// Copyright (C) 2007-2014 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH : implementaion of SMESH idl descriptions // File : SMESH_Algo.hxx // Author : Paul RASCLE, EDF // Module : SMESH // #ifndef _SMESH_ALGO_HXX_ #define _SMESH_ALGO_HXX_ #include "SMESH_SMESH.hxx" #include "SMDSAbs_ElementType.hxx" #include "SMESH_Comment.hxx" #include "SMESH_ComputeError.hxx" #include "SMESH_Hypothesis.hxx" #include #include #include #include #include #include #include #include class SMDS_MeshNode; class SMESHDS_Mesh; class SMESHDS_SubMesh; class SMESH_Gen; class SMESH_HypoFilter; class SMESH_Mesh; class SMESH_MesherHelper; class SMESH_ProxyMesh; class SMESH_subMesh; class TopoDS_Face; class TopoDS_Shape; class TopoDS_Vertex; class TopoDS_Wire; class gp_XYZ; typedef std::map< SMESH_subMesh*, std::vector > MapShapeNbElems; typedef std::map< SMESH_subMesh*, std::vector >::iterator MapShapeNbElemsItr; // ================================================================================== /*! * \brief Root of all algorithms * * Methods of the class are grouped into several parts: * - main lifecycle methods, like Compute() * - methods describing features of the algorithm, like NeedShape() * - methods related to dependencies between sub-meshes imposed by the algorith * - static utilities, like EdgeLength() */ // ================================================================================== class SMESH_EXPORT SMESH_Algo : public SMESH_Hypothesis { public: //================================================================================== /*! * \brief Structure describing algorithm features */ // -------------------------------------------------------------------------------- struct Features { int _dim; std::set _inElemTypes; // acceptable types of input mesh element std::set _outElemTypes; // produced types of mesh elements std::string _label; // GUI type name bool IsCompatible( const Features& algo2 ) const; }; /*! * \brief Returns a structure describing algorithm features */ static const Features& GetFeatures( const std::string& algoType ); const Features& GetFeatures() const { return GetFeatures( _name ); } public: //================================================================================== /*! * \brief Creates algorithm * \param hypId - algorithm ID * \param studyId - study ID * \param gen - SMESH_Gen */ SMESH_Algo(int hypId, int studyId, SMESH_Gen * gen); /*! * \brief Destructor */ virtual ~ SMESH_Algo(); /*! * \brief Saves nothing in a stream * \param save - the stream * \retval std::ostream & - the stream */ virtual std::ostream & SaveTo(std::ostream & save); /*! * \brief Loads nothing from a stream * \param load - the stream * \retval std::ostream & - the stream */ virtual std::istream & LoadFrom(std::istream & load); /*! * \brief Returns all types of compatible hypotheses */ const std::vector < std::string > & GetCompatibleHypothesis(); /*! * \brief Check hypothesis definition to mesh a shape * \param aMesh - the mesh * \param aShape - the shape * \param aStatus - check result * \retval bool - true if hypothesis is well defined * * Textual description of a problem can be stored in _comment field. */ virtual bool CheckHypothesis(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, SMESH_Hypothesis::Hypothesis_Status& aStatus) = 0; /*! * \brief Computes mesh on a shape * \param aMesh - the mesh * \param aShape - the shape * \retval bool - is a success * * Algorithms that !NeedDiscreteBoundary() || !OnlyUnaryInput() are * to set SMESH_ComputeError returned by SMESH_submesh::GetComputeError() * to report problematic sub-shapes */ virtual bool Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape) = 0; /*! * \brief Computes mesh without geometry * \param aMesh - the mesh * \param aHelper - helper that must be used for adding elements to \aaMesh * \retval bool - is a success * * The method is called if ( !aMesh->HasShapeToMesh() ) */ virtual bool Compute(SMESH_Mesh & aMesh, SMESH_MesherHelper* aHelper); /*! * \brief Sets _computeCanceled to true. It's usage depends on * implementation of a particular mesher. */ virtual void CancelCompute(); /*! * \brief If possible, returns progress of computation [0.,1.] */ virtual double GetProgress() const; /*! * \brief evaluates size of prospective mesh on a shape * \param aMesh - the mesh * \param aShape - the shape * \param aNbElems - prospective number of elements by types * \retval bool - is a success */ virtual bool Evaluate(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, MapShapeNbElems& aResMap) = 0; /*! * \brief Returns a list of compatible hypotheses used to mesh a shape * \param aMesh - the mesh * \param aShape - the shape * \param ignoreAuxiliary - do not include auxiliary hypotheses in the list * \retval const std::list - hypotheses list * * List the hypothesis used by the algorithm associated