// Copyright (C) 2016-2024 CEA, EDF // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : StdMeshers_Cartesian_3D_Hexahedron.cxx // Module : SMESH // Purpose: Make BodyFitting mesh algorithm more modular and testable // #include "StdMeshers_Cartesian_3D_Hexahedron.hxx" #include using namespace std; using namespace SMESH; using namespace StdMeshers::Cartesian3D; std::mutex _eMutex; #ifdef WITH_TBB // -------------------------------------------------------------------------- /*! * \brief Hexahedron computing volumes in one thread */ struct ParallelHexahedron { vector< Hexahedron* >& _hexVec; ParallelHexahedron( vector< Hexahedron* >& hv ): _hexVec(hv) {} void operator() ( const tbb::blocked_range& r ) const { for ( size_t i = r.begin(); i != r.end(); ++i ) if ( Hexahedron* hex = _hexVec[ i ] ) hex->computeElements(); } }; #endif //============================================================================= // Implementation of internal utils //============================================================================= /*! * \brief adjust \a i to have \a val between values[i] and values[i+1] */ inline void locateValue( int & i, double val, const vector& values, int& di, double tol ) { //val += values[0]; // input \a val is measured from 0. if ( i > (int) values.size()-2 ) i = values.size()-2; else while ( i+2 < (int) values.size() && val > values[ i+1 ]) ++i; while ( i > 0 && val < values[ i ]) --i; if ( i > 0 && val - values[ i ] < tol ) di = -1; else if ( i+2 < (int) values.size() && values[ i+1 ] - val < tol ) di = 1; else di = 0; } //================================================================================ /*! * \brief Find existing triangulation of a polygon */ int findExistingTriangulation( const SMDS_MeshElement* polygon, //const SMDS_Mesh* mesh, std::vector< const SMDS_MeshNode* >& nodes ) { int nbSplits = 0; nodes.clear(); std::vector twoNodes(2); std::vector foundFaces; foundFaces.reserve(10); std::set< const SMDS_MeshElement * > avoidFaces; avoidFaces.insert( polygon ); const int nbPolyNodes = polygon->NbCornerNodes(); twoNodes[1] = polygon->GetNode( nbPolyNodes - 1 ); for ( int iN = 0; iN < nbPolyNodes; ++iN ) // loop on border links of polygon { twoNodes[0] = polygon->GetNode( iN ); int nbFaces = SMDS_Mesh::GetElementsByNodes( twoNodes, foundFaces, SMDSAbs_Face ); int nbOkFaces = 0; for ( int iF = 0; iF < nbFaces; ++iF ) // keep faces lying over polygon { if ( avoidFaces.count( foundFaces[ iF ])) continue; int i, nbFaceNodes = foundFaces[ iF ]->NbCornerNodes(); for ( i = 0; i < nbFaceNodes; ++i ) { const SMDS_MeshNode* n = foundFaces[ iF ]->GetNode( i ); bool isCommonNode = ( n == twoNodes[0] || n == twoNodes[1] || polygon->GetNodeIndex( n ) >= 0 ); if ( !isCommonNode ) break; } if ( i == nbFaceNodes ) // all nodes of foundFaces[iF] are shared with polygon if ( nbOkFaces++ != iF ) foundFaces[ nbOkFaces-1 ] = foundFaces[ iF ]; } if ( nbOkFaces > 0 ) { int iFaceSelected = 0; if ( nbOkFaces > 1 ) // select a face with minimal distance from polygon { double minDist = Precision::Infinite(); for ( int iF = 0; iF < nbOkFaces; ++iF ) { int i, nbFaceNodes = foundFaces[ iF ]->NbCornerNodes(); gp_XYZ gc = SMESH_NodeXYZ( foundFaces[ iF ]->GetNode( 0 )); for ( i = 1; i < nbFaceNodes; ++i ) gc += SMESH_NodeXYZ( foundFaces[ iF ]->GetNode( i )); gc /= nbFaceNodes; double dist = SMESH_MeshAlgos::GetDistance( polygon, gc ); if ( dist < minDist ) { minDist = dist; iFaceSelected = iF; } } } if ( foundFaces[ iFaceSelected ]->NbCornerNodes() != 3 ) return 0; nodes.insert( nodes.end(), foundFaces[ iFaceSelected ]->begin_nodes(), foundFaces[ iFaceSelected ]->end_nodes()); if ( !SMESH_MeshAlgos::IsRightOrder( foundFaces[ iFaceSelected ], twoNodes[0], twoNodes[1] )) { // reverse just added nodes std::reverse( nodes.end() - 3, nodes.end() ); } avoidFaces.insert( foundFaces[ iFaceSelected ]); nbSplits++; } twoNodes[1] = twoNodes[0]; } // loop on polygon nodes return nbSplits; } //================================================================================ /*! * \brief Divide a polygon into triangles and modify accordingly an adjacent polyhedron */ void splitPolygon( const SMDS_MeshElement* polygon, SMDS_VolumeTool & volume, const int facetIndex, const TGeomID faceID, const TGeomID solidID, SMESH_MeshEditor::ElemFeatures& face, SMESH_MeshEditor& editor, const bool reinitVolume) { SMESH_MeshAlgos::Triangulate divider(/*optimize=*/false); bool triangulationExist = false; int nbTrias = findExistingTriangulation( polygon, face.myNodes ); if ( nbTrias > 0 ) triangulationExist = true; else nbTrias = divider.GetTriangles( polygon, face.myNodes ); face.myNodes.resize( nbTrias * 3 ); SMESH_MeshEditor::ElemFeatures newVolumeDef; newVolumeDef.Init( volume.Element() ); newVolumeDef.SetID( volume.Element()->GetID() ); newVolumeDef.myPolyhedQuantities.reserve( volume.NbFaces() + nbTrias ); newVolumeDef.myNodes.reserve( volume.NbNodes() + nbTrias * 3 ); SMESHDS_Mesh* meshDS = editor.GetMeshDS(); SMDS_MeshElement* newTriangle; for ( int iF = 0, nF = volume.NbFaces(); iF < nF; iF++ ) { if ( iF == facetIndex ) { newVolumeDef.myPolyhedQuantities.push_back( 3 ); newVolumeDef.myNodes.insert( newVolumeDef.myNodes.end(), face.myNodes.begin(), face.myNodes.begin() + 3 ); meshDS->RemoveFreeElement( polygon, 0, false ); if ( !triangulationExist ) { newTriangle = meshDS->AddFace( face.myNodes[0], face.myNodes[1], face.myNodes[2] ); meshDS->SetMeshElementOnShape( newTriangle, faceID ); } } else { const SMDS_MeshNode** nn = volume.GetFaceNodes( iF ); const size_t nbFaceNodes = volume.NbFaceNodes ( iF ); newVolumeDef.myPolyhedQuantities.push_back( nbFaceNodes ); newVolumeDef.myNodes.insert( newVolumeDef.myNodes.end(), nn, nn + nbFaceNodes ); } } for ( size_t iN = 3; iN < face.myNodes.size(); iN += 3 ) { newVolumeDef.myPolyhedQuantities.push_back( 3 ); newVolumeDef.myNodes.insert( newVolumeDef.myNodes.end(), face.myNodes.begin() + iN, face.myNodes.begin() + iN + 3 ); if ( !triangulationExist ) { newTriangle = meshDS->AddFace( face.myNodes[iN], face.myNodes[iN+1], face.myNodes[iN+2] ); meshDS->SetMeshElementOnShape( newTriangle, faceID ); } } meshDS->RemoveFreeElement( volume.Element(), 0, false ); SMDS_MeshElement* newVolume = editor.AddElement( newVolumeDef.myNodes, newVolumeDef ); meshDS->SetMeshElementOnShape( newVolume, solidID ); if ( reinitVolume ) { volume.Set( 0 ); volume.Set( newVolume ); } return; } //================================================================================ /*! * \brief Look for a FACE supporting all given nodes made on EDGEs and VERTEXes */ TGeomID findCommonFace( const std::vector< const SMDS_MeshNode* > & nn, const SMESH_Mesh* mesh ) { TGeomID faceID = 0; TGeomID shapeIDs[20]; for ( size_t iN = 0; iN < nn.size(); ++iN ) shapeIDs[ iN ] = nn[ iN ]->GetShapeID(); SMESH_subMesh* sm = mesh->GetSubMeshContaining( shapeIDs[ 0 ]); for ( const SMESH_subMesh * smFace : sm->GetAncestors() ) { if ( smFace->GetSubShape().ShapeType() != TopAbs_FACE ) continue; faceID = smFace->GetId(); for ( size_t iN = 1; iN < nn.size() && faceID; ++iN ) { if ( !smFace->DependsOn( shapeIDs[ iN ])) faceID = 0; } if ( faceID > 0 ) break; } return faceID; } //================================================================================ /*! * \brief Creates topology of the hexahedron */ Hexahedron::Hexahedron(Grid* grid) : _grid( grid ), _nbFaceIntNodes(0), _hasTooSmall( false ) { _polygons.reserve(100); // to avoid reallocation; //set nodes shift within grid->_nodes from the node 000 size_t dx = _grid->NodeIndexDX(); size_t dy = _grid->NodeIndexDY(); size_t dz = _grid->NodeIndexDZ(); size_t i000 = 0; size_t i100 = i000 + dx; size_t i010 = i000 + dy; size_t i110 = i010 + dx; size_t i001 = i000 + dz; size_t i101 = i100 + dz; size_t i011 = i010 + dz; size_t i111 = i110 + dz; grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V000 )] = i000; grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V100 )] = i100; grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V010 )] = i010; grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V110 )] = i110; grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V001 )] = i001; grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V101 )] = i101; grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V011 )] = i011; grid->_nodeShift[ SMESH_Block::ShapeIndex( SMESH_Block::ID_V111 )] = i111; vector< int > idVec; // set nodes to links for ( int linkID = SMESH_Block::ID_Ex00; linkID <= SMESH_Block::ID_E11z; ++linkID ) { SMESH_Block::GetEdgeVertexIDs( linkID, idVec ); _Link& link = _hexLinks[ SMESH_Block::ShapeIndex( linkID )]; link._nodes[0] = &_hexNodes[ SMESH_Block::ShapeIndex( idVec[0] )]; link._nodes[1] = &_hexNodes[ SMESH_Block::ShapeIndex( idVec[1] )]; } // set links to faces int interlace[4] = { 0, 3, 1, 2 }; // to walk by links around a face: { u0, 1v, u1, 0v } for ( int faceID = SMESH_Block::ID_Fxy0; faceID <= SMESH_Block::ID_F1yz; ++faceID ) { _Face& quad = _hexQuads[ SMESH_Block::ShapeIndex( faceID )]; quad._name = (SMESH_Block::TShapeID) faceID; SMESH_Block::GetFaceEdgesIDs( faceID, idVec ); bool revFace = ( faceID == SMESH_Block::ID_Fxy0 || faceID == SMESH_Block::ID_Fx1z || faceID == SMESH_Block::ID_F0yz ); quad._links.resize(4); vector<_OrientedLink>::iterator frwLinkIt = quad._links.begin(); vector<_OrientedLink>::reverse_iterator revLinkIt = quad._links.rbegin(); for ( int i = 0; i < 4; ++i ) { bool revLink = revFace; if ( i > 1 ) // reverse links u1 and v0 revLink = !revLink; _OrientedLink& link = revFace ? *revLinkIt++ : *frwLinkIt++; link = _OrientedLink( & _hexLinks[ SMESH_Block::ShapeIndex( idVec[interlace[i]] )], revLink ); } } } //================================================================================ /*! * \brief Copy constructor */ Hexahedron::Hexahedron( const Hexahedron& other, size_t i, size_t j, size_t k, int cellID ) :_grid( other._grid ), _nbFaceIntNodes(0), _i( i ), _j( j ), _k( k ), _hasTooSmall( false ) { _polygons.reserve(100); // to avoid reallocation; // copy topology for ( int i = 0; i < 12; ++i ) { const _Link& srcLink = other._hexLinks[ i ]; _Link& tgtLink = this->_hexLinks[ i ]; tgtLink._nodes[0] = _hexNodes + ( srcLink._nodes[0] - other._hexNodes ); tgtLink._nodes[1] = _hexNodes + ( srcLink._nodes[1] - other._hexNodes ); } for ( int i = 0; i < 6; ++i ) { const _Face& srcQuad = other._hexQuads[ i ]; _Face& tgtQuad = this->_hexQuads[ i ]; tgtQuad._name = srcQuad._name; tgtQuad._links.resize(4); for ( int j = 0; j < 4; ++j ) { const _OrientedLink& srcLink = srcQuad._links[ j ]; _OrientedLink& tgtLink = tgtQuad._links[ j ]; tgtLink._reverse = srcLink._reverse; tgtLink._link = _hexLinks + ( srcLink._link - other._hexLinks ); } } if (SALOME::VerbosityActivated()) _cellID = cellID; } void Hexahedron::_Node::Add( const E_IntersectPoint* ip ) { const std::lock_guard lock(_eMutex); // Possible cases before Add(ip): /// 1) _node != 0 --> _Node at hex corner ( _intPoint == 0 || _intPoint._node == 0 ) /// 2) _node == 0 && _intPoint._node != 0 --> link intersected by FACE /// 3) _node == 0 && _intPoint._node == 0 --> _Node at EDGE intersection // // If ip is added in cases 1) and 2) _node position must be changed to ip._shapeID // at creation of elements // To recognize this case, set _intPoint._node = Node() const SMDS_MeshNode* node = Node(); if ( !_intPoint ) { _intPoint = ip; } else { ip->Add( _intPoint->_faceIDs ); _intPoint = ip; } if ( node ) _node = _intPoint->_node = node; } void Hexahedron::_Node::clear() { _node = nullptr; _boundaryCornerNode = nullptr; _intPoint = nullptr; _usedInFace = nullptr; _isInternalFlags = IS_NOT_INTERNAL; } void Hexahedron::_Link::clear() { for (std::size_t i = 0; i < nodesNum; ++i) { if (_nodes[i]) _nodes[i]->clear(); } _fIntPoints.clear(); _fIntNodes.clear(); _splits.clear(); } //================================================================================ /*! * \brief Return IDs of SOLIDs interfering with this Hexahedron */ size_t Hexahedron::getSolids( TGeomID ids[] ) { if ( _grid->_geometry.IsOneSolid() ) { ids[0] = _grid->GetSolid()->ID(); return 1; } // count intersection points belonging to each SOLID TID2Nb id2NbPoints; id2NbPoints.reserve( 3 ); _origNodeInd = _grid->NodeIndex( _i,_j,_k ); for ( int iN = 0; iN < 8; ++iN ) { _hexNodes[iN]._node = _grid->_nodes [ _origNodeInd + _grid->_nodeShift[iN] ]; _hexNodes[iN]._intPoint = _grid->_gridIntP[ _origNodeInd + _grid->_nodeShift[iN] ]; if ( _hexNodes[iN]._intPoint ) // intersection with a FACE { for ( size_t iF = 0; iF < _hexNodes[iN]._intPoint->_faceIDs.size(); ++iF ) { const vector< TGeomID > & solidIDs = _grid->GetSolidIDs( _hexNodes[iN]._intPoint->_faceIDs[iF] ); for ( size_t i = 0; i < solidIDs.size(); ++i ) insertAndIncrement( solidIDs[i], id2NbPoints ); } } else if ( _hexNodes[iN]._node ) // node inside a SOLID { insertAndIncrement( _hexNodes[iN]._node->GetShapeID(), id2NbPoints ); } } for ( int iL = 0; iL < 12; ++iL ) { const _Link& link = _hexLinks[ iL ]; for ( size_t iP = 0; iP < link._fIntPoints.size(); ++iP ) { for ( size_t iF = 0; iF < link._fIntPoints[iP]->_faceIDs.size(); ++iF ) { const vector< TGeomID > & solidIDs = _grid->GetSolidIDs( link._fIntPoints[iP]->_faceIDs[iF] ); for ( size_t i = 0; i < solidIDs.size(); ++i ) insertAndIncrement( solidIDs[i], id2NbPoints ); } } } for ( size_t iP = 0; iP < _eIntPoints.size(); ++iP ) { const vector< TGeomID > & solidIDs = _grid->GetSolidIDs( _eIntPoints[iP]->_shapeID ); for ( size_t i = 0; i < solidIDs.size(); ++i ) insertAndIncrement( solidIDs[i], id2NbPoints ); } size_t nbSolids = 0; for ( TID2Nb::iterator id2nb = id2NbPoints.begin(); id2nb != id2NbPoints.end(); ++id2nb ) if ( id2nb->second >= 3 ) ids[ nbSolids++ ] = id2nb->first; return nbSolids; } //================================================================================ /*! * \brief Count cuts by INTERNAL FACEs and set _Node::_isInternalFlags */ bool Hexahedron::isCutByInternalFace( IsInternalFlag & maxFlag ) { TID2Nb id2NbPoints; id2NbPoints.reserve( 3 ); for ( size_t iN = 0; iN < _intNodes.size(); ++iN ) for ( size_t iF = 0; iF < _intNodes[iN]._intPoint->_faceIDs.size(); ++iF ) { if ( _grid->IsInternal( _intNodes[iN]._intPoint->_faceIDs[iF])) insertAndIncrement( _intNodes[iN]._intPoint->_faceIDs[iF], id2NbPoints ); } for ( size_t iN = 0; iN < 8; ++iN ) if ( _hexNodes[iN]._intPoint ) for ( size_t iF = 0; iF < _hexNodes[iN]._intPoint->_faceIDs.size(); ++iF ) { if ( _grid->IsInternal( _hexNodes[iN]._intPoint->_faceIDs[iF])) insertAndIncrement( _hexNodes[iN]._intPoint->_faceIDs[iF], id2NbPoints ); } maxFlag = IS_NOT_INTERNAL; for ( TID2Nb::iterator id2nb = id2NbPoints.begin(); id2nb != id2NbPoints.end(); ++id2nb ) { TGeomID intFace = id2nb->first; IsInternalFlag intFlag = ( id2nb->second >= 3 ? IS_CUT_BY_INTERNAL_FACE : IS_INTERNAL ); if ( intFlag > maxFlag ) maxFlag = intFlag; for ( size_t iN = 0; iN < _intNodes.size(); ++iN ) if ( _intNodes[iN].IsOnFace( intFace )) _intNodes[iN].SetInternal( intFlag ); for ( size_t iN = 0; iN < 8; ++iN ) if ( _hexNodes[iN].IsOnFace( intFace )) _hexNodes[iN].SetInternal( intFlag ); } return maxFlag; } //================================================================================ /*! * \brief Return any FACE interfering with this Hexahedron */ TGeomID Hexahedron::getAnyFace() const { TID2Nb id2NbPoints; id2NbPoints.reserve( 3 ); for ( size_t iN = 0; iN < _intNodes.size(); ++iN ) for ( size_t iF = 0; iF < _intNodes[iN]._intPoint->_faceIDs.size(); ++iF ) insertAndIncrement( _intNodes[iN]._intPoint->_faceIDs[iF], id2NbPoints ); for ( size_t iN = 0; iN < 8; ++iN ) if ( _hexNodes[iN]._intPoint ) for ( size_t iF = 0; iF < _hexNodes[iN]._intPoint->_faceIDs.size(); ++iF ) insertAndIncrement( _hexNodes[iN]._intPoint->_faceIDs[iF], id2NbPoints ); for ( unsigned int minNb = 3; minNb > 0; --minNb ) for ( TID2Nb::iterator id2nb = id2NbPoints.begin(); id2nb != id2NbPoints.end(); ++id2nb ) if ( id2nb->second >= minNb ) return id2nb->first; return 0; } //================================================================================ /*! * \brief Initializes IJK by Hexahedron index */ void Hexahedron::setIJK( size_t iCell ) { size_t iNbCell = _grid->_coords[0].size() - 1; size_t jNbCell = _grid->_coords[1].size() - 1; _i = iCell % iNbCell; _j = ( iCell % ( iNbCell * jNbCell )) / iNbCell; _k = iCell / iNbCell / jNbCell; } //================================================================================ /*! * \brief Initializes its data by given grid cell (countered from zero) */ void Hexahedron::init( size_t iCell ) { setIJK( iCell ); init( _i, _j, _k ); } //================================================================================ /*! * \brief Initializes its data by given grid cell nodes and intersections */ void Hexahedron::init( size_t i, size_t j, size_t k, const Solid* solid ) { _i = i; _j = j; _k = k; bool isCompute = solid; if ( !solid ) solid = _grid->GetSolid(); // set nodes of grid to nodes of the hexahedron and // count nodes at hexahedron corners located IN and ON geometry _nbCornerNodes = _nbBndNodes = 0; _origNodeInd = _grid->NodeIndex( i,j,k ); for ( int iN = 0; iN < 8; ++iN ) { _hexNodes[iN]._isInternalFlags = 0; // Grid node _hexNodes[iN]._node = _grid->_nodes [ _origNodeInd + _grid->_nodeShift[iN] ]; _hexNodes[iN]._intPoint = _grid->_gridIntP[ _origNodeInd + _grid->_nodeShift[iN] ]; if ( _grid->_allBorderNodes[ _origNodeInd + _grid->_nodeShift[iN] ] ) _hexNodes[iN]._boundaryCornerNode = _grid->_allBorderNodes [ _origNodeInd + _grid->_nodeShift[iN] ]; if ( _hexNodes[iN]._node && !solid->Contains( _hexNodes[iN]._node->GetShapeID() )) _hexNodes[iN]._node = 0; if ( _hexNodes[iN]._intPoint && !solid->ContainsAny( _hexNodes[iN]._intPoint->_faceIDs )) _hexNodes[iN]._intPoint = 0; _nbCornerNodes += bool( _hexNodes[iN]._node ); _nbBndNodes += bool( _hexNodes[iN]._intPoint ); } _sideLength[0] = _grid->_coords[0][i+1] - _grid->_coords[0][i]; _sideLength[1] = _grid->_coords[1][j+1] - _grid->_coords[1][j]; _sideLength[2] = _grid->_coords[2][k+1] - _grid->_coords[2][k]; _intNodes.clear(); _vIntNodes.clear(); if ( !isCompute ) return; if ( _nbFaceIntNodes + _eIntPoints.size() > 0 && _nbFaceIntNodes + _eIntPoints.size() + _nbCornerNodes > 3) { _intNodes.reserve( 3 * ( _nbBndNodes + _nbFaceIntNodes + _eIntPoints.size() )); // this method can be called in parallel, so use own helper SMESH_MesherHelper helper( *_grid->_helper->GetMesh() ); // clearNodesLinkedToNull(solid, helper); // Create sub-links (_Link::_splits) by splitting links with _Link::_fIntPoints // --------------------------------------------------------------- _Link split; for ( int iLink = 0; iLink < 12; ++iLink ) { _Link& link = _hexLinks[ iLink ]; link._fIntNodes.clear(); link._fIntNodes.reserve( link._fIntPoints.size() ); for ( size_t i = 0; i < link._fIntPoints.size(); ++i ) if ( solid->ContainsAny( link._fIntPoints[i]->_faceIDs )) { _intNodes.push_back( _Node( 0, link._fIntPoints[i] )); link._fIntNodes.push_back( & _intNodes.back() ); } link._splits.clear(); split._nodes[ 0 ] = link._nodes[0]; bool isOut = ( ! link._nodes[0]->Node() ); bool checkTransition; for ( size_t i = 0; i < link._fIntNodes.size(); ++i ) { const bool isGridNode = ( ! link._fIntNodes[i]->Node() ); if ( !isGridNode ) // intersection non-coincident with a grid node { if ( split._nodes[ 0 ]->Node() && !isOut ) { split._nodes[ 1 ] = link._fIntNodes[i]; link._splits.push_back( split ); } split._nodes[ 0 ] = link._fIntNodes[i]; checkTransition = true; } else // FACE intersection coincident with a grid node (at link ends) { checkTransition = ( i == 0 && link._nodes[0]->Node() ); } if ( checkTransition ) { const vector< TGeomID >& faceIDs = link._fIntNodes[i]->_intPoint->_faceIDs; if ( _grid->IsInternal( faceIDs.back() )) isOut = false; else if ( faceIDs.size() > 1 || _eIntPoints.size() > 0 ) isOut = isOutPoint( link, i, helper, solid ); else { bool okTransi = _grid->IsCorrectTransition( faceIDs[0], solid ); switch ( link._fIntNodes[i]->FaceIntPnt()->_transition ) { case Trans_OUT: isOut = okTransi; break; case Trans_IN : isOut = !okTransi; break; default: isOut = isOutPoint( link, i, helper, solid ); } } } } if ( link._nodes[ 1 ]->Node() && split._nodes[ 0 ]->Node() && !isOut ) { split._nodes[ 1 ] = link._nodes[1]; link._splits.push_back( split ); } } // Create _Node's at intersections with EDGEs. // -------------------------------------------- // 1) add this->_eIntPoints to _Face::_eIntNodes // 2) fill _intNodes and _vIntNodes // const double tol2 = _grid->_tol * _grid->_tol * 4; int facets[3], nbFacets, subEntity; for ( int iF = 0; iF < 6; ++iF ) _hexQuads[ iF ]._eIntNodes.clear(); for ( size_t iP = 0; iP < _eIntPoints.size(); ++iP ) { if ( !solid->ContainsAny( _eIntPoints[iP]->_faceIDs )) continue; nbFacets = getEntity( _eIntPoints[iP], facets, subEntity ); _Node* equalNode = 0; switch( nbFacets ) { case 1: // in a _Face { _Face& quad = _hexQuads[ facets[0] - SMESH_Block::ID_FirstF ]; equalNode = findEqualNode( quad._eIntNodes, _eIntPoints[ iP ], tol2 ); if ( equalNode ) { equalNode->Add( _eIntPoints[ iP ] ); } else { _intNodes.push_back( _Node( 0, _eIntPoints[ iP ])); quad._eIntNodes.push_back( & _intNodes.back() ); } break; } case 2: // on a _Link { _Link& link = _hexLinks[ subEntity - SMESH_Block::ID_FirstE ]; if ( link._splits.size() > 0 ) { equalNode = findEqualNode( link._fIntNodes, _eIntPoints[ iP ], tol2 ); if ( equalNode ) equalNode->Add( _eIntPoints[ iP ] ); else if ( link._splits.size() == 1 && link._splits[0]._nodes[0] && link._splits[0]._nodes[1] ) link._splits.clear(); // hex edge is divided by _eIntPoints[iP] } //else if ( !equalNode ) { _intNodes.push_back( _Node( 0, _eIntPoints[ iP ])); bool newNodeUsed = false; for ( int iF = 0; iF < 2; ++iF ) { _Face& quad = _hexQuads[ facets[iF] - SMESH_Block::ID_FirstF ]; equalNode = findEqualNode( quad._eIntNodes, _eIntPoints[ iP ], tol2 ); if ( equalNode ) { equalNode->Add( _eIntPoints[ iP ] ); } else { quad._eIntNodes.push_back( & _intNodes.back() ); newNodeUsed = true; } } if ( !newNodeUsed ) _intNodes.pop_back(); } break; } case 3: // at a corner { _Node& node = _hexNodes[ subEntity - SMESH_Block::ID_FirstV ]; if ( node.Node() ) { if ( node._intPoint ) node._intPoint->Add( _eIntPoints[ iP ]->_faceIDs, _eIntPoints[ iP ]->_node ); } else { _intNodes.push_back( _Node( 0, _eIntPoints[ iP ])); for ( int iF = 0; iF < 3; ++iF ) { _Face& quad = _hexQuads[ facets[iF] - SMESH_Block::ID_FirstF ]; equalNode = findEqualNode( quad._eIntNodes, _eIntPoints[ iP ], tol2 ); if ( equalNode ) { equalNode->Add( _eIntPoints[ iP ] ); } else { quad._eIntNodes.push_back( & _intNodes.back() ); } } } break; } } // switch( nbFacets ) if ( nbFacets == 0 || _grid->ShapeType( _eIntPoints[ iP ]->_shapeID ) == TopAbs_VERTEX ) { equalNode = findEqualNode( _vIntNodes, _eIntPoints[ iP ], tol2 ); if ( equalNode ) { equalNode->Add( _eIntPoints[ iP ] ); } else if ( nbFacets == 0 ) { if ( _intNodes.empty() || _intNodes.back().EdgeIntPnt() != _eIntPoints[ iP ]) _intNodes.push_back( _Node( 0, _eIntPoints[ iP ])); _vIntNodes.push_back( & _intNodes.back() ); } } } // loop on _eIntPoints } else if (( 3 < _nbCornerNodes && _nbCornerNodes < 8 ) || // _nbFaceIntNodes == 0 ( !_grid->_geometry.IsOneSolid() )) { _Link split; // create sub-links (_splits) of whole links for ( int iLink = 0; iLink < 12; ++iLink ) { _Link& link = _hexLinks[ iLink ]; link._splits.clear(); if ( link._nodes[ 0 ]->Node() && link._nodes[ 1 ]->Node() ) { split._nodes[ 0 ] = link._nodes[0]; split._nodes[ 1 ] = link._nodes[1]; link._splits.push_back( split ); } } } return; } // init( _i, _j, _k ) //================================================================================ /*! * \brief Clear nodes linked to null by not splitted links. * Exclude from computation all nodes those linked to null without any splits in links. * This prevents building non-planar faces in cases when the source geometry surface * coincident with an intermediate grid plane. */ void Hexahedron::clearNodesLinkedToNull(const Solid* solid, SMESH_MesherHelper& helper) { for (std::size_t i = 0; i < HEX_LINKS_NUM; ++i) { _Link& link = _hexLinks[i]; if (isSplittedLink(solid, helper, link)) continue; // Links where both nodes are valid should have itself as a split. // Check if we have at least one null node here for a chance if we have // some unexpected edge case. _Node* n1 = link._nodes[0]; _Node* n2 = link._nodes[1]; if (!n1->_node || !n2->_node) { link.clear(); } } } //================================================================================ /*! * \brief Returns true if the link will be splitted on the Hexaedron initialization */ bool Hexahedron::isSplittedLink(const Solid* solid, SMESH_MesherHelper& helper, const Hexahedron::_Link& linkIn) const { _Link split; _Link link = linkIn; link._fIntNodes.clear(); link._fIntNodes.reserve( link._fIntPoints.size() ); std::vector<_Node> intNodes; intNodes.reserve(link._fIntPoints.size()); for ( size_t i = 0; i < link._fIntPoints.size(); ++i ) if ( solid->ContainsAny( link._fIntPoints[i]->_faceIDs )) { intNodes.emplace_back(nullptr, link._fIntPoints[i]); link._fIntNodes.push_back( & intNodes.back() ); } link._splits.clear(); split._nodes[ 0 ] = link._nodes[0]; bool isOut = ( ! link._nodes[0]->Node() ); bool checkTransition = false; for ( size_t i = 0; i < link._fIntNodes.size(); ++i ) { const bool isGridNode = ( ! link._fIntNodes[i]->Node() ); if ( !isGridNode ) // intersection non-coincident with a grid node { if ( split._nodes[ 0 ]->Node() && !isOut ) { return true; } split._nodes[ 0 ] = link._fIntNodes[i]; checkTransition = true; } else // FACE intersection coincident with a grid node (at link ends) { checkTransition = ( i == 0 && link._nodes[0]->Node() ); } if ( checkTransition ) { const vector< TGeomID >& faceIDs = link._fIntNodes[i]->_intPoint->_faceIDs; if ( _grid->IsInternal( faceIDs.back() )) isOut = false; else if ( faceIDs.size() > 1 || _eIntPoints.size() > 0 ) isOut = isOutPoint( link, i, helper, solid ); else { bool okTransi = _grid->IsCorrectTransition( faceIDs[0], solid ); switch ( link._fIntNodes[i]->FaceIntPnt()->_transition ) { case Trans_OUT: isOut = okTransi; break; case Trans_IN : isOut = !okTransi; break; default: isOut = isOutPoint( link, i, helper, solid ); } } } } if ( link._nodes[ 1 ]->Node() && split._nodes[ 0 ]->Node() && !isOut ) { return true; } return false; } //================================================================================ /*! * \brief Compute mesh volumes resulted from intersection of the Hexahedron */ void Hexahedron::computeElements( const Solid* solid, int solidIndex ) { if ( !solid ) { solid = _grid->GetSolid(); if ( !_grid->_geometry.IsOneSolid() ) { TGeomID solidIDs[20] = { 0 }; size_t nbSolids = getSolids( solidIDs ); if ( nbSolids > 1 ) { for ( size_t i = 0; i < nbSolids; ++i ) { solid = _grid->GetSolid( solidIDs[i] ); computeElements( solid, i ); if ( !_volumeDefs._nodes.empty() && i < nbSolids - 1 ) _volumeDefs.SetNext( new _volumeDef( _volumeDefs )); } return; } solid = _grid->GetSolid( solidIDs[0] ); } } init( _i, _j, _k, solid ); // get nodes and intersections from grid nodes and split links int nbIntersections = _nbFaceIntNodes + _eIntPoints.size(); if ( _nbCornerNodes + nbIntersections < 4 ) return; if ( _nbBndNodes == _nbCornerNodes && nbIntersections == 0 && isInHole() ) return; // cell is in a hole IsInternalFlag intFlag = IS_NOT_INTERNAL; if ( solid->HasInternalFaces() && this->isCutByInternalFace( intFlag )) { for ( _SplitIterator it( _hexLinks ); it.More(); it.Next() ) { if ( compute( solid, intFlag )) _volumeDefs.SetNext( new _volumeDef( _volumeDefs )); } } else { if ( solidIndex >= 0 ) intFlag = IS_CUT_BY_INTERNAL_FACE; compute( solid, intFlag ); } } //================================================================================ /*! * \brief Compute mesh volumes resulted from intersection of the Hexahedron */ void Hexahedron::defineHexahedralFaces( const Solid* solid, const IsInternalFlag intFlag ) { std::set< TGeomID > concaveFaces; // to avoid connecting nodes laying on them if ( solid->HasConcaveVertex() ) { for ( const E_IntersectPoint* ip : _eIntPoints ) { if ( const ConcaveFace* cf = solid->GetConcave( ip->_shapeID )) { if ( this->hasEdgesAround( cf )) concaveFaces.insert( cf->_concaveFace ); } } if ( concaveFaces.empty() || concaveFaces.size() * 3 < _eIntPoints.size() ) { for ( const _Node& hexNode: _hexNodes ) { if ( hexNode._node && hexNode._intPoint && hexNode._intPoint->_faceIDs.size() >= 3 ) if ( const ConcaveFace* cf = solid->GetConcave( hexNode._node->GetShapeID() )) if ( this->hasEdgesAround( cf )) concaveFaces.insert( cf->_concaveFace ); } } } const bool toCheckSideDivision = isImplementEdges() || intFlag & IS_CUT_BY_INTERNAL_FACE; std::vector< _OrientedLink > splits; std::vector< _Node* > chainNodes; for ( int iF = 0; iF < 6; ++iF ) // loop on 6 sides of a hexahedron { _Face& quad = _hexQuads[ iF ] ; _polygons.resize( _polygons.size() + 1 ); _Face* polygon = &_polygons.back(); polygon->_polyLinks.reserve( 20 ); polygon->_name = quad._name; splits.clear(); for ( int iE = 0; iE < 4; ++iE ) // loop on 4 sides of a quadrangle for ( size_t iS = 0; iS < quad._links[ iE ].NbResultLinks(); ++iS ) splits.push_back( quad._links[ iE ].ResultLink( iS )); if ( splits.size() == 4 && isQuadOnFace( iF )) // check if a quad on FACE is not split { polygon->_links.swap( splits ); continue; // goto the next quad } // add splits of links to a polygon and add _polyLinks to make // polygon's boundary closed int nbSplits = splits.size(); if (( nbSplits == 1 ) && ( quad._eIntNodes.empty() || splits[0].FirstNode()->IsLinked( splits[0].LastNode()->_intPoint ))) //( quad._eIntNodes.empty() || _nbCornerNodes + nbIntersections > 6 )) nbSplits = 0; for ( size_t iP = 0; iP < quad._eIntNodes.size(); ++iP ) if ( quad._eIntNodes[ iP ]->IsUsedInFace( polygon )) quad._eIntNodes[ iP ]->_usedInFace = 0; size_t nbUsedEdgeNodes = 0; _Face* prevPolyg = 0; // polygon previously created from this quad while ( nbSplits > 0 ) { size_t iS = 0; while ( !splits[ iS ] ) ++iS; if ( !polygon->_links.empty() ) { _polygons.resize( _polygons.size() + 1 ); polygon = &_polygons.back(); polygon->_polyLinks.reserve( 20 ); polygon->_name = quad._name; } polygon->_links.push_back( splits[ iS ] ); splits[ iS++ ]._link = 0; --nbSplits; _Node* nFirst = polygon->_links.back().FirstNode(); _Node *n1,*n2 = polygon->_links.back().LastNode(); for ( ; nFirst != n2 && iS < splits.size(); ++iS ) { _OrientedLink& split = splits[ iS ]; if ( !split ) continue; n1 = split.FirstNode(); if ( n1 == n2 && n1->_intPoint && (( n1->_intPoint->_faceIDs.size() > 1 && toCheckSideDivision ) || ( n1->_isInternalFlags ))) { // n1 is at intersection with EDGE if ( findChainOnEdge( splits, polygon->_links.back(), split, concaveFaces, iS, quad, chainNodes )) { for ( size_t i = 1; i < chainNodes.size(); ++i ) polygon->AddPolyLink( chainNodes[i-1], chainNodes[i], prevPolyg ); if ( chainNodes.back() != n1 ) // not a partial cut by INTERNAL FACE { prevPolyg = polygon; n2 = chainNodes.back(); continue; } } } else if ( n1 != n2 ) { // try to connect to intersections with EDGEs if ( quad._eIntNodes.size() > nbUsedEdgeNodes && findChain( n2, n1, quad, chainNodes )) { for ( size_t i = 1; i < chainNodes.size(); ++i ) { polygon->AddPolyLink( chainNodes[i-1], chainNodes[i] ); nbUsedEdgeNodes += ( chainNodes[i]->IsUsedInFace( polygon )); } if ( chainNodes.back() != n1 ) { n2 = chainNodes.back(); --iS; continue; } } // try to connect to a split ending on the same FACE else { _OrientedLink foundSplit; for ( size_t i = iS; i < splits.size() && !foundSplit; ++i ) if (( foundSplit = splits[ i ]) && ( n2->IsLinked( foundSplit.FirstNode()->_intPoint ))) { iS = i - 1; } else { foundSplit._link = 0; } if ( foundSplit ) { if ( n2 != foundSplit.FirstNode() ) { polygon->AddPolyLink( n2, foundSplit.FirstNode() ); n2 = foundSplit.FirstNode(); } continue; } else { if ( n2->IsLinked( nFirst->_intPoint )) break; polygon->AddPolyLink( n2, n1, prevPolyg ); } } } // if ( n1 != n2 ) polygon->_links.push_back( split ); split._link = 0; --nbSplits; n2 = polygon->_links.back().LastNode(); } // loop on splits if ( nFirst != n2 ) // close a polygon { if ( !findChain( n2, nFirst, quad, chainNodes )) { if ( !closePolygon( polygon, chainNodes )) if ( !isImplementEdges() ) chainNodes.push_back( nFirst ); } for ( size_t i = 1; i < chainNodes.size(); ++i ) { polygon->AddPolyLink( chainNodes[i-1], chainNodes[i], prevPolyg ); nbUsedEdgeNodes += bool( chainNodes[i]->IsUsedInFace( polygon )); } } if ( polygon->_links.size() < 3 && nbSplits > 0 ) { polygon->_polyLinks.clear(); polygon->_links.clear(); } } // while ( nbSplits > 0 ) if ( polygon->_links.size() < 3 ) { _polygons.pop_back(); } } // } //================================================================================ /*! * \brief get a remaining link to start from, one lying on minimal nb of FACEs */ Hexahedron::TFaceOfLink Hexahedron::findStartLink(const vector<_OrientedLink*>& freeLinks, std::set& usedFaceIDs) { TFaceOfLink faceOfLink( -1, -1 ); TFaceOfLink facesOfLink[3] = { faceOfLink, faceOfLink, faceOfLink }; for ( size_t iL = 0; iL < freeLinks.size(); ++iL ) { if ( freeLinks[ iL ] ) { std::vector< TGeomID > faces = freeLinks[ iL ]->GetNotUsedFaces( usedFaceIDs ); if ( faces.size() == 1 ) { faceOfLink = TFaceOfLink( faces[0], iL ); if ( !freeLinks[ iL ]->HasEdgeNodes() ) break; facesOfLink[0] = faceOfLink; } else if ( facesOfLink[0].first < 0 ) { faceOfLink = TFaceOfLink(( faces.empty() ? -1 : faces[0]), iL ); facesOfLink[ 1 + faces.empty() ] = faceOfLink; } } } for ( int i = 0; faceOfLink.first < 0 && i < 3; ++i ) { faceOfLink = facesOfLink[i]; } if ( faceOfLink.first < 0 ) { // all faces used for ( size_t iL = 0; iL < freeLinks.size() && faceOfLink.first < 1; ++iL ) { _OrientedLink* curLinkLocal = freeLinks[ iL ]; if ( curLinkLocal ) { faceOfLink.first = curLinkLocal->FirstNode()->IsLinked( curLinkLocal->LastNode()->_intPoint ); faceOfLink.second = iL; } } usedFaceIDs.clear(); } return faceOfLink; } //================================================================================ /*! * \brief find coplanar polygon, if any, and set it to be re-created next */ size_t Hexahedron::findCoplanarPolygon (const _Face& thePolygon, const size_t nbQuadPolygons, std::vector< _OrientedLink* >& freeLinks, int& nbFreeLinks, const E_IntersectPoint& ipTmp, std::set< StdMeshers::Cartesian3D::TGeomID >& usedFaceIDs, std::map< StdMeshers::Cartesian3D::TGeomID, std::vector< const B_IntersectPoint* > >& tmpAddedFace, const StdMeshers::Cartesian3D::TGeomID& curFace) { size_t iPolygon = _polygons.size() - 1; // check that a polygon does not lie on a hexa side _Face* coplanarPolyg = 