/*! \page smeshpy_interface_page Python interface Python API for SALOME %Mesh module defines several classes that can be used for easy mesh creation and edition. Documentation for SALOME %Mesh module Python API is available in two forms: - <a href="smeshpy_doc/modules.html">Structured documentation</a>, where all methods and classes are grouped by their functionality. - <a href="smeshpy_doc/namespaces.html">Linear documentation</a> grouped only by classes, declared in the \ref smeshBuilder and \ref StdMeshersBuilder Python packages. \n With SALOME 7.2, the Python interface for %Mesh has been slightly modified to offer new functionality. \n You may have to modify your scripts generated with SALOME 6 or older versions. \n Please see \ref smesh_migration_page. Class \ref smeshBuilder.smeshBuilder "smeshBuilder" provides an interface to create and handle meshes. It can be used to create an empty mesh or to import mesh from the data file. As soon as mesh is created, it is possible to manage it via its own methods, described in class \ref smeshBuilder.Mesh "Mesh" documentation. Class \ref smeshstudytools.SMeshStudyTools "SMeshStudyTools" provides several methods to manipulate mesh objects in Salome study. A usual workflow to generate a mesh on geometry is following: <ol> <li>Create an instance of \ref smeshBuilder.smeshBuilder "smeshBuilder": <pre> from salome.smesh import smeshBuilder smesh = smeshBuilder.New( salome.myStudy ) </pre></li> <li>Create a \ref smeshBuilder.Mesh "mesh" object: <pre> mesh = \ref smeshBuilder.smeshBuilder.Mesh "smesh.Mesh( geometry )" </pre></li> <li> Create and assign \ref basic_meshing_algos_page "algorithms" by calling corresponding methods of the mesh. If a sub-shape is provided as an argument, a \ref constructing_submeshes_page "sub-mesh" is implicitly created on this sub-shape: <pre> regular1D = \ref smeshBuilder.Mesh.Segment "mesh.Segment"() mefisto = \ref smeshBuilder.Mesh.Triangle "mesh.Triangle"( smeshBuilder.MEFISTO ) # use other triangle algorithm on a face -- a sub-mesh appears in the mesh netgen = \ref smeshBuilder.Mesh.Triangle "mesh.Triangle"( smeshBuilder.NETGEN_1D2D, face ) </pre></li> <li> Create and assign \ref about_hypo_page "hypotheses" by calling corresponding methods of algorithms: <pre> segLen10 = \ref StdMeshersBuilder.StdMeshersBuilder_Segment.LocalLength "regular1D.LocalLength"( 10. ) maxArea = \ref StdMeshersBuilder.StdMeshersBuilder_Segment.LocalLength "mefisto.MaxElementArea"( 100. ) netgen.SetMaxSize( 20. ) netgen.SetFineness( smeshBuilder.VeryCoarse ) </pre> </li> <li> \ref compute_anchor "Compute" the mesh (generate mesh nodes and elements): <pre> \ref Mesh.Compute "mesh.Compute"() </pre> </li> </ol> An easiest way to start with Python scripting is to do something in GUI and then to get a corresponding Python script via <b> File > Dump Study </b> menu item. Don't forget that you can get all methods of any object in hand (e.g. a mesh group or a hypothesis) by calling \a dir() Python built-in function. All methods of the Mesh Group can be found in \ref tui_create_standalone_group sample script. An example below demonstrates usage of the Python API for 3d mesh generation. \anchor example_3d_mesh <h2>Example of 3d mesh generation:</h2> \tui_script{3dmesh.py} Examples of Python scripts for Mesh operations are available by the following links: - \subpage tui_creating_meshes_page - \subpage tui_defining_hypotheses_page - \subpage tui_grouping_elements_page - \subpage tui_filters_page - \subpage tui_modifying_meshes_page - \subpage tui_transforming_meshes_page - \subpage tui_viewing_meshes_page - \subpage tui_quality_controls_page - \subpage tui_measurements_page - \subpage tui_work_on_objects_from_gui - \subpage tui_notebook_smesh_page - \subpage tui_cartesian_algo - \subpage tui_use_existing_faces - \subpage tui_prism_3d_algo - \subpage tui_generate_flat_elements_page */