// Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH : implementaion of SMESH idl descriptions // File : SMESH_Gen.cxx // Author : Paul RASCLE, EDF // Module : SMESH #include "SMESH_Gen.hxx" #include "SMESH_subMesh.hxx" #include "SMESH_HypoFilter.hxx" #include "SMESHDS_Document.hxx" #include "SMDS_MeshElement.hxx" #include "SMDS_MeshNode.hxx" #include "utilities.h" #include "OpUtil.hxx" #include "Utils_ExceptHandlers.hxx" #include #include #include #include using namespace std; //============================================================================= /*! * default constructor: */ //============================================================================= SMESH_Gen::SMESH_Gen() { MESSAGE("SMESH_Gen::SMESH_Gen"); _localId = 0; _hypId = 0; _segmentation = 10; } //============================================================================= /*! * */ //============================================================================= SMESH_Gen::~SMESH_Gen() { MESSAGE("SMESH_Gen::~SMESH_Gen"); } //============================================================================= /*! * */ //============================================================================= /*SMESH_Hypothesis *SMESH_Gen::CreateHypothesis(const char *anHyp, int studyId) throw(SALOME_Exception) { MESSAGE("CreateHypothesis("<GetID(); myStudyContext->mapHypothesis[hypId] = myHypothesis; SCRUTE(studyId); SCRUTE(hypId); // store hypothesis in SMESHDS document myStudyContext->myDocument->AddHypothesis(myHypothesis); return myHypothesis; }*/ //============================================================================= /*! * */ //============================================================================= SMESH_Mesh* SMESH_Gen::CreateMesh(int theStudyId, bool theIsEmbeddedMode) throw(SALOME_Exception) { Unexpect aCatch(SalomeException); MESSAGE("SMESH_Gen::CreateMesh"); // Get studyContext, create it if it does'nt exist, with a SMESHDS_Document StudyContextStruct *aStudyContext = GetStudyContext(theStudyId); // create a new SMESH_mesh object SMESH_Mesh *aMesh = new SMESH_Mesh(_localId++, theStudyId, this, theIsEmbeddedMode, aStudyContext->myDocument); aStudyContext->mapMesh[_localId] = aMesh; return aMesh; } //============================================================================= /*! * Compute a mesh */ //============================================================================= bool SMESH_Gen::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, const bool anUpward, const ::MeshDimension aDim, TSetOfInt* aShapesId) { MESSAGE("SMESH_Gen::Compute"); bool ret = true; SMESH_subMesh *sm = aMesh.GetSubMesh(aShape); const bool includeSelf = true; const bool complexShapeFirst = true; SMESH_subMeshIteratorPtr smIt; if ( anUpward ) // is called from below code here { // ----------------------------------------------- // mesh all the subshapes starting from vertices // ----------------------------------------------- smIt = sm->getDependsOnIterator(includeSelf, !complexShapeFirst); while ( smIt->more() ) { SMESH_subMesh* smToCompute = smIt->next(); // do not mesh vertices of a pseudo shape const TopAbs_ShapeEnum aShType = smToCompute->GetSubShape().ShapeType(); if ( !aMesh.HasShapeToMesh() && aShType == TopAbs_VERTEX ) continue; // check for preview dimension limitations if ( aShapesId && GetShapeDim( aShType ) > (int)aDim ) { // clear compute state to not show previous compute errors // if preview invoked less dimension less than previous smToCompute->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); continue; } if (smToCompute->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE) smToCompute->ComputeStateEngine( SMESH_subMesh::COMPUTE ); // we check all the submeshes here and detect if any of them failed to compute if (smToCompute->GetComputeState() == SMESH_subMesh::FAILED_TO_COMPUTE) ret = false; else if ( aShapesId ) aShapesId->insert( smToCompute->GetId() ); } return ret; } else { // ----------------------------------------------------------------- // apply algos that DO NOT require descretized boundaries and DO NOT // support submeshes, starting from the most complex shapes // and collect submeshes with algos that DO support submeshes // ----------------------------------------------------------------- list< SMESH_subMesh* > smWithAlgoSupportingSubmeshes; smIt = sm->getDependsOnIterator(includeSelf, complexShapeFirst); while ( smIt->more() ) { SMESH_subMesh* smToCompute = smIt->next(); if ( smToCompute->GetComputeState() != SMESH_subMesh::READY_TO_COMPUTE ) continue; const TopoDS_Shape& aSubShape = smToCompute->GetSubShape(); const int aShapeDim = GetShapeDim( aSubShape ); if ( aShapeDim < 1 ) break; // check for preview dimension limitations if ( aShapesId && aShapeDim > (int)aDim ) continue; SMESH_Algo* algo = GetAlgo( aMesh, aSubShape ); if ( algo && !algo->NeedDescretBoundary() ) { if ( algo->SupportSubmeshes() ) smWithAlgoSupportingSubmeshes.push_back( smToCompute ); else { smToCompute->ComputeStateEngine( SMESH_subMesh::COMPUTE ); if ( aShapesId ) aShapesId->insert( smToCompute->GetId() ); } } } // ------------------------------------------------------------ // compute submeshes under shapes with algos that DO NOT require // descretized boundaries and DO support submeshes // ------------------------------------------------------------ list< SMESH_subMesh* >::reverse_iterator subIt, subEnd; subIt = smWithAlgoSupportingSubmeshes.rbegin(); subEnd = smWithAlgoSupportingSubmeshes.rend(); // start from lower shapes for ( ; subIt != subEnd; ++subIt ) { sm = *subIt; // get a shape the algo is assigned to TopoDS_Shape algoShape; if ( !GetAlgo( aMesh, sm->GetSubShape(), & algoShape )) continue; // strange... // look for more local algos smIt = sm->getDependsOnIterator(!includeSelf, !complexShapeFirst); while ( smIt->more() ) { SMESH_subMesh* smToCompute = smIt->next(); const TopoDS_Shape& aSubShape = smToCompute->GetSubShape(); const int aShapeDim = GetShapeDim( aSubShape ); //if ( aSubShape.ShapeType() == TopAbs_VERTEX ) continue; if ( aShapeDim < 1 ) continue; // check for preview dimension limitations if ( aShapesId && GetShapeDim( aSubShape.ShapeType() ) > (int)aDim ) continue; SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() ); filter .And( SMESH_HypoFilter::IsApplicableTo( aSubShape )) .And( SMESH_HypoFilter::IsMoreLocalThan( algoShape )); if ( SMESH_Algo* subAlgo = (SMESH_Algo*) aMesh.GetHypothesis( aSubShape, filter, true )) { SMESH_Hypothesis::Hypothesis_Status status; if ( subAlgo->CheckHypothesis( aMesh, aSubShape, status )) // mesh a lower smToCompute starting from vertices Compute( aMesh, aSubShape, /*anUpward=*/true, aDim, aShapesId ); } } } // ---------------------------------------------------------- // apply the algos that do not require descretized boundaries // ---------------------------------------------------------- for ( subIt = smWithAlgoSupportingSubmeshes.rbegin(); subIt != subEnd; ++subIt ) { sm = *subIt; if ( sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE) { const TopAbs_ShapeEnum aShType = sm->GetSubShape().ShapeType(); // check for preview dimension limitations if ( aShapesId && GetShapeDim( aShType ) > (int)aDim ) continue; sm->ComputeStateEngine( SMESH_subMesh::COMPUTE ); if ( aShapesId ) aShapesId->insert( sm->GetId() ); } } // ----------------------------------------------- // mesh the rest subshapes starting from vertices // ----------------------------------------------- ret = Compute( aMesh, aShape, /*anUpward=*/true, aDim, aShapesId ); } MESSAGE( "VSR - SMESH_Gen::Compute() finished, OK = " << ret); return ret; } //============================================================================= /*! * Evaluate a mesh */ //============================================================================= bool SMESH_Gen::Evaluate(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, MapShapeNbElems& aResMap, const bool anUpward, TSetOfInt* aShapesId) { MESSAGE("SMESH_Gen::Evaluate"); bool ret = true; SMESH_subMesh *sm = aMesh.GetSubMesh(aShape); const bool includeSelf = true; const bool complexShapeFirst = true; SMESH_subMeshIteratorPtr smIt; if ( anUpward ) { // is called from below code here // ----------------------------------------------- // mesh all the subshapes starting from vertices // ----------------------------------------------- smIt = sm->getDependsOnIterator(includeSelf, !complexShapeFirst); while ( smIt->more() ) { SMESH_subMesh* smToCompute = smIt->next(); // do not mesh vertices of a pseudo shape const TopAbs_ShapeEnum aShType = smToCompute->GetSubShape().ShapeType(); //if ( !aMesh.HasShapeToMesh() && aShType == TopAbs_VERTEX ) // continue; if ( !aMesh.HasShapeToMesh() ) { if( aShType == TopAbs_VERTEX || aShType == TopAbs_WIRE || aShType == TopAbs_SHELL ) continue; } smToCompute->Evaluate(aResMap); if( aShapesId ) aShapesId->insert( smToCompute->GetId() ); } return ret; } else { // ----------------------------------------------------------------- // apply algos that DO NOT require descretized boundaries and DO NOT // support submeshes, starting from the most complex shapes // and collect submeshes with algos that DO support submeshes // ----------------------------------------------------------------- list< SMESH_subMesh* > smWithAlgoSupportingSubmeshes; smIt = sm->getDependsOnIterator(includeSelf, complexShapeFirst); while ( smIt->more() ) { SMESH_subMesh* smToCompute = smIt->next(); const TopoDS_Shape& aSubShape = smToCompute->GetSubShape(); const int aShapeDim = GetShapeDim( aSubShape ); if ( aShapeDim < 1 ) break; SMESH_Algo* algo = GetAlgo( aMesh, aSubShape ); if ( algo && !algo->NeedDescretBoundary() ) { if ( algo->SupportSubmeshes() ) { smWithAlgoSupportingSubmeshes.push_back( smToCompute ); } else { smToCompute->Evaluate(aResMap); if ( aShapesId ) aShapesId->insert( smToCompute->GetId() ); } } } // ------------------------------------------------------------ // compute submeshes under shapes with algos that DO NOT require // descretized boundaries and DO support submeshes // ------------------------------------------------------------ list< SMESH_subMesh* >::reverse_iterator subIt, subEnd; subIt = smWithAlgoSupportingSubmeshes.rbegin(); subEnd = smWithAlgoSupportingSubmeshes.rend(); // start from lower shapes for ( ; subIt != subEnd; ++subIt ) { sm = *subIt; // get a shape the algo is assigned to TopoDS_Shape algoShape; if ( !GetAlgo( aMesh, sm->GetSubShape(), & algoShape )) continue; // strange... // look for more local algos smIt = sm->getDependsOnIterator(!includeSelf, !complexShapeFirst); while ( smIt->more() ) { SMESH_subMesh* smToCompute = smIt->next(); const TopoDS_Shape& aSubShape = smToCompute->GetSubShape(); const int aShapeDim = GetShapeDim( aSubShape ); if ( aShapeDim < 1 ) continue; //const TopAbs_ShapeEnum aShType = smToCompute->GetSubShape().ShapeType(); SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() ); filter .And( SMESH_HypoFilter::IsApplicableTo( aSubShape )) .And( SMESH_HypoFilter::IsMoreLocalThan( algoShape )); if ( SMESH_Algo* subAlgo = (SMESH_Algo*) aMesh.GetHypothesis( aSubShape, filter, true )) { SMESH_Hypothesis::Hypothesis_Status status; if ( subAlgo->CheckHypothesis( aMesh, aSubShape, status )) // mesh a lower smToCompute starting from vertices Evaluate( aMesh, aSubShape, aResMap, /*anUpward=*/true, aShapesId ); } } } // ---------------------------------------------------------- // apply the algos that do not require descretized boundaries // ---------------------------------------------------------- for ( subIt = smWithAlgoSupportingSubmeshes.rbegin(); subIt != subEnd; ++subIt ) { sm = *subIt; sm->Evaluate(aResMap); if ( aShapesId ) aShapesId->insert( sm->GetId() ); } // ----------------------------------------------- // mesh the rest subshapes starting from vertices // ----------------------------------------------- ret = Evaluate( aMesh, aShape, aResMap, /*anUpward=*/true, aShapesId ); } MESSAGE( "VSR - SMESH_Gen::Evaluate() finished, OK = " << ret); return ret; } //======================================================================= //function : checkConformIgnoredAlgos //purpose : //======================================================================= static bool checkConformIgnoredAlgos(SMESH_Mesh& aMesh, SMESH_subMesh* aSubMesh, const SMESH_Algo* aGlobIgnoAlgo, const SMESH_Algo* aLocIgnoAlgo, bool & checkConform, map& aCheckedMap, list< SMESH_Gen::TAlgoStateError > & theErrors) { ASSERT( aSubMesh ); if ( aSubMesh->GetSubShape().ShapeType() == TopAbs_VERTEX) return true; bool ret = true; const list& listHyp = aMesh.GetMeshDS()->GetHypothesis( aSubMesh->GetSubShape() ); list::const_iterator it=listHyp.begin(); for ( ; it != listHyp.end(); it++) { const SMESHDS_Hypothesis * aHyp = *it; if (aHyp->GetType() == SMESHDS_Hypothesis::PARAM_ALGO) continue; const SMESH_Algo* algo = dynamic_cast (aHyp); ASSERT ( algo ); if ( aLocIgnoAlgo ) // algo is hidden by a local algo of upper dim { INFOS( "Local <" << algo->GetName() << "> is hidden by local <" << aLocIgnoAlgo->GetName() << ">"); } else { bool isGlobal = (aMesh.IsMainShape( aSubMesh->GetSubShape() )); int dim = algo->GetDim(); int aMaxGlobIgnoDim = ( aGlobIgnoAlgo ? aGlobIgnoAlgo->GetDim() : -1 ); if ( dim < aMaxGlobIgnoDim ) { // algo is hidden by a global algo INFOS( ( isGlobal ? "Global" : "Local" ) << " <" << algo->GetName() << "> is hidden by global <" << aGlobIgnoAlgo->GetName() << ">"); } else if ( !algo->NeedDescretBoundary() && !isGlobal) { // local algo is not hidden and hides algos on sub-shapes if (checkConform && !aSubMesh->IsConform( algo )) { ret = false; checkConform = false; // no more check conformity INFOS( "ERROR: Local <" << algo->GetName() << "> would produce not conform mesh: " " hypotesis is missing"); theErrors.push_back( SMESH_Gen::TAlgoStateError() ); theErrors.back().Set( SMESH_Hypothesis::HYP_NOTCONFORM, algo, false ); } // sub-algos will be hidden by a local const map& smMap = aSubMesh->DependsOn(); map::const_reverse_iterator revItSub; bool checkConform2 = false; for ( revItSub = smMap.rbegin(); revItSub != smMap.rend(); revItSub++) { checkConformIgnoredAlgos (aMesh, (*revItSub).second, aGlobIgnoAlgo, algo, checkConform2, aCheckedMap, theErrors); int key = (*revItSub).first; SMESH_subMesh* sm = (*revItSub).second; if ( aCheckedMap.find( key ) == aCheckedMap.end() ) { aCheckedMap[ key ] = sm; } } } } } return