 ].Y(); nodeDataForAdjacent[ *i ].param = params [ iFrw - 1 ]; } } // replace a node on vertex by a node of last (most internal) layer // in a segment on E SMDS_ElemIteratorPtr segIt = vertexNode->GetInverseElementIterator( SMDSAbs_Edge ); const SMDS_MeshNode* segNodes[3]; while ( segIt->more() ) { const SMDS_MeshElement* segment = segIt->next(); if ( segment->getshapeId() != edgeID ) continue; const int nbNodes = segment->NbNodes(); for ( int i = 0; i < nbNodes; ++i ) { const SMDS_MeshNode* n = segment->GetNode( i ); segNodes[ i ] = ( n == vertexNode ? layersNode.back() : n ); } getMeshDS()->ChangeElementNodes( segment, segNodes, nbNodes ); break; } nodeDataVec[ iPEnd ].node = layersNode.back(); } // loop on the extremities of L // Shrink edges to fit in between the layers at EDGE ends double newLength = GCPnts_AbscissaPoint::Length( curve, u1, u2 ); double lenRatio = newLength / edgeLen * ( edgeReversed ? -1. : 1. ); for ( size_t iP = 1; iP < nodeDataVec.size()-1; ++iP ) { const SMDS_MeshNode* oldNode = nodeDataVec[iP].node; GCPnts_AbscissaPoint discret( curve, segLengths[iP-1] * lenRatio, u1 ); if ( !discret.IsDone() ) throw SALOME_Exception(LOCALIZED("GCPnts_AbscissaPoint failed")); nodeDataVec[iP].param = discret.Parameter(); if ( oldNode->GetPosition()->GetTypeOfPosition() != SMDS_TOP_EDGE ) throw SALOME_Exception(SMESH_Comment("ViscousBuilder2D: not SMDS_TOP_EDGE node position: ") << oldNode->GetPosition()->GetTypeOfPosition() << " of node " << oldNode->GetID()); SMDS_EdgePositionPtr pos = oldNode->GetPosition(); pos->SetUParameter( nodeDataVec[iP].param ); gp_Pnt newP = curve.Value( nodeDataVec[iP].param ); getMeshDS()->MoveNode( oldNode, newP.X(), newP.Y(), newP.Z() ); gp_Pnt2d newUV = pcurve->Value( nodeDataVec[iP].param ).XY(); nodeDataVec[iP].u = newUV.X(); nodeDataVec[iP].v = newUV.Y(); nodeDataVec[iP].normParam = segLengths[iP-1] / edgeLen; // nodeDataVec[iP].x = segLengths[iP-1] / edgeLen; // nodeDataVec[iP].y = segLengths[iP-1] / edgeLen; } // Add nodeDataForAdjacent to nodeDataVec if ( !nodeDataForAdjacent.empty() ) { const double par1 = isRShrinkedForAdjacent ? u2 : uf; const double par2 = isRShrinkedForAdjacent ? ul : u1; const double shrinkLen = GCPnts_AbscissaPoint::Length( curve, par1, par2 ); // compute new normParam for nodeDataVec for ( size_t iP = 0; iP < nodeDataVec.size()-1; ++iP ) nodeDataVec[iP+1].normParam = segLengths[iP] / ( edgeLen + shrinkLen ); double normDelta = 1 - nodeDataVec.back().normParam; if ( !isRShrinkedForAdjacent ) for ( size_t iP = 0; iP < nodeDataVec.size(); ++iP ) nodeDataVec[iP].normParam += normDelta; // compute new normParam for nodeDataForAdjacent const double deltaR = isRShrinkedForAdjacent ? nodeDataVec.back().normParam : 0; for ( size_t iP = !isRShrinkedForAdjacent; iP < nodeDataForAdjacent.size(); ++iP ) { double lenFromPar1 = GCPnts_AbscissaPoint::Length( curve, par1, nodeDataForAdjacent[iP].param ); nodeDataForAdjacent[iP].normParam = deltaR + normDelta * lenFromPar1 / shrinkLen; } // concatenate nodeDataVec and nodeDataForAdjacent nodeDataVec.insert(( isRShrinkedForAdjacent ? nodeDataVec.end() : nodeDataVec.begin() ), nodeDataForAdjacent.begin(), nodeDataForAdjacent.end() ); } // Extend nodeDataVec by a node located at the end of not shared _LayerEdge /* n - to add to nodeDataVec * o-----o--- * |\ | * | o---o--- * | |x--x--- L2 * | / * |/ L * x * / */ for ( int isR = 0; isR < 2; ++isR ) { _PolyLine& L2 = *( isR ? L._rightLine : L._leftLine ); // line with layers if ( ! L2._advancable || L.IsCommonEdgeShared( L2 ) ) continue; vector< const SMDS_MeshNode* >& layerNodes2 = isR ? L2._leftNodes : L2._rightNodes; _LayerEdge& LE2 = isR ? L2._lEdges.front() : L2._lEdges.back(); if ( layerNodes2.empty() ) { // refine the not shared _LayerEdge vector layersHeight; calcLayersHeight( LE2._length2D, layersHeight, getLineHypothesis( L2._index )); vector& nodeUV2 = LE2._uvRefined; nodeUV2.resize ( layersHeight.size() ); layerNodes2.resize( layersHeight.size() ); for ( size_t i = 0; i < layersHeight.size(); ++i ) { gp_XY uv = LE2._uvOut + LE2._normal2D * layersHeight[i]; gp_Pnt p = _surface->Value( uv.X(), uv.Y() ); nodeUV2 [ i ] = uv; layerNodes2[ i ] = _helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, uv.X(), uv.Y() ); } } UVPtStruct ptOfNode; ptOfNode.u = LE2._uvRefined.back().X(); ptOfNode.v = LE2._uvRefined.back().Y(); ptOfNode.node = layerNodes2.back(); ptOfNode.param = isR ? ul : uf; ptOfNode.normParam = isR ? 1 : 0; nodeDataVec.insert(( isR ? nodeDataVec.end() : nodeDataVec.begin() ), ptOfNode ); // recompute normParam of nodes in nodeDataVec newLength = GCPnts_AbscissaPoint::Length( curve, nodeDataVec.front().param, nodeDataVec.back().param); for ( size_t iP = 1; iP < nodeDataVec.size(); ++iP ) { const double len = GCPnts_AbscissaPoint::Length( curve, nodeDataVec.front().param, nodeDataVec[iP].param ); nodeDataVec[iP].normParam = len / newLength; } } // create a proxy sub-mesh containing the moved nodes _ProxyMeshOfFace::_EdgeSubMesh* edgeSM = getProxyMesh()->GetEdgeSubMesh( edgeID ); edgeSM->SetUVPtStructVec( nodeDataVec ); // set a sub-mesh event listener to remove just created edges when // "ViscousLayers2D" hypothesis is modified VISCOUS_3D::ToClearSubWithMain( _mesh->GetSubMesh( E ), _face ); } // loop on _polyLineVec return true; } //================================================================================ /*! * \brief Returns true if there will be a shrinked mesh on EDGE E of FACE adjFace * near VERTEX V */ //================================================================================ bool _ViscousBuilder2D::toShrinkForAdjacent( const TopoDS_Face& adjFace, const TopoDS_Edge& E, const TopoDS_Vertex& V) { if ( _noShrinkVert.count( getMeshDS()->ShapeToIndex( V )) || adjFace.IsNull() ) return false; vector< const StdMeshers_ViscousLayers2D* > hyps; vector< TopoDS_Shape > hypShapes; if ( VISCOUS_2D::findHyps( *_mesh, adjFace, hyps, hypShapes )) { VISCOUS_2D::_ViscousBuilder2D builder( *_mesh, adjFace, hyps, hypShapes ); builder._faceSideVec = StdMeshers_FaceSide::GetFaceWires( adjFace, *_mesh, true, _error ); builder.findEdgesWithLayers(); PShapeIteratorPtr edgeIt = _helper.GetAncestors( V, *_mesh, TopAbs_EDGE ); while ( const TopoDS_Shape* edgeAtV = edgeIt->next() ) { if ( !edgeAtV->IsSame( E ) && _helper.IsSubShape( *edgeAtV, adjFace ) && !builder._ignoreShapeIds.count( getMeshDS()->ShapeToIndex( *edgeAtV ))) { return true; } } } return false; } //================================================================================ /*! * \brief Make faces */ //================================================================================ bool _ViscousBuilder2D::refine() { // find out orientation of faces to create bool isReverse = ( _helper.GetSubShapeOri( _mesh->GetShapeToMesh(), _face ) == TopAbs_REVERSED ); // store a proxyMesh in a sub-mesh // make faces on each _PolyLine vector< double > layersHeight; //double prevLen2D = -1; for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL ) { _PolyLine& L = _polyLineVec[ iL ]; if ( !L._advancable ) continue; // replace an inactive (1st) _LayerEdge with an active one of a neighbour _PolyLine //size_t