// Copyright (C) 2007-2011 CEA/DEN, EDF R&D, OPEN CASCADE // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH : implementaion of SMESH idl descriptions // File : StdMeshers_RadialQuadrangle_1D2D.cxx // Module : SMESH // Created : Fri Oct 20 11:37:07 2006 // Author : Edward AGAPOV (eap) // #include "StdMeshers_RadialQuadrangle_1D2D.hxx" #include "StdMeshers_NumberOfLayers.hxx" #include "StdMeshers_LayerDistribution.hxx" #include "StdMeshers_Regular_1D.hxx" #include "StdMeshers_NumberOfSegments.hxx" #include "SMDS_MeshNode.hxx" #include "SMESHDS_SubMesh.hxx" #include "SMESH_Gen.hxx" #include "SMESH_HypoFilter.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_subMesh.hxx" #include "SMESH_subMeshEventListener.hxx" #include "utilities.h" #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define RETURN_BAD_RESULT(msg) { MESSAGE(")-: Error: " << msg); return false; } #define gpXYZ(n) gp_XYZ(n->X(),n->Y(),n->Z()) //======================================================================= //function : StdMeshers_RadialQuadrangle_1D2D //purpose : //======================================================================= StdMeshers_RadialQuadrangle_1D2D::StdMeshers_RadialQuadrangle_1D2D(int hypId, int studyId, SMESH_Gen* gen) :SMESH_2D_Algo(hypId, studyId, gen) { _name = "RadialQuadrangle_1D2D"; _shapeType = (1 << TopAbs_FACE); // 1 bit per shape type _compatibleHypothesis.push_back("LayerDistribution2D"); _compatibleHypothesis.push_back("NumberOfLayers2D"); myNbLayerHypo = 0; myDistributionHypo = 0; _requireDescretBoundary = false; _supportSubmeshes = true; } //================================================================================ /*! * \brief Destructor */ //================================================================================ StdMeshers_RadialQuadrangle_1D2D::~StdMeshers_RadialQuadrangle_1D2D() {} //======================================================================= //function : CheckHypothesis //purpose : //======================================================================= bool StdMeshers_RadialQuadrangle_1D2D::CheckHypothesis (SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, SMESH_Hypothesis::Hypothesis_Status& aStatus) { // check aShape myNbLayerHypo = 0; myDistributionHypo = 0; list ::const_iterator itl; const list &hyps = GetUsedHypothesis(aMesh, aShape); if ( hyps.size() == 0 ) { aStatus = SMESH_Hypothesis::HYP_OK; return true; // can work with no hypothesis } if ( hyps.size() > 1 ) { aStatus = SMESH_Hypothesis::HYP_ALREADY_EXIST; return false; } const SMESHDS_Hypothesis *theHyp = hyps.front(); string hypName = theHyp->GetName(); if (hypName == "NumberOfLayers2D") { myNbLayerHypo = static_cast(theHyp); aStatus = SMESH_Hypothesis::HYP_OK; return true; } if (hypName == "LayerDistribution2D") { myDistributionHypo = static_cast(theHyp); aStatus = SMESH_Hypothesis::HYP_OK; return true; } aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE; return true; } namespace { // ------------------------------------------------------------------------------ /*! * \brief Listener used to mark edges meshed by StdMeshers_RadialQuadrangle_1D2D */ class TEdgeMarker : public SMESH_subMeshEventListener { TEdgeMarker(): SMESH_subMeshEventListener(/*isDeletable=*/false) {} public: //!< Return static listener static SMESH_subMeshEventListener* getListener() { static TEdgeMarker theEdgeMarker; return &theEdgeMarker; } //! Clear face sumbesh if something happens on edges void ProcessEvent(const int event, const int eventType, SMESH_subMesh* edgeSubMesh, EventListenerData* data, const SMESH_Hypothesis* /*hyp*/) { if ( data && !data->mySubMeshes.empty() && eventType == SMESH_subMesh::ALGO_EVENT) { ASSERT( data->mySubMeshes.front() != edgeSubMesh ); SMESH_subMesh* faceSubMesh = data->mySubMeshes.front(); faceSubMesh->ComputeStateEngine( SMESH_subMesh::CLEAN ); } } }; // ------------------------------------------------------------------------------ /*! * \brief Mark an edge as computed by StdMeshers_RadialQuadrangle_1D2D */ void markEdgeAsComputedByMe(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh) { if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge )) { if ( !edgeSM->GetEventListenerData( TEdgeMarker::getListener() )) faceSubMesh->SetEventListener( TEdgeMarker::getListener(), SMESH_subMeshEventListenerData::MakeData(faceSubMesh), edgeSM); } } // ------------------------------------------------------------------------------ /*! * \brief Return true if a radial edge was meshed with StdMeshers_RadialQuadrangle_1D2D with * the same radial distribution */ // bool isEdgeCompatiballyMeshed(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh) // { // if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge )) // { // if ( SMESH_subMeshEventListenerData* otherFaceData = // edgeSM->GetEventListenerData( TEdgeMarker::getListener() )) // { // // compare hypothesis aplied to two disk faces sharing radial edges // SMESH_Mesh& mesh = *faceSubMesh->GetFather(); // SMESH_Algo* radialQuadAlgo = mesh.GetGen()->GetAlgo(mesh, faceSubMesh->GetSubShape() ); // SMESH_subMesh* otherFaceSubMesh = otherFaceData->mySubMeshes.front(); // list hyps1 = // radialQuadAlgo->GetUsedHypothesis( mesh, faceSubMesh->GetSubShape()); // list hyps2 = // radialQuadAlgo->GetUsedHypothesis( mesh, otherFaceSubMesh->GetSubShape()); // if( hyps1.empty() && hyps2.empty() ) // return true; // defaul hyps // if ( hyps1.size() != hyps2.size() ) // return false; // return *hyps1.front() == *hyps2.front(); // } // } // return false; // } //================================================================================ /*! * \brief Return base curve of the edge and extremum parameters */ //================================================================================ Handle(Geom_Curve) getCurve(const TopoDS_Edge& edge, double* f=0, double* l=0) { Handle(Geom_Curve) C; if ( !edge.IsNull() ) { double first = 0., last = 0.; C = BRep_Tool::Curve(edge, first, last); if ( !C.IsNull() ) { Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(C); while( !tc.IsNull() ) { C = tc->BasisCurve(); tc = Handle(Geom_TrimmedCurve)::DownCast(C); } if ( f ) *f = first; if ( l ) *l = last; } } return C; } //================================================================================ /*! * \brief Return edges of the face * \retval int - nb of edges */ //================================================================================ int analyseFace(const TopoDS_Shape& face, TopoDS_Edge& CircEdge, TopoDS_Edge& LinEdge1, TopoDS_Edge& LinEdge2) { CircEdge.Nullify(); LinEdge1.Nullify(); LinEdge2.Nullify(); int nbe = 0; for ( TopExp_Explorer exp( face, TopAbs_EDGE ); exp.More(); exp.Next(), ++nbe ) { const TopoDS_Edge& E = TopoDS::Edge( exp.Current() ); double f,l; Handle(Geom_Curve) C = getCurve(E,&f,&l); if ( !C.IsNull() ) { if ( C->IsKind( STANDARD_TYPE(Geom_Circle))) { if ( CircEdge.IsNull() ) CircEdge = E; else return 0; } else if ( LinEdge1.IsNull() ) LinEdge1 = E; else LinEdge2 = E; } } return nbe; } //================================================================================ //================================================================================ /*! * \brief Class computing layers distribution using data of * StdMeshers_LayerDistribution hypothesis */ //================================================================================ //================================================================================ class TNodeDistributor: public StdMeshers_Regular_1D { list myUsedHyps; public: // ----------------------------------------------------------------------------- static TNodeDistributor* GetDistributor(SMESH_Mesh& aMesh) { const int myID = -1000; map < int, SMESH_1D_Algo * > & algoMap = aMesh.GetGen()->_map1D_Algo; map < int, SMESH_1D_Algo * >::iterator id_algo = algoMap.find( myID ); if ( id_algo == algoMap.end() ) return new TNodeDistributor( myID, 0, aMesh.GetGen() ); return static_cast< TNodeDistributor* >( id_algo->second ); } // ----------------------------------------------------------------------------- //! Computes distribution of nodes on a straight line ending at pIn and pOut bool Compute( vector< double > & positions, gp_Pnt pIn, gp_Pnt pOut, SMESH_Mesh& aMesh, const SMESH_Hypothesis* hyp1d) { if ( !hyp1d ) return error( "Invalid LayerDistribution hypothesis"); double len = pIn.Distance( pOut ); if ( len <= DBL_MIN ) return error("Too close points of inner and outer shells"); myUsedHyps.clear(); myUsedHyps.push_back( hyp1d ); TopoDS_Edge edge = BRepBuilderAPI_MakeEdge( pIn, pOut ); SMESH_Hypothesis::Hypothesis_Status aStatus; if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, edge, aStatus )) return error( "StdMeshers_Regular_1D::CheckHypothesis() failed " "with LayerDistribution hypothesis"); BRepAdaptor_Curve C3D(edge); double f = C3D.FirstParameter(), l = C3D.LastParameter(); list< double > params; if ( !StdMeshers_Regular_1D::computeInternalParameters( aMesh, C3D, len, f, l, params, false )) return error("StdMeshers_Regular_1D failed to compute layers distribution"); positions.clear(); positions.reserve( params.size() ); for (list::iterator itU = params.begin(); itU != params.end(); itU++) positions.push_back( *itU / len ); return true; } // ----------------------------------------------------------------------------- //! Make mesh on an adge using assigned 1d hyp or defaut nb of segments bool ComputeCircularEdge(SMESH_Mesh& aMesh, const TopoDS_Edge& anEdge) { _gen->Compute( aMesh, anEdge); SMESH_subMesh *sm = aMesh.GetSubMesh(anEdge); if ( sm->GetComputeState() != SMESH_subMesh::COMPUTE_OK) { // find any 1d hyp assigned (there can be a hyp w/o algo) myUsedHyps = SMESH_Algo::GetUsedHypothesis(aMesh, anEdge, /*ignoreAux=*/true); Hypothesis_Status aStatus; if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, anEdge, aStatus )) { // no valid 1d hyp assigned, use default nb of segments _hypType = NB_SEGMENTS; _ivalue[ DISTR_TYPE_IND ] = StdMeshers_NumberOfSegments::DT_Regular; _ivalue[ NB_SEGMENTS_IND ] = _gen->GetDefaultNbSegments(); } return StdMeshers_Regular_1D::Compute( aMesh, anEdge ); } return true; } // ----------------------------------------------------------------------------- //! Make mesh on an adge using assigned 1d hyp or defaut nb of segments bool EvaluateCircularEdge(SMESH_Mesh& aMesh, const TopoDS_Edge& anEdge, MapShapeNbElems& aResMap) { _gen->Evaluate( aMesh, anEdge, aResMap ); if ( aResMap.count( aMesh.GetSubMesh( anEdge ))) return true; // find any 1d hyp assigned myUsedHyps = SMESH_Algo::GetUsedHypothesis(aMesh, anEdge, /*ignoreAux=*/true); Hypothesis_Status aStatus; if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, anEdge, aStatus )) { // no valid 1d hyp assigned, use default nb of segments _hypType = NB_SEGMENTS; _ivalue[ DISTR_TYPE_IND ] = StdMeshers_NumberOfSegments::DT_Regular; _ivalue[ NB_SEGMENTS_IND ] = _gen->GetDefaultNbSegments(); } return StdMeshers_Regular_1D::Evaluate( aMesh, anEdge, aResMap ); } protected: // ----------------------------------------------------------------------------- TNodeDistributor( int hypId, int studyId, SMESH_Gen* gen) : StdMeshers_Regular_1D( hypId, studyId, gen) { } // ----------------------------------------------------------------------------- virtual const list & GetUsedHypothesis(SMESH_Mesh &, const TopoDS_Shape &, const bool) { return myUsedHyps; } // ----------------------------------------------------------------------------- }; } //======================================================================= /*! * \brief Allow algo to do something after persistent restoration * \param subMesh - restored submesh * * call markEdgeAsComputedByMe() */ //======================================================================= void