ret; } //======================================================================= //function : checkMissing //purpose : notify on missing hypothesis // Return false if algo or hipothesis is missing //======================================================================= static bool checkMissing(SMESH_Gen* aGen, SMESH_Mesh& aMesh, SMESH_subMesh* aSubMesh, const int aTopAlgoDim, bool* globalChecked, const bool checkNoAlgo, map& aCheckedMap, list< SMESH_Gen::TAlgoStateError > & theErrors) { if ( aSubMesh->GetSubShape().ShapeType() == TopAbs_VERTEX) return true; //MESSAGE("=====checkMissing"); int ret = true; SMESH_Algo* algo = 0; switch (aSubMesh->GetAlgoState()) { case SMESH_subMesh::NO_ALGO: { if (checkNoAlgo) { // should there be any algo? int shapeDim = SMESH_Gen::GetShapeDim( aSubMesh->GetSubShape() ); if (aTopAlgoDim > shapeDim) { MESSAGE( "ERROR: " << shapeDim << "D algorithm is missing" ); ret = false; theErrors.push_back( SMESH_Gen::TAlgoStateError() ); theErrors.back().Set( SMESH_Hypothesis::HYP_MISSING, shapeDim, true ); } } return ret; } case SMESH_subMesh::MISSING_HYP: { // notify if an algo missing hyp is attached to aSubMesh algo = aGen->GetAlgo( aMesh, aSubMesh->GetSubShape() ); ASSERT( algo ); bool IsGlobalHypothesis = aGen->IsGlobalHypothesis( algo, aMesh ); if (!IsGlobalHypothesis || !globalChecked[ algo->GetDim() ]) { TAlgoStateErrorName errName = SMESH_Hypothesis::HYP_MISSING; SMESH_Hypothesis::Hypothesis_Status status; algo->CheckHypothesis( aMesh, aSubMesh->GetSubShape(), status ); if ( status == SMESH_Hypothesis::HYP_BAD_PARAMETER ) { MESSAGE( "ERROR: hypothesis of " << (IsGlobalHypothesis ? "Global " : "Local ") << "<" << algo->GetName() << "> has a bad parameter value"); errName = status; } else if ( status == SMESH_Hypothesis::HYP_BAD_GEOMETRY ) { MESSAGE( "ERROR: " << (IsGlobalHypothesis ? "Global " : "Local ") << "<" << algo->GetName() << "> assigned to mismatching geometry"); errName = status; } else { MESSAGE( "ERROR: " << (IsGlobalHypothesis ? "Global " : "Local ") << "<" << algo->GetName() << "> misses some hypothesis"); } if (IsGlobalHypothesis) globalChecked[ algo->GetDim() ] = true; theErrors.push_back( SMESH_Gen::TAlgoStateError() ); theErrors.back().Set( errName, algo, IsGlobalHypothesis ); } ret = false; break; } case SMESH_subMesh::HYP_OK: algo = aGen->GetAlgo( aMesh, aSubMesh->GetSubShape() ); ret = true; break; default: ASSERT(0); } // do not check under algo that hides sub-algos or // re-start checking NO_ALGO state ASSERT (algo); bool isTopLocalAlgo = ( aTopAlgoDim <= algo->GetDim() && !aGen->IsGlobalHypothesis( algo, aMesh )); if (!algo->NeedDescretBoundary() || isTopLocalAlgo) { bool checkNoAlgo2 = ( algo->NeedDescretBoundary() ); const map& subMeshes = aSubMesh->DependsOn(); map::const_iterator itsub; for (itsub = subMeshes.begin(); itsub != subMeshes.end(); itsub++) { // sub-meshes should not be checked further more int key = (*itsub).first; SMESH_subMesh* sm = (*itsub).second; if ( aCheckedMap.find( key ) == aCheckedMap.end() ) aCheckedMap[ key ] = sm; if (isTopLocalAlgo) { //check algo on sub-meshes int aTopAlgoDim2 = algo->GetDim(); if (!checkMissing (aGen, aMesh, sm, aTopAlgoDim2, globalChecked, checkNoAlgo2, aCheckedMap, theErrors)) { ret = false; if (sm->GetAlgoState() == SMESH_subMesh::NO_ALGO ) checkNoAlgo2 = false; } } } } return ret; } //======================================================================= //function : CheckAlgoState //purpose : notify on bad state of attached algos, return false // if Compute() would fail because of some algo bad state //======================================================================= bool