// Copyright (C) 2007-2014 CEA/DEN, EDF R&D, OPEN CASCADE // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : StdMeshers_ViscousLayers.cxx // Created : Wed Dec 1 15:15:34 2010 // Author : Edward AGAPOV (eap) #include "StdMeshers_ViscousLayers.hxx" #include "SMDS_EdgePosition.hxx" #include "SMDS_FaceOfNodes.hxx" #include "SMDS_FacePosition.hxx" #include "SMDS_MeshNode.hxx" #include "SMDS_SetIterator.hxx" #include "SMESHDS_Group.hxx" #include "SMESHDS_Hypothesis.hxx" #include "SMESH_Algo.hxx" #include "SMESH_ComputeError.hxx" #include "SMESH_ControlsDef.hxx" #include "SMESH_Gen.hxx" #include "SMESH_Group.hxx" #include "SMESH_HypoFilter.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_MeshAlgos.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_ProxyMesh.hxx" #include "SMESH_subMesh.hxx" #include "SMESH_subMeshEventListener.hxx" #include "StdMeshers_FaceSide.hxx" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _DEBUG_ //#define __myDEBUG //#define __NOT_INVALIDATE_BAD_SMOOTH #endif using namespace std; //================================================================================ namespace VISCOUS_3D { typedef int TGeomID; enum UIndex { U_TGT = 1, U_SRC, LEN_TGT }; const double theMinSmoothCosin = 0.1; const double theSmoothThickToElemSizeRatio = 0.3; // what part of thickness is allowed till intersection // (defined by SALOME_TESTS/Grids/smesh/viscous_layers_00/A5) const double theThickToIntersection = 1.5; bool needSmoothing( double cosin, double tgtThick, double elemSize ) { return cosin * tgtThick > theSmoothThickToElemSizeRatio * elemSize; } /*! * \brief SMESH_ProxyMesh computed by _ViscousBuilder for a SOLID. * It is stored in a SMESH_subMesh of the SOLID as SMESH_subMeshEventListenerData */ struct _MeshOfSolid : public SMESH_ProxyMesh, public SMESH_subMeshEventListenerData { bool _n2nMapComputed; SMESH_ComputeErrorPtr _warning; _MeshOfSolid( SMESH_Mesh* mesh) :SMESH_subMeshEventListenerData( /*isDeletable=*/true),_n2nMapComputed(false) { SMESH_ProxyMesh::setMesh( *mesh ); } // returns submesh for a geom face SMESH_ProxyMesh::SubMesh* getFaceSubM(const TopoDS_Face& F, bool create=false) { TGeomID i = SMESH_ProxyMesh::shapeIndex(F); return create ? SMESH_ProxyMesh::getProxySubMesh(i) : findProxySubMesh(i); } void setNode2Node(const SMDS_MeshNode* srcNode, const SMDS_MeshNode* proxyNode, const SMESH_ProxyMesh::SubMesh* subMesh) { SMESH_ProxyMesh::setNode2Node( srcNode,proxyNode,subMesh); } }; //-------------------------------------------------------------------------------- /*! * \brief Listener of events of 3D sub-meshes computed with viscous layers. * It is used to clear an inferior dim sub-meshes modified by viscous layers */ class _ShrinkShapeListener : SMESH_subMeshEventListener { _ShrinkShapeListener() : SMESH_subMeshEventListener(/*isDeletable=*/false, "StdMeshers_ViscousLayers::_ShrinkShapeListener") {} public: static SMESH_subMeshEventListener* Get() { static _ShrinkShapeListener l; return &l; } virtual void ProcessEvent(const int event, const int eventType, SMESH_subMesh* solidSM, SMESH_subMeshEventListenerData* data, const SMESH_Hypothesis* hyp) { if ( SMESH_subMesh::COMPUTE_EVENT == eventType && solidSM->IsEmpty() && data ) { SMESH_subMeshEventListener::ProcessEvent(event,eventType,solidSM,data,hyp); } } }; //-------------------------------------------------------------------------------- /*! * \brief Listener of events of 3D sub-meshes computed with viscous layers. * It is used to store data computed by _ViscousBuilder for a sub-mesh and to * delete the data as soon as it has been used */ class _ViscousListener : SMESH_subMeshEventListener { _ViscousListener(): SMESH_subMeshEventListener(/*isDeletable=*/false, "StdMeshers_ViscousLayers::_ViscousListener") {} static SMESH_subMeshEventListener* Get() { static _ViscousListener l; return &l; } public: virtual void ProcessEvent(const int event, const int eventType, SMESH_subMesh* subMesh, SMESH_subMeshEventListenerData* data, const SMESH_Hypothesis* hyp) { if ( SMESH_subMesh::COMPUTE_EVENT == eventType && SMESH_subMesh::CHECK_COMPUTE_STATE != event) { // delete SMESH_ProxyMesh containing temporary faces subMesh->DeleteEventListener( this ); } } // Finds or creates proxy mesh of the solid static _MeshOfSolid* GetSolidMesh(SMESH_Mesh* mesh, const TopoDS_Shape& solid, bool toCreate=false) { if ( !mesh ) return 0; SMESH_subMesh* sm = mesh->GetSubMesh(solid); _MeshOfSolid* data = (_MeshOfSolid*) sm->GetEventListenerData( Get() ); if ( !data && toCreate ) { data = new _MeshOfSolid(mesh); data->mySubMeshes.push_back( sm ); // to find SOLID by _MeshOfSolid sm->SetEventListener( Get(), data, sm ); } return data; } // Removes proxy mesh of the solid static void RemoveSolidMesh(SMESH_Mesh* mesh, const TopoDS_Shape& solid) { mesh->GetSubMesh(solid)->DeleteEventListener( _ViscousListener::Get() ); } }; //================================================================================ /*! * \brief sets a sub-mesh event listener to clear sub-meshes of sub-shapes of * the main shape when sub-mesh of the main shape is cleared, * for example to clear sub-meshes of FACEs when sub-mesh of a SOLID * is cleared */ //================================================================================ void ToClearSubWithMain( SMESH_subMesh* sub, const TopoDS_Shape& main) { SMESH_subMesh* mainSM = sub->GetFather()->GetSubMesh( main ); SMESH_subMeshEventListenerData* data = mainSM->GetEventListenerData( _ShrinkShapeListener::Get()); if ( data ) { if ( find( data->mySubMeshes.begin(), data->mySubMeshes.end(), sub ) == data->mySubMeshes.end()) data->mySubMeshes.push_back( sub ); } else { data = SMESH_subMeshEventListenerData::MakeData( /*dependent=*/sub ); sub->SetEventListener( _ShrinkShapeListener::Get(), data, /*whereToListenTo=*/mainSM ); } } struct _SolidData; //-------------------------------------------------------------------------------- /*! * \brief Simplex (triangle or tetrahedron) based on 1 (tria) or 2 (tet) nodes of * _LayerEdge and 2 nodes of the mesh surface beening smoothed. * The class is used to check validity of face or volumes around a smoothed node; * it stores only 2 nodes as the other nodes are stored by _LayerEdge. */ struct _Simplex { const SMDS_MeshNode *_nPrev, *_nNext; // nodes on a smoothed mesh surface const SMDS_MeshNode *_nOpp; // in 2D case, a node opposite to a smoothed node in QUAD _Simplex(const SMDS_MeshNode* nPrev=0, const SMDS_MeshNode* nNext=0, const SMDS_MeshNode* nOpp=0) : _nPrev(nPrev), _nNext(nNext), _nOpp(nOpp) {} bool IsForward(const SMDS_MeshNode* nSrc, const gp_XYZ* pntTgt, double& vol) const { const double M[3][3] = {{ _nNext->X() - nSrc->X(), _nNext->Y() - nSrc->Y(), _nNext->Z() - nSrc->Z() }, { pntTgt->X() - nSrc->X(), pntTgt->Y() - nSrc->Y(), pntTgt->Z() - nSrc->Z() }, { _nPrev->X() - nSrc->X(), _nPrev->Y() - nSrc->Y(), _nPrev->Z() - nSrc->Z() }}; vol = ( + M[0][0]*M[1][1]*M[2][2] + M[0][1]*M[1][2]*M[2][0] + M[0][2]*M[1][0]*M[2][1] - M[0][0]*M[1][2]*M[2][1] - M[0][1]*M[1][0]*M[2][2] - M[0][2]*M[1][1]*M[2][0]); return vol > 1e-100; } bool IsForward(const gp_XY& tgtUV, const SMDS_MeshNode* smoothedNode, const TopoDS_Face& face, SMESH_MesherHelper& helper, const double refSign) const { gp_XY prevUV = helper.GetNodeUV( face, _nPrev, smoothedNode ); gp_XY nextUV = helper.GetNodeUV( face, _nNext, smoothedNode ); gp_Vec2d v1( tgtUV, prevUV ), v2( tgtUV, nextUV ); double d = v1 ^ v2; return d*refSign > 1e-100; } bool IsNeighbour(const _Simplex& other) const { return _nPrev == other._nNext || _nNext == other._nPrev; } static void GetSimplices( const SMDS_MeshNode* node, vector<_Simplex>& simplices, const set& ingnoreShapes, const _SolidData* dataToCheckOri = 0, const bool toSort = false); static void SortSimplices(vector<_Simplex>& simplices); }; //-------------------------------------------------------------------------------- /*! * Structure used to take into account surface curvature while smoothing */ struct _Curvature { double _r; // radius double _k; // factor to correct node smoothed position double _h2lenRatio; // avgNormProj / (2*avgDist) public: static _Curvature* New( double avgNormProj, double avgDist ) { _Curvature* c = 0; if ( fabs( avgNormProj / avgDist ) > 1./200 ) { c = new _Curvature; c->_r = avgDist * avgDist / avgNormProj; c->_k = avgDist * avgDist / c->_r / c->_r; //c->_k = avgNormProj / c->_r; c->_k *= ( c->_r < 0 ? 