StdMeshers_RadialQuadrangle_1D2D::SubmeshRestored(SMESH_subMesh* faceSubMesh) { if ( !faceSubMesh->IsEmpty() ) { TopoDS_Edge CircEdge, LinEdge1, LinEdge2; analyseFace( faceSubMesh->GetSubShape(), CircEdge, LinEdge1, LinEdge2 ); if ( !CircEdge.IsNull() ) markEdgeAsComputedByMe( CircEdge, faceSubMesh ); if ( !LinEdge1.IsNull() ) markEdgeAsComputedByMe( LinEdge1, faceSubMesh ); if ( !LinEdge2.IsNull() ) markEdgeAsComputedByMe( LinEdge2, faceSubMesh ); } } //======================================================================= //function : Compute //purpose : //======================================================================= bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape) { TopExp_Explorer exp; SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); myHelper = new SMESH_MesherHelper( aMesh ); myHelper->IsQuadraticSubMesh( aShape ); // to delete helper at exit from Compute() auto_ptr helperDeleter( myHelper ); TNodeDistributor* algo1d = TNodeDistributor::GetDistributor(aMesh); TopoDS_Edge CircEdge, LinEdge1, LinEdge2; int nbe = analyseFace( aShape, CircEdge, LinEdge1, LinEdge2 ); Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge )); if( nbe>3 || nbe < 1 || aCirc.IsNull() ) return error("The face must be a full circle or a part of circle (i.e. the number of edges is less or equal to 3 and one of them is a circle curve)"); gp_Pnt P0, P1; // points for rotation TColgp_SequenceOfPnt Points; // angles for rotation TColStd_SequenceOfReal Angles; // Nodes1 and Nodes2 - nodes along radiuses // CNodes - nodes on circle edge vector< const SMDS_MeshNode* > Nodes1, Nodes2, CNodes; SMDS_MeshNode * NC; // parameters edge nodes on face TColgp_SequenceOfPnt2d Pnts2d1; gp_Pnt2d PC; int faceID = meshDS->ShapeToIndex(aShape); TopoDS_Face F = TopoDS::Face(aShape); Handle(Geom_Surface) S = BRep_Tool::Surface(F); if(nbe==1) { if (!algo1d->ComputeCircularEdge( aMesh, CircEdge )) return error( algo1d->GetComputeError() ); map< double, const SMDS_MeshNode* > theNodes; if ( !GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes)) return error("Circular edge is incorrectly meshed"); CNodes.clear(); map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin(); const SMDS_MeshNode* NF = (*itn).second; CNodes.push_back( (*itn).second ); double fang = (*itn).first; if ( itn != theNodes.end() ) { itn++; for(; itn != theNodes.end(); itn++ ) { CNodes.push_back( (*itn).second ); double ang = (*itn).first - fang; if( ang>PI ) ang = ang - 2*PI; if( ang<-PI ) ang = ang + 2*PI; Angles.Append( ang ); } } P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() ); P0 = aCirc->Location(); if ( !computeLayerPositions(P0,P1)) return false; exp.Init( CircEdge, TopAbs_VERTEX ); TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() ); gp_Pnt2d p2dV = BRep_Tool::Parameters( V1, TopoDS::Face(aShape) ); NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z()); GeomAPI_ProjectPointOnSurf PPS(P0,S); double U0,V0; PPS.Parameters(1,U0,V0); meshDS->SetNodeOnFace(NC, faceID, U0, V0); PC = gp_Pnt2d(U0,V0); gp_Vec aVec(P0,P1); gp_Vec2d aVec2d(PC,p2dV); Nodes1.resize( myLayerPositions.size()+1 ); Nodes2.resize( myLayerPositions.size()+1 ); int i = 0; for(; iAddNode(P.X(), P.Y(), P.Z()); Nodes1[i] = node; Nodes2[i] = node; double U = PC.X() + aVec2d.X()*myLayerPositions[i]; double V = PC.Y() + aVec2d.Y()*myLayerPositions[i]; meshDS->SetNodeOnFace( node, faceID, U, V ); Pnts2d1.Append(gp_Pnt2d(U,V)); } Nodes1[Nodes1.size()-1] = NF; Nodes2[Nodes1.size()-1] = NF; } else if(nbe==2 && LinEdge1.Orientation() != TopAbs_INTERNAL ) { // one curve must be a half of circle and other curve must be // a segment of line double fp, lp; Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge, &fp, &lp )); if( fabs(fabs(lp-fp)-PI) > Precision::Confusion() ) { // not half of circle return error(COMPERR_BAD_SHAPE); } Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 )); if( aLine.IsNull() ) { // other curve not line return