# -*- coding: iso-8859-1 -*- # Copyright (C) 2007-2014 CEA/DEN, EDF R&D, OPEN CASCADE # # Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, # CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com # # ======================================= # import salome salome.salome_init() import GEOM from salome.geom import geomBuilder geompy = geomBuilder.New(salome.myStudy) import SMESH, SALOMEDS from salome.smesh import smeshBuilder smesh = smeshBuilder.New(salome.myStudy) # Geometry # ======== # grid compound of 3 x 3 elements # an element is compound of 3 cylinders concentriques # an element is centered in a square of the grid # the smaller cylinder is a hole # prism the grid, and mesh it in hexahedral way # Values # ------ g_x = 0 g_y = 0 g_z = 0 g_arete = 50 g_hauteur = 30 g_rayon1 = 20 g_rayon2 = 30 g_rayon3 = 40 g_grid = 3 g_trim = 1000 # Element # ------- e_boite = geompy.MakeBox(g_x-g_arete, g_y-g_hauteur, g_z-g_arete, g_x+g_arete, g_y+g_hauteur, g_z+g_arete) e_hauteur = 2*g_hauteur e_centre = geompy.MakeVertex(g_x, g_y-g_hauteur, g_z) e_dir = geompy.MakeVectorDXDYDZ(0, 1, 0) e_cyl1 = geompy.MakeCylinder(e_centre, e_dir, g_rayon3, e_hauteur) e_blo1 = geompy.MakeCut(e_boite, e_cyl1) e_cyl2 = geompy.MakeCylinder(e_centre, e_dir, g_rayon2, e_hauteur) e_blo2 = geompy.MakeCut(e_cyl1, e_cyl2) e_cyl3 = geompy.MakeCylinder(e_centre, e_dir, g_rayon1, e_hauteur) e_blo3 = geompy.MakeCut(e_cyl2, e_cyl3) # Partition and repair # -------------------- p_tools = [] p_tools.append(geompy.MakePlane(e_centre, geompy.MakeVectorDXDYDZ( 1, 0, 1), g_trim)) p_tools.append(geompy.MakePlane(e_centre, geompy.MakeVectorDXDYDZ(-1, 0, 1), g_trim)) p_part = geompy.MakePartition([e_blo1, e_blo2, e_blo3], p_tools, [], [], geompy.ShapeType["SOLID"]) p_element = geompy.RemoveExtraEdges(p_part, doUnionFaces=True) # Grid and glue # ------------- grid = geompy.MakeMultiTranslation2D(p_element, geompy.MakeVectorDXDYDZ(1, 0, 0), 2*g_arete, g_grid, geompy.MakeVectorDXDYDZ(0, 0, 1), 2*g_arete, g_grid) piece = geompy.MakeGlueFaces(grid, 1e-5) # Add in study # ------------ piece_id = geompy.addToStudy(piece, "ex11_grid3partition") # Meshing # ======= # Create a hexahedral mesh # ------------------------ hexa = smesh.Mesh(piece, "ex11_grid3partition:hexa") algo = hexa.Segment() algo.NumberOfSegments(3) hexa.Quadrangle() hexa.Hexahedron() # Mesh calculus # ------------- hexa.Compute()