0; for ( size_t iL = 0; iL < thePolygon._links.size() && !coplanarPolyg; ++iL ) { if ( thePolygon._links[ iL ].NbFaces() >= 2 ) { // if it's not a just added free link // look for a polygon made on a hexa side and sharing // two or more haxa links size_t iL2; coplanarPolyg = thePolygon._links[ iL ]._link->_faces[0]; for ( iL2 = iL + 1; iL2 < thePolygon._links.size(); ++iL2 ) { if ( thePolygon._links[ iL2 ]._link->_faces[0] == coplanarPolyg && !coplanarPolyg->IsPolyLink( thePolygon._links[ iL ]) && !coplanarPolyg->IsPolyLink( thePolygon._links[ iL2 ]) && coplanarPolyg < & _polygons[ nbQuadPolygons ]) break; } if ( iL2 == thePolygon._links.size() ) coplanarPolyg = 0; } } if ( coplanarPolyg ) { // coplanar polygon found freeLinks.resize( freeLinks.size() - thePolygon._polyLinks.size() ); nbFreeLinks -= thePolygon._polyLinks.size(); ipTmp._faceIDs.resize(1); ipTmp._faceIDs[0] = curFace; // fill freeLinks with links not shared by coplanarPolyg and polygon for ( size_t iL = 0; iL < thePolygon._links.size(); ++iL ) { if ( thePolygon._links[ iL ]._link->_faces[1] && thePolygon._links[ iL ]._link->_faces[0] != coplanarPolyg ) { _Face* p = thePolygon._links[ iL ]._link->_faces[0]; for ( size_t iL2 = 0; iL2 < p->_links.size(); ++iL2 ) { if ( p->_links[ iL2 ]._link == thePolygon._links[ iL ]._link ) { freeLinks.push_back( & p->_links[ iL2 ] ); ++nbFreeLinks; freeLinks.back()->RemoveFace( &thePolygon ); break; } } } } for ( size_t iL = 0; iL < coplanarPolyg->_links.size(); ++iL ) { if ( coplanarPolyg->_links[ iL ]._link->_faces[1] && coplanarPolyg->_links[ iL ]._link->_faces[1] != &thePolygon ) { _Face* p = coplanarPolyg->_links[ iL ]._link->_faces[0]; if ( p == coplanarPolyg ) p = coplanarPolyg->_links[ iL ]._link->_faces[1]; for ( size_t iL2 = 0; iL2 < p->_links.size(); ++iL2 ) { if ( p->_links[ iL2 ]._link == coplanarPolyg->_links[ iL ]._link ) { // set links of coplanarPolyg in place of used freeLinks // to re-create coplanarPolyg next size_t iL3 = 0; for ( ; iL3 < freeLinks.size() && freeLinks[ iL3 ]; ++iL3 ); if ( iL3 < freeLinks.size() ) freeLinks[ iL3 ] = ( & p->_links[ iL2 ] ); else freeLinks.push_back( & p->_links[ iL2 ] ); ++nbFreeLinks; freeLinks[ iL3 ]->RemoveFace( coplanarPolyg ); // mark nodes of coplanarPolyg as lying on curFace for ( int iN = 0; iN < 2; ++iN ) { _Node* n = freeLinks[ iL3 ]->_link->_nodes[ iN ]; bool added = false; if ( n->_intPoint ) added = n->_intPoint->Add( ipTmp._faceIDs ); else n->_intPoint = &ipTmp; if ( added ) tmpAddedFace[ ipTmp._faceIDs[0] ].push_back( n->_intPoint ); } break; } } } } // set coplanarPolyg to be re-created next for ( size_t iP = 0; iP < _polygons.size(); ++iP ) { if ( coplanarPolyg == & _polygons[ iP ] ) { iPolygon = iP; _polygons[ iPolygon ]._links.clear(); _polygons[ iPolygon ]._polyLinks.clear(); break; } } _polygons.pop_back(); usedFaceIDs.erase( curFace ); } // if ( coplanarPolyg ) else { iPolygon = _polygons.size(); } return iPolygon; } //================================================================================ /*! * \brief Compute mesh volumes resulted from intersection of the Hexahedron */ bool Hexahedron::compute( const Solid* solid, const IsInternalFlag intFlag ) { _polygons.clear(); _polygons.reserve( 20 ); for ( int iN = 0; iN < 8; ++iN ) _hexNodes[iN]._usedInFace = 0; if ( intFlag & IS_CUT_BY_INTERNAL_FACE && !_grid->_toAddEdges ) // Issue #19913 preventVolumesOverlapping(); const bool hasEdgeIntersections = !_eIntPoints.empty(); // Create polygons from quadrangles defineHexahedralFaces( solid, intFlag ); // Create polygons closing holes in a polyhedron // ---------------------------------------------- // clear _usedInFace for ( size_t iN = 0; iN < _intNodes.size(); ++iN ) _intNodes[ iN ]._usedInFace = 0; // add polygons to their links and mark used nodes for ( size_t iP = 0; iP < _polygons.size(); ++iP ) { _Face& polygon = _polygons[ iP ]; for ( size_t iL = 0; iL < polygon._links.size(); ++iL ) { polygon._links[ iL ].AddFace( &polygon ); polygon._links[ iL ].FirstNode()->_usedInFace = &polygon; } } // find free links vector< _OrientedLink* > freeLinks; freeLinks.reserve(20); for ( size_t iP = 0; iP < _polygons.size(); ++iP ) { _Face& polygon = _polygons[ iP ]; for ( size_t iL = 0; iL < polygon._links.size(); ++iL ) { if ( polygon._links[ iL ].NbFaces() < 2 ) freeLinks.push_back( & polygon._links[ iL ]); } } int nbFreeLinks = freeLinks.size(); if ( nbFreeLinks == 1 ) return false; // put not used intersection nodes to _vIntNodes int nbVertexNodes = 0; // nb not used vertex nodes { for ( size_t iN = 0; iN < _vIntNodes.size(); ++iN ) nbVertexNodes += ( !_vIntNodes[ iN ]->IsUsedInFace() ); const double tol = 1e-3 * Min( Min( _sideLength[0], _sideLength[1] ), _sideLength[0] ); for ( size_t iN = _nbFaceIntNodes; iN < _intNodes.size(); ++iN ) { if ( _intNodes[ iN ].IsUsedInFace() ) continue; if ( dynamic_cast< const F_IntersectPoint* >( _intNodes[ iN ]._intPoint )) continue; _Node* equalNode = findEqualNode( _vIntNodes, _intNodes[ iN ].EdgeIntPnt(), tol*tol ); if ( !equalNode ) { _vIntNodes.push_back( &_intNodes[ iN ]); ++nbVertexNodes; } } } std::set usedFaceIDs; TGeomID curFace = 0; const size_t nbQuadPolygons = _polygons.size(); E_IntersectPoint ipTmp; std::map< TGeomID, std::vector< const B_IntersectPoint* > > tmpAddedFace; // face added to _intPoint // std::cout << "2\n"; // create polygons by making closed chains of free links size_t iPolygon = _polygons.size(); while ( nbFreeLinks > 0 ) { if ( iPolygon == _polygons.size() ) { _polygons.resize( _polygons.size() + 1 ); _polygons[ iPolygon ]._polyLinks.reserve( 20 ); _polygons[ iPolygon ]._links.reserve( 20 ); } _Face& polygon = _polygons[ iPolygon ]; _OrientedLink* curLink = 0; _Node* curNode; if (( !hasEdgeIntersections ) || ( nbFreeLinks < 4 && nbVertexNodes == 0 )) { // get a remaining link to start from for ( size_t iL = 0; iL < freeLinks.size() && !curLink; ++iL ) { curLink = freeLinks[ iL ]; if ( curLink ) freeLinks[ iL ] = 0; } polygon._links.push_back( *curLink ); --nbFreeLinks; do { // find all links connected to curLink curNode = curLink->FirstNode(); curLink = 0; for ( size_t iL = 0; iL < freeLinks.size() && !curLink; ++iL ) if ( freeLinks[ iL ] && freeLinks[ iL ]->LastNode() == curNode ) { curLink = freeLinks[ iL ]; freeLinks[ iL ] = 0; --nbFreeLinks; polygon._links.push_back( *curLink ); } } while ( curLink ); } else // there are intersections with EDGEs { // get a remaining link to start from, one lying on minimal nb of FACEs TFaceOfLink faceOfLink = findStartLink(freeLinks, usedFaceIDs); curFace = faceOfLink.first; curLink = freeLinks[ faceOfLink.second ]; freeLinks[ faceOfLink.second ] = 0; usedFaceIDs.insert( curFace ); polygon._links.push_back( *curLink ); --nbFreeLinks; // find all links lying on a curFace do { // go forward from curLink curNode = curLink->LastNode(); curLink = 0; for ( size_t iL = 0; iL < freeLinks.size() && !curLink; ++iL ) { if ( freeLinks[ iL ] && freeLinks[ iL ]->FirstNode() == curNode && freeLinks[ iL ]->LastNode()->IsOnFace( curFace )) { curLink = freeLinks[ iL ]; freeLinks[ iL ] = 0; polygon._links.push_back( *curLink ); --nbFreeLinks; } } } while ( curLink ); std::reverse( polygon._links.begin(), polygon._links.end() ); curLink = & polygon._links.back(); do { // go backward from curLink curNode = curLink->FirstNode(); curLink = 0; for ( size_t iL = 0; iL < freeLinks.size() && !curLink; ++iL ) { if ( freeLinks[ iL ] && freeLinks[ iL ]->LastNode() == curNode && freeLinks[ iL ]->FirstNode()->IsOnFace( curFace )) { curLink = freeLinks[ iL ]; freeLinks[ iL ] = 0; polygon._links.push_back( *curLink ); --nbFreeLinks; } } } while ( curLink ); curNode = polygon._links.back().FirstNode(); if ( polygon._links[0].LastNode() != curNode ) { if ( nbVertexNodes > 0 ) { // add links with _vIntNodes if not already used vector< _Node* > chainNodes; //chainNodes.clear(); for ( size_t iN = 0; iN < _vIntNodes.size(); ++iN ) { if ( !_vIntNodes[ iN ]->IsUsedInFace() && _vIntNodes[ iN ]->IsOnFace( curFace )) { _vIntNodes[ iN ]->_usedInFace = &polygon; chainNodes.push_back( _vIntNodes[ iN ] ); } } if ( chainNodes.size() > 1 && curFace != _grid->PseudoIntExtFaceID() ) { /////// TODO sortVertexNodes( chainNodes, curNode, curFace ); } for ( size_t i = 0; i < chainNodes.size(); ++i ) { polygon.AddPolyLink( chainNodes[ i ], curNode ); curNode = chainNodes[ i ]; freeLinks.push_back( &polygon._links.back() ); ++nbFreeLinks; } nbVertexNodes -= chainNodes.size(); } // if ( polygon._links.size() > 1 ) { polygon.AddPolyLink( polygon._links[0].LastNode(), curNode ); freeLinks.push_back( &polygon._links.back() ); ++nbFreeLinks; } } } // if there are intersections with EDGEs if ( polygon._links.size() < 2 || polygon._links[0].LastNode() != polygon._links.back().FirstNode() ) { _polygons.clear(); break; // closed polygon not found -> invalid polyhedron } if ( polygon._links.size() == 2 ) { if ( freeLinks.back() == &polygon._links.back() ) { freeLinks.pop_back(); --nbFreeLinks; } if ( polygon._links.front().NbFaces() > 0 ) polygon._links.back().AddFace( polygon._links.front()._link->_faces[0] ); if ( polygon._links.back().NbFaces() > 0 ) polygon._links.front().AddFace( polygon._links.back()._link->_faces[0] ); if ( iPolygon == _polygons.size()-1 ) _polygons.pop_back(); } else // polygon._links.size() > 2 { // add polygon to its links for ( size_t iL = 0; iL < polygon._links.size(); ++iL ) { polygon._links[ iL ].AddFace( &polygon ); polygon._links[ iL ].Reverse(); } if ( /*hasEdgeIntersections &&*/ iPolygon == _polygons.size() - 1 ) { iPolygon = findCoplanarPolygon(polygon, nbQuadPolygons, freeLinks, nbFreeLinks, ipTmp, usedFaceIDs, tmpAddedFace, curFace); } else { iPolygon = _polygons.size(); } } // end of case ( polygon._links.size() > 2 ) } // while ( nbFreeLinks > 0 ) // std::cout << "3\n"; for ( auto & face_ip : tmpAddedFace ) { curFace = face_ip.first; for ( const B_IntersectPoint* ip : face_ip.second ) { auto it = std::find( ip->_faceIDs.begin(), ip->_faceIDs.end(), curFace ); if ( it != ip->_faceIDs.end() ) ip->_faceIDs.erase( it ); } } if ( _polygons.size() < 3 ) return false; // check volume size double volSize = 0; _hasTooSmall = ! checkPolyhedronSize( intFlag & IS_CUT_BY_INTERNAL_FACE, volSize ); for ( size_t i = 0; i < 8; ++i ) { if ( _hexNodes[ i ]._intPoint == &ipTmp ) _hexNodes[ i ]._intPoint = 0; } if ( _hasTooSmall ) return false; // too small volume // Try to find out names of no-name polygons (issue # 19887) if ( _grid->IsToRemoveExcessEntities() && _polygons.back()._name == SMESH_Block::ID_NONE ) { gp_XYZ uvwCenter = 0.5 * ( _grid->_coords[0][_i] + _grid->_coords[0][_i+1] ) * _grid->_axes[0] + 0.5 * ( _grid->_coords[1][_j] + _grid->_coords[1][_j+1] ) * _grid->_axes[1] + 0.5 * ( _grid->_coords[2][_k] + _grid->_coords[2][_k+1] ) * _grid->_axes[2]; for ( size_t i = _polygons.size() - 1; _polygons[i]._name == SMESH_Block::ID_NONE; --i ) { _Face& face = _polygons[ i ]; Bnd_Box bb; gp_Pnt uvw; for ( size_t iL = 0; iL < face._links.size(); ++iL ) { _Node* n = face._links[ iL ].FirstNode(); if ( n ) { gp_XYZ p = SMESH_NodeXYZ( n->Node() ); _grid->ComputeUVW( p, uvw.ChangeCoord().ChangeData() ); bb.Add( uvw ); } } gp_Pnt pMin = bb.CornerMin(); if ( bb.IsXThin( _grid->_tol )) face._name = pMin.X() < uvwCenter.X() ? SMESH_Block::ID_F0yz : SMESH_Block::ID_F1yz; else if ( bb.IsYThin( _grid->_tol )) face._name = pMin.Y() < uvwCenter.Y() ? SMESH_Block::ID_Fx0z : SMESH_Block::ID_Fx1z; else if ( bb.IsZThin( _grid->_tol )) face._name = pMin.Z() < uvwCenter.Z() ? SMESH_Block::ID_Fxy0 : SMESH_Block::ID_Fxy1; } } /* This call is irrelevant here because _volumeDefs datas were not filled! or .... it is potentialy filled by other thread?? */ _volumeDefs._nodes.clear(); _volumeDefs._quantities.clear(); _volumeDefs._names.clear(); // create a classic cell if possible int nbPolygons = 0; for ( size_t iF = 0; iF < _polygons.size(); ++iF ) nbPolygons += (_polygons[ iF ]._links.size() > 2 ); //const int nbNodes = _nbCornerNodes + nbIntersections; int nbNodes = 0; for ( size_t i = 0; i < 8; ++i ) nbNodes += _hexNodes[ i ].IsUsedInFace(); for ( size_t i = 0; i < _intNodes.size(); ++i ) nbNodes += _intNodes[ i ].IsUsedInFace(); bool isClassicElem = false; if ( nbNodes == 8 && nbPolygons == 6 ) isClassicElem = addHexa(); else if ( nbNodes == 4 && nbPolygons == 4 ) isClassicElem = addTetra(); else if ( nbNodes == 6 && nbPolygons == 5 ) isClassicElem = addPenta(); else if ( nbNodes == 5 && nbPolygons == 5 ) isClassicElem = addPyra (); if ( !isClassicElem ) { for ( size_t iF = 0; iF < _polygons.size(); ++iF ) { const size_t nbLinks = _polygons[ iF ]._links.size(); if ( nbLinks < 3 ) continue; _volumeDefs._quantities.push_back( nbLinks ); _volumeDefs._names.push_back( _polygons[ iF ]._name ); for ( size_t iL = 0; iL < nbLinks; ++iL ) _volumeDefs._nodes.push_back( _polygons[ iF ]._links[ iL ].FirstNode() ); } } _volumeDefs._solidID = solid->ID(); _volumeDefs._size = volSize; return !_volumeDefs._nodes.empty(); } #ifdef WITH_TBB template void computeHexa(Type& hex) { if ( hex ) hex->computeElements(); } #endif //================================================================================ /*! * \brief Create elements in the mesh */ int Hexahedron::MakeElements(SMESH_MesherHelper& helper, const map< TGeomID, vector< TGeomID > >& edge2faceIDsMap, const int numOfThreads ) { SMESHDS_Mesh* mesh = helper.GetMeshDS(); CellsAroundLink c( _grid, 0 ); const size_t nbGridCells = c._nbCells[0] * c._nbCells[1] * c._nbCells[2]; vector< Hexahedron* > allHexa( nbGridCells, 0 ); int nbIntHex = 0; // set intersection nodes from GridLine's to links of allHexa int i,j,k, cellIndex, iLink; for ( int iDir = 0; iDir < 3; ++iDir ) { // loop on GridLine's parallel to iDir LineIndexer lineInd = _grid->GetLineIndexer( iDir ); CellsAroundLink fourCells( _grid, iDir ); for ( ; lineInd.More(); ++lineInd ) { GridLine& line = _grid->_lines[ iDir ][ lineInd.LineIndex() ]; multiset< F_IntersectPoint >::const_iterator ip = line._intPoints.begin(); for ( ; ip != line._intPoints.end(); ++ip ) { // if ( !ip->_node ) continue; // intersection at a grid node lineInd.SetIndexOnLine( ip->_indexOnLine ); fourCells.Init( lineInd.I(), lineInd.J(), lineInd.K() ); for ( int iL = 0; iL < 4; ++iL ) // loop on 4 cells sharing a link { if ( !fourCells.GetCell( iL, i,j,k, cellIndex, iLink )) continue; Hexahedron *& hex = allHexa[ cellIndex ]; if ( !hex) { hex = new Hexahedron( *this, i, j, k, cellIndex ); ++nbIntHex; } hex->_hexLinks[iLink]._fIntPoints.push_back( &(*ip) ); hex->_nbFaceIntNodes += bool( ip->_node ); } } } } // implement geom edges into the mesh addEdges( helper, allHexa, edge2faceIDsMap ); // add not split hexahedra to the mesh int nbAdded = 0; TGeomID solidIDs[20]; vector< Hexahedron* > intHexa; intHexa.reserve( nbIntHex ); vector< const SMDS_MeshElement* > boundaryVolumes; boundaryVolumes.reserve( nbIntHex * 1.1 ); for ( size_t i = 0; i < allHexa.size(); ++i ) { // initialize this by not cut allHexa[ i ] Hexahedron * & hex = allHexa[ i ]; if ( hex ) // split hexahedron { intHexa.push_back( hex ); if ( hex->_nbFaceIntNodes > 0 || hex->_eIntPoints.size() > 0 || hex->getSolids( solidIDs ) > 1 ) continue; // treat intersected hex later in parallel this->init( hex->_i, hex->_j, hex->_k ); } else { this->init( i ); // == init(i,j,k) } if (( _nbCornerNodes == 8 ) && ( _nbBndNodes < _nbCornerNodes || !isInHole() )) { // order of _hexNodes is defined by enum SMESH_Block::TShapeID SMDS_MeshElement* el = mesh->AddVolume( _hexNodes[0].Node(), _hexNodes[2].Node(), _hexNodes[3].Node(), _hexNodes[1].Node(), _hexNodes[4].Node(), _hexNodes[6].Node(), _hexNodes[7].Node(), _hexNodes[5].Node() ); TGeomID solidID = 0; if ( _nbBndNodes < _nbCornerNodes ) { for ( int iN = 0; iN < 8 && !solidID; ++iN ) if ( !