iLE = 0, nbLE = L._lEdges.size(); const bool leftEdgeShared = L.IsCommonEdgeShared( *L._leftLine ); const bool rightEdgeShared = L.IsCommonEdgeShared( *L._rightLine ); if ( /*!L._leftLine->_advancable &&*/ leftEdgeShared ) { L._lEdges[0] = L._leftLine->_lEdges.back(); //iLE += int( !L._leftLine->_advancable ); } if ( !L._rightLine->_advancable && rightEdgeShared ) { L._lEdges.back() = L._rightLine->_lEdges[0]; //--nbLE; } // limit length of neighbour _LayerEdge's to avoid sharp change of layers thickness vector< double > segLen( L._lEdges.size() ); segLen[0] = 0.0; // check if length modification is useful: look for _LayerEdge's // with length limited due to collisions bool lenLimited = false; for ( size_t iLE = 1; ( iLE < L._lEdges.size()-1 && !lenLimited ); ++iLE ) lenLimited = L._lEdges[ iLE ]._isBlocked; if ( lenLimited ) { for ( size_t i = 1; i < segLen.size(); ++i ) { // accumulate length of segments double sLen = (L._lEdges[i-1]._uvOut - L._lEdges[i]._uvOut ).Modulus(); segLen[i] = segLen[i-1] + sLen; } const double totSegLen = segLen.back(); // normalize the accumulated length for ( size_t iS = 1; iS < segLen.size(); ++iS ) segLen[iS] /= totSegLen; for ( int isR = 0; isR < 2; ++isR ) { size_t iF = 0, iL = L._lEdges.size()-1; size_t *i = isR ? &iL : &iF; _LayerEdge* prevLE = & L._lEdges[ *i ]; double weight = 0; for ( ++iF, --iL; iF < L._lEdges.size()-1; ++iF, --iL ) { _LayerEdge& LE = L._lEdges[*i]; if ( prevLE->_length2D > 0 ) { gp_XY tangent ( LE._normal2D.Y(), -LE._normal2D.X() ); weight += Abs( tangent * ( prevLE->_uvIn - LE._uvIn )) / totSegLen; // gp_XY prevTang( LE._uvOut - prevLE->_uvOut ); // gp_XY prevNorm( -prevTang.Y(), prevTang.X() ); gp_XY prevNorm = LE._normal2D; double prevProj = prevNorm * ( prevLE->_uvIn - prevLE->_uvOut ); if ( prevProj > 0 ) { prevProj /= prevNorm.Modulus(); if ( LE._length2D < prevProj ) weight += 0.75 * ( 1 - weight ); // length decrease is more preferable LE._length2D = weight * LE._length2D + ( 1 - weight ) * prevProj; LE._uvIn = LE._uvOut + LE._normal2D * LE._length2D; } } prevLE = & LE; } } } // DEBUG: to see _uvRefined. cout can be redirected to hide NETGEN output // cerr << "import smesh" << endl << "mesh = smesh.Mesh()"<< endl; const vector& points = L._wire->GetUVPtStruct(); // analyse extremities of the _PolyLine to find existing nodes const TopoDS_Vertex& V1 = L._wire->FirstVertex( L._edgeInd ); const TopoDS_Vertex& V2 = L._wire->LastVertex ( L._edgeInd ); const int v1ID = getMeshDS()->ShapeToIndex( V1 ); const int v2ID = getMeshDS()->ShapeToIndex( V2 ); const bool isShrinkableL = ! _noShrinkVert.count( v1ID ); const bool isShrinkableR = ! _noShrinkVert.count( v2ID ); bool hasLeftNode = ( !L._leftLine->_rightNodes.empty() && leftEdgeShared ); bool hasRightNode = ( !L._rightLine->_leftNodes.empty() && rightEdgeShared ); bool hasOwnLeftNode = ( !L._leftNodes.empty() ); bool hasOwnRightNode = ( !L._rightNodes.empty() ); bool isClosedEdge = ( points[ L._firstPntInd ].node == points[ L._lastPntInd ].node ); const size_t nbN = L._lastPntInd - L._firstPntInd + 1, iN0 = ( hasLeftNode || hasOwnLeftNode || isClosedEdge || !isShrinkableL ), iNE = nbN - ( hasRightNode || hasOwnRightNode || !isShrinkableR ); // update _uvIn of end _LayerEdge's by existing nodes const SMDS_MeshNode *nL = 0, *nR = 0; if ( hasOwnLeftNode ) nL = L._leftNodes.back(); else if ( hasLeftNode ) nL = L._leftLine->_rightNodes.back(); if ( hasOwnRightNode ) nR = L._rightNodes.back(); else if ( hasRightNode ) nR = L._rightLine->_leftNodes.back(); if ( nL ) L._lEdges[0]._uvIn = _helper.GetNodeUV( _face, nL, points[ L._firstPntInd + 1 ].node ); if ( nR ) L._lEdges.back()._uvIn = _helper.GetNodeUV( _face, nR, points[ L._lastPntInd - 1 ].node ); // compute normalized [0;1] node parameters of nodes on a _PolyLine vector< double > normPar( nbN ); const double normF = L._wire->FirstParameter( L._edgeInd ), normL = L._wire->LastParameter ( L._edgeInd ), normDist = normL - normF; for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i ) normPar[ i - L._firstPntInd ] = ( points[i].normParam - normF ) / normDist; // Calculate UV of most inner nodes vector< gp_XY > innerUV( nbN ); // check if innerUV should be interpolated between _LayerEdge::_uvIn's const size_t nbLE = L._lEdges.size(); bool needInterpol = ( nbN != nbLE ); if ( !needInterpol ) { // more check: compare length of inner and outer end segments double lenIn, lenOut; for ( int isR = 0; isR < 2 && !needInterpol; ++isR ) { const _Segment& segIn = isR ? L._segments.back() : L._segments[0]; const gp_XY& uvIn1 = segIn.p1(); const gp_XY& uvIn2 = segIn.p2(); const gp_XY& uvOut1 = L._lEdges[ isR ? nbLE-1 : 0 ]._uvOut; const gp_XY& uvOut2 = L._lEdges[ isR ? nbLE-2 : 1 ]._uvOut; if ( _is2DIsotropic ) { lenIn = ( uvIn1 - uvIn2 ).Modulus(); lenOut = ( uvOut1 - uvOut2 ).Modulus(); } else { lenIn = _surface->Value( uvIn1.X(), uvIn1.Y() ) .Distance( _surface->Value( uvIn2.X(), uvIn2.Y() )); lenOut = _surface->Value( uvOut1.X(), uvOut1.Y() ) .Distance( _surface->Value( uvOut2.X(), uvOut2.Y() )); } needInterpol = ( lenIn < 0.66 * lenOut ); } } if ( needInterpol ) { // compute normalized accumulated length of inner segments size_t iS; if ( _is2DIsotropic ) for ( iS = 1; iS < segLen.size(); ++iS ) { double sLen = ( L._lEdges[iS-1]._uvIn - L._lEdges[iS]._uvIn ).Modulus(); segLen[iS] = segLen[iS-1] + sLen; } else for ( iS = 1; iS < segLen.size(); ++iS ) { const gp_XY& uv1 = L._lEdges[iS-1]._uvIn; const gp_XY& uv2 = L._lEdges[iS ]._uvIn; gp_Pnt p1 = _surface->Value( uv1.X(), uv1.Y() ); gp_Pnt p2 = _surface->Value( uv2.X(), uv2.Y() ); double sLen = p1.Distance( p2 ); segLen[iS] = segLen[iS-1] + sLen; } // normalize the accumulated length for ( iS = 1; iS < segLen.size(); ++iS ) segLen[iS] /= segLen.back(); // calculate UV of most inner nodes according to the normalized node parameters iS = 0; for ( size_t i = 0; i < innerUV.size(); ++i ) { while ( normPar[i] > segLen[iS+1] ) ++iS; double r = ( normPar[i] - segLen[iS] ) / ( segLen[iS+1] - segLen[iS] ); innerUV[ i ] = r * L._lEdges[iS+1]._uvIn + (1-r) * L._lEdges[iS]._uvIn; } } else // ! needInterpol { for ( size_t i = 0; i < nbLE; ++i ) innerUV[ i ] = L._lEdges[i]._uvIn; } // normalized height of layers const THypVL* hyp = getLineHypothesis( iL ); calcLayersHeight( 1., layersHeight, hyp); // Create layers of faces // nodes to create 1 layer of faces vector< const SMDS_MeshNode* > outerNodes( nbN ); vector< const SMDS_MeshNode* > innerNodes( nbN ); // initialize outerNodes by nodes of the L._wire for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i ) outerNodes[ i-L._firstPntInd ] = points[i].node; L._leftNodes .reserve( hyp->GetNumberLayers() ); L._rightNodes.reserve( hyp->GetNumberLayers() ); int cur = 0, prev = -1; // to take into account orientation of _face if ( isReverse ) std::swap( cur, prev ); for ( int iF = 0; iF < hyp->GetNumberLayers(); ++iF ) // loop on layers of faces { // create innerNodes of a current layer for ( size_t i = iN0; i < iNE; ++i ) { gp_XY uvOut = points[ L._firstPntInd + i ].UV(); gp_XY& uvIn = innerUV[ i ]; gp_XY uv = layersHeight[ iF ] * uvIn + ( 1.