// Copyright (C) 2016-2024 CEA, EDF // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : HexahedronTest.cxx // Module : SMESH // Purpose: Implement unit tests for StdMeshers_Cartesian_3D_Hexahedron class to reproduce bugs that manifest in integration tests. // The main difference between this unit test and integration tests is the fine grained control we have over the class methods and the hability to diagnose/solve bugs before the code goes into production enviroment. // This test class can be used as reference for the development of future tests in other stdMesh algorithms #include "StdMeshers_Cartesian_3D_Hexahedron.hxx" #include "StdMeshers_CartesianParameters3D.hxx" // CPP TEST #include // OCC #include #include #include #include #include #include #include #include #include using namespace StdMeshers::Cartesian3D; // Helper functions! // Build Grid // Require building mesh // Require building shape. /*! * \brief Mock mesh */ struct SMESH_Mesh_Test: public SMESH_Mesh { SMESH_Mesh_Test() { _isShapeToMesh = (_id = 0); _meshDS = new SMESHDS_Mesh( _id, true ); } }; /*! * \brief Mock Hypothesis */ struct CartesianHypo: public StdMeshers_CartesianParameters3D { CartesianHypo() : StdMeshers_CartesianParameters3D(0/*zero hypoId*/, nullptr/*NULL generator*/) { } }; /*! * \brief Shape loader */ void loadBrepShape( std::string shapeName, TopoDS_Shape & shape ) { BRep_Builder b; BRepTools::Read(shape, shapeName.c_str(), b); } /*! * \brief Initialize the grid and intesersectors of grid with the geometry */ void GridInitAndIntersectWithShape (Grid& grid, double gridSpacing, double theSizeThreshold, const TopoDS_Shape theShape, TEdge2faceIDsMap& edge2faceIDsMap, const int theNumOfThreads) { // Canonical axes(i,j,k) double axisDirs[9] = {1.,0.,0., 0.,1.,0., 0.,0.,1.}; std::vector grdSpace = { std::to_string(gridSpacing) }; std::vector intPnts; std::unique_ptr aHypo ( new CartesianHypo() ); aHypo->SetAxisDirs(axisDirs); aHypo->SetGridSpacing(grdSpace, intPnts, 0 ); // Spacing in dir 0 aHypo->SetGridSpacing(grdSpace, intPnts, 1 ); // Spacing in dir 1 aHypo->SetGridSpacing(grdSpace, intPnts, 2 ); // Spacing in dir 2 aHypo->SetSizeThreshold(theSizeThreshold); // set threshold grid.GridInitAndInterserctWithShape(theShape, edge2faceIDsMap, aHypo.get(), theNumOfThreads, false); } /*! * \brief Reproduce conditions of TBPERF_GRIDS_PERF_SMESH_M1 test to detect and solve segfault in unit test. */ bool testNRTM1() { TopoDS_Shape aShape; loadBrepShape( "data/HexahedronTest/NRTM1.brep", aShape ); CPPUNIT_ASSERT_MESSAGE( "Could not load the brep shape!", !aShape.IsNull() ); const auto numOfCores = std::thread::hardware_concurrency() == 0 ? 1 : std::thread::hardware_concurrency(); std::vector numberOfThreads(numOfCores); std::iota (std::begin(numberOfThreads), std::end(numberOfThreads), 1); for (auto nThreads : numberOfThreads ) { for (size_t i = 0; i < 10 /*trials*/; i++) { std::unique_ptr aMesh( new SMESH_Mesh_Test() ); aMesh->ShapeToMesh( aShape ); SMESH_MesherHelper helper( *aMesh ); Grid grid; grid._helper = &helper; grid._toAddEdges = false; grid._toCreateFaces = false; grid._toConsiderInternalFaces = false; grid._toUseThresholdForInternalFaces = false; grid._toUseQuanta = false; grid._sizeThreshold = 4.0; TEdge2faceIDsMap edge2faceIDsMap; GridInitAndIntersectWithShape( grid, 1.0, 4.0, aShape, edge2faceIDsMap, nThreads ); SMESH_subMesh * aSubMesh = aMesh->GetSubMesh(aShape); aSubMesh->DependsOn(); // init sub-meshes Hexahedron hex( &grid ); int nbAdded = hex.MakeElements( helper, edge2faceIDsMap, nThreads ); CPPUNIT_ASSERT_MESSAGE( "Number of computed elements does not match", nbAdded == 1024 ); } } return true; } /*! * \brief Reproduce conditions of TBPERF_GRIDS_PERF_SMESH_J4 test to detect and solve segfault in unit test. */ bool testNRTJ4() { TopoDS_Shape aShape; loadBrepShape( "data/HexahedronTest/NRTMJ4.brep", aShape ); CPPUNIT_ASSERT_MESSAGE( "Could not load the brep shape!", !aShape.IsNull() ); const auto numOfCores = std::thread::hardware_concurrency() == 0 ? 1 : std::thread::hardware_concurrency()/2; std::vector numberOfThreads(numOfCores); std::iota (std::begin(numberOfThreads), std::end(numberOfThreads), 1); // Test with face creation for (auto nThreads : numberOfThreads ) { for (size_t i = 0; i < 10 /*trials*/; i++) { std::unique_ptr aMesh( new SMESH_Mesh_Test() ); aMesh->ShapeToMesh( aShape ); SMESH_MesherHelper helper( *aMesh ); Grid grid; grid._helper = &helper; grid._toAddEdges = false; grid._toConsiderInternalFaces = false; grid._toUseThresholdForInternalFaces = false; grid._toUseQuanta = false; double testThreshold = 1.000001; grid._toCreateFaces = true; grid._sizeThreshold = testThreshold; TEdge2faceIDsMap edge2faceIDsMap; GridInitAndIntersectWithShape( grid, 2.0, testThreshold, aShape, edge2faceIDsMap, nThreads ); SMESH_subMesh * aSubMesh = aMesh->GetSubMesh(aShape); aSubMesh->DependsOn(); // init sub-meshes Hexahedron hex( &grid ); int nbAdded = hex.MakeElements( helper, edge2faceIDsMap, nThreads ); CPPUNIT_ASSERT_MESSAGE( "Number of computed elements does not match", nbAdded == 35150 ); } } return true; } // Entry point for test int main() { bool isOK = testNRTM1(); if (!testNRTJ4()) isOK = false; return isOK ? 0 : 1; }