_hexNodes[iN]._intPoint ) // no intersection solidID = _hexNodes[iN].Node()->GetShapeID(); } else { getSolids( solidIDs ); solidID = solidIDs[0]; } mesh->SetMeshElementOnShape( el, solidID ); ++nbAdded; if ( hex ) intHexa.pop_back(); if ( _grid->_toCreateFaces && _nbBndNodes >= 3 ) { boundaryVolumes.push_back( el ); el->setIsMarked( true ); } } else if ( _nbCornerNodes > 3 && !hex ) { // all intersections of hex with geometry are at grid nodes hex = new Hexahedron( *this, _i, _j, _k, i ); intHexa.push_back( hex ); } } // compute definitions of volumes resulted from hexadron intersection #ifdef WITH_TBB parallel_for(intHexa.begin(), intHexa.end(), computeHexa, numOfThreads ); #else for ( size_t i = 0; i < intHexa.size(); ++i ) if ( Hexahedron * hex = intHexa[ i ] ) hex->computeElements(); #endif // simplify polyhedrons if ( _grid->IsToRemoveExcessEntities() ) { for ( size_t i = 0; i < intHexa.size(); ++i ) if ( Hexahedron * hex = intHexa[ i ] ) hex->removeExcessSideDivision( allHexa ); for ( size_t i = 0; i < intHexa.size(); ++i ) if ( Hexahedron * hex = intHexa[ i ] ) hex->removeExcessNodes( allHexa ); } // add volumes for ( size_t i = 0; i < intHexa.size(); ++i ) if ( Hexahedron * hex = intHexa[ i ] ) nbAdded += hex->addVolumes( helper ); // fill boundaryVolumes with volumes neighboring too small skipped volumes if ( _grid->_toCreateFaces ) { for ( size_t i = 0; i < intHexa.size(); ++i ) if ( Hexahedron * hex = intHexa[ i ] ) hex->getBoundaryElems( boundaryVolumes ); } // merge nodes on outer sub-shapes with pre-existing ones TopTools_DataMapIteratorOfDataMapOfShapeInteger s2nIt( _grid->_geometry._shape2NbNodes ); for ( ; s2nIt.More(); s2nIt.Next() ) if ( s2nIt.Value() > 0 ) if ( SMESHDS_SubMesh* sm = mesh->MeshElements( s2nIt.Key() )) { TIDSortedNodeSet smNodes( SMDS_MeshElement::iterator( sm->GetNodes() ), SMDS_MeshElement::iterator() ); SMESH_MeshEditor::TListOfListOfNodes equalNodes; SMESH_MeshEditor editor( helper.GetMesh() ); editor.FindCoincidentNodes( smNodes, 10 * _grid->_tol, equalNodes, /*SeparateCornersAndMedium =*/ false); if ((int) equalNodes.size() <= s2nIt.Value() ) editor.MergeNodes( equalNodes ); } // create boundary mesh faces addFaces( helper, boundaryVolumes ); // create mesh edges addSegments( helper, edge2faceIDsMap ); for ( size_t i = 0; i < allHexa.size(); ++i ) if ( allHexa[ i ] ) delete allHexa[ i ]; return nbAdded; } //================================================================================ /*! * \brief Implements geom edges into the mesh */ void Hexahedron::addEdges(SMESH_MesherHelper& helper, vector< Hexahedron* >& hexes, const map< TGeomID, vector< TGeomID > >& edge2faceIDsMap) { if ( edge2faceIDsMap.empty() ) return; // Prepare planes for intersecting with EDGEs GridPlanes pln[3]; { for ( int iDirZ = 0; iDirZ < 3; ++iDirZ ) // iDirZ gives normal direction to planes { GridPlanes& planes = pln[ iDirZ ]; int iDirX = ( iDirZ + 1 ) % 3; int iDirY = ( iDirZ + 2 ) % 3; planes._zNorm = ( _grid->_axes[ iDirX ] ^ _grid->_axes[ iDirY ] ).Normalized(); planes._zProjs.resize ( _grid->_coords[ iDirZ ].size() ); planes._zProjs [0] = 0; const double zFactor = _grid->_axes[ iDirZ ] * planes._zNorm; const vector< double > & u = _grid->_coords[ iDirZ ]; for ( size_t i = 1; i < planes._zProjs.size(); ++i ) { planes._zProjs [i] = zFactor * ( u[i] - u[0] ); } } } const double deflection = _grid->_minCellSize / 20.; const double tol = _grid->_tol; E_IntersectPoint ip; TColStd_MapOfInteger intEdgeIDs; // IDs of not shared INTERNAL EDGES // Intersect EDGEs with the planes map< TGeomID, vector< TGeomID > >::const_iterator e2fIt = edge2faceIDsMap.begin(); for ( ; e2fIt != edge2faceIDsMap.end(); ++e2fIt ) { const TGeomID edgeID = e2fIt->first; const TopoDS_Edge & E = TopoDS::Edge( _grid->Shape( edgeID )); BRepAdaptor_Curve curve( E ); TopoDS_Vertex v1 = helper.IthVertex( 0, E, false ); TopoDS_Vertex v2 = helper.IthVertex( 1, E, false ); ip._faceIDs = e2fIt->second; ip._shapeID = edgeID; bool isInternal = ( ip._faceIDs.size() == 1 && _grid->IsInternal( edgeID )); if ( isInternal ) { intEdgeIDs.Add( edgeID ); intEdgeIDs.Add( _grid->ShapeID( v1 )); intEdgeIDs.Add( _grid->ShapeID( v2 )); } // discretize the EDGE GCPnts_UniformDeflection discret( curve, deflection, true ); if ( !discret.IsDone() || discret.NbPoints() < 2 ) continue; // perform intersection E_IntersectPoint* eip, *vip = 0; for ( int iDirZ = 0; iDirZ < 3; ++iDirZ ) { GridPlanes& planes = pln[ iDirZ ]; int iDirX = ( iDirZ + 1 ) % 3; int iDirY = ( iDirZ + 2 ) % 3; double xLen = _grid->_coords[ iDirX ].back() - _grid->_coords[ iDirX ][0]; double yLen = _grid->_coords[ iDirY ].back() - _grid->_coords[ iDirY ][0]; double zLen = _grid->_coords[ iDirZ ].back() - _grid->_coords[ iDirZ ][0]; int dIJK[3], d000[3] = { 0,0,0 }; double o[3] = { _grid->_coords[0][0], _grid->_coords[1][0], _grid->_coords[2][0] }; // locate the 1st point of a segment within the grid gp_XYZ p1 = discret.Value( 1 ).XYZ(); double u1 = discret.Parameter( 1 ); double zProj1 = planes._zNorm * ( p1 - _grid->_origin ); _grid->ComputeUVW( p1, ip._uvw ); int iX1 = int(( ip._uvw[iDirX] - o[iDirX]) / xLen * (_grid->_coords[ iDirX ].size() - 1)); int iY1 = int(( ip._uvw[iDirY] - o[iDirY]) / yLen * (_grid->_coords[ iDirY ].size() - 1)); int iZ1 = int(( ip._uvw[iDirZ] - o[iDirZ]) / zLen * (_grid->_coords[ iDirZ ].size() - 1)); locateValue( iX1, ip._uvw[iDirX], _grid->_coords[ iDirX ], dIJK[ iDirX ], tol ); locateValue( iY1, ip._uvw[iDirY], _grid->_coords[ iDirY ], dIJK[ iDirY ], tol ); locateValue( iZ1, ip._uvw[iDirZ], _grid->_coords[ iDirZ ], dIJK[ iDirZ ], tol ); int ijk[3]; // grid index where a segment intersects a plane ijk[ iDirX ] = iX1; ijk[ iDirY ] = iY1; ijk[ iDirZ ] = iZ1; // add the 1st vertex point to a hexahedron if ( iDirZ == 0 ) { ip._point = p1; ip._shapeID = _grid->ShapeID( v1 ); vip = _grid->Add( ip ); _grid->UpdateFacesOfVertex( *vip, v1 ); if ( isInternal ) vip->_faceIDs.push_back( _grid->PseudoIntExtFaceID() ); if ( !addIntersection( vip, hexes, ijk, d000 )) _grid->Remove( vip ); ip._shapeID = edgeID; } for ( int iP = 2; iP <= discret.NbPoints(); ++iP ) { // locate the 2nd point of a segment within the grid gp_XYZ p2 = discret.Value( iP ).XYZ(); double u2 = discret.Parameter( iP ); double zProj2 = planes._zNorm * ( p2 - _grid->_origin ); int iZ2 = iZ1; if ( Abs( zProj2 - zProj1 ) > std::numeric_limits::min() ) { locateValue( iZ2, zProj2, planes._zProjs, dIJK[ iDirZ ], tol ); // treat intersections with planes between 2 end points of a segment int dZ = ( iZ1 <= iZ2 ) ? +1 : -1; int iZ = iZ1 + ( iZ1 < iZ2 ); for ( int i = 0, nb = Abs( iZ1 - iZ2 ); i < nb; ++i, iZ += dZ ) { ip._point = findIntPoint( u1, zProj1, u2, zProj2, planes._zProjs[ iZ ], curve, planes._zNorm, _grid->_origin ); _grid->ComputeUVW( ip._point.XYZ(), ip._uvw ); locateValue( ijk[iDirX], ip._uvw[iDirX], _grid->_coords[iDirX], dIJK[iDirX], tol ); locateValue( ijk[iDirY], ip._uvw[iDirY], _grid->_coords[iDirY], dIJK[iDirY], tol ); ijk[ iDirZ ] = iZ; // add ip to hex "above" the plane eip = _grid->Add( ip ); if ( isInternal ) eip->_faceIDs.push_back( _grid->PseudoIntExtFaceID() ); dIJK[ iDirZ ] = 0; bool added = addIntersection( eip, hexes, ijk, dIJK); // add ip to hex "below" the plane ijk[ iDirZ ] = iZ-1; if ( !addIntersection( eip, hexes, ijk, dIJK ) && !added ) _grid->Remove( eip ); } } iZ1 = iZ2; p1 = p2; u1 = u2; zProj1 = zProj2; } // add the 2nd vertex point to a hexahedron if ( iDirZ == 0 ) { ip._point = p1; ip._shapeID = _grid->ShapeID( v2 ); _grid->ComputeUVW( p1, ip._uvw ); locateValue( ijk[iDirX], ip._uvw[iDirX], _grid->_coords[iDirX], dIJK[iDirX], tol ); locateValue( ijk[iDirY], ip._uvw[iDirY], _grid->_coords[iDirY], dIJK[iDirY], tol ); ijk[ iDirZ ] = iZ1; bool sameV = ( v1.IsSame( v2 )); if ( !sameV ) { vip = _grid->Add( ip ); _grid->UpdateFacesOfVertex( *vip, v2 ); if ( isInternal ) vip->_faceIDs.push_back( _grid->PseudoIntExtFaceID() ); } if ( !addIntersection( vip, hexes, ijk, d000 ) && !sameV ) _grid->Remove( vip ); ip._shapeID = edgeID; } } // loop on 3 grid directions } // loop on EDGEs if ( intEdgeIDs.Size() > 0 ) cutByExtendedInternal( hexes, intEdgeIDs ); return; } //================================================================================ /*! * \brief Fully cut hexes that are partially cut by INTERNAL FACE. * Cut them by extended INTERNAL FACE. */ void Hexahedron::cutByExtendedInternal( std::vector< Hexahedron* >& hexes, const TColStd_MapOfInteger& intEdgeIDs ) { IntAna_IntConicQuad intersection; SMESHDS_Mesh* meshDS = _grid->_helper->GetMeshDS(); const double tol2 = _grid->_tol * _grid->_tol; for ( size_t iH = 0; iH < hexes.size(); ++iH ) { Hexahedron* hex = hexes[ iH ]; if ( !hex || hex->_eIntPoints.size() < 2 ) continue; if ( !intEdgeIDs.Contains( hex->_eIntPoints.back()->_shapeID )) continue; // get 3 points on INTERNAL FACE to construct a cutting plane gp_Pnt p1 = hex->_eIntPoints[0]->_point; gp_Pnt p2 = hex->_eIntPoints[1]->_point; gp_Pnt p3 = hex->mostDistantInternalPnt( iH, p1, p2 ); gp_Vec norm = gp_Vec( p1, p2 ) ^ gp_Vec( p1, p3 ); gp_Pln pln; try { pln = gp_Pln( p1, norm ); } catch(...) { continue; } TGeomID intFaceID = hex->_eIntPoints.back()->_faceIDs.front(); // FACE being "extended" TGeomID solidID = _grid->GetSolid( intFaceID )->ID(); // cut links by the plane //bool isCut = false; for ( int iLink = 0; iLink < 12; ++iLink ) { _Link& link = hex->_hexLinks[ iLink ]; if ( !link._fIntPoints.empty() ) { // if ( link._fIntPoints[0]->_faceIDs.back() == _grid->PseudoIntExtFaceID() ) // isCut = true; continue; // already cut link } if ( !link._nodes[0]->Node() || !link._nodes[1]->Node() ) continue; // outside link if ( link._nodes[0]->IsOnFace( intFaceID )) { if ( link._nodes[0]->_intPoint->_faceIDs.back() != _grid->PseudoIntExtFaceID() ) if ( p1.SquareDistance( link._nodes[0]->Point() ) < tol2 || p2.SquareDistance( link._nodes[0]->Point() ) < tol2 ) link._nodes[0]->_intPoint->_faceIDs.push_back( _grid->PseudoIntExtFaceID() ); continue; // link is cut by FACE being "extended" } if ( link._nodes[1]->IsOnFace( intFaceID )) { if ( link._nodes[1]->_intPoint->_faceIDs.back() != _grid->PseudoIntExtFaceID() ) if ( p1.SquareDistance( link._nodes[1]->Point() ) < tol2 || p2.SquareDistance( link._nodes[1]->Point() ) < tol2 ) link._nodes[1]->_intPoint->_faceIDs.push_back( _grid->PseudoIntExtFaceID() ); continue; // link is cut by FACE being "extended" } gp_Pnt p4 = link._nodes[0]->Point(); gp_Pnt p5 = link._nodes[1]->Point(); gp_Lin line( p4, gp_Vec( p4, p5 )); intersection.Perform( line, pln ); if ( !intersection.IsDone() || intersection.IsInQuadric() || intersection.IsParallel() || intersection.NbPoints() < 1 ) continue; double u = intersection.ParamOnConic(1); if ( u + _grid->_tol < 0 ) continue; int iDir = iLink / 4; int index = (&hex->_i)[iDir]; double linkLen = _grid->_coords[iDir][index+1] - _grid->_coords[iDir][index]; if ( u - _grid->_tol > linkLen ) continue; if ( u < _grid->_tol || u > linkLen - _grid->_tol ) // intersection at grid node { int i = ! ( u < _grid->_tol ); // [0,1] int iN = link._nodes[ i ] - hex->_hexNodes; // [0-7] const F_IntersectPoint * & ip = _grid->_gridIntP[ hex->_origNodeInd + _grid->_nodeShift[iN] ]; if ( !ip ) { ip = _grid->_extIntPool.getNew(); ip->_faceIDs.push_back( _grid->PseudoIntExtFaceID() ); //ip->_transition = Trans_INTERNAL; } else if ( ip->_faceIDs.back() != _grid->PseudoIntExtFaceID() ) { ip->_faceIDs.push_back( _grid->PseudoIntExtFaceID() ); } hex->_nbFaceIntNodes++; //isCut = true; } else { const gp_Pnt& p = intersection.Point( 1 ); F_IntersectPoint* ip = _grid->_extIntPool.getNew(); ip->_node = meshDS->AddNode( p.X(), p.Y(), p.Z() ); ip->_faceIDs.push_back( _grid->PseudoIntExtFaceID() ); ip->_transition = Trans_INTERNAL; meshDS->SetNodeInVolume( ip->_node, solidID ); CellsAroundLink fourCells( _grid, iDir ); fourCells.Init( hex->_i, hex->_j, hex->_k, iLink ); int i,j,k, cellIndex; for ( int iC = 0; iC < 4; ++iC ) // loop on 4 cells sharing the link { if ( !fourCells.GetCell( iC, i,j,k, cellIndex, iLink )) continue; Hexahedron * h = hexes[ cellIndex ]; if ( !h ) h = hexes[ cellIndex ] = new Hexahedron( *this, i, j, k, cellIndex ); h->_hexLinks[iLink]._fIntPoints.push_back( ip ); h->_nbFaceIntNodes++; //isCut = true; } } } // if ( isCut ) // for ( size_t i = 0; i < hex->_eIntPoints.size(); ++i ) // { // if ( _grid->IsInternal( hex->_eIntPoints[i]->_shapeID ) && // ! hex->_eIntPoints[i]->IsOnFace( _grid->PseudoIntExtFaceID() )) // hex->_eIntPoints[i]->_faceIDs.push_back( _grid->PseudoIntExtFaceID() ); // } continue; } // loop on all hexes return; } //================================================================================ /*! * \brief Return intersection point on INTERNAL FACE most distant from given ones */ gp_Pnt Hexahedron::mostDistantInternalPnt( int hexIndex, const gp_Pnt& p1, const gp_Pnt& p2 ) { gp_Pnt resultPnt = p1; double maxDist2 = 0; for ( int iLink = 0; iLink < 12; ++iLink ) // check links { _Link& link = _hexLinks[ iLink ]; for ( size_t i = 0; i < link._fIntPoints.size(); ++i ) if ( _grid->PseudoIntExtFaceID() != link._fIntPoints[i]->_faceIDs[0] && _grid->IsInternal( link._fIntPoints[i]->_faceIDs[0] ) && link._fIntPoints[i]->_node ) { gp_Pnt p = SMESH_NodeXYZ( link._fIntPoints[i]->_node ); double d = p1.SquareDistance( p ); if ( d > maxDist2 ) { resultPnt = p; maxDist2 = d; } else { d = p2.SquareDistance( p ); if ( d > maxDist2 ) { resultPnt = p; maxDist2 = d; } } } } setIJK( hexIndex ); _origNodeInd = _grid->NodeIndex( _i,_j,_k ); for ( size_t iN = 0; iN < 8; ++iN ) // check corners { _hexNodes[iN]._node = _grid->_nodes [ _origNodeInd + _grid->_nodeShift[iN] ]; _hexNodes[iN]._intPoint = _grid->_gridIntP[ _origNodeInd + _grid->_nodeShift[iN] ]; if ( _hexNodes[iN]._intPoint ) for ( size_t iF = 0; iF < _hexNodes[iN]._intPoint->_faceIDs.size(); ++iF ) { if ( _grid->IsInternal( _hexNodes[iN]._intPoint->_faceIDs[iF])) { gp_Pnt p = SMESH_NodeXYZ( _hexNodes[iN]._node ); double d = p1.SquareDistance( p ); if ( d > maxDist2 ) { resultPnt = p; maxDist2 = d; } else { d = p2.SquareDistance( p ); if ( d > maxDist2 ) { resultPnt = p; maxDist2 = d; } } } } } if ( maxDist2 < _grid->_tol * _grid->_tol ) return p1; return resultPnt; } //================================================================================ /*! * \brief Finds intersection of a curve with a plane * \param [in] u1 - parameter of one curve point * \param [in] proj1 - projection of the curve point to the plane normal * \param [in] u2 - parameter of another curve point * \param [in] proj2 - projection of the other curve point to the plane normal * \param [in] proj - projection of a point where the curve intersects the plane * \param [in] curve - the curve * \param [in] axis - the plane normal * \param [in] origin - the plane origin * \return gp_Pnt - the found intersection point */ gp_Pnt Hexahedron::findIntPoint( double u1, double proj1, double u2, double proj2, double proj, BRepAdaptor_Curve& curve, const gp_XYZ& axis, const gp_XYZ& origin) { double r = (( proj - proj1 ) / ( proj2 - proj1 )); double u = u1 * ( 1 - r ) + u2 * r; gp_Pnt p = curve.Value( u ); double newProj = axis * ( p.XYZ() - origin ); if ( Abs( proj - newProj ) > _grid->_tol / 10. ) { if ( r > 0.5 ) return findIntPoint( u2, proj2, u, newProj, proj, curve, axis, origin ); else return findIntPoint( u1, proj2, u, newProj, proj, curve, axis, origin ); } return p; } //================================================================================ /*! * \brief Returns indices of a hexahedron sub-entities holding a point * \param [in] ip - intersection point * \param [out] facets - 0-3 facets holding a point * \param [out] sub - index of a vertex or an edge holding a point * \return int - number of facets holding a point */ int Hexahedron::getEntity( const E_IntersectPoint* ip, int* facets, int& sub ) { enum { X = 1, Y = 2, Z = 4 }; // == 001, 010, 100 int nbFacets = 0; int vertex = 0, edgeMask = 0; if ( Abs( _grid->_coords[0][ _i ] - ip->_uvw[0] ) < _grid->_tol ) { facets[ nbFacets++ ] = SMESH_Block::ID_F0yz; edgeMask |= X; } else if ( Abs( _grid->_coords[0][ _i+1 ] - ip->_uvw[0] ) < _grid->_tol ) { facets[ nbFacets++ ] = SMESH_Block::ID_F1yz; vertex |= X; edgeMask |= X; } if ( Abs( _grid->_coords[1][ _j ] - ip->_uvw[1] ) < _grid->_tol ) { facets[ nbFacets++ ] = SMESH_Block::ID_Fx0z; edgeMask |= Y; } else if ( Abs( _grid->_coords[1][ _j+1 ] - ip->_uvw[1] ) < _grid->_tol ) { facets[ nbFacets++ ] = SMESH_Block::ID_Fx1z; vertex |= Y; edgeMask |= Y; } if ( Abs( _grid->_coords[2][ _k ] - ip->_uvw[2] ) < _grid->_tol ) { facets[ nbFacets++ ] = SMESH_Block::ID_Fxy0; edgeMask |= Z; } else if ( Abs( _grid->_coords[2][ _k+1 ] - ip->_uvw[2] ) < _grid->_tol ) { facets[ nbFacets++ ] = SMESH_Block::ID_Fxy1; vertex |= Z; edgeMask |= Z; } switch ( nbFacets ) { case 0: sub = 0; break; case 1: sub = facets[0]; break; case 2: { const int edge [3][8] = { { SMESH_Block::ID_E00z, SMESH_Block::ID_E10z, SMESH_Block::ID_E01z, SMESH_Block::ID_E11z }, { SMESH_Block::ID_E0y0, SMESH_Block::ID_E1y0, 0, 0, SMESH_Block::ID_E0y1, SMESH_Block::ID_E1y1 }, { SMESH_Block::ID_Ex00, 0, SMESH_Block::ID_Ex10, 0, SMESH_Block::ID_Ex01, 0, SMESH_Block::ID_Ex11 } }; switch ( edgeMask ) { case X | Y: sub = edge[ 0 ][ vertex ]; break; case X | Z: sub = edge[ 1 ][ vertex ]; break; default: sub = edge[ 2 ][ vertex ]; } break; } //case 3: default: sub = vertex + SMESH_Block::ID_FirstV; } return nbFacets; } //================================================================================ /*! * \brief Adds intersection with an EDGE */ bool Hexahedron::addIntersection( const E_IntersectPoint* ip, vector< Hexahedron* >& hexes, int ijk[], int dIJK[] ) { bool added = false; size_t hexIndex[4] = { _grid->CellIndex( ijk[0], ijk[1], ijk[2] ), dIJK[0] ? _grid->CellIndex( ijk[0]+dIJK[0], ijk[1], ijk[2] ) : -1, dIJK[1] ? _grid->CellIndex( ijk[0], ijk[1]+dIJK[1], ijk[2] ) : -1, dIJK[2] ? _grid->CellIndex( ijk[0], ijk[1], ijk[2]+dIJK[2] ) : -1 }; for ( int i = 0; i < 4; ++i ) { if ( hexIndex[i] < hexes.size() && hexes[ hexIndex[i] ] ) { Hexahedron* h = hexes[ hexIndex[i] ]; h->_eIntPoints.reserve(2); h->_eIntPoints.push_back( ip ); added = true; // check if ip is really inside the hex if (SALOME::VerbosityActivated() && h->isOutParam( ip->_uvw )) throw SALOME_Exception("ip outside a hex"); } } return added; } //================================================================================ /*! * \brief Check if a hexahedron facet lies on a FACE * Also return true if the facet does not interfere with any FACE */ bool Hexahedron::isQuadOnFace( const size_t iQuad ) { _Face& quad = _hexQuads[ iQuad ] ; int nbGridNodesInt = 0; // nb FACE intersections at grid nodes int nbNoGeomNodes = 0; for ( int iE = 0; iE < 4; ++iE ) { nbNoGeomNodes = ( !quad._links[ iE ].FirstNode()->_intPoint && quad._links[ iE ].NbResultLinks() == 1 ); nbGridNodesInt += ( quad._links[ iE ].FirstNode()->_intPoint && quad._links[ iE ].NbResultLinks() == 1 && quad._links[ iE ].ResultLink( 0 ).FirstNode() == quad._links[ iE ].FirstNode() && quad._links[ iE ].ResultLink( 0 ).LastNode() == quad._links[ iE ].LastNode() ); } if ( nbNoGeomNodes == 4 ) return true; if ( nbGridNodesInt == 4 ) // all quad nodes are at FACE intersection { size_t iEmin = 0, minNbFaces = 1000; for ( int iE = 0; iE < 4; ++iE ) // look for a node with min nb FACEs { size_t nbFaces = quad._links[ iE ].FirstNode()->faces().size(); if ( minNbFaces > nbFaces ) { iEmin = iE; minNbFaces = nbFaces; } } // check if there is a FACE passing through all 4 nodes for ( const TGeomID& faceID : quad._links[ iEmin ].FirstNode()->faces() ) { bool allNodesAtFace = true; for ( size_t iE = 0; iE < 4 && allNodesAtFace; ++iE ) allNodesAtFace = ( iE == iEmin || quad._links[ iE ].FirstNode()->IsOnFace( faceID )); if ( allNodesAtFace ) // quad if on faceID return true; } } return false; } //================================================================================ /*! * \brief Finds nodes at a path from one node to another via intersections with EDGEs */ bool Hexahedron::findChain( _Node* n1, _Node* n2, _Face& quad, vector<_Node*>& chn ) { chn.clear(); chn.push_back( n1 ); for ( size_t iP = 0; iP < quad._eIntNodes.size(); ++iP ) if ( !quad._eIntNodes[ iP ]->IsUsedInFace( &quad ) && n1->IsLinked( quad._eIntNodes[ iP ]->_intPoint ) && n2->IsLinked( quad._eIntNodes[ iP ]->_intPoint )) { chn.push_back( quad._eIntNodes[ iP ]); chn.push_back( n2 ); quad._eIntNodes[ iP ]->_usedInFace = &quad; return true; } bool found; do { found = false; for ( size_t iP = 0; iP < quad._eIntNodes.size(); ++iP ) if ( !quad._eIntNodes[ iP ]->IsUsedInFace( &quad ) && chn.back()->IsLinked( quad._eIntNodes[ iP ]->_intPoint )) { chn.push_back( quad._eIntNodes[ iP ]); found = ( quad._eIntNodes[ iP ]->_usedInFace = &quad ); break; } } while ( found && ! chn.back()->IsLinked( n2->_intPoint ) ); if ( chn.back() != n2 && chn.back()->IsLinked( n2->_intPoint )) chn.push_back( n2 ); return chn.size() > 1; } //================================================================================ /*! * \brief Try to heal a polygon whose ends are not connected */ bool Hexahedron::closePolygon( _Face* polygon, vector<_Node*>& chainNodes ) const { int i = -1, nbLinks = polygon->_links.size(); if ( nbLinks < 3 ) return false; vector< _OrientedLink > newLinks; // find a node lying on the same FACE as the last one _Node* node = polygon->_links.back().LastNode(); TGeomID avoidFace = node->IsLinked( polygon->_links.back().FirstNode()->_intPoint ); for ( i = nbLinks - 2; i >= 0; --i ) if ( node->IsLinked( polygon->_links[i].FirstNode()->_intPoint, avoidFace )) break; if ( i >= 0 ) { for ( ; i < nbLinks; ++i ) newLinks.push_back( polygon->_links[i] ); } else { // find a node lying on the same FACE as the first one node = polygon->_links[0].FirstNode(); avoidFace = node->IsLinked( polygon->_links[0].LastNode()->_intPoint ); for ( i = 1; i < nbLinks; ++i ) if ( node->IsLinked( polygon->_links[i].LastNode()->_intPoint, avoidFace )) break; if ( i < nbLinks ) for ( nbLinks = i + 1, i = 0; i < nbLinks; ++i ) newLinks.push_back( polygon->_links[i] ); } if ( newLinks.size() > 1 ) { polygon->_links.swap( newLinks ); chainNodes.clear(); chainNodes.push_back( polygon->_links.back().LastNode() ); chainNodes.push_back( polygon->_links[0].FirstNode() ); return true; } return false; } //================================================================================ /*! * \brief Finds nodes on the same EDGE as the first node of avoidSplit. * * This function is for * 1) a case where an EDGE lies on a quad which lies on a FACE * so that a part of quad in ON and another part is IN * 2) INTERNAL FACE passes through the 1st node of avoidSplit */ bool Hexahedron::findChainOnEdge( const vector< _OrientedLink >& splits, const _OrientedLink& prevSplit, const _OrientedLink& avoidSplit, const std::set< TGeomID > & concaveFaces, size_t & iS, _Face& quad, vector<_Node*>& chn ) { _Node* pn1 = prevSplit.FirstNode(); _Node* pn2 = prevSplit.LastNode(); // pn2 is on EDGE, if not on INTERNAL FACE _Node* an3 = avoidSplit.LastNode(); TGeomID avoidFace = pn1->IsLinked( pn2->_intPoint ); // FACE under the quad if ( avoidFace < 1 && pn1->_intPoint ) return false; chn.clear(); if ( !quad._eIntNodes.empty() ) // connect pn2 with EDGE intersections { chn.push_back( pn2 ); bool found; do { found = false; for ( size_t iP = 0; iP < quad._eIntNodes.size(); ++iP ) if (( !quad._eIntNodes[ iP ]->IsUsedInFace( &quad )) && ( chn.back()->IsLinked( quad._eIntNodes[ iP ]->_intPoint, avoidFace )) && ( !avoidFace || quad._eIntNodes[ iP ]->IsOnFace( avoidFace ))) { chn.push_back( quad._eIntNodes[ iP ]); found = ( quad._eIntNodes[ iP ]->_usedInFace = &quad ); break; } } while ( found ); pn2 = chn.back(); } _Node* n = 0, *stopNode = avoidSplit.LastNode(); if ( pn2 == prevSplit.LastNode() && // pn2 is at avoidSplit.FirstNode() !isCorner( stopNode )) // stopNode is in the middle of a _hexLinks { // move stopNode to a _hexNodes for ( int iE = 0; iE < 4; ++iE ) // loop on 4 sides of a quadrangle for ( size_t iL = 0; iL < quad._links[ iE ].NbResultLinks(); ++iL ) { const _Link* sideSplit = & quad._links[ iE ]._link->_splits[ iL ]; if ( sideSplit == avoidSplit._link ) { if ( quad._links[ iE ].LastNode()->Node() ) stopNode = quad._links[ iE ].LastNode(); iE = 4; break; } } } // connect pn2 (probably new, at _eIntNodes) with a split int i, iConn = 0; size_t nbCommon; TGeomID commonFaces[20]; _Node* nPrev = nullptr; for ( i = splits.size()-1; i >= 0; --i ) { if ( !splits[i] ) continue; bool stop = false; for ( int is1st = 0; is1st < 2; ++is1st ) { _Node* nConn = is1st ? splits[i].FirstNode() : splits[i].LastNode(); if ( nConn == nPrev ) { if ( n == nConn ) iConn = i; continue; } nPrev = nConn; if (( stop = ( nConn == stopNode ))) break; // find a FACE connecting nConn with pn2 but not with an3 if (( nConn != pn1 ) && ( nConn->_intPoint && !nConn->_intPoint->_faceIDs.empty() ) && ( nbCommon = nConn->GetCommonFaces( pn2->_intPoint, commonFaces ))) { bool a3Coonect = true; for ( size_t iF = 0; iF < nbCommon && a3Coonect; ++iF ) a3Coonect = an3->IsOnFace( commonFaces[ iF ]) || concaveFaces.count( commonFaces[ iF ]); if ( a3Coonect ) continue; if ( !n ) { n = nConn; iConn = i + !is1st; } if ( nbCommon > 1 ) // nConn is linked with pn2 by an EDGE { n = nConn; iConn = i + !is1st; stop = true; break; } } } if ( stop ) { i = iConn; break; } } if ( n && n != stopNode ) { if ( chn.empty() ) chn.push_back( pn2 ); chn.push_back( n ); iS = i-1; return true; } else if ( !chn.empty() && chn.back()->_isInternalFlags ) { // INTERNAL FACE partially cuts the quad for ( int ip = chn.size() - 2; ip >= 0; --ip ) chn.push_back( chn[ ip ]); return true; } return false; } //================================================================================ /*! * \brief Checks transition at the ginen intersection node of a link */ bool Hexahedron::isOutPoint( _Link& link, int iP, SMESH_MesherHelper& helper, const Solid* solid ) const { bool isOut = false; if ( link._fIntNodes[iP]->faces().size() == 1 && _grid->IsInternal( link._fIntNodes[iP]->face(0) )) return false; const bool moreIntPoints = ( iP+1 < (int) link._fIntNodes.size() ); // get 2 _Node's _Node* n1 = link._fIntNodes[ iP ]; if ( !n1->Node() ) n1 = link._nodes[0]; _Node* n2 = moreIntPoints ? link._fIntNodes[ iP+1 ] : 0; if ( !n2 || !n2->Node() ) n2 = link._nodes[1]; if ( !n2->Node() ) return true; // get all FACEs under n1 and n2 set< TGeomID > faceIDs; if ( moreIntPoints ) faceIDs.insert( link._fIntNodes[iP+1]->faces().begin(), link._fIntNodes[iP+1]->faces().end() ); if ( n2->_intPoint ) faceIDs.insert( n2->_intPoint->_faceIDs.begin(), n2->_intPoint->_faceIDs.end() ); if ( faceIDs.empty() ) return false; // n2 is inside if ( n1->_intPoint ) faceIDs.insert( n1->_intPoint->_faceIDs.begin(), n1->_intPoint->_faceIDs.end() ); faceIDs.insert( link._fIntNodes[iP]->faces().begin(), link._fIntNodes[iP]->faces().end() ); // get a point between 2 nodes gp_Pnt p1 = n1->Point(); gp_Pnt p2 = n2->Point(); gp_Pnt pOnLink = 0.8 * p1.XYZ() + 0.2 * p2.XYZ(); TopLoc_Location loc; set< TGeomID >::iterator faceID = faceIDs.begin(); for ( ; faceID != faceIDs.end(); ++faceID ) { // project pOnLink on a FACE if ( *faceID < 1 || !solid->Contains( *faceID )) continue; const TopoDS_Face& face = TopoDS::Face( _grid->Shape( *faceID )); GeomAPI_ProjectPointOnSurf& proj = helper.GetProjector( face, loc, 0.1*_grid->_tol ); gp_Pnt testPnt = pOnLink.Transformed( loc.Transformation().Inverted() ); proj.Perform( testPnt ); if ( proj.IsDone() && proj.NbPoints() > 0 ) { Standard_Real u,v; proj.LowerDistanceParameters( u,v ); if ( proj.LowerDistance() <= 0.1 * _grid->_tol ) { isOut = false; } else { // find isOut by normals gp_Dir normal; if ( GeomLib::NormEstim( BRep_Tool::Surface( face, loc ), gp_Pnt2d( u,v ), 0.1*_grid->_tol, normal ) < 3 ) { if ( solid->Orientation( face ) == TopAbs_REVERSED ) normal.Reverse(); gp_Vec v( proj.NearestPoint(), testPnt ); isOut = ( v * normal > 0 ); } } if ( !isOut ) { // classify a projection if ( !n1->IsOnFace( *faceID ) || !n2->IsOnFace( *faceID )) { BRepTopAdaptor_FClass2d cls( face, Precision::Confusion() ); TopAbs_State state = cls.Perform( gp_Pnt2d( u,v )); if ( state == TopAbs_OUT ) { isOut = true; continue; } } return false; } } } return isOut; } //================================================================================ /*! * \brief Sort nodes on a FACE */ void Hexahedron::sortVertexNodes(vector<_Node*>& nodes, _Node* curNode, TGeomID faceID) { if ( nodes.size() > 20 ) return; // get shapes under nodes TGeomID nShapeIds[20], *nShapeIdsEnd = &nShapeIds[0] + nodes.size(); for ( size_t i = 0; i < nodes.size(); ++i ) if ( !( nShapeIds[i] = nodes[i]->ShapeID() )) return; // get shapes of the FACE const TopoDS_Face& face = TopoDS::Face( _grid->Shape( faceID )); list< TopoDS_Edge > edges; list< int > nbEdges; int nbW = SMESH_Block::GetOrderedEdges (face, edges, nbEdges); if ( nbW > 1 ) { // select a WIRE - remove EDGEs of irrelevant WIREs from edges list< TopoDS_Edge >::iterator e = edges.begin(), eEnd = e; list< int >::iterator nE = nbEdges.begin(); for ( ; nbW > 0; ++nE, --nbW ) { std::advance( eEnd, *nE ); for ( ; e != eEnd; ++e ) for ( int i = 0; i < 2; ++i ) { TGeomID id = i==0 ? _grid->ShapeID( *e ) : _grid->ShapeID( SMESH_MesherHelper::IthVertex( 0, *e )); if (( id > 0 ) && ( std::find( &nShapeIds[0], nShapeIdsEnd, id ) != nShapeIdsEnd )) { edges.erase( eEnd, edges.end() ); // remove rest wires e = eEnd = edges.end(); --e; nbW = 0; break; } } if ( nbW > 0 ) edges.erase( edges.begin(), eEnd ); // remove a current irrelevant wire } } // rotate edges to have the first one at least partially out of the hexa list< TopoDS_Edge >::iterator e = edges.begin(), eMidOut = edges.end(); for ( ; e != edges.end(); ++e ) { if ( !_grid->ShapeID( *e )) continue; bool isOut = false; gp_Pnt p; double uvw[3], f,l; for ( int i = 0; i < 2 && !isOut; ++i ) { if ( i == 0 ) { TopoDS_Vertex v = SMESH_MesherHelper::IthVertex( 0, *e ); p = BRep_Tool::Pnt( v ); } else if ( eMidOut == edges.end() ) { TopLoc_Location loc; Handle(Geom_Curve) c = BRep_Tool::Curve( *e, loc, f, l); if ( c.IsNull() ) break; p = c->Value( 0.5 * ( f + l )).Transformed( loc ); } else { continue; } _grid->ComputeUVW( p.XYZ(), uvw ); if ( isOutParam( uvw )) { if ( i == 0 ) isOut = true; else eMidOut = e; } } if ( isOut ) break; } if ( e != edges.end() ) edges.splice( edges.end(), edges, edges.begin(), e ); else if ( eMidOut != edges.end() ) edges.splice( edges.end(), edges, edges.begin(), eMidOut ); // sort nodes according to the order of edges _Node* orderNodes [20]; //TGeomID orderShapeIDs[20]; size_t nbN = 0; TGeomID id, *pID = 0; for ( e = edges.begin(); e != edges.end(); ++e ) { if (( id = _grid->ShapeID( SMESH_MesherHelper::IthVertex( 0, *e ))) && (( pID = std::find( &nShapeIds[0], nShapeIdsEnd, id )) != nShapeIdsEnd )) { //orderShapeIDs[ nbN ] = id; orderNodes [ nbN++ ] = nodes[ pID - &nShapeIds[0] ]; *pID = -1; } if (( id = _grid->ShapeID( *e )) && (( pID = std::find( &nShapeIds[0], nShapeIdsEnd, id )) != nShapeIdsEnd )) { //orderShapeIDs[ nbN ] = id; orderNodes [ nbN++ ] = nodes[ pID - &nShapeIds[0] ]; *pID = -1; } } if ( nbN != nodes.size() ) return; bool reverse = ( orderNodes[0 ]->Point().SquareDistance( curNode->Point() ) > orderNodes[nbN-1]->Point().SquareDistance( curNode->Point() )); for ( size_t i = 0; i < nodes.size(); ++i ) nodes[ i ] = orderNodes[ reverse ? nbN-1-i : i ]; } //================================================================================ /*! * \brief Adds computed elements to the mesh */ int Hexahedron::addVolumes( SMESH_MesherHelper& helper ) { F_IntersectPoint noIntPnt; const bool toCheckNodePos = _grid->IsToCheckNodePos(); const bool useQuanta = _grid->_toUseQuanta; int nbAdded = 0; // add elements resulted from hexahedron intersection for ( _volumeDef* volDef = &_volumeDefs; volDef; volDef = volDef->_next ) { vector< const SMDS_MeshNode* > nodes( volDef->_nodes.size() ); for ( size_t iN = 0; iN < nodes.size(); ++iN ) { if ( !( nodes[iN] = volDef->_nodes[iN].Node() )) { if ( const E_IntersectPoint* eip = volDef->_nodes[iN].EdgeIntPnt() ) { nodes[iN] = volDef->_nodes[iN]._intPoint->_node = helper.AddNode( eip->_point.X(), eip->_point.Y(), eip->_point.Z() ); if ( _grid->ShapeType( eip->_shapeID ) == TopAbs_VERTEX ) helper.GetMeshDS()->SetNodeOnVertex( nodes[iN], eip->_shapeID ); else helper.GetMeshDS()->SetNodeOnEdge( nodes[iN], eip->_shapeID ); } else throw SALOME_Exception("Bug: no node at intersection point"); } else if ( volDef->_nodes[iN]._intPoint && volDef->_nodes[iN]._intPoint->_node == volDef->_nodes[iN]._node ) { // Update position of node at EDGE intersection; // see comment to _Node::Add( E_IntersectPoint ) SMESHDS_Mesh* mesh = helper.GetMeshDS(); TGeomID shapeID = volDef->_nodes[iN].EdgeIntPnt()->_shapeID; mesh->UnSetNodeOnShape( nodes[iN] ); if ( _grid->ShapeType( shapeID ) == TopAbs_VERTEX ) mesh->SetNodeOnVertex( nodes[iN], shapeID ); else mesh->SetNodeOnEdge( nodes[iN], shapeID ); } else if ( toCheckNodePos && !nodes[iN]->isMarked() && _grid->ShapeType( nodes[iN]->GetShapeID() ) == TopAbs_FACE ) { _grid->SetOnShape( nodes[iN], noIntPnt, /*v=*/nullptr,/*unset=*/true ); nodes[iN]->setIsMarked( true ); } } // loop to get nodes const SMDS_MeshElement* v = 0; if ( !volDef->_quantities.empty() ) { if ( !useQuanta ) { // Try to find and fix geometry issues const bool hasDividedPolygons = volDef->divideOverlappingPolygons(); const bool hasFixedOpenEdges = volDef->fixOpenEdgesPolygons(); // Update nodes if the geometry was changed if (hasDividedPolygons || hasFixedOpenEdges) { nodes.clear(); nodes.resize(volDef->_nodes.size()); for (size_t i = 0; i < nodes.size(); ++i) { nodes[i] = volDef->_nodes[i].Node(); } } // split polyhedrons of with disjoint volumes std::vector> splitQuantities; std::vector > splitNodes; if ( checkPolyhedronValidity( volDef, splitQuantities, splitNodes ) == 1 ) v = addPolyhedronToMesh( volDef, helper, nodes, volDef->_quantities ); else { int counter = -1; for (size_t id = 0; id < splitQuantities.size(); id++) { v = addPolyhedronToMesh( volDef, helper, splitNodes[ id ], splitQuantities[ id ] ); if ( id < splitQuantities.size()-1 ) volDef->_brotherVolume.push_back( v ); counter++; } nbAdded += counter; } } else { const double quanta = _grid->_quanta; double polyVol = volDef->_size; double hexaVolume = _sideLength[0] * _sideLength[1] * _sideLength[2]; if ( hexaVolume > 0.0 && polyVol/hexaVolume >= quanta /*set the volume if the relation is satisfied*/) v = helper.AddVolume( _hexNodes[0].BoundaryNode(), _hexNodes[2].BoundaryNode(), _hexNodes[3].BoundaryNode(), _hexNodes[1].BoundaryNode(), _hexNodes[4].BoundaryNode(), _hexNodes[6].BoundaryNode(), _hexNodes[7].BoundaryNode(), _hexNodes[5].BoundaryNode() ); } } else { switch ( nodes.size() ) { case 8: v = helper.AddVolume( nodes[0],nodes[1],nodes[2],nodes[3], nodes[4],nodes[5],nodes[6],nodes[7] ); break; case 4: v = helper.AddVolume( nodes[0],nodes[1],nodes[2],nodes[3] ); break; case 6: v = helper.AddVolume( nodes[0],nodes[1],nodes[2],nodes[3],nodes[4],nodes[5] ); break; case 5: v = helper.AddVolume( nodes[0],nodes[1],nodes[2],nodes[3],nodes[4] ); break; } } volDef->_volume = v; nbAdded += bool( v ); } // loop on _volumeDefs chain // avoid creating overlapping volumes (bos #24052) if ( nbAdded > 1 ) { double sumSize = 0, maxSize = 0; _volumeDef* maxSizeDef = nullptr; for ( _volumeDef* volDef = &_volumeDefs; volDef; volDef = volDef->_next ) { if ( !volDef->_volume ) continue; sumSize += volDef->_size; if ( volDef->_size > maxSize ) { maxSize = volDef->_size; maxSizeDef = volDef; } } if ( sumSize > _sideLength[0] * _sideLength[1] * _sideLength[2] * 1.05 ) { for ( _volumeDef* volDef = &_volumeDefs; volDef; volDef = volDef->_next ) if ( volDef != maxSizeDef && volDef->_volume ) { helper.GetMeshDS()->RemoveFreeElement( volDef->_volume, /*sm=*/nullptr, /*fromGroups=*/false ); volDef->_volume = nullptr; //volDef->_nodes.clear(); --nbAdded; } } } for ( _volumeDef* volDef = &_volumeDefs; volDef; volDef = volDef->_next ) { if ( volDef->_volume ) { helper.GetMeshDS()->SetMeshElementOnShape( volDef->_volume, volDef->_solidID ); for (auto broVol : volDef->_brotherVolume ) { helper.GetMeshDS()->SetMeshElementOnShape( broVol, volDef->_solidID ); } } } return nbAdded; } //================================================================================ /*! * \brief Return true if the element is in a hole * \remark consider a cell to be in a hole if all links in any direction * comes OUT of geometry */ bool Hexahedron::isInHole() const { if ( !