1/1.1 : 1.1 ); // not to be too restrictive c->_h2lenRatio = avgNormProj / ( avgDist + avgDist ); } return c; } double lenDelta(double len) const { return _k * ( _r + len ); } double lenDeltaByDist(double dist) const { return dist * _h2lenRatio; } }; //-------------------------------------------------------------------------------- struct _2NearEdges; struct _LayerEdge; struct _EdgesOnShape; typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge; //-------------------------------------------------------------------------------- /*! * \brief Edge normal to surface, connecting a node on solid surface (_nodes[0]) * and a node of the most internal layer (_nodes.back()) */ struct _LayerEdge { typedef gp_XYZ (_LayerEdge::*PSmooFun)(); vector< const SMDS_MeshNode*> _nodes; gp_XYZ _normal; // to solid surface vector _pos; // points computed during inflation double _len; // length achived with the last inflation step double _cosin; // of angle (_normal ^ surface) double _lenFactor; // to compute _len taking _cosin into account // face or edge w/o layer along or near which _LayerEdge is inflated //TopoDS_Shape* _sWOL; // simplices connected to the source node (_nodes[0]); // used for smoothing and quality check of _LayerEdge's based on the FACE vector<_Simplex> _simplices; PSmooFun _smooFunction; // smoothing function // data for smoothing of _LayerEdge's based on the EDGE _2NearEdges* _2neibors; _Curvature* _curvature; // TODO:: detele _Curvature, _plnNorm void SetNewLength( double len, _EdgesOnShape& eos, SMESH_MesherHelper& helper ); bool SetNewLength2d( Handle(Geom_Surface)& surface, const TopoDS_Face& F, _EdgesOnShape& eos, SMESH_MesherHelper& helper ); void SetDataByNeighbors( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const _EdgesOnShape& eos, SMESH_MesherHelper& helper); void InvalidateStep( int curStep, const _EdgesOnShape& eos, bool restoreLength=false ); void ChooseSmooFunction(const set< TGeomID >& concaveVertices, const TNode2Edge& n2eMap); int Smooth(const int step, const bool isConcaveFace, const bool findBest); bool SmoothOnEdge(Handle(Geom_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper); bool FindIntersection( SMESH_ElementSearcher& searcher, double & distance, const double& epsilon, _EdgesOnShape& eos, const SMDS_MeshElement** face = 0); bool SegTriaInter( const gp_Ax1& lastSegment, const SMDS_MeshNode* n0, const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, double& dist, const double& epsilon) const; gp_Ax1 LastSegment(double& segLen, _EdgesOnShape& eos) const; gp_XY LastUV( const TopoDS_Face& F, _EdgesOnShape& eos ) const; bool IsOnEdge() const { return _2neibors; } gp_XYZ Copy( _LayerEdge& other, _EdgesOnShape& eos, SMESH_MesherHelper& helper ); void SetCosin( double cosin ); int NbSteps() const { return _pos.size() - 1; } // nb inlation steps gp_XYZ smoothLaplacian(); gp_XYZ smoothAngular(); gp_XYZ smoothLengthWeighted(); gp_XYZ smoothCentroidal(); gp_XYZ smoothNefPolygon(); enum { FUN_LAPLACIAN, FUN_LENWEIGHTED, FUN_CENTROIDAL, FUN_NEFPOLY, FUN_ANGULAR, FUN_NB }; static const int theNbSmooFuns = FUN_NB; static PSmooFun _funs[theNbSmooFuns]; static const char* _funNames[theNbSmooFuns+1]; int smooFunID( PSmooFun fun=0) const; }; _LayerEdge::PSmooFun _LayerEdge::_funs[theNbSmooFuns] = { &_LayerEdge::smoothLaplacian, &_LayerEdge::smoothLengthWeighted, &_LayerEdge::smoothCentroidal, &_LayerEdge::smoothNefPolygon, &_LayerEdge::smoothAngular }; const char* _LayerEdge::_funNames[theNbSmooFuns+1] = { "Laplacian", "LengthWeighted", "Centroidal", "NefPolygon", "Angular", "None"}; struct _LayerEdgeCmp { bool operator () (const _LayerEdge* e1, const _LayerEdge* e2) const { const bool cmpNodes = ( e1 && e2 && e1->_nodes.size() && e2->_nodes.size() ); return cmpNodes ? ( e1->_nodes[0]->GetID() < e2->_nodes[0]->GetID()) : ( e1 < e2 ); } }; //-------------------------------------------------------------------------------- /*! * A 2D half plane used by _LayerEdge::smoothNefPolygon() */ struct _halfPlane { gp_XY _pos, _dir, _inNorm; bool IsOut( const gp_XY p, const double tol ) const { return _inNorm * ( p - _pos ) < -tol; } bool FindInterestion( const _halfPlane& hp, gp_XY & intPnt ) { const double eps = 1e-10; double D = _dir.Crossed( hp._dir ); if ( fabs(D) < std::numeric_limits::min()) return false; gp_XY vec21 = _pos - hp._pos; double u = hp._dir.Crossed( vec21 ) / D; intPnt = _pos + _dir * u; return true; } }; //-------------------------------------------------------------------------------- /*! * Structure used to smooth a _LayerEdge based on an EDGE. */ struct _2NearEdges { double _wgt [2]; // weights of _nodes _LayerEdge* _edges[2]; // normal to plane passing through _LayerEdge._normal and tangent of EDGE gp_XYZ* _plnNorm; _2NearEdges() { _edges[0]=_edges[1]=0; _plnNorm = 0; } const SMDS_MeshNode* tgtNode(bool is2nd) { return _edges[is2nd] ? _edges[is2nd]->_nodes.back() : 0; } const SMDS_MeshNode* srcNode(bool is2nd) { return _edges[is2nd] ? _edges[is2nd]->_nodes[0] : 0; } void reverse() { std::swap( _wgt [0], _wgt [1] ); std::swap( _edges[0], _edges[1] ); } }; //-------------------------------------------------------------------------------- /*! * \brief Layers parameters got by averaging several hypotheses */ struct AverageHyp { AverageHyp( const StdMeshers_ViscousLayers* hyp = 0 ) :_nbLayers(0), _nbHyps(0), _thickness(0), _stretchFactor(0), _method(0) { Add( hyp ); } void Add( const StdMeshers_ViscousLayers* hyp ) { if ( hyp ) { _nbHyps++; _nbLayers = hyp->GetNumberLayers(); //_thickness += hyp->GetTotalThickness(); _thickness = Max( _thickness, hyp->GetTotalThickness() ); _stretchFactor += hyp->GetStretchFactor(); _method = hyp->GetMethod(); } } double GetTotalThickness() const { return _thickness; /*_nbHyps ? _thickness / _nbHyps : 0;*/ } double GetStretchFactor() const { return _nbHyps ? _stretchFactor / _nbHyps : 0; } int GetNumberLayers() const { return _nbLayers; } int GetMethod() const { return _method; } bool UseSurfaceNormal() const { return _method == StdMeshers_ViscousLayers::SURF_OFFSET_SMOOTH; } bool ToSmooth() const { return _method == StdMeshers_ViscousLayers::SURF_OFFSET_SMOOTH; } bool IsOffsetMethod() const { return _method == StdMeshers_ViscousLayers::FACE_OFFSET; } private: int _nbLayers, _nbHyps, _method; double _thickness, _stretchFactor; }; //-------------------------------------------------------------------------------- /*! * \brief _LayerEdge's on a shape and other shape data */ struct _EdgesOnShape { vector< _LayerEdge* > _edges; TopoDS_Shape _shape; TGeomID _shapeID; SMESH_subMesh * _subMesh; // face or edge w/o layer along or near which _edges are inflated TopoDS_Shape _sWOL; // averaged StdMeshers_ViscousLayers parameters AverageHyp _hyp; bool _toSmooth; vector< gp_XYZ > _faceNormals; // if _shape is FACE vector< _EdgesOnShape* > _faceEOS; // to get _faceNormals of adjacent FACEs TopAbs_ShapeEnum ShapeType() const { return _shape.IsNull() ? TopAbs_SHAPE : _shape.ShapeType(); } TopAbs_ShapeEnum SWOLType() const { return _sWOL.IsNull() ? TopAbs_SHAPE : _sWOL.ShapeType(); } bool GetNormal( const SMDS_MeshElement* face, gp_Vec& norm ); }; //-------------------------------------------------------------------------------- /*! * \brief Convex FACE whose radius of curvature is less than the thickness of * layers. It is used to detect distortion of prisms based on a convex * FACE and to update normals to enable further increasing the thickness */ struct _ConvexFace { TopoDS_Face _face; // edges whose _simplices are used to detect prism destorsion vector< _LayerEdge* > _simplexTestEdges; // map a sub-shape to _SolidData::_edgesOnShape map< TGeomID, _EdgesOnShape* > _subIdToEOS; bool _normalsFixed; bool GetCenterOfCurvature( _LayerEdge* ledge, BRepLProp_SLProps& surfProp, SMESH_MesherHelper& helper, gp_Pnt & center ) const; bool CheckPrisms() const; }; //-------------------------------------------------------------------------------- /*! * \brief Data of a SOLID */ struct _SolidData { typedef const StdMeshers_ViscousLayers* THyp; TopoDS_Shape _solid; TGeomID _index; // SOLID id _MeshOfSolid* _proxyMesh; list< THyp > _hyps; list< TopoDS_Shape > _hypShapes; map< TGeomID, THyp > _face2hyp; // filled if _hyps.size() > 1 set< TGeomID > _reversedFaceIds; set< TGeomID > _ignoreFaceIds; // WOL FACEs and FACEs of other SOLIDs double _stepSize, _stepSizeCoeff, _geomSize; const SMDS_MeshNode* _stepSizeNodes[2]; TNode2Edge _n2eMap; // nodes and _LayerEdge's based on them // map to find _n2eMap of another _SolidData by a shrink shape shared by two _SolidData's map< TGeomID, TNode2Edge* > _s2neMap; // _LayerEdge's with underlying shapes vector< _EdgesOnShape > _edgesOnShape; // key: an id of shape (EDGE or VERTEX) shared by a FACE with // layers and a FACE w/o layers // value: the shape (FACE or EDGE) to shrink mesh on. // _LayerEdge's basing on nodes on key shape are inflated along the value shape map< TGeomID, TopoDS_Shape > _shrinkShape2Shape; // Convex FACEs whose radius of curvature is less than the thickness of layers map< TGeomID, _ConvexFace > _convexFaces; // shapes (EDGEs and VERTEXes) srink from which is forbidden due to collisions with // the adjacent SOLID set< TGeomID > _noShrinkShapes; int _nbShapesToSmooth; // to -- for analytic smooth map< TGeomID,Handle(Geom_Curve)> _edge2curve; set< TGeomID > _concaveFaces; double _maxThickness; // of all _hyps double _minThickness; // of all _hyps double _epsilon; // precision for SegTriaInter() _SolidData(const TopoDS_Shape& s=TopoDS_Shape(), _MeshOfSolid* m=0) :_solid(s), _proxyMesh(m) {} ~_SolidData(); Handle(Geom_Curve) CurveForSmooth( const TopoDS_Edge& E, _EdgesOnShape& eos, SMESH_MesherHelper& helper); void SortOnEdge( const TopoDS_Edge& E, vector< _LayerEdge* >& edges, SMESH_MesherHelper& helper); void Sort2NeiborsOnEdge( vector< _LayerEdge* >& edges ); _ConvexFace* GetConvexFace( const TGeomID faceID ) { map< TGeomID, _ConvexFace >::iterator id2face = _convexFaces.find( faceID ); return id2face == _convexFaces.end() ? 