SMESH_Gen::CheckAlgoState(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape) { list< TAlgoStateError > errors; return GetAlgoState( aMesh, aShape, errors ); } //======================================================================= //function : GetAlgoState //purpose : notify on bad state of attached algos, return false // if Compute() would fail because of some algo bad state // theErrors list contains problems description //======================================================================= bool SMESH_Gen::GetAlgoState(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape, list< TAlgoStateError > & theErrors) { //MESSAGE("SMESH_Gen::CheckAlgoState"); bool ret = true; bool hasAlgo = false; SMESH_subMesh* sm = theMesh.GetSubMesh(theShape); const SMESHDS_Mesh* meshDS = theMesh.GetMeshDS(); TopoDS_Shape mainShape = meshDS->ShapeToMesh(); // ----------------- // get global algos // ----------------- const SMESH_Algo* aGlobAlgoArr[] = {0,0,0,0}; const list& listHyp = meshDS->GetHypothesis( mainShape ); list::const_iterator it=listHyp.begin(); for ( ; it != listHyp.end(); it++) { const SMESHDS_Hypothesis * aHyp = *it; if (aHyp->GetType() == SMESHDS_Hypothesis::PARAM_ALGO) continue; const SMESH_Algo* algo = dynamic_cast (aHyp); ASSERT ( algo ); int dim = algo->GetDim(); aGlobAlgoArr[ dim ] = algo; hasAlgo = true; } // -------------------------------------------------------- // info on algos that will be ignored because of ones that // don't NeedDescretBoundary() attached to super-shapes, // check that a conform mesh will be produced // -------------------------------------------------------- // find a global algo possibly hiding sub-algos int dim; const SMESH_Algo* aGlobIgnoAlgo = 0; for (dim = 3; dim > 0; dim--) { if (aGlobAlgoArr[ dim ] && !aGlobAlgoArr[ dim ]->NeedDescretBoundary()) { aGlobIgnoAlgo = aGlobAlgoArr[ dim ]; break; } } const map& smMap = sm->DependsOn(); map::const_reverse_iterator revItSub = smMap.rbegin(); map aCheckedMap; bool checkConform = ( !theMesh.IsNotConformAllowed() ); int aKey = 1; SMESH_subMesh* smToCheck = sm; // loop on theShape and its sub-shapes while ( smToCheck ) { if ( smToCheck->GetSubShape().ShapeType() == TopAbs_VERTEX) break; if ( aCheckedMap.find( aKey ) == aCheckedMap.end() ) if (!checkConformIgnoredAlgos (theMesh, smToCheck, aGlobIgnoAlgo, 0, checkConform, aCheckedMap, theErrors)) ret = false; if ( smToCheck->GetAlgoState() != SMESH_subMesh::NO_ALGO ) hasAlgo = true; // next subMesh if (revItSub != smMap.rend()) { aKey = (*revItSub).first; smToCheck = (*revItSub).second; revItSub++; } else { smToCheck = 0; } } // ---------------------------------------------------------------- // info on missing hypothesis and find out if all needed algos are // well defined // ---------------------------------------------------------------- //MESSAGE( "---info on missing hypothesis and find out if all needed algos are"); // find max dim of global algo int aTopAlgoDim = 0; for (dim = 3; dim > 0; dim--) { if (aGlobAlgoArr[ dim ]) { aTopAlgoDim = dim; break; } } aCheckedMap.clear(); smToCheck = sm; revItSub = smMap.rbegin(); bool checkNoAlgo = theMesh.HasShapeToMesh() ? bool( aTopAlgoDim ) : false; bool globalChecked[] = { false, false, false, false }; // loop on theShape and its sub-shapes while ( smToCheck ) { if ( smToCheck->GetSubShape().ShapeType() == TopAbs_VERTEX) break; if ( aCheckedMap.find( aKey ) == aCheckedMap.end() ) if (!checkMissing (this, theMesh, smToCheck, aTopAlgoDim, globalChecked, checkNoAlgo, aCheckedMap, theErrors)) { ret = false; if (smToCheck->GetAlgoState() == SMESH_subMesh::NO_ALGO ) checkNoAlgo = false; } // next subMesh if (revItSub != smMap.rend()) { aKey = (*revItSub).first; smToCheck = (*revItSub).second; revItSub++; } else smToCheck = 0; } if ( !hasAlgo ) { ret = false; INFOS( "None algorithm attached" ); theErrors.push_back( TAlgoStateError() ); theErrors.back().Set( SMESH_Hypothesis::HYP_MISSING, 1, true ); } return ret; } //======================================================================= //function : IsGlobalHypothesis //purpose : check if theAlgo is attached to the main shape //======================================================================= bool SMESH_Gen::IsGlobalHypothesis(const SMESH_Hypothesis* theHyp, SMESH_Mesh& aMesh) { SMESH_HypoFilter filter( SMESH_HypoFilter::Is( theHyp )); return aMesh.GetHypothesis( aMesh.GetMeshDS()->ShapeToMesh(), filter, false ); } //============================================================================= /*! * */ //============================================================================= SMESH_Algo *SMESH_Gen::GetAlgo(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, TopoDS_Shape* assignedTo) { SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() ); filter.And( filter.IsApplicableTo( aShape )); return (SMESH_Algo*) aMesh.GetHypothesis( aShape, filter, true, assignedTo ); } //============================================================================= /*! * */ //============================================================================= StudyContextStruct *SMESH_Gen::GetStudyContext(int studyId) { // Get studyContext, create it if it does'nt exist, with a SMESHDS_Document if (_mapStudyContext.find(studyId) == _mapStudyContext.end()) { _mapStudyContext[studyId] = new StudyContextStruct; _mapStudyContext[studyId]->myDocument = new SMESHDS_Document(studyId); } StudyContextStruct *myStudyContext = _mapStudyContext[studyId]; // ASSERT(_mapStudyContext.find(studyId) != _mapStudyContext.end()); return myStudyContext; } // //============================================================================= // /*! // * // */ // //============================================================================= // void SMESH_Gen::Save(int studyId, const char *aUrlOfFile) // { // } // //============================================================================= // /*! // * // */ // //============================================================================= // void SMESH_Gen::Load(int studyId, const char *aUrlOfFile) // { // } // //============================================================================= // /*! // * // */ // //============================================================================= // void SMESH_Gen::Close(int studyId) // { // } //============================================================================= /*! * */ //============================================================================= int SMESH_Gen::GetShapeDim(const TopAbs_ShapeEnum & aShapeType) { static vector dim; if ( dim.empty() ) { dim.resize( TopAbs_SHAPE, -1 ); dim[ TopAbs_COMPOUND ] = MeshDim_3D; dim[ TopAbs_COMPSOLID ] = MeshDim_3D; dim[ TopAbs_SOLID ] = MeshDim_3D; dim[ TopAbs_SHELL ] = MeshDim_3D; dim[ TopAbs_FACE ] = MeshDim_2D; dim[ TopAbs_WIRE ] = MeshDim_1D; dim[ TopAbs_EDGE ] = MeshDim_1D; dim[ TopAbs_VERTEX ] = MeshDim_0D; } return dim[ aShapeType ]; } //============================================================================= /*! * */ //============================================================================= int SMESH_Gen::GetANewId() { //MESSAGE("SMESH_Gen::GetANewId"); return _hypId++; }