_vIntNodes.empty() ) return false; const size_t ijk[3] = { _i, _j, _k }; F_IntersectPoint curIntPnt; // consider a cell to be in a hole if all links in any direction // comes OUT of geometry for ( int iDir = 0; iDir < 3; ++iDir ) { const vector& coords = _grid->_coords[ iDir ]; LineIndexer li = _grid->GetLineIndexer( iDir ); li.SetIJK( _i,_j,_k ); size_t lineIndex[4] = { li.LineIndex (), li.LineIndex10(), li.LineIndex01(), li.LineIndex11() }; bool allLinksOut = true, hasLinks = false; for ( int iL = 0; iL < 4 && allLinksOut; ++iL ) // loop on 4 links parallel to iDir { const _Link& link = _hexLinks[ iL + 4*iDir ]; // check transition of the first node of a link const F_IntersectPoint* firstIntPnt = 0; if ( link._nodes[0]->Node() ) // 1st node is a hexa corner { curIntPnt._paramOnLine = coords[ ijk[ iDir ]] - coords[0] + _grid->_tol; const GridLine& line = _grid->_lines[ iDir ][ lineIndex[ iL ]]; if ( !line._intPoints.empty() ) { multiset< F_IntersectPoint >::const_iterator ip = line._intPoints.upper_bound( curIntPnt ); --ip; firstIntPnt = &(*ip); } } else if ( !link._fIntPoints.empty() ) { firstIntPnt = link._fIntPoints[0]; } if ( firstIntPnt ) { hasLinks = true; allLinksOut = ( firstIntPnt->_transition == Trans_OUT && !_grid->IsShared( firstIntPnt->_faceIDs[0] )); } } if ( hasLinks && allLinksOut ) return true; } return false; } //================================================================================ /*! * \brief Check if a polyherdon has an edge lying on EDGE shared by strange FACE * that will be meshed by other algo */ bool Hexahedron::hasStrangeEdge() const { if ( _eIntPoints.size() < 2 ) return false; TopTools_MapOfShape edges; for ( size_t i = 0; i < _eIntPoints.size(); ++i ) { if ( !_grid->IsStrangeEdge( _eIntPoints[i]->_shapeID )) continue; const TopoDS_Shape& s = _grid->Shape( _eIntPoints[i]->_shapeID ); if ( s.ShapeType() == TopAbs_EDGE ) { if ( ! edges.Add( s )) return true; // an EDGE encounters twice } else { PShapeIteratorPtr edgeIt = _grid->_helper->GetAncestors( s, *_grid->_helper->GetMesh(), TopAbs_EDGE ); while ( const TopoDS_Shape* edge = edgeIt->next() ) if ( ! edges.Add( *edge )) return true; // an EDGE encounters twice } } return false; } //================================================================================ /*! * \brief Return true if a polyhedron passes _sizeThreshold criterion */ bool Hexahedron::checkPolyhedronSize( bool cutByInternalFace, double & volume) const { volume = 0; if ( cutByInternalFace && !_grid->_toUseThresholdForInternalFaces ) { // check if any polygon fully lies on shared/internal FACEs for ( size_t iP = 0; iP < _polygons.size(); ++iP ) { const _Face& polygon = _polygons[iP]; if ( polygon._links.empty() ) continue; bool allNodesInternal = true; for ( size_t iL = 0; iL < polygon._links.size() && allNodesInternal; ++iL ) { _Node* n = polygon._links[ iL ].FirstNode(); allNodesInternal = (( n->IsCutByInternal() ) || ( n->_intPoint && _grid->IsAnyShared( n->_intPoint->_faceIDs ))); } if ( allNodesInternal ) return true; } } for ( size_t iP = 0; iP < _polygons.size(); ++iP ) { const _Face& polygon = _polygons[iP]; if ( polygon._links.empty() ) continue; gp_XYZ area (0,0,0); gp_XYZ p1 = polygon._links[ 0 ].FirstNode()->Point().XYZ(); for ( size_t iL = 0; iL < polygon._links.size(); ++iL ) { gp_XYZ p2 = polygon._links[ iL ].LastNode()->Point().XYZ(); area += p1 ^ p2; p1 = p2; } volume += p1 * area; } volume /= 6; if ( this->hasStrangeEdge() && volume > 1e-13 ) return true; double initVolume = _sideLength[0] * _sideLength[1] * _sideLength[2]; return volume > initVolume / _grid->_sizeThreshold; } //================================================================================ /*! * \brief Returns an index of the first node of the given polygon in the _nodes container. */ int Hexahedron::_volumeDef::getStartNodeIndex(const int polygon) const { return std::accumulate(_quantities.begin(), _quantities.begin() + polygon, 0); } //================================================================================ /*! * \brief Returns a vector of sets of edges like {{ nodeId1, nodeId2 }, { nodeId2, nodeId3 }} * where an index of element in the vector is an index of polygon in the volume. * Nodes ids in the pairs are sorted, so index of a first node is always less than second. */ std::vector>> Hexahedron::_volumeDef::getPolygonsEdges() const { if (_quantities.empty()) return {}; const int numOfPolygons = _quantities.size(); std::vector>> polygonsEdges(numOfPolygons); auto storeEdge = [&](const int polygon, const int idx1, const int idx2) -> void { const int firstNode = _nodes[idx1].Node()->GetID(); const int secondNode = _nodes[idx2].Node()->GetID(); polygonsEdges[polygon].emplace( std::min(firstNode, secondNode), std::max(firstNode, secondNode)); }; // Go over all polygons in this volume int numOfNodesCounter = 0; for (int i = 0; i < numOfPolygons; ++i) { const int numOfNodesInPolygon = _quantities[i]; // Iterate pairs of nodes for each edge const int lastIndex = numOfNodesCounter + numOfNodesInPolygon - 1; for (int j = numOfNodesCounter; j < lastIndex; ++j) { storeEdge(i, j, j + 1); } // Store an edge connected last and first nodes to close the polygon storeEdge(i, lastIndex, numOfNodesCounter); numOfNodesCounter += numOfNodesInPolygon; } // Debug output // MESSAGE("Collected edges for " << numOfPolygons << " polygons: "); // for (size_t i = 0; i < polygonsEdges.size(); ++i) // { // MESSAGE("Polygon " << i << ": "); // int j = 0; // for (const auto& edge : polygonsEdges[i]) // { // MESSAGE("Edge " << j++ << ": " << edge.first << ", " << edge.second); // } // } return polygonsEdges; } //================================================================================ /*! * \brief Finds polygons with at least one edge not connected to any other polygon. * Returns a vector of sets of edges like {{ nodeId1, nodeId2 }, { nodeId2, nodeId3 }} * where an index of element in the vector is an index of polygon in the volume. * Nodes ids in the pairs are sorted, so index of a first node is always less than second. */ std::vector>> Hexahedron::_volumeDef::findOpenEdges() const { if (_quantities.empty()) { MESSAGE("Volume doesn't have any polygons"); return {}; } // Check every polygon if it has at least one edge not connected to other polygon const int numOfPolygons = _quantities.size(); std::vector>> edgesByPolygon = getPolygonsEdges(); // Check if nodes pairs presented in other polygons for (int i = 0; i < numOfPolygons - 1; ++i) { auto& edges = edgesByPolygon[i]; for (auto edge = edges.begin(); edge != edges.end(); /* ++edge */) { // Iterate other polygons to find matching pairs bool edgeFound = false; for (int j = i + 1; j < numOfPolygons; ++j) { auto& otherEdges = edgesByPolygon[j]; auto foundEdge = otherEdges.find(*edge); if (foundEdge != otherEdges.end()) { // We can have more than two the same edges in the volume. // For example, when two parts of the volume connected by one polygon. // So, we can't break here and must continue to search. otherEdges.erase(foundEdge); edgeFound = true; } } if (edgeFound) { auto curEdge = edge; ++edge; edges.erase(curEdge); } else ++edge; } } return edgesByPolygon; } //================================================================================ /*! * \brief Finds in the volume a polygon with such a set of edges that is a subset * of edges of other polygon. Returns a map where a key is a larger polygon, * the value - is a smaller polygon that is a subset of larger, followed by * two nodes those we need to connect in a process of cutting of the first polygon. * If the second poly is a complete clone of the first one, both nodes will be -1. */ std::map> Hexahedron::_volumeDef::findOverlappingPolygons() const { std::vector>> polygonsEdges = getPolygonsEdges(); if (polygonsEdges.empty()) return {}; auto isOverlappedSet = [](const std::set>& set1, const std::set>& set2, std::set>& diff) -> bool { diff.clear(); if (set1.size() > set2.size()) std::set_difference(set2.begin(), set2.end(), set1.begin(), set1.end(), std::inserter(diff, diff.begin())); else std::set_difference(set1.begin(), set1.end(), set2.begin(), set2.end(), std::inserter(diff, diff.begin())); return diff.size() <= 1; }; // The key is a larger polygon, the value - is a smaller polygon that is a subset of larger, // followed by two nodes those we need to connect in a process of cutting of the first polygon. std::map> overlappedPolygons; // Check all the polygons one by one const int numOfPolygons = polygonsEdges.size(); for (int i = 0; i < numOfPolygons - 1; ++i) { const auto& edges = polygonsEdges[i]; bool isOverlapped = false; int largerPolygon = i; int smallerPolygon = -1; std::set> diff; for (int j = i + 1; j < numOfPolygons; ++j) { const auto& otherEdges = polygonsEdges[j]; if (isOverlappedSet(edges, otherEdges, diff)) { isOverlapped = true; smallerPolygon = j; if (edges.size() < otherEdges.size()) { largerPolygon = j; smallerPolygon = i; } // At this moment don't expect more than two overlapped polygons. // TODO: check if we need to consider the case of multiple polygons. break; } } // Store results if (isOverlapped) { int node1 = diff.empty() ? -1 : diff.begin()->first; int node2 = diff.empty() ? -1 : diff.begin()->second; overlappedPolygons.emplace(largerPolygon, std::vector { smallerPolygon, node1, node2 }); } } return overlappedPolygons; } //================================================================================ /*! * \brief Finds in the volume a polygon with such a set of edges that is a subset * of edges of other polygon. Then we can remove these edges from a larger * polygon and have as a result two connected polygons those are * next to each other instead of being overlapped. * We can't just delete the smaller polygon, because it could be a part of * separated volume that can be revealed later in checkPolyhedronValidity(). * Returns true if at least one polygon was changed. */ bool Hexahedron::_volumeDef::divideOverlappingPolygons() { // The key is a larger polygon, the value - is a smaller polygon that is a subset of larger, // followed by two nodes those we need to connect in a process of cutting of the first polygon. const std::map> overlappedPolygons = findOverlappingPolygons(); if (overlappedPolygons.empty()) return false; // Here we have at least one pair of overlapped polygons. // The smaller one should stay intact, but the larger need to be reduced by nodes // of the smaller one except nodes for the close edge. std::set nodesIndexesToErase; std::map quantsUpdatedValues; for (auto polygon = overlappedPolygons.rbegin(); polygon != overlappedPolygons.rend(); ++polygon) { const int largerPolygon = polygon->first; const int smallerPolygon = polygon->second[0]; const int edgeNode1 = polygon->second[1]; const int startNodeIndex = getStartNodeIndex(largerPolygon); MESSAGE("Overlapped: " << largerPolygon << ", " << smallerPolygon << ". Edge node: " << edgeNode1 << ", " << polygon->second[2]); // We expect to have valid ids here, exclude the case when both polygons are the same (-1 node). if (edgeNode1 != -1) { // Remove redundant nodes from the larger polygon const int otherStartNodeIndex = getStartNodeIndex(smallerPolygon); const int edgeNode2 = polygon->second[2]; quantsUpdatedValues[largerPolygon] = _quantities[largerPolygon]; SCRUTE(quantsUpdatedValues[largerPolygon]); for (int i = startNodeIndex; i < startNodeIndex + _quantities[largerPolygon]; ++i) { const int thisNodeId = _nodes[i].Node()->GetID(); MESSAGE("thisNodeId " << thisNodeId << " at index " << i); // Skip nodes from the close edge if (thisNodeId == edgeNode1 || thisNodeId == edgeNode2) continue; for (int j = otherStartNodeIndex; j < otherStartNodeIndex + _quantities[smallerPolygon]; ++j) { const int otherNodeId = _nodes[j].Node()->GetID(); MESSAGE("otherNodeId " << otherNodeId << " at index " << j); if (thisNodeId == otherNodeId) { // Add to be erased later nodesIndexesToErase.insert(i); --quantsUpdatedValues[largerPolygon]; MESSAGE("Set to erase node " << thisNodeId << " at index " << i); break; } } } } else { MESSAGE("Polygons are identical!!!"); // Don't erase a polygon right now to prevent a mess with polygons and nodes ids const int endNodeIndex = startNodeIndex + _quantities[largerPolygon]; for (int i = startNodeIndex; i < endNodeIndex; ++i) { nodesIndexesToErase.insert(i); } quantsUpdatedValues[largerPolygon] = 0; } } if (nodesIndexesToErase.empty()) return false; // Erase all nodes from collected indexes in reverse order for (auto nodeIdx = nodesIndexesToErase.rbegin(); nodeIdx != nodesIndexesToErase.rend(); ++nodeIdx) { MESSAGE("Erased node on index " << *nodeIdx); _nodes.erase(_nodes.begin() + *nodeIdx); } // Update quantities for (const auto& quantUpdate : quantsUpdatedValues) { MESSAGE("Quantity for a polygon " << quantUpdate.first << " updated from " << _quantities[quantUpdate.first] << " to " << quantUpdate.second); _quantities[quantUpdate.first] = quantUpdate.second; } // Now check if we have completely deleted polygons here and erase them _quantities.erase(std::remove(_quantities.begin(), _quantities.end(), 0), _quantities.end()); // Make sure we didn't create some new mess divideOverlappingPolygons(); return true; } //================================================================================ /*! * \brief Finds polygons with at least one edge not connected to any other polygon, * and tries to cap them with new polygons or just remove as invalid. * Returns true if any of this changes were made. */ bool Hexahedron::_volumeDef::fixOpenEdgesPolygons() { std::vector>> edgesByPolygon = findOpenEdges(); if (edgesByPolygon.empty()) return false; // const bool wasCapped = capOpenEdgesPolygons(edgesByPolygon); // if (wasCapped) // { // // The volume's geometry was changed, we need to collect edges again // edgesByPolygon = findOpenEdges(); // } const bool wasRemoved = removeOpenEdgesPolygons(edgesByPolygon); if (/* !wasCapped && */!wasRemoved) { return false; } // Make sure we didn't create some new mess fixOpenEdgesPolygons(); return true; } //================================================================================ /*! * \brief Finds polygons with at least one edge not connected to any other polygon, * and tries to cap them with new polygons. Returns true if at least one polygon * was created. */ bool Hexahedron::_volumeDef::capOpenEdgesPolygons(const std::vector>>& edgesByPolygon) { // Check if we can cap this edges with a new polygon. // At this moment we don't interesting in relations of edges // with other polygons, just if it's possible to connect them. std::set> freeEdges; for (int i = edgesByPolygon.size() - 1; i >= 0; --i) { if (edgesByPolygon[i].empty()) continue; for (auto& edge : edgesByPolygon[i]) { freeEdges.insert(edge); } } // If we don't have free edges, then nothing to do here if (freeEdges.empty()) { return false; } // Consider a simple case where all the edges could form a closed polygon. // First edge will form the first and the last node in the vector. const size_t freeNodesNum = freeEdges.size(); std::vector nodes(freeNodesNum); auto findNode = [&](const std::pair& edge, const int node, const int index) -> bool { if (edge.first == node) { nodes[index] = edge.second; return true; } else if (edge.second == node) { nodes[index] = edge.first; return true; } return false; }; size_t firstIdx = 0; size_t lastIdx = freeNodesNum - 1; for (auto curEdge = freeEdges.begin(); curEdge != freeEdges.end() && (lastIdx - firstIdx) > 1; ++curEdge) { // Store current nodes int firstNode = curEdge->first; int lastNode = curEdge->second; nodes[firstIdx++] = firstNode; nodes[lastIdx--] = lastNode; // Try to find connected nodes in other edges auto otherEdge = curEdge; ++otherEdge; bool firstFound = false; bool lastFound = false; while (otherEdge != freeEdges.end()) { if (!firstFound) { firstFound = findNode(*otherEdge, firstNode, firstIdx); if (firstFound) { auto edgeToRemove = otherEdge; ++otherEdge; freeEdges.erase(edgeToRemove); continue; } } if (!lastFound) { lastFound = findNode(*otherEdge, lastNode, lastIdx); if (lastFound) { auto edgeToRemove = otherEdge; ++otherEdge; freeEdges.erase(edgeToRemove); continue; } } if (firstFound && lastFound) break; ++otherEdge; } // If we didn't find a node to connect for one edge, // then we can't build a polygon here. // TODO: add ability to create a polygon from part of the given edge? if (!firstFound || !lastFound) return false; ++firstIdx; --lastIdx; } // Now we collected all the nodes for a new polygon // and need to add quantities and nodes to the volume. // TODO: add a check if this polygon is planar? _quantities.push_back(freeNodesNum); // Update storage const size_t newNodesNum = _nodes.size() + freeNodesNum; if (_nodes.capacity() < newNodesNum) _nodes.reserve(newNodesNum); // Find nodes by ids and store them for (size_t i = 0; i < freeNodesNum; ++i) { auto nodeIt = std::find_if(_nodes.begin(), _nodes.end(), [&](const _nodeDef& node) { return node.Node() && node.Node()->GetID() == nodes[i]; }); _nodes.push_back(*nodeIt); } MESSAGE("New