0 : & id2face->second; } _EdgesOnShape* GetShapeEdges(const TGeomID shapeID ); _EdgesOnShape* GetShapeEdges(const TopoDS_Shape& shape ); _EdgesOnShape* GetShapeEdges(const _LayerEdge* edge ) { return GetShapeEdges( edge->_nodes[0]->getshapeId() ); } void AddShapesToSmooth( const set< _EdgesOnShape* >& shape ); void PrepareEdgesToSmoothOnFace( _EdgesOnShape* eof, bool substituteSrcNodes ); }; //-------------------------------------------------------------------------------- /*! * \brief Container of centers of curvature at nodes on an EDGE bounding _ConvexFace */ struct _CentralCurveOnEdge { bool _isDegenerated; vector< gp_Pnt > _curvaCenters; vector< _LayerEdge* > _ledges; vector< gp_XYZ > _normals; // new normal for each of _ledges vector< double > _segLength2; TopoDS_Edge _edge; TopoDS_Face _adjFace; bool _adjFaceToSmooth; void Append( const gp_Pnt& center, _LayerEdge* ledge ) { if ( _curvaCenters.size() > 0 ) _segLength2.push_back( center.SquareDistance( _curvaCenters.back() )); _curvaCenters.push_back( center ); _ledges.push_back( ledge ); _normals.push_back( ledge->_normal ); } bool FindNewNormal( const gp_Pnt& center, gp_XYZ& newNormal ); void SetShapes( const TopoDS_Edge& edge, const _ConvexFace& convFace, _SolidData& data, SMESH_MesherHelper& helper); }; //-------------------------------------------------------------------------------- /*! * \brief Data of node on a shrinked FACE */ struct _SmoothNode { const SMDS_MeshNode* _node; vector<_Simplex> _simplices; // for quality check enum SmoothType { LAPLACIAN, CENTROIDAL, ANGULAR, TFI }; bool Smooth(int& badNb, Handle(Geom_Surface)& surface, SMESH_MesherHelper& helper, const double refSign, SmoothType how, bool set3D); gp_XY computeAngularPos(vector& uv, const gp_XY& uvToFix, const double refSign ); }; //-------------------------------------------------------------------------------- /*! * \brief Builder of viscous layers */ class _ViscousBuilder { public: _ViscousBuilder(); // does it's job SMESH_ComputeErrorPtr Compute(SMESH_Mesh& mesh, const TopoDS_Shape& shape); // check validity of hypotheses SMESH_ComputeErrorPtr CheckHypotheses( SMESH_Mesh& mesh, const TopoDS_Shape& shape ); // restore event listeners used to clear an inferior dim sub-mesh modified by viscous layers void RestoreListeners(); // computes SMESH_ProxyMesh::SubMesh::_n2n; bool MakeN2NMap( _MeshOfSolid* pm ); private: bool findSolidsWithLayers(); bool findFacesWithLayers(const bool onlyWith=false); void getIgnoreFaces(const TopoDS_Shape& solid, const StdMeshers_ViscousLayers* hyp, const TopoDS_Shape& hypShape, set& ignoreFaces); bool makeLayer(_SolidData& data); void setShapeData( _EdgesOnShape& eos, SMESH_subMesh* sm, _SolidData& data ); bool setEdgeData(_LayerEdge& edge, _EdgesOnShape& eos, const set& subIds, SMESH_MesherHelper& helper, _SolidData& data); gp_XYZ getFaceNormal(const SMDS_MeshNode* n, const TopoDS_Face& face, SMESH_MesherHelper& helper, bool& isOK, bool shiftInside=false); bool getFaceNormalAtSingularity(const gp_XY& uv, const TopoDS_Face& face, SMESH_MesherHelper& helper, gp_Dir& normal ); gp_XYZ getWeigthedNormal( const SMDS_MeshNode* n, std::pair< TopoDS_Face, gp_XYZ > fId2Normal[], int nbFaces ); bool findNeiborsOnEdge(const _LayerEdge* edge, const SMDS_MeshNode*& n1, const SMDS_MeshNode*& n2, _EdgesOnShape& eos, _SolidData& data); void findSimplexTestEdges( _SolidData& data, vector< vector<_LayerEdge*> >& edgesByGeom); void computeGeomSize( _SolidData& data ); bool findShapesToSmooth( _SolidData& data); void limitStepSizeByCurvature( _SolidData& data ); void limitStepSize( _SolidData& data, const SMDS_MeshElement* face, const _LayerEdge* maxCosinEdge ); void limitStepSize( _SolidData& data, const double minSize); bool inflate(_SolidData& data); bool smoothAndCheck(_SolidData& data, const int nbSteps, double & distToIntersection); bool smoothAnalyticEdge( _SolidData& data, _EdgesOnShape& eos, Handle(Geom_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper); bool updateNormals( _SolidData& data, SMESH_MesherHelper& helper, int stepNb ); bool updateNormalsOfConvexFaces( _SolidData& data, SMESH_MesherHelper& helper, int stepNb ); bool refine(_SolidData& data); bool shrink(); bool prepareEdgeToShrink( _LayerEdge& edge, _EdgesOnShape& eos, SMESH_MesherHelper& helper, const SMESHDS_SubMesh* faceSubMesh ); void restoreNoShrink( _LayerEdge& edge ) const; void fixBadFaces(const TopoDS_Face& F, SMESH_MesherHelper& helper, const bool is2D, const int step, set * involvedNodes=NULL); bool addBoundaryElements(); bool error( const string& text, int solidID=-1 ); SMESHDS_Mesh* getMeshDS() const { return _mesh->GetMeshDS(); } // debug void makeGroupOfLE(); SMESH_Mesh* _mesh; SMESH_ComputeErrorPtr _error; vector< _SolidData > _sdVec; int _tmpFaceID; }; //-------------------------------------------------------------------------------- /*! * \brief Shrinker of nodes on the EDGE */ class _Shrinker1D { TopoDS_Edge _geomEdge; vector _initU; vector _normPar; vector _nodes; const _LayerEdge* _edges[2]; bool _done; public: void AddEdge( const _LayerEdge* e, _EdgesOnShape& eos, SMESH_MesherHelper& helper ); void Compute(bool set3D, SMESH_MesherHelper& helper); void RestoreParams(); void SwapSrcTgtNodes(SMESHDS_Mesh* mesh); }; //-------------------------------------------------------------------------------- /*! * \brief Class of temporary mesh face. * We can't use SMDS_FaceOfNodes since it's impossible to set it's ID which is * needed because SMESH_ElementSearcher internaly uses set of elements sorted by ID */ struct _TmpMeshFace : public SMDS_MeshElement { vector _nn; _TmpMeshFace( const vector& nodes, int id, int faceID=-1): SMDS_MeshElement(id), _nn(nodes) { setShapeId(faceID); } virtual const SMDS_MeshNode* GetNode(const int ind) const { return _nn[ind]; } virtual SMDSAbs_ElementType GetType() const { return SMDSAbs_Face; } virtual vtkIdType GetVtkType() const { return -1; } virtual SMDSAbs_EntityType GetEntityType() const { return SMDSEntity_Last; } virtual SMDSAbs_GeometryType GetGeomType() const { return _nn.size() == 3 ? SMDSGeom_TRIANGLE : SMDSGeom_QUADRANGLE; } virtual SMDS_ElemIteratorPtr elementsIterator(SMDSAbs_ElementType) const { return SMDS_ElemIteratorPtr( new SMDS_NodeVectorElemIterator( _nn.begin(), _nn.end()));} }; //-------------------------------------------------------------------------------- /*! * \brief Class of temporary mesh face storing _LayerEdge it's based on */ struct _TmpMeshFaceOnEdge : public _TmpMeshFace { _LayerEdge *_le1, *_le2; _TmpMeshFaceOnEdge( _LayerEdge* le1, _LayerEdge* le2, int ID ): _TmpMeshFace( vector(4), ID ), _le1(le1), _le2(le2) { _nn[0]=_le1->_nodes[0]; _nn[1]=_le1->_nodes.back(); _nn[2]=_le2->_nodes.back(); _nn[3]=_le2->_nodes[0]; } }; //-------------------------------------------------------------------------------- /*! * \brief Retriever of node coordinates either directly or from a surface by node UV. * \warning Location of a surface is ignored */ struct _NodeCoordHelper { SMESH_MesherHelper& _helper; const TopoDS_Face& _face; Handle(Geom_Surface) _surface; gp_XYZ (_NodeCoordHelper::* _fun)(const SMDS_MeshNode* n) const; _NodeCoordHelper(const TopoDS_Face& F, SMESH_MesherHelper& helper, bool is2D) : _helper( helper ), _face( F ) { if ( is2D ) { TopLoc_Location loc; _surface = BRep_Tool::Surface( _face, loc ); } if ( _surface.IsNull() ) _fun = & _NodeCoordHelper::direct; else _fun = & _NodeCoordHelper::byUV; } gp_XYZ operator()(const SMDS_MeshNode* n) const { return (this->*_fun)( n ); } private: gp_XYZ direct(const SMDS_MeshNode* n) const { return SMESH_TNodeXYZ( n ); } gp_XYZ byUV (const SMDS_MeshNode* n) const { gp_XY uv = _helper.GetNodeUV( _face, n ); return _surface->Value( uv.X(), uv.Y() ).XYZ(); } }; } // namespace VISCOUS_3D //================================================================================ // StdMeshers_ViscousLayers hypothesis // StdMeshers_ViscousLayers::StdMeshers_ViscousLayers(int hypId, int studyId, SMESH_Gen* gen) :SMESH_Hypothesis(hypId, studyId, gen), _isToIgnoreShapes(1), _nbLayers(1), _thickness(1), _stretchFactor(1), _method( SURF_OFFSET_SMOOTH ) { _name = StdMeshers_ViscousLayers::GetHypType(); _param_algo_dim = -3; // auxiliary hyp used by 3D algos } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetBndShapes(const std::vector& faceIds, bool toIgnore) { if ( faceIds != _shapeIds ) _shapeIds = faceIds, NotifySubMeshesHypothesisModification(); if ( _isToIgnoreShapes != toIgnore ) _isToIgnoreShapes = toIgnore, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetTotalThickness(double thickness) { if ( thickness != _thickness ) _thickness = thickness, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetNumberLayers(int nb) { if ( _nbLayers != nb ) _nbLayers = nb, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetStretchFactor(double factor) { if ( _stretchFactor != factor ) _stretchFactor = factor, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetMethod( ExtrusionMethod method ) { if ( _method != method ) _method = method, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- SMESH_ProxyMesh::Ptr StdMeshers_ViscousLayers::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape, const bool toMakeN2NMap) const { using namespace VISCOUS_3D; _ViscousBuilder bulder; SMESH_ComputeErrorPtr err = bulder.Compute( theMesh, theShape ); if ( err && !err->IsOK() ) return SMESH_ProxyMesh::Ptr(); vector components; TopExp_Explorer exp( theShape, TopAbs_SOLID ); for ( ; exp.More(); exp.Next() ) { if ( _MeshOfSolid* pm = _ViscousListener::GetSolidMesh( &theMesh, exp.Current(), /*toCreate=*/false)) { if ( toMakeN2NMap && !pm->_n2nMapComputed ) if ( !bulder.MakeN2NMap( pm )) return SMESH_ProxyMesh::Ptr(); components.push_back( SMESH_ProxyMesh::Ptr( pm )); pm->myIsDeletable = false; // it will de deleted by boost::shared_ptr if ( pm->_warning && !pm->_warning->IsOK() ) { SMESH_subMesh* sm = theMesh.GetSubMesh( exp.Current() ); SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); if ( !smError || smError->IsOK() ) smError = pm->_warning; } } _ViscousListener::RemoveSolidMesh ( &theMesh, exp.Current() ); } switch ( components.size() ) { case 0: break; case 1: return components[0]; default: return SMESH_ProxyMesh::Ptr( new SMESH_ProxyMesh( components )); } return SMESH_ProxyMesh::Ptr(); } // -------------------------------------------------------------------------------- std::ostream & StdMeshers_ViscousLayers::SaveTo(std::ostream & save) { save << " " << _nbLayers << " " << _thickness << " " << _stretchFactor << " " << _shapeIds.size(); for ( size_t i = 0; i < _shapeIds.size(); ++i ) save << " " << _shapeIds[i]; save << " " << !_isToIgnoreShapes; // negate to keep the behavior in old studies. save << " " << _method; return save; } // -------------------------------------------------------------------------------- std::istream & StdMeshers_ViscousLayers::LoadFrom(std::istream & load) { int nbFaces, faceID, shapeToTreat, method; load >> _nbLayers >> _thickness >> _stretchFactor >> nbFaces; while ( _shapeIds.size() < nbFaces && load >> faceID ) _shapeIds.push_back( faceID ); if ( load >> shapeToTreat ) { _isToIgnoreShapes = !shapeToTreat; if ( load >> method ) _method = (ExtrusionMethod) method; } else { _isToIgnoreShapes = true; // old behavior } return load; } // -------------------------------------------------------------------------------- bool StdMeshers_ViscousLayers::SetParametersByMesh(const SMESH_Mesh* theMesh, const TopoDS_Shape& theShape) { // TODO return false; } // -------------------------------------------------------------------------------- SMESH_ComputeErrorPtr StdMeshers_ViscousLayers::CheckHypothesis(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape, SMESH_Hypothesis::Hypothesis_Status& theStatus) { VISCOUS_3D::_ViscousBuilder bulder; SMESH_ComputeErrorPtr err = bulder.CheckHypotheses( theMesh, theShape ); if ( err && !err->IsOK() ) theStatus = SMESH_Hypothesis::HYP_INCOMPAT_HYPS; else theStatus = SMESH_Hypothesis::HYP_OK; return err; } // -------------------------------------------------------------------------------- bool StdMeshers_ViscousLayers::IsShapeWithLayers(int shapeIndex) const { bool isIn = ( std::find( _shapeIds.begin(), _shapeIds.end(), shapeIndex ) != _shapeIds.end() ); return IsToIgnoreShapes() ? !isIn : isIn; } // END StdMeshers_ViscousLayers hypothesis //================================================================================ namespace VISCOUS_3D { gp_XYZ getEdgeDir( const TopoDS_Edge& E, const TopoDS_Vertex& fromV ) { gp_Vec dir; double f,l; Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l ); gp_Pnt p = BRep_Tool::Pnt( fromV ); double distF = p.SquareDistance( c->Value( f )); double distL = p.SquareDistance( c->Value( l )); c->D1(( distF < distL ? f : l), p, dir ); if ( distL < distF ) dir.Reverse(); return dir.XYZ(); } //-------------------------------------------------------------------------------- gp_XYZ getEdgeDir( const TopoDS_Edge& E, const SMDS_MeshNode* atNode, SMESH_MesherHelper& helper) { gp_Vec dir; double f,l; gp_Pnt p; Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l ); if ( c.IsNull() ) return gp_XYZ( 1e100, 1e100, 1e100 ); double u = helper.GetNodeU( E, atNode ); c->D1( u, p, dir ); return dir.XYZ(); } //-------------------------------------------------------------------------------- gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Vertex& fromV, const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok, double* cosin=0); //-------------------------------------------------------------------------------- gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Edge& fromE, const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok) { double f,l; Handle(Geom_Curve) c = BRep_Tool::Curve( fromE, f, l ); if ( c.IsNull() ) { TopoDS_Vertex v = helper.IthVertex( 0, fromE ); return getFaceDir( F, v, node, helper, ok ); } gp_XY uv = helper.GetNodeUV( F, node, 0, &ok ); Handle(Geom_Surface) surface = BRep_Tool::Surface( F ); gp_Pnt p; gp_Vec du, dv, norm; surface->D1( uv.X(),uv.Y(), p, du,dv ); norm = du ^ dv; double u = helper.GetNodeU( fromE, node, 0, &ok ); c->D1( u, p, du ); TopAbs_Orientation o = helper.GetSubShapeOri( F.Oriented(TopAbs_FORWARD), fromE); if ( o == TopAbs_REVERSED ) du.Reverse(); gp_Vec dir = norm ^ du; if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX && helper.IsClosedEdge( fromE )) { if ( fabs(u-f) < fabs(u-l)) c->D1( l, p, dv ); else c->D1( f, p, dv ); if ( o == TopAbs_REVERSED ) dv.Reverse(); gp_Vec dir2 = norm ^ dv; dir = dir.Normalized() + dir2.Normalized(); } return dir.XYZ(); } //-------------------------------------------------------------------------------- gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Vertex& fromV, const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok, double* cosin) { TopoDS_Face faceFrw = F; faceFrw.Orientation( TopAbs_FORWARD ); double f,l; TopLoc_Location loc; TopoDS_Edge edges[2]; // sharing a vertex int nbEdges = 0; { TopoDS_Vertex VV[2]; TopExp_Explorer exp( faceFrw, TopAbs_EDGE ); for ( ; exp.More() && nbEdges < 2; exp.Next() ) { const TopoDS_Edge& e = TopoDS::Edge( exp.Current() ); if ( SMESH_Algo::isDegenerated( e )) continue; TopExp::Vertices( e, VV[0], VV[1], /*CumOri=*/true ); if ( VV[1].IsSame( fromV )) { nbEdges += edges[ 0 ].IsNull(); edges[ 0 ] = e; } else if ( VV[0].IsSame( fromV )) { nbEdges += edges[ 1 ].IsNull(); edges[ 1 ] = e; } } } gp_XYZ dir(0,0,0), edgeDir[2]; if ( nbEdges == 2 ) { // get dirs of edges going fromV ok = true; for ( size_t i = 0; i < nbEdges && ok; ++i ) { edgeDir[i] = getEdgeDir( edges[i], fromV ); double size2 = edgeDir[i].SquareModulus(); if (( ok = size2 > numeric_limits::min() )) edgeDir[i] /= sqrt( size2 ); } if ( !ok ) return dir; // get angle between the 2 edges gp_Vec faceNormal; double angle = helper.GetAngle( edges[0], edges[1], faceFrw, fromV, &faceNormal ); if ( Abs( angle ) < 5 * M_PI/180 ) { dir = ( faceNormal.XYZ() ^ edgeDir[0].Reversed()) + ( faceNormal.XYZ() ^ edgeDir[1] ); } else { dir = edgeDir[0] + edgeDir[1]; if ( angle < 0 ) dir.Reverse(); } if ( cosin ) { double angle = gp_Vec( edgeDir[0] ).Angle( dir ); *cosin = Cos( angle ); } } else if ( nbEdges == 1 ) { dir = getFaceDir( faceFrw, edges[ edges[0].IsNull() ], node, helper, ok ); if ( cosin ) *cosin = 1.; } else { ok = false; } return dir; } //================================================================================ /*! * \brief Finds concave VERTEXes of a FACE */ //================================================================================ bool getConcaveVertices( const TopoDS_Face& F, SMESH_MesherHelper& helper, set< TGeomID >* vertices = 0) { // check angles at VERTEXes TError error; TSideVector wires = StdMeshers_FaceSide::GetFaceWires( F, *helper.GetMesh(), 0, error ); for ( size_t iW = 0; iW < wires.size(); ++iW ) { const int nbEdges = wires[iW]->NbEdges(); if ( nbEdges < 2 && SMESH_Algo::isDegenerated( wires[iW]->Edge(0))) continue; for ( int iE1 = 0; iE1 < nbEdges; ++iE1 ) { if ( SMESH_Algo::isDegenerated( wires[iW]->Edge( iE1 ))) continue; int iE2 = ( iE1 + 1 ) % nbEdges; while ( SMESH_Algo::isDegenerated( wires[iW]->Edge( iE2 ))) iE2 = ( iE2 + 1 ) % nbEdges; TopoDS_Vertex V = wires[iW]->FirstVertex( iE2 ); double angle = helper.GetAngle( wires[iW]->Edge( iE1 ), wires[iW]->Edge( iE2 ), F, V ); if ( angle < -5. * M_PI / 180. ) { if ( !vertices ) return true; vertices->insert( helper.GetMeshDS()->ShapeToIndex( V )); } } } return vertices ? !vertices->empty() : false; } //================================================================================ /*! * \brief Returns true if a FACE is bound by a concave EDGE */ //================================================================================ bool isConcave( const TopoDS_Face& F, SMESH_MesherHelper& helper, set< TGeomID >* vertices = 0 ) { bool isConcv = false; // if ( helper.Count( F, TopAbs_WIRE, /*useMap=*/false) > 1 ) // return true; gp_Vec2d drv1, drv2; gp_Pnt2d p; TopExp_Explorer eExp( F.Oriented( TopAbs_FORWARD ), TopAbs_EDGE ); for ( ; eExp.More(); eExp.Next() ) { const TopoDS_Edge& E = TopoDS::Edge( eExp.Current() ); if ( SMESH_Algo::isDegenerated( E )) continue; // check if 2D curve is concave BRepAdaptor_Curve2d curve( E, F ); const int nbIntervals = curve.NbIntervals( GeomAbs_C2 ); TColStd_Array1OfReal intervals(1, nbIntervals + 1 ); curve.Intervals( intervals, GeomAbs_C2 ); bool isConvex = true; for ( int i = 1; i <= nbIntervals && isConvex; ++i ) { double u1 = intervals( i ); double u2 = intervals( i+1 ); curve.D2( 0.5*( u1+u2 ), p, drv1, drv2 ); double cross = drv2 ^ drv1; if ( E.Orientation() == TopAbs_REVERSED ) cross = -cross; isConvex = ( cross > 0.1 ); //-1e-9 ); } if ( !isConvex ) { //cout << "Concave FACE " << helper.GetMeshDS()->ShapeToIndex( F ) << endl; isConcv = true; if ( vertices ) break; else return true; } } // check angles at VERTEXes if ( getConcaveVertices( F, helper, vertices )) isConcv = true; return isConcv; } //================================================================================ /*! * \brief Computes mimimal distance of face in-FACE nodes from an EDGE * \param [in] face - the mesh face to treat * \param [in] nodeOnEdge - a node on the EDGE * \param [out] faceSize - the computed distance * \return bool - true if faceSize computed */ //================================================================================ bool getDistFromEdge( const SMDS_MeshElement* face, const SMDS_MeshNode* nodeOnEdge, double & faceSize ) { faceSize = Precision::Infinite(); bool done = false; int nbN = face->NbCornerNodes(); int iOnE = face->GetNodeIndex( nodeOnEdge ); int iNext[2] = { SMESH_MesherHelper::WrapIndex( iOnE+1, nbN ), SMESH_MesherHelper::WrapIndex( iOnE-1, nbN ) }; const SMDS_MeshNode* nNext[2] = { face->GetNode( iNext[0] ), face->GetNode( iNext[1] ) }; gp_XYZ segVec, segEnd = SMESH_TNodeXYZ( nodeOnEdge ); // segment on EDGE double segLen = -1.; // look for two neighbor not in-FACE nodes of face for ( int i = 0; i < 2; ++i ) { if ( nNext[i]->GetPosition()->GetDim() != 2 && nNext[i]->GetID() < nodeOnEdge->GetID() ) { // look for an in-FACE node for ( int iN = 0; iN < nbN; ++iN ) { if ( iN == iOnE || iN == iNext[i] ) continue; SMESH_TNodeXYZ pInFace = face->GetNode( iN ); gp_XYZ v = pInFace - segEnd; if ( segLen < 0 ) { segVec = SMESH_TNodeXYZ( nNext[i] ) - segEnd; segLen = segVec.Modulus(); } double distToSeg = v.Crossed( segVec ).Modulus() / segLen; faceSize = Min( faceSize, distToSeg ); done = true; } segLen = -1; } } return done; } //================================================================================ /*! * \brief Return direction of axis or revolution of a surface */ //================================================================================ bool getRovolutionAxis( const Adaptor3d_Surface& surface, gp_Dir & axis ) { switch ( surface.GetType() ) { case GeomAbs_Cone: { gp_Cone cone = surface.Cone(); axis = cone.Axis().Direction(); break; } case GeomAbs_Sphere: { gp_Sphere sphere = surface.Sphere(); axis = sphere.Position().Direction(); break; } case GeomAbs_SurfaceOfRevolution: { axis = surface.AxeOfRevolution().Direction(); break; } //case GeomAbs_SurfaceOfExtrusion: case GeomAbs_OffsetSurface: { Handle(Adaptor3d_HSurface) base = surface.BasisSurface(); return getRovolutionAxis( base->Surface(), axis ); } default: return false; } return true; } //-------------------------------------------------------------------------------- // DEBUG. Dump intermediate node positions into a python script // HOWTO use: run python commands written in a console to see // construction steps of viscous layers #ifdef __myDEBUG ofstream* py; int theNbPyFunc; struct PyDump { PyDump(SMESH_Mesh& m) { int tag = 3 + m.GetId(); const char* fname = "/tmp/viscous.py"; cout << "execfile('"<GetID()<< ", "<< n->X() << ", "<Y()<<", "<< n->Z()<< ")\t\t # "<< ln <<" "<< txt << endl; } void _dumpCmd(const string& txt, int ln) { if (py) *py<< " "<GetID()<<", ["; for ( int i=1; i < f->NbNodes(); ++i ) *py << f->GetNode(i-1)->GetID()<<", "; *py << f->GetNode( f->NbNodes()-1 )->GetID() << " ])"<< endl; }} #define debugMsg( txt ) { cout << txt << " (line: " << __LINE__ << ")" << endl; } #else struct PyDump { PyDump(SMESH_Mesh&) {} void Finish() {} }; #define dumpFunction(f) f #define dumpMove(n) #define dumpMoveComm(n,txt) #define dumpCmd(txt) #define dumpFunctionEnd() #define dumpChangeNodes(f) #define debugMsg( txt ) {} #endif } using namespace VISCOUS_3D; //================================================================================ /*! * \brief Constructor of _ViscousBuilder */ //================================================================================ _ViscousBuilder::_ViscousBuilder() { _error = SMESH_ComputeError::New(COMPERR_OK); _tmpFaceID = 0; } //================================================================================ /*! * \brief Stores error description and returns false */ //================================================================================ bool _ViscousBuilder::error(const string& text, int solidId ) { const string prefix = string("Viscous layers builder: "); _error->myName = COMPERR_ALGO_FAILED; _error->myComment = prefix + text; if ( _mesh ) { SMESH_subMesh* sm = _mesh->GetSubMeshContaining( solidId ); if ( !sm && !_sdVec.empty() ) sm = _mesh->GetSubMeshContaining( solidId = _sdVec[0]._index ); if ( sm && sm->GetSubShape().ShapeType() == TopAbs_SOLID ) { SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); if ( smError && smError->myAlgo ) _error->myAlgo = smError->myAlgo; smError = _error; sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); } // set KO to all solids for ( size_t i = 0; i < _sdVec.size(); ++i ) { if ( _sdVec[i]._index == solidId ) continue; sm = _mesh->GetSubMesh( _sdVec[i]._solid ); if ( !sm->IsEmpty() ) continue; SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); if ( !smError || smError->IsOK() ) { smError = SMESH_ComputeError::New( COMPERR_ALGO_FAILED, prefix + "failed"); sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); } } } makeGroupOfLE(); // debug return false; } //================================================================================ /*! * \brief At study restoration, restore event listeners used to clear an inferior * dim sub-mesh modified by viscous layers */ //================================================================================ void _ViscousBuilder::RestoreListeners() { // TODO } //================================================================================ /*! * \brief computes SMESH_ProxyMesh::SubMesh::_n2n */ //================================================================================ bool _ViscousBuilder::MakeN2NMap( _MeshOfSolid* pm ) { SMESH_subMesh* solidSM = pm->mySubMeshes.front(); TopExp_Explorer fExp( solidSM->GetSubShape(), TopAbs_FACE ); for ( ; fExp.More(); fExp.Next() ) { SMESHDS_SubMesh* srcSmDS = pm->GetMeshDS()->MeshElements( fExp.Current() ); const SMESH_ProxyMesh::SubMesh* prxSmDS = pm->GetProxySubMesh( fExp.Current() ); if ( !srcSmDS || !prxSmDS || !srcSmDS->NbElements() || !prxSmDS->NbElements() ) continue; if ( srcSmDS->GetElements()->next() == prxSmDS->GetElements()->next()) continue; if ( srcSmDS->NbElements() != prxSmDS->NbElements() ) return error( "Different nb elements in a source and a proxy sub-mesh", solidSM->GetId()); SMDS_ElemIteratorPtr srcIt = srcSmDS->GetElements(); SMDS_ElemIteratorPtr prxIt = prxSmDS->GetElements(); while( prxIt->more() ) { const SMDS_MeshElement* fSrc = srcIt->next(); const SMDS_MeshElement* fPrx = prxIt->next(); if ( fSrc->NbNodes() != fPrx->NbNodes()) return error( "Different elements in a source and a proxy sub-mesh", solidSM->GetId()); for ( int i = 0 ; i < fPrx->NbNodes(); ++i ) pm->setNode2Node( fSrc->GetNode(i), fPrx->GetNode(i), prxSmDS ); } } pm->_n2nMapComputed = true; return true; } //================================================================================ /*! * \brief Does its job */ //================================================================================ SMESH_ComputeErrorPtr _ViscousBuilder::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape) { // TODO: set priority of solids during Gen::Compute() _mesh = & theMesh; // check if proxy mesh already computed TopExp_Explorer exp( theShape, TopAbs_SOLID ); if ( !exp.More() ) return error("No SOLID's in theShape"), _error; if ( _ViscousListener::GetSolidMesh( _mesh, exp.Current(), /*toCreate=*/false)) return SMESH_ComputeErrorPtr(); // everything already computed PyDump debugDump( theMesh ); // TODO: ignore already computed SOLIDs if ( !findSolidsWithLayers()) return _error; if ( !findFacesWithLayers() ) return _error; for ( size_t i = 0; i < _sdVec.size(); ++i ) { if ( ! makeLayer(_sdVec[i]) ) return _error; if ( _sdVec[i]._n2eMap.size() == 0 ) continue; if ( ! inflate(_sdVec[i]) ) return _error; if ( ! refine(_sdVec[i]) ) return _error; } if ( !shrink() ) return _error; addBoundaryElements(); makeGroupOfLE(); // debug debugDump.Finish(); return _error; } //================================================================================ /*! * \brief Check validity of hypotheses */ //================================================================================ SMESH_ComputeErrorPtr _ViscousBuilder::CheckHypotheses( SMESH_Mesh& mesh, const TopoDS_Shape& shape ) { _mesh = & mesh; if ( _ViscousListener::GetSolidMesh( _mesh, shape, /*toCreate=*/false)) return SMESH_ComputeErrorPtr(); // everything already computed findSolidsWithLayers(); bool ok = findFacesWithLayers(); // remove _MeshOfSolid's of _SolidData's for ( size_t i = 0; i < _sdVec.size(); ++i ) _ViscousListener::RemoveSolidMesh( _mesh, _sdVec[i]._solid ); if ( !ok ) return _error; return SMESH_ComputeErrorPtr(); } //================================================================================ /*! * \brief Finds SOLIDs to compute using viscous layers. Fills _sdVec */ //================================================================================ bool _ViscousBuilder::findSolidsWithLayers() { // get all solids TopTools_IndexedMapOfShape allSolids; TopExp::MapShapes( _mesh->GetShapeToMesh(), TopAbs_SOLID, allSolids ); _sdVec.reserve( allSolids.Extent()); SMESH_Gen* gen = _mesh->GetGen(); SMESH_HypoFilter filter; for ( int i = 1; i <= allSolids.Extent(); ++i ) { // find StdMeshers_ViscousLayers hyp assigned to the i-th solid SMESH_Algo* algo = gen->GetAlgo( *_mesh, allSolids(i) ); if ( !algo ) continue; // TODO: check if algo is hidden const list & allHyps = algo->GetUsedHypothesis(*_mesh, allSolids(i), /*ignoreAuxiliary=*/false); _SolidData* soData = 0; list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin(); const StdMeshers_ViscousLayers* viscHyp = 0; for ( ; hyp != allHyps.end(); ++hyp ) if ( viscHyp = dynamic_cast( *hyp )) { TopoDS_Shape hypShape; filter.Init( filter.Is( viscHyp )); _mesh->GetHypothesis( allSolids(i), filter, true, &hypShape ); if ( !soData ) { _MeshOfSolid* proxyMesh = _ViscousListener::GetSolidMesh( _mesh, allSolids(i), /*toCreate=*/true); _sdVec.push_back( _SolidData( allSolids(i), proxyMesh )); soData = & _sdVec.back(); soData->_index = getMeshDS()->ShapeToIndex( allSolids(i)); } soData->_hyps.push_back( viscHyp ); soData->_hypShapes.push_back( hypShape ); } } if ( _sdVec.empty() ) return error ( SMESH_Comment(StdMeshers_ViscousLayers::GetHypType()) << " hypothesis not found",0); return true; } //================================================================================ /*! * \brief */ //================================================================================ bool _ViscousBuilder::findFacesWithLayers(const bool onlyWith) { SMESH_MesherHelper helper( *_mesh ); TopExp_Explorer exp; TopTools_IndexedMapOfShape solids; // collect all faces-to-ignore defined by hyp for ( size_t i = 0; i < _sdVec.size(); ++i ) { solids.Add( _sdVec[i]._solid ); // get faces-to-ignore defined by each hyp typedef const StdMeshers_ViscousLayers* THyp; typedef std::pair< set, THyp > TFacesOfHyp; list< TFacesOfHyp > ignoreFacesOfHyps; list< THyp >::iterator hyp = _sdVec[i]._hyps.begin(); list< TopoDS_Shape >::iterator hypShape = _sdVec[i]._hypShapes.begin(); for ( ; hyp != _sdVec[i]._hyps.end(); ++hyp, ++hypShape ) { ignoreFacesOfHyps.push_back( TFacesOfHyp( set(), *hyp )); getIgnoreFaces( _sdVec[i]._solid, *hyp, *hypShape, ignoreFacesOfHyps.back().first ); } // fill _SolidData::_face2hyp and check compatibility of hypotheses const int nbHyps = _sdVec[i]._hyps.size(); if ( nbHyps > 1 ) { // check if two hypotheses define different parameters for the same FACE list< TFacesOfHyp >::iterator igFacesOfHyp; for ( exp.Init( _sdVec[i]._solid, TopAbs_FACE ); exp.More(); exp.Next() ) { const TGeomID faceID = getMeshDS()->ShapeToIndex( exp.Current() ); THyp hyp = 0; igFacesOfHyp = ignoreFacesOfHyps.begin(); for ( ; igFacesOfHyp != ignoreFacesOfHyps.end(); ++igFacesOfHyp ) if ( ! igFacesOfHyp->first.count( faceID )) { if ( hyp ) return error(SMESH_Comment("Several hypotheses define " "Viscous Layers on the face #") << faceID ); hyp = igFacesOfHyp->second; } if ( hyp ) _sdVec[i]._face2hyp.insert( make_pair( faceID, hyp )); else _sdVec[i]._ignoreFaceIds.insert( faceID ); } // check if two hypotheses define different number of viscous layers for // adjacent faces of a solid set< int > nbLayersSet; igFacesOfHyp = ignoreFacesOfHyps.begin(); for ( ; igFacesOfHyp != ignoreFacesOfHyps.end(); ++igFacesOfHyp ) { nbLayersSet.insert( igFacesOfHyp->second->GetNumberLayers() ); } if ( nbLayersSet.size() > 1 ) { for ( exp.Init( _sdVec[i]._solid, TopAbs_EDGE ); exp.More(); exp.Next() ) { PShapeIteratorPtr fIt = helper.GetAncestors( exp.Current(), *_mesh, TopAbs_FACE ); THyp hyp1 = 0, hyp2 = 0; while( const TopoDS_Shape* face = fIt->next() ) { const TGeomID faceID = getMeshDS()->ShapeToIndex( *face ); map< TGeomID, THyp >::iterator f2h = _sdVec[i]._face2hyp.find( faceID ); if ( f2h != _sdVec[i]._face2hyp.end() ) { ( hyp1 ? hyp2 : hyp1 ) = f2h->second; } } if ( hyp1 && hyp2 && hyp1->GetNumberLayers() != hyp2->GetNumberLayers() ) { return error("Two hypotheses define different number of " "viscous layers on adjacent faces"); } } } } // if ( nbHyps > 1 ) else { _sdVec[i]._ignoreFaceIds.swap( ignoreFacesOfHyps.back().first ); } } // loop on _sdVec if ( onlyWith ) // is called to check hypotheses compatibility only return true; // fill _SolidData::_reversedFaceIds for ( size_t i = 0; i < _sdVec.size(); ++i ) { exp.Init( _sdVec[i]._solid.Oriented( TopAbs_FORWARD ), TopAbs_FACE ); for ( ; exp.More(); exp.Next() ) { const TopoDS_Face& face = TopoDS::Face( exp.Current() ); const TGeomID faceID = getMeshDS()->ShapeToIndex( face ); if ( //!sdVec[i]._ignoreFaceIds.count( faceID ) && helper.NbAncestors( face, *_mesh, TopAbs_SOLID ) > 1 && helper.IsReversedSubMesh( face )) { _sdVec[i]._reversedFaceIds.insert( faceID ); } } } // Find faces to shrink mesh on (solution 2 in issue 0020832); TopTools_IndexedMapOfShape shapes; for ( size_t i = 0; i < _sdVec.size(); ++i ) { shapes.Clear(); TopExp::MapShapes(_sdVec[i]._solid, TopAbs_EDGE, shapes); for ( int iE = 1; iE <= shapes.Extent(); ++iE ) { const TopoDS_Shape& edge = shapes(iE); // find 2 faces sharing an edge TopoDS_Shape FF[2]; PShapeIteratorPtr fIt = helper.GetAncestors(edge, *_mesh, TopAbs_FACE); while ( fIt->more()) { const TopoDS_Shape* f = fIt->next(); if ( helper.IsSubShape( *f, _sdVec[i]._solid)) FF[ int( !FF[0].IsNull()) ] = *f; } if( FF[1].IsNull() ) continue; // seam edge can be shared by 1 FACE only // check presence of layers on them int ignore[2]; for ( int j = 0; j < 2; ++j ) ignore[j] = _sdVec[i]._ignoreFaceIds.count ( getMeshDS()->ShapeToIndex( FF[j] )); if ( ignore[0] == ignore[1] ) continue; // nothing interesting TopoDS_Shape fWOL = FF[ ignore[0] ? 0 : 1 ]; // check presence of layers on fWOL within an adjacent SOLID bool collision = false; PShapeIteratorPtr sIt = helper.GetAncestors( fWOL, *_mesh, TopAbs_SOLID ); while ( const TopoDS_Shape* solid = sIt->next() ) if ( !solid->IsSame( _sdVec[i]._solid )) { int iSolid = solids.FindIndex( *solid ); int iFace = getMeshDS()->ShapeToIndex( fWOL ); if ( iSolid > 0 && !_sdVec[ iSolid-1 ]._ignoreFaceIds.count( iFace )) { //_sdVec[i]._noShrinkShapes.insert( iFace ); //fWOL.Nullify(); collision = true; } } // add edge to maps if ( !fWOL.IsNull()) { TGeomID edgeInd = getMeshDS()->ShapeToIndex( edge ); _sdVec[i]._shrinkShape2Shape.insert( make_pair( edgeInd, fWOL )); if ( collision ) { // _shrinkShape2Shape will be used to temporary inflate _LayerEdge's based // on the edge but shrink won't be performed _sdVec[i]._noShrinkShapes.insert( edgeInd ); } } } } // Exclude from _shrinkShape2Shape FACE's that can't be shrinked since // the algo of the SOLID sharing the FACE does not support it set< string > notSupportAlgos; notSupportAlgos.insert("Hexa_3D"); for ( size_t i = 0; i < _sdVec.size(); ++i ) { map< TGeomID, TopoDS_Shape >::iterator e2f = _sdVec[i]._shrinkShape2Shape.begin(); for ( ; e2f != _sdVec[i]._shrinkShape2Shape.end(); ++e2f ) { const TopoDS_Shape& fWOL = e2f->second; const TGeomID edgeID = e2f->first; bool notShrinkFace = false; PShapeIteratorPtr soIt = helper.GetAncestors(fWOL, *_mesh, TopAbs_SOLID); while ( soIt->more() ) { const TopoDS_Shape* solid = soIt->next(); if ( _sdVec[i]._solid.IsSame( *solid )) continue; SMESH_Algo* algo = _mesh->GetGen()->GetAlgo( *_mesh, *solid ); if ( !algo || !notSupportAlgos.count( algo->GetName() )) continue; notShrinkFace = true; size_t iSolid = 0; for ( ; iSolid < _sdVec.size(); ++iSolid ) { if ( _sdVec[iSolid]._solid.IsSame( *solid ) ) { if ( _sdVec[iSolid]._shrinkShape2Shape.count( edgeID )) notShrinkFace = false; break; } } if ( notShrinkFace ) { _sdVec[i]._noShrinkShapes.insert( edgeID ); // add VERTEXes of the edge in _noShrinkShapes TopoDS_Shape edge = getMeshDS()->IndexToShape( edgeID ); for ( TopoDS_Iterator vIt( edge ); vIt.More(); vIt.Next() ) _sdVec[i]._noShrinkShapes.insert( getMeshDS()->ShapeToIndex( vIt.Value() )); // check if there is a collision with to-shrink-from EDGEs in iSolid if ( iSolid == _sdVec.size() ) continue; // no VL in the solid shapes.Clear(); TopExp::MapShapes( fWOL, TopAbs_EDGE, shapes); for ( int iE = 1; iE <= shapes.Extent(); ++iE ) { const TopoDS_Edge& E = TopoDS::Edge( shapes( iE )); const TGeomID eID = getMeshDS()->ShapeToIndex( E ); if ( eID == edgeID || !