-layersHeight[ iF ]) * uvOut; gp_Pnt p = _surface->Value( uv.X(), uv.Y() ); innerNodes[i] = _helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, uv.X(), uv.Y() ); } // use nodes created for adjacent _PolyLine's if ( hasOwnLeftNode ) innerNodes.front() = L._leftNodes [ iF ]; else if ( hasLeftNode ) innerNodes.front() = L._leftLine->_rightNodes[ iF ]; if ( hasOwnRightNode ) innerNodes.back() = L._rightNodes[ iF ]; else if ( hasRightNode ) innerNodes.back() = L._rightLine->_leftNodes[ iF ]; if ( isClosedEdge ) innerNodes.front() = innerNodes.back(); // circle if ( !isShrinkableL ) innerNodes.front() = outerNodes.front(); if ( !isShrinkableR ) innerNodes.back() = outerNodes.back(); if ( !hasOwnLeftNode ) L._leftNodes.push_back( innerNodes.front() ); if ( !hasOwnRightNode ) L._rightNodes.push_back( innerNodes.back() ); // create faces for ( size_t i = 1; i < innerNodes.size(); ++i ) if ( SMDS_MeshElement* f = _helper.AddFace( outerNodes[ i+prev ], outerNodes[ i+cur ], innerNodes[ i+cur ], innerNodes[ i+prev ])) L._newFaces.insert( L._newFaces.end(), f ); outerNodes.swap( innerNodes ); } // Add faces to a group SMDS_MeshGroup* group = StdMeshers_ViscousLayers::CreateGroup( hyp->GetGroupName(), *_helper.GetMesh(), SMDSAbs_Face ); if ( group ) { TIDSortedElemSet::iterator fIt = L._newFaces.begin(); for ( ; fIt != L._newFaces.end(); ++fIt ) group->Add( *fIt ); } // faces between not shared _LayerEdge's (at concave VERTEX) for ( int isR = 0; isR < 2; ++isR ) { if ( isR ? rightEdgeShared : leftEdgeShared ) continue; vector< const SMDS_MeshNode* > & lNodes = (isR ? L._rightNodes : L._leftLine->_rightNodes ), rNodes = (isR ? L._rightLine->_leftNodes : L._leftNodes ); if ( lNodes.empty() || rNodes.empty() || lNodes.size() != rNodes.size() ) continue; const SMDS_MeshElement* face = 0; for ( size_t i = 1; i < lNodes.size(); ++i ) { face = _helper.AddFace( lNodes[ i+prev ], rNodes[ i+prev ], rNodes[ i+cur ], lNodes[ i+cur ]); if ( group ) group->Add( face ); } const UVPtStruct& ptOnVertex = points[ isR ? L._lastPntInd : L._firstPntInd ]; if ( isReverse ) face = _helper.AddFace( ptOnVertex.node, lNodes[ 0 ], rNodes[ 0 ]); else face = _helper.AddFace( ptOnVertex.node, rNodes[ 0 ], lNodes[ 0 ]); if ( group ) group->Add( face ); } // Fill the _ProxyMeshOfFace UVPtStructVec nodeDataVec( outerNodes.size() ); // outerNodes swapped with innerNodes for ( size_t i = 0; i < outerNodes.size(); ++i ) { gp_XY uv = _helper.GetNodeUV( _face, outerNodes[i] ); nodeDataVec[i].u = uv.X(); nodeDataVec[i].v = uv.Y(); nodeDataVec[i].node = outerNodes[i]; nodeDataVec[i].param = points [i + L._firstPntInd].param; nodeDataVec[i].normParam = normPar[i]; nodeDataVec[i].x = normPar[i]; nodeDataVec[i].y = normPar[i]; } nodeDataVec.front().param = L._wire->FirstU( L._edgeInd ); nodeDataVec.back() .param = L._wire->LastU ( L._edgeInd ); if (( nodeDataVec[0].node == nodeDataVec.back().node ) && ( _helper.GetPeriodicIndex() == 1 || _helper.GetPeriodicIndex() == 2 )) // closed EDGE { const int iCoord = _helper.GetPeriodicIndex(); gp_XY uv = nodeDataVec[0].UV(); uv.SetCoord( iCoord, L._lEdges[0]._uvOut.Coord( iCoord )); nodeDataVec[0].SetUV( uv ); uv = nodeDataVec.back().UV(); uv.SetCoord( iCoord, L._lEdges.back()._uvOut.Coord( iCoord )); nodeDataVec.back().SetUV( uv ); } _ProxyMeshOfFace::_EdgeSubMesh* edgeSM = getProxyMesh()->GetEdgeSubMesh( L._wire->EdgeID( L._edgeInd )); edgeSM->SetUVPtStructVec( nodeDataVec ); } // loop on _PolyLine's // re-compute FACEs whose mesh was removed by shrink() for ( size_t i = 0; i < _clearedFaces.size(); ++i ) { SMESH_subMesh* sm = _mesh->GetSubMesh( _clearedFaces[i] ); if ( sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE ) sm->ComputeStateEngine( SMESH_subMesh::COMPUTE ); } return true; } //================================================================================ /*! * \brief Improve quality of the created mesh elements */ //================================================================================ bool _ViscousBuilder2D::improve() { if ( !