to the shape. * Hypothesis associated to father shape -are- taken into account (see * GetAppliedHypothesis). Relevant hypothesis have a name (type) listed in * the algorithm. This method could be surcharged by specific algorithms, in * case of several hypothesis simultaneously applicable. */ virtual const std::list & GetUsedHypothesis(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, const bool ignoreAuxiliary=true) const; /*! * \brief Returns a list of compatible hypotheses assigned to a shape in a mesh * \param aMesh - the mesh * \param aShape - the shape * \param ignoreAuxiliary - do not include auxiliary hypotheses in the list * \retval const std::list - hypotheses list * * List the relevant hypothesis associated to the shape. Relevant hypothesis * have a name (type) listed in the algorithm. Hypothesis associated to * father shape -are not- taken into account (see GetUsedHypothesis) */ const list & GetAppliedHypothesis(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, const bool ignoreAuxiliary=true) const; /*! * \brief Returns the filter recognizing only compatible hypotheses * \param ignoreAuxiliary - make filter ignore compatible auxiliary hypotheses * \retval SMESH_HypoFilter* - the filter that can be NULL */ const SMESH_HypoFilter* GetCompatibleHypoFilter(const bool ignoreAuxiliary) const; /*! * \brief Just return false as the algorithm does not hold parameters values */ virtual bool SetParametersByMesh(const SMESH_Mesh* theMesh, const TopoDS_Shape& theShape); virtual bool SetParametersByDefaults(const TDefaults& dflts, const SMESH_Mesh* theMesh=0); /*! * \brief return compute error */ SMESH_ComputeErrorPtr GetComputeError() const; /*! * \brief initialize compute error etc. before call of Compute() */ void InitComputeError(); /*! * \brief Return compute progress by nb of calls of this method */ double GetProgressByTic() const; /*! * Return a vector of sub-meshes to Compute() */ std::vector& SubMeshesToCompute() { return _smToCompute; } public: // ================================================================== // Algo features influencing how Compute() is called: // in what turn and with what input shape // ================================================================== // SMESH_Hypothesis::GetDim(); // 1 - dimention of target mesh bool OnlyUnaryInput() const { return _onlyUnaryInput; } // 2 - is collection of tesselatable shapes inacceptable as input; // "collection" means a shape containing shapes of dim equal // to GetDim(). // Algo which can process a collection shape should expect // an input temporary shape that is neither MainShape nor // its child. bool NeedDiscreteBoundary() const { return _requireDiscreteBoundary; } // 3 - is a Dim-1 mesh prerequisite bool NeedShape() const { return _requireShape; } // 4 - is shape existance required bool SupportSubmeshes() const { return _supportSubmeshes; } // 5 - whether supports submeshes if !NeedDiscreteBoundary() bool NeedLowerHyps(int dim) const { return _neededLowerHyps[ dim ]; } // 6 - if algo !NeedDiscreteBoundary() but requires presence of // hypotheses of dimension to generate all-dimensional mesh. // This info is used not to issue warnings on hiding of lower global algos. public: // ================================================================== // Methods to track non hierarchical dependencies between submeshes // ================================================================== /*! * \brief Sets event listener to submeshes if necessary * \param subMesh - submesh where algo is set * * This method is called when a submesh gets HYP_OK algo_state. * After being set, event listener is notified on each event of a submesh. * By default none listener is set */ virtual void SetEventListener(SMESH_subMesh* subMesh); /*! * \brief Allow algo to do something after persistent restoration * \param subMesh - restored submesh * * This method is called only if a submesh has HYP_OK algo_state. */ virtual void SubmeshRestored(SMESH_subMesh* subMesh); public: // ================================================================== // Common algo utilities // ================================================================== /*! * \brief Fill vector of node parameters on geometrical edge, including vertex nodes * \param theMesh - The mesh containing nodes * \param theEdge - The geometrical edge of interest * \param theParams - The resulting vector of sorted node parameters * \retval bool - false if not all parameters are OK */ static bool GetNodeParamOnEdge(const SMESHDS_Mesh* theMesh, const TopoDS_Edge& theEdge, std::vector< double > & theParams); /*! * \brief Fill map of node parameter on geometrical edge to node it-self * \param theMesh - The mesh containing nodes * \param theEdge - The geometrical edge of interest * \param theNodes - The resulting map * \param ignoreMediumNodes - to