_sdVec[iSolid]._shrinkShape2Shape.count( eID ) || _sdVec[i]._noShrinkShapes.count( eID )) continue; for ( int is1st = 0; is1st < 2; ++is1st ) { TopoDS_Vertex V = helper.IthVertex( is1st, E ); if ( _sdVec[i]._noShrinkShapes.count( getMeshDS()->ShapeToIndex( V ) )) { // _sdVec[i]._noShrinkShapes.insert( eID ); // V = helper.IthVertex( !is1st, E ); // _sdVec[i]._noShrinkShapes.insert( getMeshDS()->ShapeToIndex( V )); //iE = 0; // re-start the loop on EDGEs of fWOL return error("No way to make a conformal mesh with " "the given set of faces with layers", _sdVec[i]._index); } } } } } // while ( soIt->more() ) } // loop on _sdVec[i]._shrinkShape2Shape } // loop on _sdVec to fill in _SolidData::_noShrinkShapes // Find the SHAPE along which to inflate _LayerEdge based on VERTEX for ( size_t i = 0; i < _sdVec.size(); ++i ) { shapes.Clear(); TopExp::MapShapes(_sdVec[i]._solid, TopAbs_VERTEX, shapes); for ( int iV = 1; iV <= shapes.Extent(); ++iV ) { const TopoDS_Shape& vertex = shapes(iV); // find faces WOL sharing the vertex vector< TopoDS_Shape > facesWOL; int totalNbFaces = 0; PShapeIteratorPtr fIt = helper.GetAncestors(vertex, *_mesh, TopAbs_FACE); while ( fIt->more()) { const TopoDS_Shape* f = fIt->next(); if ( helper.IsSubShape( *f, _sdVec[i]._solid ) ) { totalNbFaces++; const int fID = getMeshDS()->ShapeToIndex( *f ); if ( _sdVec[i]._ignoreFaceIds.count ( fID ) /*&& !_sdVec[i]._noShrinkShapes.count( fID )*/) facesWOL.push_back( *f ); } } if ( facesWOL.size() == totalNbFaces || facesWOL.empty() ) continue; // no layers at this vertex or no WOL TGeomID vInd = getMeshDS()->ShapeToIndex( vertex ); switch ( facesWOL.size() ) { case 1: { helper.SetSubShape( facesWOL[0] ); if ( helper.IsRealSeam( vInd )) // inflate along a seam edge? { TopoDS_Shape seamEdge; PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE); while ( eIt->more() && seamEdge.IsNull() ) { const TopoDS_Shape* e = eIt->next(); if ( helper.IsRealSeam( *e ) ) seamEdge = *e; } if ( !seamEdge.IsNull() ) { _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, seamEdge )); break; } } _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, facesWOL[0] )); break; } case 2: { // find an edge shared by 2 faces PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE); while ( eIt->more()) { const TopoDS_Shape* e = eIt->next(); if ( helper.IsSubShape( *e, facesWOL[0]) && helper.IsSubShape( *e, facesWOL[1])) { _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, *e )); break; } } break; } default: return error("Not yet supported case", _sdVec[i]._index); } } } // add FACEs of other SOLIDs to _ignoreFaceIds for ( size_t i = 0; i < _sdVec.size(); ++i ) { shapes.Clear(); TopExp::MapShapes(_sdVec[i]._solid, TopAbs_FACE, shapes); for ( exp.Init( _mesh->GetShapeToMesh(), TopAbs_FACE ); exp.More(); exp.Next() ) { if ( !shapes.Contains( exp.Current() )) _sdVec[i]._ignoreFaceIds.insert( getMeshDS()->ShapeToIndex( exp.Current() )); } } return true; } //================================================================================ /*! * \brief Finds FACEs w/o layers for a given SOLID by an hypothesis */ //================================================================================ void _ViscousBuilder::getIgnoreFaces(const TopoDS_Shape& solid, const StdMeshers_ViscousLayers* hyp, const TopoDS_Shape& hypShape, set& ignoreFaceIds) { TopExp_Explorer exp; vector ids = hyp->GetBndShapes(); if ( hyp->IsToIgnoreShapes() ) // FACEs to ignore are given { for ( size_t ii = 0; ii < ids.size(); ++ii ) { const TopoDS_Shape& s = getMeshDS()->IndexToShape( ids[ii] ); if ( !s.IsNull() && s.ShapeType() == TopAbs_FACE ) ignoreFaceIds.insert( ids[ii] ); } } else // FACEs with layers are given { exp.Init( solid, TopAbs_FACE ); for ( ; exp.More(); exp.Next() ) { TGeomID faceInd = getMeshDS()->ShapeToIndex( exp.Current() ); if ( find( ids.begin(), ids.end(), faceInd ) == ids.end() ) ignoreFaceIds.insert( faceInd ); } } // ignore internal FACEs if inlets and outlets are specified if ( hyp->IsToIgnoreShapes() ) { TopTools_IndexedDataMapOfShapeListOfShape solidsOfFace; TopExp::MapShapesAndAncestors( hypShape, TopAbs_FACE, TopAbs_SOLID, solidsOfFace); for ( exp.Init( solid, TopAbs_FACE ); exp.More(); exp.Next() ) { const TopoDS_Face& face = TopoDS::Face( exp.Current() ); if ( SMESH_MesherHelper::NbAncestors( face, *_mesh, TopAbs_SOLID ) < 2 ) continue; int nbSolids = solidsOfFace.FindFromKey( face ).Extent(); if ( nbSolids > 1 ) ignoreFaceIds.insert( getMeshDS()->ShapeToIndex( face )); } } } //================================================================================ /*! * \brief Create the inner surface of the viscous layer and prepare data for infation */ //================================================================================ bool _ViscousBuilder::makeLayer(_SolidData& data) { // get all sub-shapes to make layers on set subIds, faceIds; subIds = data._noShrinkShapes; TopExp_Explorer exp( data._solid, TopAbs_FACE ); for ( ; exp.More(); exp.Next() ) { SMESH_subMesh* fSubM = _mesh->GetSubMesh( exp.Current() ); if ( ! data._ignoreFaceIds.count( fSubM->GetId() )) { faceIds.insert( fSubM->GetId() ); SMESH_subMeshIteratorPtr subIt = fSubM->getDependsOnIterator(/*includeSelf=*/true); while ( subIt->more() ) subIds.insert( subIt->next()->GetId() ); } } // make a map to find new nodes on sub-shapes shared with other SOLID map< TGeomID, TNode2Edge* >::iterator s2ne; map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin(); for (; s2s != data._shrinkShape2Shape.end(); ++s2s ) { TGeomID shapeInd = s2s->first; for ( size_t i = 0; i < _sdVec.size(); ++i ) { if ( _sdVec[i]._index == data._index ) continue; map< TGeomID, TopoDS_Shape >::iterator s2s2 = _sdVec[i]._shrinkShape2Shape.find( shapeInd ); if ( s2s2 != _sdVec[i]._shrinkShape2Shape.end() && *s2s == *s2s2 && !_sdVec[i]._n2eMap.empty() ) { data._s2neMap.insert( make_pair( shapeInd, &_sdVec[i]._n2eMap )); break; } } } // Create temporary faces and _LayerEdge's dumpFunction(SMESH_Comment("makeLayers_")< newNodes; // of a mesh face TNode2Edge::iterator n2e2; // collect _LayerEdge's of shapes they are based on vector< _EdgesOnShape >& edgesByGeom = data._edgesOnShape; const int nbShapes = getMeshDS()->MaxShapeIndex(); edgesByGeom.resize( nbShapes+1 ); // set data of _EdgesOnShape's if ( SMESH_subMesh* sm = _mesh->GetSubMesh( data._solid )) { SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/false); while ( smIt->more() ) { sm = smIt->next(); if ( sm->GetSubShape().ShapeType() == TopAbs_FACE && !faceIds.count( sm->GetId() )) continue; setShapeData( edgesByGeom[ sm->GetId() ], sm, data ); } } // make _LayerEdge's for ( set::iterator id = faceIds.begin(); id != faceIds.end(); ++id ) { const TopoDS_Face& F = TopoDS::Face( getMeshDS()->IndexToShape( *id )); SMESH_subMesh* sm = _mesh->GetSubMesh( F ); SMESH_ProxyMesh::SubMesh* proxySub = data._proxyMesh->getFaceSubM( F, /*create=*/true); SMESHDS_SubMesh* smDS = sm->GetSubMeshDS(); if ( !smDS ) return error(SMESH_Comment("Not meshed face ") << *id, data._index ); SMDS_ElemIteratorPtr eIt = smDS->GetElements(); while ( eIt->more() ) { const SMDS_MeshElement* face = eIt->next(); double faceMaxCosin = -1; _LayerEdge* maxCosinEdge = 0; int nbDegenNodes = 0; newNodes.resize( face->NbCornerNodes() ); for ( size_t i = 0 ; i < newNodes.size(); ++i ) { const SMDS_MeshNode* n = face->GetNode( i ); const int shapeID = n->getshapeId(); const bool onDegenShap = helper.IsDegenShape( shapeID ); const bool onDegenEdge = ( onDegenShap && n->GetPosition()->GetDim() == 1 ); if ( onDegenShap ) { if ( onDegenEdge ) { // substitute n on a degenerated EDGE with a node on a corresponding VERTEX const TopoDS_Shape& E = getMeshDS()->IndexToShape( shapeID ); TopoDS_Vertex V = helper.IthVertex( 0, TopoDS::Edge( E )); if ( const SMDS_MeshNode* vN = SMESH_Algo::VertexNode( V, getMeshDS() )) { n = vN; nbDegenNodes++; } } else { nbDegenNodes++; } } TNode2Edge::iterator n2e = data._n2eMap.insert( make_pair( n, (_LayerEdge*)0 )).first; if ( !