polygon to cap open edges at index " << _quantities.size() - 1 << ", quant: " << _quantities.back()); return true; } //================================================================================ /*! * \brief Finds polygons with at least one edge not connected to any other polygon, * and removes all of them. Returns true if at least polygon one was removed. */ bool Hexahedron::_volumeDef::removeOpenEdgesPolygons(const std::vector>>& edgesByPolygon) { // At this point for correct polyhedron all pairs of edges must be erased. // Check if we have some edges without pairs and remove related polygons. bool isRemoved = false; for (int i = edgesByPolygon.size() - 1; i >= 0; --i) { if (edgesByPolygon[i].empty()) continue; MESSAGE("Found not connected edges for polygon " << i << " :"); for (auto& edge : edgesByPolygon[i]) { MESSAGE("Edge: " << edge.first << ", " << edge.second); } // Erase redundant nodes auto first = _nodes.begin() + getStartNodeIndex(i); auto last = first + _quantities[i]; _nodes.erase(first, last); // Erase quantities _quantities.erase(_quantities.begin() + i); isRemoved = true; } return isRemoved; } //================================================================================ /*! * \brief Check that all faces in polyhedron are connected so a unique volume is defined. * We test that it is possible to go from any node to all nodes in the polyhedron. * The set of nodes that can be visit within then defines a unique element. * In case more than one polyhedron is detected. The function return the set of quantities and nodes defining separates elements. * Reference to issue #bos[38521][EDF] Generate polyhedron with separate volume. */ int Hexahedron::checkPolyhedronValidity( _volumeDef* volDef, std::vector>& splitQuantities, std::vector>& splitNodes ) { int mySet = 1; std::map numberOfSets; // define set id with the number of faces associated! if ( !volDef->_quantities.empty() ) { auto connectivity = volDef->_quantities; int accum = 0; std::vector allFaces( connectivity.size(), false ); std::set elementSet; allFaces[ 0 ] = true; // the first node below to the first face size_t connectedFaces = 1; // Start filling the set with the nodes of the first face splitQuantities.push_back( { connectivity[ 0 ] } ); splitNodes.push_back( { volDef->_nodes[ 0 ].Node() } ); elementSet.insert( volDef->_nodes[ 0 ].Node()->GetID() ); for (int n = 1; n < connectivity[ 0 ]; n++) { elementSet.insert( volDef->_nodes[ n ].Node()->GetID() ); splitNodes.back().push_back( volDef->_nodes[ n ].Node() ); } numberOfSets.insert( std::pair(mySet,1) ); while ( connectedFaces != allFaces.size() ) { for (size_t innerId = 1; innerId < connectivity.size(); innerId++) { if ( innerId == 1 ) accum = connectivity[ 0 ]; if ( !allFaces[ innerId ] ) { int faceCounter = 0; for (int n = 0; n < connectivity[ innerId ]; n++) { int nodeId = volDef->_nodes[ accum + n ].Node()->GetID(); if ( elementSet.count( nodeId ) != 0 ) faceCounter++; } if ( faceCounter >= 2 ) // found coincidences nodes { for (int n = 0; n < connectivity[ innerId ]; n++) { int nodeId = volDef->_nodes[ accum + n ].Node()->GetID(); // insert new nodes so other faces can be identified as belowing to the element splitNodes.back().push_back( volDef->_nodes[ accum + n ].Node() ); elementSet.insert( nodeId ); } allFaces[ innerId ] = true; splitQuantities.back().push_back( connectivity[ innerId ] ); numberOfSets[ mySet ]++; connectedFaces++; innerId = 0; // to restart searching! } } accum += connectivity[ innerId ]; } if ( connectedFaces != allFaces.size() ) { // empty the set, and fill it with nodes of a unvisited face! elementSet.clear(); accum = connectivity[ 0 ]; for (size_t faceId = 1; faceId < connectivity.size(); faceId++) { if ( !allFaces[ faceId ] ) { splitNodes.push_back( { volDef->_nodes[ accum ].Node() } ); elementSet.insert( volDef->_nodes[ accum ].Node()->GetID() ); for (int n = 1; n < connectivity[ faceId ]; n++) { elementSet.insert( volDef->_nodes[ accum + n ].Node()->GetID() ); splitNodes.back().push_back( volDef->_nodes[ accum + n ].Node() ); } splitQuantities.push_back( { connectivity[ faceId ] } ); allFaces[ faceId ] = true; connectedFaces++; break; } accum += connectivity[ faceId ]; } mySet++; numberOfSets.insert( std::pair(mySet,1) ); } } if ( numberOfSets.size() > 1 ) { bool allMoreThan2Faces = true; for( auto k : numberOfSets ) { if ( k.second <= 2 ) allMoreThan2Faces &= false; } if ( allMoreThan2Faces ) { // The separate objects are suspect to be closed return numberOfSets.size(); } else { // Have to index the last face nodes to the final set // contrary case return as it were a valid polyhedron for backward compatibility return 1; } } } return numberOfSets.size(); } //================================================================================ /*! * \brief add original or separated polyhedrons to the mesh */ const SMDS_MeshElement* Hexahedron::addPolyhedronToMesh( _volumeDef* volDef, SMESH_MesherHelper& helper, const std::vector& nodes, const std::vector& quantities ) { const SMDS_MeshElement* v = helper.AddPolyhedralVolume( nodes, quantities ); volDef->_size = SMDS_VolumeTool( v ).GetSize(); if ( volDef->_size < 0 ) // invalid polyhedron { if ( ! SMESH_MeshEditor( helper.GetMesh() ).Reorient( v ) || // try to fix SMDS_VolumeTool( v ).GetSize() < 0 ) { helper.GetMeshDS()->RemoveFreeElement( v, /*sm=*/nullptr, /*fromGroups=*/false ); v = nullptr; //_hasTooSmall = true; if (SALOME::VerbosityActivated()) { std::cout << "Remove INVALID polyhedron, _cellID = " << _cellID << " ijk = ( " << _i << " " << _j << " " << _k << " ) " << " solid " << volDef->_solidID << std::endl; } } } return v; } //================================================================================ /*! * \brief Tries to create a hexahedron */ bool Hexahedron::addHexa() { int nbQuad = 0, iQuad = -1; for ( size_t i = 0; i < _polygons.size(); ++i ) { if ( _polygons[i]._links.empty() ) continue; if ( _polygons[i]._links.size() != 4 ) return false; ++nbQuad; if ( iQuad < 0 ) iQuad = i; } if ( nbQuad != 6 ) return false; _Node* nodes[8]; int nbN = 0; for ( int iL = 0; iL < 4; ++iL ) { // a base node nodes[iL] = _polygons[iQuad]._links[iL].FirstNode(); ++nbN; // find a top node above the base node _Link* link = _polygons[iQuad]._links[iL]._link; if ( !link->_faces[0] || !link->_faces[1] ) return debugDumpLink( link ); // a quadrangle sharing with _polygons[iQuad] _Face* quad = link->_faces[ bool( link->_faces[0] == & _polygons[iQuad] )]; for ( int i = 0; i < 4; ++i ) if ( quad->_links[i]._link == link ) { // 1st node of a link opposite to in nodes[iL+4] = quad->_links[(i+2)%4].FirstNode(); ++nbN; break; } } if ( nbN == 8 ) _volumeDefs.Set( &nodes[0], 8 ); return nbN == 8; } //================================================================================ /*! * \brief Tries to create a tetrahedron */ bool Hexahedron::addTetra() { int iTria = -1; for ( size_t i = 0; i < _polygons.size() && iTria < 0; ++i ) if ( _polygons[i]._links.size() == 3 ) iTria = i; if ( iTria < 0 ) return false; _Node* nodes[4]; nodes[0] = _polygons[iTria]._links[0].FirstNode(); nodes[1] = _polygons[iTria]._links[1].FirstNode(); nodes[2] = _polygons[iTria]._links[2].FirstNode(); _Link* link = _polygons[iTria]._links[0]._link; if ( !link->_faces[0] || !link->_faces[1] ) return debugDumpLink( link ); // a triangle sharing with _polygons[0] _Face* tria = link->_faces[ bool( link->_faces[0] == & _polygons[iTria] )]; for ( int i = 0; i < 3; ++i ) if ( tria->_links[i]._link == link ) { nodes[3] = tria->_links[(i+1)%3].LastNode(); _volumeDefs.Set( &nodes[0], 4 ); return true; } return false; } //================================================================================ /*! * \brief Tries to create a pentahedron */ bool Hexahedron::addPenta() { // find a base triangular face int iTri = -1; for ( int iF = 0; iF < 5 && iTri < 0; ++iF ) if ( _polygons[ iF ]._links.size() == 3 ) iTri = iF; if ( iTri < 0 ) return false; // find nodes _Node* nodes[6]; int nbN = 0; for ( int iL = 0; iL < 3; ++iL ) { // a base node nodes[iL] = _polygons[ iTri ]._links[iL].FirstNode(); ++nbN; // find a top node above the base node _Link* link = _polygons[ iTri ]._links[iL]._link; if ( !link->_faces[0] || !link->_faces[1] ) return debugDumpLink( link ); // a quadrangle sharing with a base triangle _Face* quad = link->_faces[ bool( link->_faces[0] == & _polygons[ iTri ] )]; if ( quad->_links.size() != 4 ) return false; for ( int i = 0; i < 4; ++i ) if ( quad->_links[i]._link == link ) { // 1st node of a link opposite to in nodes[iL+3] = quad->_links[(i+2)%4].FirstNode(); ++nbN; break; } } if ( nbN == 6 ) _volumeDefs.Set( &nodes[0], 6 ); return ( nbN == 6 ); } //================================================================================ /*! * \brief Tries to create a pyramid */ bool Hexahedron::addPyra() { // find a base quadrangle int iQuad = -1; for ( int iF = 0; iF < 5 && iQuad < 0; ++iF ) if ( _polygons[ iF ]._links.size() == 4 ) iQuad = iF; if ( iQuad < 0 ) return false; // find nodes _Node* nodes[5]; nodes[0] = _polygons[iQuad]._links[0].FirstNode(); nodes[1] = _polygons[iQuad]._links[1].FirstNode(); nodes[2] = _polygons[iQuad]._links[2].FirstNode(); nodes[3] = _polygons[iQuad]._links[3].FirstNode(); _Link* link = _polygons[iQuad]._links[0]._link; if ( !link->_faces[0] || !link->_faces[1] ) return debugDumpLink( link ); // a triangle sharing with a base quadrangle _Face* tria = link->_faces[ bool( link->_faces[0] == & _polygons[ iQuad ] )]; if ( tria->_links.size() != 3 ) return false; for ( int i = 0; i < 3; ++i ) if ( tria->_links[i]._link == link ) { nodes[4] = tria->_links[(i+1)%3].LastNode(); _volumeDefs.Set( &nodes[0], 5 ); return true; } return false; } //================================================================================ /*! * \brief Return true if there are _eIntPoints at EDGEs forming a concave corner */ bool Hexahedron::hasEdgesAround( const ConcaveFace* cf ) const { int nbEdges = 0; ConcaveFace foundGeomHolder; for ( const E_IntersectPoint* ip : _eIntPoints ) { if ( cf->HasEdge( ip->_shapeID )) { if ( ++nbEdges == 2 ) return true; foundGeomHolder.SetEdge( ip->_shapeID ); } else if ( ip->_faceIDs.size() >= 3 ) { const TGeomID & vID = ip->_shapeID; if ( cf->HasVertex( vID ) && !foundGeomHolder.HasVertex( vID )) { if ( ++nbEdges == 2 ) return true; foundGeomHolder.SetVertex( vID ); } } } for ( const _Node& hexNode: _hexNodes ) { if ( !hexNode._node || !hexNode._intPoint ) continue; const B_IntersectPoint* ip = hexNode._intPoint; if ( ip->_faceIDs.size() == 2 ) // EDGE { TGeomID edgeID = hexNode._node->GetShapeID(); if ( cf->HasEdge( edgeID ) && !foundGeomHolder.HasEdge( edgeID )) { foundGeomHolder.SetEdge( edgeID ); if ( ++nbEdges == 2 ) return true; } } else if ( ip->_faceIDs.size() >= 3 ) // VERTEX { TGeomID vID = hexNode._node->GetShapeID(); if ( cf->HasVertex( vID ) && !foundGeomHolder.HasVertex( vID )) { if ( ++nbEdges == 2 ) return true; foundGeomHolder.SetVertex( vID ); } } } return false; } //================================================================================ /*! * \brief Dump a link and return \c false */ bool Hexahedron::debugDumpLink( Hexahedron::_Link* link ) { if (SALOME::VerbosityActivated()) { gp_Pnt p1 = link->_nodes[0]->Point(), p2 = link->_nodes[1]->Point(); cout << "BUG: not shared link. IKJ = ( "<< _i << " " << _j << " " << _k << " )" << endl << "n1 (" << p1.X() << ", "<< p1.Y() << ", "<< p1.Z() << " )" << endl << "n2 (" << p2.X() << ", "<< p2.Y() << ", "<< p2.Z() << " )" << endl; } return false; } //================================================================================ /*! * \brief Classify a point by grid parameters */ bool Hexahedron::isOutParam(const double uvw[3]) const { return (( _grid->_coords[0][ _i ] - _grid->_tol > uvw[0] ) || ( _grid->_coords[0][ _i+1 ] + _grid->_tol < uvw[0] ) || ( _grid->_coords[1][ _j ] - _grid->_tol > uvw[1] ) || ( _grid->_coords[1][ _j+1 ] + _grid->_tol < uvw[1] ) || ( _grid->_coords[2][ _k ] - _grid->_tol > uvw[2] ) || ( _grid->_coords[2][ _k+1 ] + _grid->_tol < uvw[2] )); } //================================================================================ /*! * \brief Create mesh faces at free facets */ void Hexahedron::addFaces( SMESH_MesherHelper& helper, const vector< const SMDS_MeshElement* > & boundaryVolumes ) { if ( !_grid->_toCreateFaces ) return; SMDS_VolumeTool vTool; vector bndFacets; SMESH_MeshEditor editor( helper.GetMesh() ); SMESH_MeshEditor::ElemFeatures face( SMDSAbs_Face ); SMESHDS_Mesh* meshDS = helper.GetMeshDS(); bool isQuantaSet = _grid->_toUseQuanta; // check if there are internal or shared FACEs bool hasInternal = ( !_grid->_geometry.IsOneSolid() || _grid->_geometry._soleSolid.HasInternalFaces() ); for ( size_t iV = 0; iV < boundaryVolumes.size(); ++iV ) { if ( !vTool.Set( boundaryVolumes[ iV ])) continue; TGeomID solidID = vTool.Element()->GetShapeID(); Solid * solid = _grid->GetOneOfSolids( solidID ); // find boundary facets bndFacets.clear(); for ( int iF = 0, n = vTool.NbFaces(); iF < n; iF++ ) { const SMDS_MeshElement* otherVol; bool isBoundary = isQuantaSet ? vTool.IsFreeFaceCheckAllNodes( iF, &otherVol ) : vTool.IsFreeFace( iF, &otherVol ); if ( isBoundary ) { bndFacets.push_back( iF ); } else if (( hasInternal ) || ( !_grid->IsSolid( otherVol->GetShapeID() ))) { // check if all nodes are on internal/shared FACEs isBoundary = true; const SMDS_MeshNode** nn = vTool.GetFaceNodes( iF ); const size_t nbFaceNodes = vTool.NbFaceNodes ( iF ); for ( size_t iN = 0; iN < nbFaceNodes && isBoundary; ++iN ) isBoundary = ( nn[ iN ]->GetShapeID() != solidID ); if ( isBoundary ) bndFacets.push_back( -( iF+1 )); // !!! minus ==> to check the FACE } } if ( bndFacets.empty() ) continue; // create faces if ( !vTool.IsPoly() ) vTool.SetExternalNormal(); for ( size_t i = 0; i < bndFacets.size(); ++i ) // loop on boundary facets { const bool isBoundary = ( bndFacets[i] >= 0 ); const int iFacet = isBoundary ? bndFacets[i] : -bndFacets[i]-1; const SMDS_MeshNode** nn = vTool.GetFaceNodes( iFacet ); const size_t nbFaceNodes = vTool.NbFaceNodes ( iFacet ); face.myNodes.assign( nn, nn + nbFaceNodes ); TGeomID faceID = 0; const SMDS_MeshElement* existFace = 0, *newFace = 0; if (( existFace = meshDS->FindElement( face.myNodes, SMDSAbs_Face ))) { if ( existFace->isMarked() ) continue; // created by this method faceID = existFace->GetShapeID(); } else { // look for a supporting FACE for ( size_t iN = 0; iN < nbFaceNodes && !faceID; ++iN ) // look for a node on FACE { if ( nn[ iN ]->GetPosition()->GetDim() == 2 ) faceID = nn[ iN ]->GetShapeID(); } if ( faceID == 0 && !isQuantaSet /*if quanta is set boundary nodes at boundary does not coincide with any geometrical face */ ) faceID = findCommonFace( face.myNodes, helper.GetMesh() ); bool toCheckFace = faceID && (( !isBoundary ) || ( hasInternal && _grid->_toUseThresholdForInternalFaces )); if ( toCheckFace ) // check if all nodes are on the found FACE { SMESH_subMesh* faceSM = helper.GetMesh()->GetSubMeshContaining( faceID ); for ( size_t iN = 0; iN < nbFaceNodes && faceID; ++iN ) { TGeomID subID = nn[ iN ]->GetShapeID(); if ( subID != faceID && !faceSM->DependsOn( subID )) faceID = 0; } // if ( !faceID && !isBoundary ) // continue; } if ( !faceID && !isBoundary && !isQuantaSet ) continue; } // orient a new face according to supporting FACE orientation in shape_to_mesh if ( !isBoundary && !solid->IsOutsideOriented( faceID )) { if ( existFace ) editor.Reorient( existFace ); else std::reverse( face.myNodes.begin(), face.myNodes.end() ); } if ( ! ( newFace = existFace )) { face.SetPoly( nbFaceNodes > 4 ); newFace = editor.AddElement( face.myNodes, face ); if ( !newFace ) continue; newFace->setIsMarked( true ); // to distinguish from face created in getBoundaryElems() } if ( faceID && _grid->IsBoundaryFace( faceID )) // face is not shared { // set newFace to the found FACE provided that it fully lies on the FACE for ( size_t iN = 0; iN < nbFaceNodes && faceID; ++iN ) if ( nn[iN]->GetShapeID() == solidID ) { if ( existFace ) meshDS->UnSetMeshElementOnShape( existFace, _grid->Shape( faceID )); faceID = 0; } } if ( faceID && nbFaceNodes > 4 && !_grid->IsInternal( faceID ) && !_grid->IsShared( faceID ) && !