error(COMPERR_BAD_SHAPE); } if ( !algo1d->ComputeCircularEdge( aMesh, CircEdge )) return error( algo1d->GetComputeError() ); map< double, const SMDS_MeshNode* > theNodes; if ( !GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes) ) return error("Circular edge is incorrectly meshed"); map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin(); CNodes.clear(); CNodes.push_back( itn->second ); double fang = (*itn).first; itn++; for(; itn != theNodes.end(); itn++ ) { CNodes.push_back( (*itn).second ); double ang = (*itn).first - fang; if( ang>PI ) ang = ang - 2*PI; if( ang<-PI ) ang = ang + 2*PI; Angles.Append( ang ); } const SMDS_MeshNode* NF = theNodes.begin()->second; const SMDS_MeshNode* NL = theNodes.rbegin()->second; P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() ); gp_Pnt P2( NL->X(), NL->Y(), NL->Z() ); P0 = aCirc->Location(); bool linEdgeComputed; if ( !computeLayerPositions(P0,P1,LinEdge1,&linEdgeComputed)) return false; if ( linEdgeComputed ) { if (!GetSortedNodesOnEdge(aMesh.GetMeshDS(),LinEdge1,true,theNodes)) return error("Invalid mesh on a straight edge"); Nodes1.resize( myLayerPositions.size()+1 ); Nodes2.resize( myLayerPositions.size()+1 ); vector< const SMDS_MeshNode* > *pNodes1 = &Nodes1, *pNodes2 = &Nodes2; bool nodesFromP0ToP1 = ( theNodes.rbegin()->second == NF ); if ( !nodesFromP0ToP1 ) std::swap( pNodes1, pNodes2 ); map< double, const SMDS_MeshNode* >::reverse_iterator ritn = theNodes.rbegin(); itn = theNodes.begin(); for ( int i = Nodes1.size()-1; i > -1; ++itn, ++ritn, --i ) { (*pNodes1)[i] = ritn->second; (*pNodes2)[i] = itn->second; Points.Prepend( gpXYZ( Nodes1[i])); Pnts2d1.Prepend( myHelper->GetNodeUV( F, Nodes1[i])); } NC = const_cast( itn->second ); Points.Remove( Nodes1.size() ); } else { gp_Vec aVec(P0,P1); int edgeID = meshDS->ShapeToIndex(LinEdge1); // check orientation Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge1,fp,lp); gp_Pnt Ptmp; Crv->D0(fp,Ptmp); bool ori = true; if( P1.Distance(Ptmp) > Precision::Confusion() ) ori = false; // get UV points for edge gp_Pnt2d PF,PL; BRep_Tool::UVPoints( LinEdge1, TopoDS::Face(aShape), PF, PL ); PC = gp_Pnt2d( (PF.X()+PL.X())/2, (PF.Y()+PL.Y())/2 ); gp_Vec2d V2d; if(ori) V2d = gp_Vec2d(PC,PF); else V2d = gp_Vec2d(PC,PL); // add nodes on edge double cp = (fp+lp)/2; double dp2 = (lp-fp)/2; NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z()); meshDS->SetNodeOnEdge(NC, edgeID, cp); Nodes1.resize( myLayerPositions.size()+1 ); Nodes2.resize( myLayerPositions.size()+1 ); int i = 0; for(; iAddNode(P.X(), P.Y(), P.Z()); Nodes1[i] = node; double param; if(ori) param = fp + dp2*(1-myLayerPositions[i]); else param = cp + dp2*myLayerPositions[i]; meshDS->SetNodeOnEdge(node, edgeID, param); P = gp_Pnt( P0.X() - aVec.X()*myLayerPositions[i], P0.Y() - aVec.Y()*myLayerPositions[i], P0.Z() - aVec.Z()*myLayerPositions[i] ); node = meshDS->AddNode(P.X(), P.Y(), P.Z()); Nodes2[i] = node; if(!ori) param = fp + dp2*(1-myLayerPositions[i]); else param = cp + dp2*myLayerPositions[i]; meshDS->SetNodeOnEdge(node, edgeID, param); // parameters on face gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i], PC.Y() + V2d.Y()*myLayerPositions[i] ); Pnts2d1.Append(P2d); } Nodes1[ myLayerPositions.size() ] = NF; Nodes2[ myLayerPositions.size() ] = NL; // create 1D elements on edge vector< const SMDS_MeshNode* > tmpNodes; tmpNodes.resize(2*Nodes1.size()+1); for(i=0; iAddEdge( tmpNodes[i-1], tmpNodes[i] ); if(ME) meshDS->SetMeshElementOnShape(ME, edgeID); } markEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F )); } } else // nbe==3 or ( nbe==2 && linEdge is INTERNAL ) { if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL ) LinEdge2 = LinEdge1; // one curve must be a part of circle and other curves must be // segments of line double fp, lp; Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge )); Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 )); Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast( getCurve( LinEdge2 )); if( aCirc.IsNull() || aLine1.IsNull() || aLine2.IsNull() ) return error(COMPERR_BAD_SHAPE); if ( !algo1d->ComputeCircularEdge( aMesh, CircEdge )) return error( algo1d->GetComputeError() ); map< double, const SMDS_MeshNode* > theNodes; if ( !GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes)) return error("Circular edge is incorrectly meshed"); const SMDS_MeshNode* NF = theNodes.begin()->second; const SMDS_MeshNode* NL = theNodes.rbegin()->second; CNodes.clear(); CNodes.push_back( NF ); map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin(); double fang = (*itn).first; itn++; for(; itn != theNodes.end(); itn++ ) { CNodes.push_back( (*itn).second ); double ang = (*itn).first - fang; if( ang>PI ) ang = ang - 2*PI; if( ang<-PI ) ang = ang + 2*PI; Angles.Append( ang ); } P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() ); gp_Pnt P2( NL->X(), NL->Y(), NL->Z() ); P0 = aCirc->Location(); bool linEdge1Computed, linEdge2Computed; if ( !computeLayerPositions(P0,P1,LinEdge1,&linEdge1Computed)) return false; Nodes1.resize( myLayerPositions.size()+1 ); Nodes2.resize( myLayerPositions.size()+1 ); // check that both linear edges have same hypotheses if ( !computeLayerPositions(P0,P1,LinEdge2, &linEdge2Computed)) return false; if ( Nodes1.size() != myLayerPositions.size()+1 ) return error("Different hypotheses apply to radial edges"); exp.Init( LinEdge1, TopAbs_VERTEX ); TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() ); exp.Next(); TopoDS_Vertex V2 = TopoDS::Vertex( exp.Current() ); gp_Pnt PE1 = BRep_Tool::Pnt(V1); gp_Pnt PE2 = BRep_Tool::Pnt(V2); if( ( P1.Distance(PE1) > Precision::Confusion() ) && ( P1.Distance(PE2) > Precision::Confusion() ) ) { std::swap( LinEdge1, LinEdge2 ); std::swap( linEdge1Computed, linEdge2Computed ); } TopoDS_Vertex VC = V2; if( ( P1.Distance(PE1) > Precision::Confusion() ) && ( P2.Distance(PE1) > Precision::Confusion() ) ) VC = V1; int vertID = meshDS->ShapeToIndex(VC); // LinEdge1 if ( linEdge1Computed ) { if (!GetSortedNodesOnEdge(aMesh.GetMeshDS(),LinEdge1,true,theNodes)) return error("Invalid mesh on a straight edge"); bool nodesFromP0ToP1 = ( theNodes.rbegin()->second == NF ); NC = const_cast ( nodesFromP0ToP1 ? theNodes.begin()->second : theNodes.rbegin()->second ); int i = 0, ir = Nodes1.size()-1; int * pi = nodesFromP0ToP1 ? &i : &ir; itn = theNodes.begin(); if ( nodesFromP0ToP1 ) ++itn; for ( ; i < Nodes1.size(); ++i, --ir, ++itn ) { Nodes1[*pi] = itn->second; } for ( i = 0; i < Nodes1.size()-1; ++i ) { Points.Append( gpXYZ( Nodes1[i])); Pnts2d1.Append( myHelper->GetNodeUV( F, Nodes1[i])); } } else { int edgeID = meshDS->ShapeToIndex(LinEdge1); gp_Vec aVec(P0,P1); // check orientation Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge1,fp,lp); gp_Pnt Ptmp = Crv->Value(fp); bool ori = false; if( P1.Distance(Ptmp) > Precision::Confusion() ) ori = true; // get UV points for edge gp_Pnt2d PF,PL; BRep_Tool::UVPoints( LinEdge1, TopoDS::Face(aShape), PF, PL ); gp_Vec2d V2d; if(ori) { V2d = gp_Vec2d(PF,PL); PC = PF; } else { V2d = gp_Vec2d(PL,PF); PC = PL; } NC = const_cast( VertexNode( VC, meshDS )); if ( !NC ) { NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z()); meshDS->SetNodeOnVertex(NC, vertID); } double dp = lp-fp; int i = 0; for(; iAddNode(P.X(), P.Y(), P.Z()); Nodes1[i] = node; double param; if(!ori) param = fp + dp*(1-myLayerPositions[i]); else param = fp + dp*myLayerPositions[i]; meshDS->SetNodeOnEdge(node, edgeID, param); // parameters on face gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i], PC.Y() + V2d.Y()*myLayerPositions[i] ); Pnts2d1.Append(P2d); } Nodes1[ myLayerPositions.size() ] = NF; // create 1D elements on edge SMDS_MeshEdge* ME = myHelper->AddEdge( NC, Nodes1[0] ); if(ME) meshDS->SetMeshElementOnShape(ME, edgeID); for(i=1; iAddEdge( Nodes1[i-1], Nodes1[i] ); if(ME) meshDS->SetMeshElementOnShape(ME, edgeID); } if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL ) Nodes2 = Nodes1; } markEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F )); // LinEdge2 if ( linEdge2Computed ) { if (!GetSortedNodesOnEdge(aMesh.GetMeshDS(),LinEdge2,true,theNodes)) return error("Invalid mesh on a straight edge"); bool nodesFromP0ToP2 = ( theNodes.rbegin()->second == NL ); int i = 0, ir = Nodes1.size()-1; int * pi = nodesFromP0ToP2 ? &i : &ir; itn = theNodes.begin(); if ( nodesFromP0ToP2 ) ++itn; for ( ; i < Nodes2.size(); ++i, --ir, ++itn ) Nodes2[*pi] = itn->second; } else { int edgeID = meshDS->ShapeToIndex(LinEdge2); gp_Vec aVec = gp_Vec(P0,P2); // check orientation Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge2,fp,lp); gp_Pnt Ptmp = Crv->Value(fp); bool ori = false; if( P2.Distance(Ptmp) > Precision::Confusion() ) ori = true; // get UV points for edge gp_Pnt2d PF,PL; BRep_Tool::UVPoints( LinEdge2, TopoDS::Face(aShape), PF, PL ); gp_Vec2d V2d; if(ori) { V2d = gp_Vec2d(PF,PL); PC = PF; } else { V2d = gp_Vec2d(PL,PF); PC = PL; } double dp = lp-fp; for(int i=0; iAddNode(P.X(), P.Y(), P.Z()); Nodes2[i] = node; double param; if(!ori) param = fp + dp*(1-myLayerPositions[i]); else param = fp + dp*myLayerPositions[i]; meshDS->SetNodeOnEdge(node, edgeID, param); // parameters on face gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i], PC.Y() + V2d.Y()*myLayerPositions[i] ); } Nodes2[ myLayerPositions.size() ] = NL; // create 1D elements on edge SMDS_MeshEdge* ME = myHelper->AddEdge( NC, Nodes2[0] ); if(ME) meshDS->SetMeshElementOnShape(ME, edgeID); for(int i=1; iAddEdge( Nodes2[i-1], Nodes2[i] ); if(ME) meshDS->SetMeshElementOnShape(ME, edgeID); } } markEdgeAsComputedByMe( LinEdge2, aMesh.GetSubMesh( F )); } markEdgeAsComputedByMe( CircEdge, aMesh.GetSubMesh( F )); // orientation bool IsForward = ( CircEdge.Orientation()==TopAbs_FORWARD ); // create nodes and mesh elements on face // find axis of rotation gp_Pnt P2 = gp_Pnt( CNodes[1]->X(), CNodes[1]->Y(), CNodes[1]->Z() ); gp_Vec Vec1(P0,P1); gp_Vec Vec2(P0,P2); gp_Vec Axis = Vec1.Crossed(Vec2); // create elements int i = 1; //cout<<"Angles.Length() = "<& aResVec = aResMap.insert( make_pair(sm, vector(SMDSEntity_Last,0))).first->second; myHelper = new SMESH_MesherHelper( aMesh ); myHelper->SetSubShape( aShape ); auto_ptr helperDeleter( myHelper ); TNodeDistributor* algo1d = TNodeDistributor::GetDistributor(aMesh); TopoDS_Edge CircEdge, LinEdge1, LinEdge2; int nbe = analyseFace( aShape, CircEdge, LinEdge1, LinEdge2 ); if( nbe>3 || nbe < 1 || CircEdge.IsNull() ) return false; Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge )); if( aCirc.IsNull() ) return error(COMPERR_BAD_SHAPE); gp_Pnt P0 = aCirc->Location(); gp_Pnt P1 = aCirc->Value(0.); computeLayerPositions( P0, P1, LinEdge1 ); int nb0d=0, nb2d_tria=0, nb2d_quad=0; bool isQuadratic = false, ok = true; if(nbe==1) { // C1 must be a circle ok = algo1d->EvaluateCircularEdge( aMesh, CircEdge, aResMap ); if(ok) { const vector& aVec = aResMap[aMesh.GetSubMesh(CircEdge)]; isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge]; if(isQuadratic) { // main nodes nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size(); // radial medium nodes nb0d += (aVec[SMDSEntity_Node]+1) * (myLayerPositions.size()+1); // other medium nodes nb0d += (aVec[SMDSEntity_Node]+1) * myLayerPositions.size(); } else { nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size(); } nb2d_tria = aVec[SMDSEntity_Node] + 1; nb2d_quad = nb0d; } } else if(nbe==2 && LinEdge1.Orientation() != TopAbs_INTERNAL) { // one curve must be a half of circle and other curve must be // a segment of line double fp, lp; Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge, &fp, &lp )); if( fabs(fabs(lp-fp)-PI) > Precision::Confusion() ) { // not half of circle return error(COMPERR_BAD_SHAPE); } Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 )); if( aLine.IsNull() ) { // other