_proxyMesh ) return false; // fixed nodes on EDGE's std::set fixedNodes; for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire ) { StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ]; const vector& points = wire->GetUVPtStruct(); for ( size_t i = 0; i < points.size(); ++i ) fixedNodes.insert( fixedNodes.end(), points[i].node ); } // fixed proxy nodes for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL ) { _PolyLine& L = _polyLineVec[ iL ]; const TopoDS_Edge& E = L._wire->Edge( L._edgeInd ); if ( const SMESH_ProxyMesh::SubMesh* sm = _proxyMesh->GetProxySubMesh( E )) { const UVPtStructVec& points = sm->GetUVPtStructVec(); for ( size_t i = 0; i < points.size(); ++i ) fixedNodes.insert( fixedNodes.end(), points[i].node ); } for ( size_t i = 0; i < L._rightNodes.size(); ++i ) fixedNodes.insert( fixedNodes.end(), L._rightNodes[i] ); } // smoothing SMESH_MeshEditor editor( _mesh ); for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL ) { _PolyLine& L = _polyLineVec[ iL ]; if ( L._isStraight2D ) continue; // SMESH_MeshEditor::SmoothMethod how = // L._isStraight2D ? SMESH_MeshEditor::LAPLACIAN : SMESH_MeshEditor::CENTROIDAL; //editor.Smooth( L._newFaces, fixedNodes, how, /*nbIt = */3 ); //editor.Smooth( L._newFaces, fixedNodes, SMESH_MeshEditor::LAPLACIAN, /*nbIt = */1 ); editor.Smooth( L._newFaces, fixedNodes, SMESH_MeshEditor::CENTROIDAL, /*nbIt = */3 ); } return true; } //================================================================================ /*! * \brief Remove elements and nodes from a face */ //================================================================================ bool _ViscousBuilder2D::removeMeshFaces(const TopoDS_Shape& face) { // we don't use SMESH_subMesh::ComputeStateEngine() because of a listener // which clears EDGEs together with _face. bool thereWereElems = false; SMESH_subMesh* sm = _mesh->GetSubMesh( face ); if ( SMESHDS_SubMesh* smDS = sm->GetSubMeshDS() ) { SMDS_ElemIteratorPtr eIt = smDS->GetElements(); thereWereElems = eIt->more(); while ( eIt->more() ) getMeshDS()->RemoveFreeElement( eIt->next(), smDS ); SMDS_NodeIteratorPtr nIt = smDS->GetNodes(); while ( nIt->more() ) getMeshDS()->RemoveFreeNode( nIt->next(), smDS ); } sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); return thereWereElems; } //================================================================================ /*! * \brief Returns a hypothesis for a _PolyLine */ //================================================================================ const StdMeshers_ViscousLayers2D* _ViscousBuilder2D::getLineHypothesis(int iPL) { return iPL < (int)_hypOfEdge.size() ? _hypOfEdge[ iPL ] : _hyps[0]; } //================================================================================ /*! * \brief Returns a layers thickness for a _PolyLine */ //================================================================================ double _ViscousBuilder2D::getLineThickness(int iPL) { if ( const StdMeshers_ViscousLayers2D* h = getLineHypothesis( iPL )) return Min( _maxThickness, h->GetTotalThickness() ); return _maxThickness; } //================================================================================ /*! * \brief