_grid->IsBoundaryFace( faceID )) { // split a polygon that will be used by other 3D algorithm if ( !existFace ) splitPolygon( newFace, vTool, iFacet, faceID, solidID, face, editor, i+1 < bndFacets.size() ); } else { if ( faceID ) meshDS->SetMeshElementOnShape( newFace, faceID ); else meshDS->SetMeshElementOnShape( newFace, solidID ); } } // loop on bndFacets } // loop on boundaryVolumes // Orient coherently mesh faces on INTERNAL FACEs if ( hasInternal ) { TopExp_Explorer faceExp( _grid->_geometry._mainShape, TopAbs_FACE ); for ( ; faceExp.More(); faceExp.Next() ) { if ( faceExp.Current().Orientation() != TopAbs_INTERNAL ) continue; SMESHDS_SubMesh* sm = meshDS->MeshElements( faceExp.Current() ); if ( !sm ) continue; TIDSortedElemSet facesToOrient; for ( SMDS_ElemIteratorPtr fIt = sm->GetElements(); fIt->more(); ) facesToOrient.insert( facesToOrient.end(), fIt->next() ); if ( facesToOrient.size() < 2 ) continue; gp_Dir direction(1,0,0); TIDSortedElemSet refFaces; editor.Reorient2D( facesToOrient, direction, refFaces, /*allowNonManifold=*/true ); } } return; } //================================================================================ /*! * \brief Create mesh segments. */ void Hexahedron::addSegments( SMESH_MesherHelper& helper, const map< TGeomID, vector< TGeomID > >& edge2faceIDsMap ) { SMESHDS_Mesh* mesh = helper.GetMeshDS(); std::vector nodes; std::vector elems; map< TGeomID, vector< TGeomID > >::const_iterator e2ff = edge2faceIDsMap.begin(); for ( ; e2ff != edge2faceIDsMap.end(); ++e2ff ) { const TopoDS_Edge& edge = TopoDS::Edge( _grid->Shape( e2ff->first )); const TopoDS_Face& face = TopoDS::Face( _grid->Shape( e2ff->second[0] )); StdMeshers_FaceSide side( face, edge, helper.GetMesh(), /*isFwd=*/true, /*skipMed=*/true ); nodes = side.GetOrderedNodes(); elems.clear(); if ( nodes.size() == 2 ) // check that there is an element connecting two nodes if ( !mesh->GetElementsByNodes( nodes, elems )) continue; for ( size_t i = 1; i < nodes.size(); i++ ) { if ( mesh->FindEdge( nodes[i-1], nodes[i] )) continue; SMDS_MeshElement* segment = mesh->AddEdge( nodes[i-1], nodes[i] ); mesh->SetMeshElementOnShape( segment, e2ff->first ); } } return; } //================================================================================ /*! * \brief Return created volumes and volumes that can have free facet because of * skipped small volume. Also create mesh faces on free facets * of adjacent not-cut volumes if the result volume is too small. */ void Hexahedron::getBoundaryElems( vector< const SMDS_MeshElement* > & boundaryElems ) { if ( _hasTooSmall /*|| _volumeDefs.IsEmpty()*/ ) { // create faces around a missing small volume TGeomID faceID = 0; SMESH_MeshEditor editor( _grid->_helper->GetMesh() ); SMESH_MeshEditor::ElemFeatures polygon( SMDSAbs_Face ); SMESHDS_Mesh* meshDS = _grid->_helper->GetMeshDS(); std::vector adjVolumes(2); for ( size_t iF = 0; iF < _polygons.size(); ++iF ) { const size_t nbLinks = _polygons[ iF ]._links.size(); if ( nbLinks != 4 ) continue; polygon.myNodes.resize( nbLinks ); polygon.myNodes.back() = 0; for ( size_t iL = 0, iN = nbLinks - 1; iL < nbLinks; ++iL, --iN ) { polygon.myNodes[iN] = _polygons[ iF ]._links[ iL ].FirstNode()->Node(); if ( ! polygon.myNodes[iN] ) break; } if ( !polygon.myNodes.back() ) continue; meshDS->GetElementsByNodes( polygon.myNodes, adjVolumes, SMDSAbs_Volume ); if ( adjVolumes.size() != 1 ) continue; if ( !adjVolumes[0]->isMarked() ) { boundaryElems.push_back( adjVolumes[0] ); adjVolumes[0]->setIsMarked( true ); } bool sameShape = true; TGeomID shapeID = polygon.myNodes[0]->GetShapeID(); for ( size_t i = 1; i < polygon.myNodes.size() && sameShape; ++i ) sameShape = ( shapeID == polygon.myNodes[i]->GetShapeID() ); if ( !sameShape || !_grid->IsSolid( shapeID )) continue; // some of shapes must be FACE if ( !faceID ) { faceID = getAnyFace(); if ( !faceID ) break; if ( _grid->IsInternal( faceID ) || _grid->IsShared( faceID ) //|| //_grid->IsBoundaryFace( faceID ) -- commented for #19887 ) break; // create only if a new face will be used by other 3D algo } Solid * solid = _grid->GetOneOfSolids( adjVolumes[0]->GetShapeID() ); if ( !solid->IsOutsideOriented( faceID )) std::reverse( polygon.myNodes.begin(), polygon.myNodes.end() ); //polygon.SetPoly( polygon.myNodes.size() > 4 ); const SMDS_MeshElement* newFace = editor.AddElement( polygon.myNodes, polygon ); meshDS->SetMeshElementOnShape( newFace, faceID ); } } // return created volumes for ( _volumeDef* volDef = &_volumeDefs; volDef; volDef = volDef->_next ) { if ( volDef ->_volume && !volDef->_volume->IsNull() && !volDef->_volume->isMarked() ) { volDef->_volume->setIsMarked( true ); boundaryElems.push_back( volDef->_volume ); if ( _grid->IsToCheckNodePos() ) // un-mark nodes marked in addVolumes() for ( size_t iN = 0; iN < volDef->_nodes.size(); ++iN ) volDef->_nodes[iN].Node()->setIsMarked( false ); } if ( volDef->_brotherVolume.size() > 0 ) { for (auto _bro : volDef->_brotherVolume ) { _bro->setIsMarked( true ); boundaryElems.push_back( _bro ); } } } } //================================================================================ /*! * \brief Remove edges and nodes dividing a hexa side in the case if an adjacent * volume also sharing the dividing edge is missing due to its small side. * Issue #19887. */ //================================================================================ void Hexahedron::removeExcessSideDivision(const vector< Hexahedron* >& allHexa) { if ( ! _volumeDefs.IsPolyhedron() ) return; // not a polyhedron // look for a divided side adjacent to a small hexahedron int di[6] = { 0, 0, 0, 0,-1, 1 }; int dj[6] = { 0, 0,-1, 1, 0, 0 }; int dk[6] = {-1, 1, 0, 0, 0, 0 }; for ( int iF = 0; iF < 6; ++iF ) // loop on 6 sides of a hexahedron { size_t neighborIndex = _grid->CellIndex( _i + di[iF], _j + dj[iF], _k + dk[iF] ); if ( neighborIndex >= allHexa.size() || !allHexa[ neighborIndex ] || !allHexa[ neighborIndex ]->_hasTooSmall ) continue; // check if a side is divided into several polygons for ( _volumeDef* volDef = &_volumeDefs; volDef; volDef = volDef->_next ) { int nbPolygons = 0, nbNodes = 0; for ( size_t i = 0; i < volDef->_names.size(); ++i ) if ( volDef->_names[ i ] == _hexQuads[ iF ]._name ) { ++nbPolygons; nbNodes += volDef->_quantities[ i ]; } if ( nbPolygons < 2 ) continue; // construct loops from polygons typedef _volumeDef::_linkDef TLinkDef; std::vector< TLinkDef* > loops; std::vector< TLinkDef > links( nbNodes ); for ( size_t i = 0, iN = 0, iLoop = 0; iLoop < volDef->_quantities.size(); ++iLoop ) { size_t nbLinks = volDef->_quantities[ iLoop ]; if ( volDef->_names[ iLoop ] != _hexQuads[ iF ]._name ) { iN += nbLinks; continue; } loops.push_back( & links[i] ); for ( size_t n = 0; n < nbLinks-1; ++n, ++i, ++iN ) { links[i].init( volDef->_nodes[iN], volDef->_nodes[iN+1], iLoop ); links[i].setNext( &links[i+1] ); } links[i].init( volDef->_nodes[iN], volDef->_nodes[iN-nbLinks+1], iLoop ); links[i].setNext( &links[i-nbLinks+1] ); ++i; ++iN; } // look for equal links in different loops and join such loops bool loopsJoined = false; std::set< TLinkDef > linkSet; for ( size_t iLoop = 0; iLoop < loops.size(); ++iLoop ) { TLinkDef* beg = 0; for ( TLinkDef* l = loops[ iLoop ]; l != beg; l = l->_next ) // walk around the iLoop { std::pair< std::set< TLinkDef >::iterator, bool > it2new = linkSet.insert( *l ); if ( !it2new.second ) // equal found, join loops { const TLinkDef* equal = &(*it2new.first); if ( equal->_loopIndex == l->_loopIndex ) continue; // error? loopsJoined = true; for ( size_t i = iLoop - 1; i < loops.size(); --i ) if ( loops[ i ] && loops[ i ]->_loopIndex == equal->_loopIndex ) loops[ i ] = 0; // exclude l and equal and join two loops if ( l->_prev != equal ) l->_prev->setNext( equal->_next ); if ( equal->_prev != l ) equal->_prev->setNext( l->_next ); if ( volDef->_quantities[ l->_loopIndex ] > 0 ) volDef->_quantities[ l->_loopIndex ] *= -1; if ( volDef->_quantities[ equal->_loopIndex ] > 0 ) volDef->_quantities[ equal->_loopIndex ] *= -1; if ( loops[ iLoop ] == l ) loops[ iLoop ] = l->_prev->_next; } beg = loops[ iLoop ]; } } // update volDef if ( loopsJoined ) { // set unchanged polygons std::vector< int > newQuantities; std::vector< _volumeDef::_nodeDef > newNodes; vector< SMESH_Block::TShapeID > newNames; newQuantities.reserve( volDef->_quantities.size() ); newNodes.reserve ( volDef->_nodes.size() ); newNames.reserve ( volDef->_names.size() ); for ( size_t i = 0, iLoop = 0; iLoop < volDef->_quantities.size(); ++iLoop ) { if ( volDef->_quantities[ iLoop ] < 0 ) { i -= volDef->_quantities[ iLoop ]; continue; } newQuantities.push_back( volDef->_quantities[ iLoop ]); newNodes.insert( newNodes.end(), volDef->_nodes.begin() + i, volDef->_nodes.begin() + i + newQuantities.back() ); newNames.push_back( volDef->_names[ iLoop ]); i += volDef->_quantities[ iLoop ]; } // set joined loops for ( size_t iLoop = 0; iLoop < loops.size(); ++iLoop ) { if ( !loops[ iLoop ] ) continue; newQuantities.push_back( 0 ); TLinkDef* beg = 0; for ( TLinkDef* l = loops[ iLoop ]; l != beg; l = l->_next, ++newQuantities.back() ) { newNodes.push_back( l->_node1 ); beg = loops[ iLoop ]; } newNames.push_back( _hexQuads[ iF ]._name ); } volDef->_quantities.swap( newQuantities ); volDef->_nodes.swap( newNodes ); volDef->_names.swap( newNames ); } } // loop on volDef's } // loop on hex sides return; } // removeExcessSideDivision() //================================================================================ /*! * \brief Remove nodes splitting Cartesian cell edges in the case if a node * is used in every cells only by two polygons sharing the edge * Issue #19887. */ //================================================================================ void Hexahedron::removeExcessNodes(vector< Hexahedron* >& allHexa) { if ( ! _volumeDefs.IsPolyhedron() ) return; // not a polyhedron typedef vector< _volumeDef::_nodeDef >::iterator TNodeIt; vector< int > nodesInPoly[ 4 ]; // node index in _volumeDefs._nodes vector< int > volDefInd [ 4 ]; // index of a _volumeDefs Hexahedron* hexa [ 4 ]; int i,j,k, cellIndex, iLink = 0, iCellLink; for ( int iDir = 0; iDir < 3; ++iDir ) { CellsAroundLink fourCells( _grid, iDir ); for ( int iL = 0; iL < 4; ++iL, ++iLink ) // 4 links in a direction { _Link& link = _hexLinks[ iLink ]; fourCells.Init( _i, _j, _k, iLink ); for ( size_t iP = 0; iP < link._fIntPoints.size(); ++iP ) // loop on nodes on the link { bool nodeRemoved = true; _volumeDef::_nodeDef node; node._intPoint = link._fIntPoints[iP]; for ( size_t i = 0, nb = _volumeDefs.size(); i < nb && nodeRemoved; ++i ) if ( _volumeDef* vol = _volumeDefs.at( i )) nodeRemoved = ( std::find( vol->_nodes.begin(), vol->_nodes.end(), node ) == vol->_nodes.end() ); if ( nodeRemoved ) continue; // node already removed // check if a node encounters zero or two times in 4 cells sharing iLink // if so, the node can be removed from the cells bool nodeIsOnEdge = true; int nbPolyhedraWithNode = 0; for ( int iC = 0; iC < 4; ++iC ) // loop on 4 cells sharing a link { nodesInPoly[ iC ].clear(); volDefInd [ iC ].clear(); hexa [ iC ] = 0; if ( !fourCells.GetCell( iC, i,j,k, cellIndex, iCellLink )) continue; hexa[ iC ] = allHexa[ cellIndex ]; if ( !hexa[ iC ]) continue; for ( size_t i = 0, nb = hexa[ iC ]->_volumeDefs.size(); i < nb; ++i ) if ( _volumeDef* vol = hexa[ iC ]->_volumeDefs.at( i )) { for ( TNodeIt nIt = vol->_nodes.begin(); nIt != vol->_nodes.end(); ++nIt ) { nIt = std::find( nIt, vol->_nodes.end(), node ); if ( nIt != vol->_nodes.end() ) { nodesInPoly[ iC ].push_back( std::distance( vol->_nodes.begin(), nIt )); volDefInd [ iC ].push_back( i ); } else break; } nbPolyhedraWithNode += ( !nodesInPoly[ iC ].empty() ); } if ( nodesInPoly[ iC ].size() != 0 && nodesInPoly[ iC ].size() != 2 ) { nodeIsOnEdge = false; break; } } // loop on 4 cells // remove nodes from polyhedra if ( nbPolyhedraWithNode > 0 && nodeIsOnEdge ) { for ( int iC = 0; iC < 4; ++iC ) // loop on 4 cells sharing the link { if ( nodesInPoly[ iC ].empty() ) continue; for ( int i = volDefInd[ iC ].size() - 1; i >= 0; --i ) { _volumeDef* vol = hexa[ iC ]->_volumeDefs.at( volDefInd[ iC ][ i ]); int nIndex = nodesInPoly[ iC ][ i ]; // decrement _quantities for ( size_t iQ = 0; iQ < vol->_quantities.size(); ++iQ ) if ( nIndex < vol->_quantities[ iQ ]) { vol->_quantities[ iQ ]--; break; } else { nIndex -= vol->_quantities[ iQ ]; } vol->_nodes.erase( vol->_nodes.begin() + nodesInPoly[ iC ][ i ]); if ( i == 0 && vol->_nodes.size() == 6 * 4 && vol->_quantities.size() == 6 ) // polyhedron becomes hexahedron? { bool allQuads = true; for ( size_t iQ = 0; iQ < vol->_quantities.size() && allQuads; ++iQ ) allQuads = ( vol->_quantities[ iQ ] == 4 ); if ( allQuads ) { // set side nodes as this: bottom, top, top, ... int iTop = 0, iBot = 0; // side indices for ( int iS = 0; iS < 6; ++iS ) { if ( vol->_names[ iS ] == SMESH_Block::ID_Fxy0 ) iBot = iS; if ( vol->_names[ iS ] == SMESH_Block::ID_Fxy1 ) iTop = iS; } if ( iBot != 0 ) { if ( iTop == 0 ) { std::copy( vol->_nodes.begin(), vol->_nodes.begin() + 4, vol->_nodes.begin() + 4 ); iTop = 1; } std::copy( vol->_nodes.begin() + 4 * iBot, vol->_nodes.begin() + 4 * ( iBot + 1), vol->_nodes.begin() ); } if ( iTop != 1 ) std::copy( vol->_nodes.begin() + 4 * iTop, vol->_nodes.begin() + 4 * ( iTop + 1), vol->_nodes.begin() + 4 ); std::copy( vol->_nodes.begin() + 4, vol->_nodes.begin() + 8, vol->_nodes.begin() + 8 ); // set up top facet nodes by comparing their uvw with bottom nodes E_IntersectPoint ip[8]; for ( int iN = 0; iN < 8; ++iN ) { SMESH_NodeXYZ p = vol->_nodes[ iN ].Node(); _grid->ComputeUVW( p, ip[ iN ]._uvw ); } const double tol2 = _grid->_tol * _grid->_tol; for ( int iN = 0; iN < 4; ++iN ) { gp_Pnt2d pBot( ip[ iN ]._uvw[0], ip[ iN ]._uvw[1] ); for ( int iT = 4; iT < 8; ++iT ) { gp_Pnt2d pTop( ip[ iT ]._uvw[0], ip[ iT ]._uvw[1] ); if ( pBot.SquareDistance( pTop ) < tol2 ) { // vol->_nodes[ iN + 4 ]._node = ip[ iT ]._node; // vol->_nodes[ iN + 4 ]._intPoint = 0; vol->_nodes[ iN + 4 ] = vol->_nodes[ iT + 4 ]; break; } } } vol->_nodes.resize( 8 ); vol->_quantities.clear(); //vol->_names.clear(); } } } // loop on _volumeDefs } // loop on 4 cell abound a link } // if ( nodeIsOnEdge ) } // loop on intersection points of a link } // loop on 4 links of a direction } // loop on 3 directions return; } // removeExcessNodes() //================================================================================ /*! * \brief [Issue #19913] Modify _hexLinks._splits to prevent creating overlapping volumes */ //================================================================================ void Hexahedron::preventVolumesOverlapping() { // Cut off a quadrangle corner if two links sharing the corner // are shared by same two solids, in this case each of solids gets // a triangle for it-self. std::vector< TGeomID > soIDs[4]; for ( int iF = 0; iF < 6; ++iF ) // loop on 6 sides of a hexahedron { _Face& quad = _hexQuads[ iF ] ; int iFOpposite = iF + ( iF % 2 ? -1 : 1 ); _Face& quadOpp = _hexQuads[ iFOpposite ] ; int nbSides = 0, nbSidesOpp = 0; for ( int iE = 0; iE < 4; ++iE ) // loop on 4 sides of a quadrangle { nbSides += ( quad._links [ iE ].NbResultLinks() > 0 ); nbSidesOpp += ( quadOpp._links[ iE ].NbResultLinks() > 0 ); } if ( nbSides < 4 || nbSidesOpp != 2 ) continue; for ( int iE = 0; iE < 4; ++iE ) { soIDs[ iE ].clear(); _Node* n = quad._links[ iE ].FirstNode(); if ( n->_intPoint && n->_intPoint->_faceIDs.size() ) soIDs[ iE ] = _grid->GetSolidIDs( n->_intPoint->_faceIDs[0] ); } if ((( soIDs[0].size() >= 2 ) + ( soIDs[1].size() >= 2 ) + ( soIDs[2].size() >= 2 ) + ( soIDs[3].size() >= 2 ) ) < 3 ) continue; bool done = false; for ( int i = 0; i < 4; ++i ) { int i1 = _grid->_helper->WrapIndex( i + 1, 4 ); int i2 = _grid->_helper->WrapIndex( i + 2, 4 ); int i3 = _grid->_helper->WrapIndex( i + 3, 4 ); if ( soIDs[i1].size() == 2 && soIDs[i ] != soIDs[i1] && soIDs[i2].size() == 2 && soIDs[i1] == soIDs[i2] && soIDs[i3].size() == 2 && soIDs[i2] == soIDs[i3] ) { quad._links[ i1 ]._link->_splits.clear(); quad._links[ i2 ]._link->_splits.clear(); done = true; break; } } if ( done ) break; } return; } // preventVolumesOverlapping() //================================================================================ /*! * \brief Set to _hexLinks a next portion of splits located on one side of INTERNAL FACEs */ bool Hexahedron::_SplitIterator::Next() { if ( _iterationNb > 0 ) // count used splits for ( size_t i = 0; i < _splits.size(); ++i ) { if ( _splits[i]._iCheckIteration == _iterationNb ) { _splits[i]._isUsed = _splits[i]._checkedSplit->_faces[1]; _nbUsed += _splits[i]._isUsed; } if ( !More() ) return false; } ++_iterationNb; bool toTestUsed = ( _nbChecked >= _splits.size() ); if ( toTestUsed ) { // all splits are checked; find all not used splits for ( size_t i = 0; i < _splits.size(); ++i ) if ( !_splits[i].IsCheckedOrUsed( toTestUsed )) _splits[i]._iCheckIteration = _iterationNb; _nbUsed = _splits.size(); // to stop iteration } else { // get any not used/checked split to start from _freeNodes.clear(); for ( size_t i = 0; i < _splits.size(); ++i ) { if ( !_splits[i].IsCheckedOrUsed( toTestUsed )) { _freeNodes.push_back( _splits[i]._nodes[0] ); _freeNodes.push_back( _splits[i]._nodes[1] ); _splits[i]._iCheckIteration = _iterationNb; break; } } // find splits connected to the start one via _freeNodes for ( size_t iN = 0; iN < _freeNodes.size(); ++iN ) { for ( size_t iS = 0; iS < _splits.size(); ++iS ) { if ( _splits[iS].IsCheckedOrUsed( toTestUsed )) continue; int iN2 = -1; if ( _freeNodes[iN] == _splits[iS]._nodes[0] ) iN2 = 1; else if ( _freeNodes[iN] == _splits[iS]._nodes[1] ) iN2 = 0; else continue; if ( _freeNodes[iN]->_isInternalFlags > 0 ) { if ( _splits[iS]._nodes[ iN2 ]->_isInternalFlags == 0 ) continue; if ( !_splits[iS]._nodes[ iN2 ]->IsLinked( _freeNodes[iN]->_intPoint )) continue; } _splits[iS]._iCheckIteration = _iterationNb; _freeNodes.push_back( _splits[iS]._nodes[ iN2 ]); } } } // set splits to hex links for ( int iL = 0; iL < 12; ++iL ) _hexLinks[ iL ]._splits.clear(); _Link split; for ( size_t i = 0; i < _splits.size(); ++i ) { if ( _splits[i]._iCheckIteration == _iterationNb ) { split._nodes[0] = _splits[i]._nodes[0]; split._nodes[1] = _splits[i]._nodes[1]; _Link & hexLink = _hexLinks[ _splits[i]._linkID ]; hexLink._splits.push_back( split ); _splits[i]._checkedSplit = & hexLink._splits.back(); ++_nbChecked; } } return More(); }