curve not line return error(COMPERR_BAD_SHAPE); } ok = !aResMap.count( aMesh.GetSubMesh(LinEdge1) ); if ( !ok ) { const vector& aVec = aResMap[ aMesh.GetSubMesh(LinEdge1) ]; ok = ( aVec[SMDSEntity_Node] == myLayerPositions.size() ); } if(ok) { ok = algo1d->EvaluateCircularEdge( aMesh, CircEdge, aResMap ); } if(ok) { const vector& aVec = aResMap[ aMesh.GetSubMesh(CircEdge) ]; isQuadratic = aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]; if(isQuadratic) { // main nodes nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size(); // radial medium nodes nb0d += aVec[SMDSEntity_Node] * (myLayerPositions.size()+1); // other medium nodes nb0d += (aVec[SMDSEntity_Node]+1) * myLayerPositions.size(); } else { nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size(); } nb2d_tria = aVec[SMDSEntity_Node] + 1; nb2d_quad = nb2d_tria * myLayerPositions.size(); // add evaluation for edges vector aResVec(SMDSEntity_Last,0); if(isQuadratic) { aResVec[SMDSEntity_Node] = 4*myLayerPositions.size() + 3; aResVec[SMDSEntity_Quad_Edge] = 2*myLayerPositions.size() + 2; } else { aResVec[SMDSEntity_Node] = 2*myLayerPositions.size() + 1; aResVec[SMDSEntity_Edge] = 2*myLayerPositions.size() + 2; } aResMap[ aMesh.GetSubMesh(LinEdge1) ] = aResVec; } } else // nbe==3 or ( nbe==2 && linEdge is INTERNAL ) { if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL ) LinEdge2 = LinEdge1; // one curve must be a part of circle and other curves must be // segments of line Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 )); Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast( getCurve( LinEdge2 )); if( aLine1.IsNull() || aLine2.IsNull() ) { // other curve not line return error(COMPERR_BAD_SHAPE); } int nbLayers = myLayerPositions.size(); computeLayerPositions( P0, P1, LinEdge2 ); if ( nbLayers != myLayerPositions.size() ) return error("Different hypotheses apply to radial edges"); bool ok = !aResMap.count( aMesh.GetSubMesh(LinEdge1)); if ( !ok ) { if ( myDistributionHypo || myNbLayerHypo ) ok = true; // override other 1d hyps else { const vector& aVec = aResMap[ aMesh.GetSubMesh(LinEdge1) ]; ok = ( aVec[SMDSEntity_Node] == myLayerPositions.size() ); } } if( ok && aResMap.count( aMesh.GetSubMesh(LinEdge2) )) { if ( myDistributionHypo || myNbLayerHypo ) ok = true; // override other 1d hyps else { const vector& aVec = aResMap[ aMesh.GetSubMesh(LinEdge2) ]; ok = ( aVec[SMDSEntity_Node] == myLayerPositions.size() ); } } if(ok) { ok = algo1d->EvaluateCircularEdge( aMesh, CircEdge, aResMap ); } if(ok) { const vector& aVec = aResMap[ aMesh.GetSubMesh(CircEdge) ]; isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge]; if(isQuadratic) { // main nodes nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size(); // radial medium nodes nb0d += aVec[SMDSEntity_Node] * (myLayerPositions.size()+1); // other medium nodes nb0d += (aVec[SMDSEntity_Node]+1) * myLayerPositions.size(); } else { nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size(); } nb2d_tria = aVec[SMDSEntity_Node] + 1; nb2d_quad = nb2d_tria * myLayerPositions.size(); // add evaluation for edges vector aResVec(SMDSEntity_Last, 0); if(isQuadratic) { aResVec[SMDSEntity_Node] = 2*myLayerPositions.size() + 1; aResVec[SMDSEntity_Quad_Edge] = myLayerPositions.size() + 1; } else { aResVec[SMDSEntity_Node] = myLayerPositions.size(); aResVec[SMDSEntity_Edge] = myLayerPositions.size() + 1; } sm = aMesh.GetSubMesh(LinEdge1); aResMap[sm] = aResVec; sm = aMesh.GetSubMesh(LinEdge2); aResMap[sm] = aResVec; } } if(nb0d>0) { aResVec[0] = nb0d; if(isQuadratic) { aResVec[SMDSEntity_Quad_Triangle] = nb2d_tria; aResVec[SMDSEntity_Quad_Quadrangle] = nb2d_quad; } else { aResVec[SMDSEntity_Triangle] = nb2d_tria; aResVec[SMDSEntity_Quadrangle] = nb2d_quad; } return true; } // invalid case sm = aMesh.GetSubMesh(aShape); SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED, "Submesh can not be evaluated",this)); return false; }