Creates a _ProxyMeshOfFace and store it in a sub-mesh of FACE */ //================================================================================ _ProxyMeshOfFace* _ViscousBuilder2D::getProxyMesh() { if ( _proxyMesh.get() ) return (_ProxyMeshOfFace*) _proxyMesh.get(); _ProxyMeshOfFace* proxyMeshOfFace = new _ProxyMeshOfFace( *_mesh ); _proxyMesh.reset( proxyMeshOfFace ); new _ProxyMeshHolder( _face, _proxyMesh ); return proxyMeshOfFace; } //================================================================================ /*! * \brief Calculate height of layers for the given thickness. Height is measured * from the outer boundary */ //================================================================================ void _ViscousBuilder2D::calcLayersHeight(const double totalThick, vector& heights, const THypVL* hyp) { const double fPowN = pow( hyp->GetStretchFactor(), hyp->GetNumberLayers() ); heights.resize( hyp->GetNumberLayers() ); double h0; if ( fPowN - 1 <= numeric_limits::min() ) h0 = totalThick / hyp->GetNumberLayers(); else h0 = totalThick * ( hyp->GetStretchFactor() - 1 )/( fPowN - 1 ); double hSum = 0, hi = h0; for ( int i = 0; i < hyp->GetNumberLayers(); ++i ) { hSum += hi; heights[ i ] = hSum; hi *= hyp->GetStretchFactor(); } } //================================================================================ /*! * \brief Elongate this _LayerEdge */ //================================================================================ bool _LayerEdge::SetNewLength( const double length3D ) { if ( _isBlocked ) return false; //_uvInPrev = _uvIn; _length2D = length3D * _len2dTo3dRatio; _uvIn = _uvOut + _normal2D * _length2D; return true; } //================================================================================ /*! * \brief Return true if _LayerEdge at a common VERTEX between EDGEs with * and w/o layer is common to the both _PolyLine's. If this is true, nodes * of this _LayerEdge are inflated along a _PolyLine w/o layer, else the nodes * are inflated along _normal2D of _LayerEdge of EDGE with layer */ //================================================================================ bool _PolyLine::IsCommonEdgeShared( const _PolyLine& other ) { const double tol = 1e-30; if ( & other == _leftLine ) return _lEdges[0]._normal2D.IsEqual( _leftLine->_lEdges.back()._normal2D, tol ); if ( & other == _rightLine ) return _lEdges.back()._normal2D.IsEqual( _rightLine->_lEdges[0]._normal2D, tol ); return false; } //================================================================================ /*! * \brief Return \c true if the EDGE of this _PolyLine is concave */ //================================================================================ bool _PolyLine::IsConcave() const { if ( _lEdges.size() < 2 ) return false; gp_Vec2d v1( _lEdges[0]._uvOut, _lEdges[1]._uvOut ); gp_Vec2d v2( _lEdges[0]._uvOut, _lEdges[2]._uvOut ); const double size2 = v2.Magnitude(); return ( v1 ^ v2 ) / size2 < -1e-3 * size2; } //================================================================================ /*! * \brief Constructor of SegmentTree */ //================================================================================ _SegmentTree::_SegmentTree( const vector< _Segment >& segments ): SMESH_Quadtree() { _segments.resize( segments.size() ); for ( size_t i = 0; i < segments.size(); ++i ) _segments[i].Set( segments[i] ); compute(); } //================================================================================ /*! * \brief Return the maximal bnd box */ //================================================================================ _SegmentTree::box_type* _SegmentTree::buildRootBox() { _SegmentTree::box_type* box = new _SegmentTree::box_type; for ( size_t i = 0; i < _segments.size(); ++i ) { box->Add( *_segments[i]._seg->_uv[0] ); box->Add( *_segments[i]._seg->_uv[1] ); } return box; } //================================================================================ /*! * \brief Redistrubute _segments among children */ //================================================================================ void _SegmentTree::buildChildrenData() { for ( size_t i = 0; i < _segments.size(); ++i ) for (int j = 0; j < nbChildren(); j++) if ( !myChildren[j]->getBox()->IsOut( *_segments[i]._seg->_uv[0], *_segments[i]._seg->_uv[1] )) ((_SegmentTree*)myChildren[j])->_segments.push_back( _segments[i]); SMESHUtils::FreeVector( _segments ); // = _elements.clear() + free memory for (int j = 0; j < nbChildren(); j++) { _SegmentTree* child = static_cast<_SegmentTree*>( myChildren[j]); child->myIsLeaf = ((int) child->_segments.size() <= maxNbSegInLeaf() ); } } //================================================================================ /*! * \brief Return elements which can include the point */ //================================================================================ void _SegmentTree::GetSegmentsNear( const _Segment& seg, vector< const _Segment* >& found ) { if ( getBox()->IsOut( *seg._uv[0], *seg._uv[1] )) return; if ( isLeaf() ) { for ( size_t i = 0; i < _segments.size(); ++i ) if ( !_segments[i].IsOut( seg )) found.push_back( _segments[i]._seg ); } else { for (int i = 0; i < nbChildren(); i++) ((_SegmentTree*) myChildren[i])->GetSegmentsNear( seg, found ); } } //================================================================================ /*! * \brief Return segments intersecting a ray */ //================================================================================ void _SegmentTree::GetSegmentsNear( const gp_Ax2d& ray, vector< const _Segment* >& found ) { if ( getBox()->IsOut( ray )) return; if ( isLeaf() ) { for ( size_t i = 0; i < _segments.size(); ++i ) if ( !_segments[i].IsOut( ray )) found.push_back( _segments[i]._seg ); } else { for (int i = 0; i < nbChildren(); i++) ((_SegmentTree*) myChildren[i])->GetSegmentsNear( ray, found ); } } //================================================================================ /*! * \brief Classify a _Segment */ //================================================================================ bool _SegmentTree::_SegBox::IsOut( const _Segment& seg ) const { const double eps = std::numeric_limits::min(); for ( int iC = 0; iC < 2; ++iC ) { if ( seg._uv[0]->Coord(iC+1) < _seg->_uv[ _iMin[iC]]->Coord(iC+1)+eps && seg._uv[1]->Coord(iC+1) < _seg->_uv[ _iMin[iC]]->Coord(iC+1)+eps ) return true; if ( seg._uv[0]->Coord(iC+1) > _seg->_uv[ 1-_iMin[iC]]->Coord(iC+1)-eps && seg._uv[1]->Coord(iC+1) > _seg->_uv[ 1-_iMin[iC]]->Coord(iC+1)-eps ) return true; } return false; } //================================================================================ /*! * \brief Classify a ray */ //================================================================================ bool _SegmentTree::_SegBox::IsOut( const gp_Ax2d& ray ) const { double distBoxCenter2Ray = ray.Direction().XY() ^ ( ray.Location().XY() - 0.5 * (*_seg->_uv[0] + *_seg->_uv[1])); double boxSectionDiam = Abs( ray.Direction().X() ) * ( _seg->_uv[1-_iMin[1]]->Y() - _seg->_uv[_iMin[1]]->Y() ) + Abs( ray.Direction().Y() ) * ( _seg->_uv[1-_iMin[0]]->X() - _seg->_uv[_iMin[0]]->X() ); return Abs( distBoxCenter2Ray ) > 0.5 * boxSectionDiam; }