store medium nodes of quadratic elements or not * \param typeToCheck - type of elements to check for medium nodes * \retval bool - false if not all parameters are OK */ static bool GetSortedNodesOnEdge(const SMESHDS_Mesh* theMesh, const TopoDS_Edge& theEdge, const bool ignoreMediumNodes, std::map< double, const SMDS_MeshNode* > & theNodes, const SMDSAbs_ElementType typeToCheck = SMDSAbs_All); /*! * Moved to SMESH_MesherHelper */ // static bool IsReversedSubMesh (const TopoDS_Face& theFace, // SMESHDS_Mesh* theMeshDS); /*! * \brief Compute length of an edge * \param E - the edge * \retval double - the length */ static double EdgeLength(const TopoDS_Edge & E); //static int NumberOfWires(const TopoDS_Shape& S); int NumberOfPoints(SMESH_Mesh& aMesh,const TopoDS_Wire& W); /*! * \brief Return continuity of two edges * \param E1 - the 1st edge * \param E2 - the 2nd edge * \retval GeomAbs_Shape - regularity at the junction between E1 and E2 */ static GeomAbs_Shape Continuity(TopoDS_Edge E1, TopoDS_Edge E2); /*! * \brief Return true if an edge can be considered as a continuation of another */ static bool IsContinuous(const TopoDS_Edge & E1, const TopoDS_Edge & E2) { return ( Continuity( E1, E2 ) >= GeomAbs_G1 ); } /*! * \brief Return true if an edge can be considered straight */ static bool IsStraight( const TopoDS_Edge & E, const bool degenResult=false ); /*! * \brief Return true if an edge has no 3D curve */ static bool isDegenerated( const TopoDS_Edge & E ); /*! * \brief Return the node built on a vertex * \param V - the vertex * \param meshDS - mesh * \retval const SMDS_MeshNode* - found node or NULL */ static const SMDS_MeshNode* VertexNode(const TopoDS_Vertex& V, const SMESHDS_Mesh* meshDS); enum EMeshError { MEr_OK = 0, MEr_HOLES, MEr_BAD_ORI, MEr_EMPTY }; /*! * \brief Finds topological errors of a sub-mesh */ static EMeshError GetMeshError(SMESH_subMesh* subMesh); protected: /*! * \brief store error and comment and then return ( error == COMPERR_OK ) */ bool error(int error, const SMESH_Comment& comment = ""); /*! * \brief store COMPERR_ALGO_FAILED error and comment and then return false */ bool error(const SMESH_Comment& comment = "") { return error(COMPERR_ALGO_FAILED, comment); } /*! * \brief store error and return error->IsOK() */ bool error(SMESH_ComputeErrorPtr error); /*! * \brief store a bad input element preventing computation, * which may be a temporary one i.e. not residing the mesh, * then it will be deleted by InitComputeError() */ void addBadInputElement(const SMDS_MeshElement* elem); void addBadInputElements(const SMESHDS_SubMesh* sm, const bool addNodes=false); protected: const SMESH_HypoFilter * _compatibleAllHypFilter; const SMESH_HypoFilter * _compatibleNoAuxHypFilter; std::vector _compatibleHypothesis; std::list _appliedHypList; std::list _usedHypList; // Algo features influencing which Compute() and how is called: // in what turn and with what input shape. // These fields must be redefined if necessary by each descendant at constructor. bool _onlyUnaryInput; // mesh one shape of GetDim() at once. Default TRUE bool _requireDiscreteBoundary;// GetDim()-1 mesh must be present. Default TRUE bool _requireShape; // work with GetDim()-1 mesh bound to geom only. Default TRUE bool _supportSubmeshes; // if !_requireDiscreteBoundary. Default FALSE bool _neededLowerHyps[4]; // hyp dims needed by algo that !NeedDiscreteBoundary(). Df. FALSE // indicates if quadratic mesh creation is required, // is usually set like this: _quadraticMesh = SMESH_MesherHelper::IsQuadraticSubMesh(shape) bool _quadraticMesh; int _error; //!< SMESH_ComputeErrorName or anything algo specific std::string _comment; //!< any text explaining what is wrong in Compute() std::list _badInputElements; //!< to explain COMPERR_BAD_INPUT_MESH volatile bool _computeCanceled; //!< is set to True while computing to stop it double _progress; /* progress of Compute() [0.,1.], to be set by an algo really tracking the progress */ int _progressTic; // counter of calls from SMESH_Mesh::GetComputeProgress() std::vector _smToCompute; // sub-meshes to Compute() }; class SMESH_EXPORT SMESH_0D_Algo: public SMESH_Algo { public: SMESH_0D_Algo(int hypId, int studyId, SMESH_Gen* gen); }; class SMESH_EXPORT SMESH_1D_Algo: public SMESH_Algo { public: SMESH_1D_Algo(int hypId, int studyId, SMESH_Gen* gen); }; class SMESH_EXPORT SMESH_2D_Algo: public SMESH_Algo { public: SMESH_2D_Algo(int hypId, int studyId, SMESH_Gen* gen); /*! * \brief Method in which an algorithm generating a structured mesh * fixes positions of in-face nodes after there movement * due to insertion of viscous layers. */ virtual bool FixInternalNodes(const SMESH_ProxyMesh& mesh, const TopoDS_Face& face); }; class SMESH_EXPORT SMESH_3D_Algo: public SMESH_Algo { public: SMESH_3D_Algo(int hypId, int studyId, SMESH_Gen* gen); }; #endif