(*n2e).second ) { // add a _LayerEdge _LayerEdge* edge = new _LayerEdge(); edge->_nodes.push_back( n ); n2e->second = edge; edgesByGeom[ shapeID ]._edges.push_back( edge ); const bool noShrink = data._noShrinkShapes.count( shapeID ); SMESH_TNodeXYZ xyz( n ); // set edge data or find already refined _LayerEdge and get data from it if (( !noShrink ) && ( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE ) && (( s2ne = data._s2neMap.find( shapeID )) != data._s2neMap.end() ) && (( n2e2 = (*s2ne).second->find( n )) != s2ne->second->end() )) { _LayerEdge* foundEdge = (*n2e2).second; gp_XYZ lastPos = edge->Copy( *foundEdge, edgesByGeom[ shapeID ], helper ); foundEdge->_pos.push_back( lastPos ); // location of the last node is modified and we restore it by foundEdge->_pos.back() const_cast< SMDS_MeshNode* > ( edge->_nodes.back() )->setXYZ( xyz.X(), xyz.Y(), xyz.Z() ); } else { if ( !noShrink ) { edge->_nodes.push_back( helper.AddNode( xyz.X(), xyz.Y(), xyz.Z() )); } if ( !setEdgeData( *edge, edgesByGeom[ shapeID ], subIds, helper, data )) return false; } dumpMove(edge->_nodes.back()); if ( edge->_cosin > faceMaxCosin ) { faceMaxCosin = edge->_cosin; maxCosinEdge = edge; } } newNodes[ i ] = n2e->second->_nodes.back(); if ( onDegenEdge ) data._n2eMap.insert( make_pair( face->GetNode( i ), n2e->second )); } if ( newNodes.size() - nbDegenNodes < 2 ) continue; // create a temporary face const SMDS_MeshElement* newFace = new _TmpMeshFace( newNodes, --_tmpFaceID, face->getshapeId() ); proxySub->AddElement( newFace ); // compute inflation step size by min size of element on a convex surface if ( faceMaxCosin > theMinSmoothCosin ) limitStepSize( data, face, maxCosinEdge ); } // loop on 2D elements on a FACE } // loop on FACEs of a SOLID data._epsilon = 1e-7; if ( data._stepSize < 1. ) data._epsilon *= data._stepSize; if ( !findShapesToSmooth( data )) return false; // limit data._stepSize depending on surface curvature and fill data._convexFaces limitStepSizeByCurvature( data ); // !!! it must be before node substitution in _Simplex // Set target nodes into _Simplex and _LayerEdge's to _2NearEdges TNode2Edge::iterator n2e; const SMDS_MeshNode* nn[2]; for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[iS]; vector< _LayerEdge* >& localEdges = eos._edges; for ( size_t i = 0; i < localEdges.size(); ++i ) { _LayerEdge* edge = localEdges[i]; if ( edge->IsOnEdge() ) { // get neighbor nodes bool hasData = ( edge->_2neibors->_edges[0] ); if ( hasData ) // _LayerEdge is a copy of another one { nn[0] = edge->_2neibors->srcNode(0); nn[1] = edge->_2neibors->srcNode(1); } else if ( !findNeiborsOnEdge( edge, nn[0],nn[1], eos, data )) { return false; } // set neighbor _LayerEdge's for ( int j = 0; j < 2; ++j ) { if (( n2e = data._n2eMap.find( nn[j] )) == data._n2eMap.end() ) return error("_LayerEdge not found by src node", data._index); edge->_2neibors->_edges[j] = n2e->second; } if ( !hasData ) edge->SetDataByNeighbors( nn[0], nn[1], eos, helper ); } for ( size_t j = 0; j < edge->_simplices.size(); ++j ) { _Simplex& s = edge->_simplices[j]; s._nNext = data._n2eMap[ s._nNext ]->_nodes.back(); s._nPrev = data._n2eMap[ s._nPrev ]->_nodes.back(); } // For an _LayerEdge on a degenerated EDGE, copy some data from // a corresponding _LayerEdge on a VERTEX // (issue 52453, pb on a downloaded SampleCase2-Tet-netgen-mephisto.hdf) if ( helper.IsDegenShape( edge->_nodes[0]->getshapeId() )) { // Generally we should not get here if ( eos.ShapeType() != TopAbs_EDGE ) continue; TopoDS_Vertex V = helper.IthVertex( 0, TopoDS::Edge( eos._shape )); const SMDS_MeshNode* vN = SMESH_Algo::VertexNode( V, getMeshDS() ); if (( n2e = data._n2eMap.find( vN )) == data._n2eMap.end() ) continue; const _LayerEdge* vEdge = n2e->second; edge->_normal = vEdge->_normal; edge->_lenFactor = vEdge->_lenFactor; edge->_cosin = vEdge->_cosin; } } } // fix _LayerEdge::_2neibors on EDGEs to smooth map< TGeomID,Handle(Geom_Curve)>::iterator e2c = data._edge2curve.begin(); for ( ; e2c != data._edge2curve.end(); ++e2c ) if ( !e2c->second.IsNull() ) { if ( _EdgesOnShape* eos = data.GetShapeEdges( e2c->first )) data.Sort2NeiborsOnEdge( eos->_edges ); } dumpFunctionEnd(); return true; } //================================================================================ /*! * \brief Compute inflation step size by min size of element on a convex surface */ //================================================================================ void _ViscousBuilder::limitStepSize( _SolidData& data, const SMDS_MeshElement* face, const _LayerEdge* maxCosinEdge ) { int iN = 0; double minSize = 10 * data._stepSize; const int nbNodes = face->NbCornerNodes(); for ( int i = 0; i < nbNodes; ++i ) { const SMDS_MeshNode* nextN = face->GetNode( SMESH_MesherHelper::WrapIndex( i+1, nbNodes )); const SMDS_MeshNode* curN = face->GetNode( i ); if ( nextN->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE || curN-> GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) { double dist = SMESH_TNodeXYZ( curN ).Distance( nextN ); if ( dist < minSize ) minSize = dist, iN = i; } } double newStep = 0.8 * minSize / maxCosinEdge->_lenFactor; if ( newStep < data._stepSize ) { data._stepSize = newStep; data._stepSizeCoeff = 0.8 / maxCosinEdge->_lenFactor; data._stepSizeNodes[0] = face->GetNode( iN ); data._stepSizeNodes[1] = face->GetNode( SMESH_MesherHelper::WrapIndex( iN+1, nbNodes )); } } //================================================================================ /*! * \brief Compute inflation step size by min size of element on a convex surface */ //================================================================================ void _ViscousBuilder::limitStepSize( _SolidData& data, const double minSize ) { if ( minSize < data._stepSize ) { data._stepSize = minSize; if ( data._stepSizeNodes[0] ) { double dist = SMESH_TNodeXYZ(data._stepSizeNodes[0]).Distance(data._stepSizeNodes[1]); data._stepSizeCoeff = data._stepSize / dist; } } } //================================================================================ /*! * \brief Limit data._stepSize by evaluating curvature of shapes and fill data._convexFaces */ //================================================================================ void _ViscousBuilder::limitStepSizeByCurvature( _SolidData& data ) { const int nbTestPnt = 5; // on a FACE sub-shape BRepLProp_SLProps surfProp( 2, 1e-6 ); SMESH_MesherHelper helper( *_mesh ); data._convexFaces.clear(); for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[iS]; if ( eos.ShapeType() != TopAbs_FACE || data._ignoreFaceIds.count( eos._shapeID )) continue; TopoDS_Face F = TopoDS::Face( eos._shape ); SMESH_subMesh * sm = eos._subMesh; const TGeomID faceID = eos._shapeID; BRepAdaptor_Surface surface( F, false ); surfProp.SetSurface( surface ); bool isTooCurved = false; _ConvexFace cnvFace; const double oriFactor = ( F.Orientation() == TopAbs_REVERSED ? +1. : -1. ); SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/true); while ( smIt->more() ) { sm = smIt->next(); const TGeomID subID = sm->GetId(); // find _LayerEdge's of a sub-shape size_t edgesEnd; if ( _EdgesOnShape* eos = data.GetShapeEdges( subID )) cnvFace._subIdToEOS.insert( make_pair( subID, eos )); else continue; // check concavity and curvature and limit data._stepSize const double minCurvature = 1. / ( eos._hyp.GetTotalThickness() * ( 1+theThickToIntersection )); size_t iStep = Max( 1, eos._edges.size() / nbTestPnt ); for ( size_t i = 0; i < eos._edges.size(); i += iStep ) { gp_XY uv = helper.GetNodeUV( F, eos._edges[ i ]->_nodes[0] ); surfProp.SetParameters( uv.X(), uv.Y() ); if ( !surfProp.IsCurvatureDefined() ) continue; if ( surfProp.MaxCurvature() * oriFactor > minCurvature ) { limitStepSize( data, 0.9 / surfProp.MaxCurvature() * oriFactor ); isTooCurved = true; } if ( surfProp.MinCurvature() * oriFactor > minCurvature ) { limitStepSize( data, 0.9 / surfProp.MinCurvature() * oriFactor ); isTooCurved = true; } } } // loop on sub-shapes of the FACE if ( !isTooCurved ) continue; _ConvexFace & convFace = data._convexFaces.insert( make_pair( faceID, cnvFace )).first->second; convFace._face = F; convFace._normalsFixed = false; // Fill _ConvexFace::_simplexTestEdges. These _LayerEdge's are used to detect // prism distortion. map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.find( faceID ); if ( id2eos != convFace._subIdToEOS.end() && !id2eos->second->_edges.empty() ) { // there are _LayerEdge's on the FACE it-self; // select _LayerEdge's near EDGEs _EdgesOnShape& eos = * id2eos->second; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* ledge = eos._edges[ i ]; for ( size_t j = 0; j < ledge->_simplices.size(); ++j ) if ( ledge->_simplices[j]._nNext->GetPosition()->GetDim() < 2 ) { convFace._simplexTestEdges.push_back( ledge ); break; } } } else { // where there are no _LayerEdge's on a _ConvexFace, // as e.g. on a fillet surface with no internal nodes - issue 22580, // so that collision of viscous internal faces is not detected by check of // intersection of _LayerEdge's with the viscous internal faces. set< const SMDS_MeshNode* > usedNodes; // look for _LayerEdge's with null _sWOL map< TGeomID, _EdgesOnShape* >::iterator id2oes = convFace._subIdToEOS.begin(); for ( ; id2oes != convFace._subIdToEOS.end(); ++id2oes ) { _EdgesOnShape& eos = * id2eos->second; if ( !eos._sWOL.IsNull() ) continue; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* ledge = eos._edges[ i ]; const SMDS_MeshNode* srcNode = ledge->_nodes[0]; if ( !usedNodes.insert( srcNode ).second ) continue; _Simplex::GetSimplices( srcNode, ledge->_simplices, data._ignoreFaceIds, &data ); for ( size_t i = 0; i < ledge->_simplices.size(); ++i ) { usedNodes.insert( ledge->_simplices[i]._nPrev ); usedNodes.insert( ledge->_simplices[i]._nNext ); } convFace._simplexTestEdges.push_back( ledge ); } } } } // loop on FACEs of data._solid } //================================================================================ /*! * \brief Detect shapes (and _LayerEdge's on them) to smooth */ //================================================================================ bool _ViscousBuilder::findShapesToSmooth( _SolidData& data ) { // define allowed thickness computeGeomSize( data ); // compute data._geomSize data._maxThickness = 0; data._minThickness = 1e100; list< const StdMeshers_ViscousLayers* >::iterator hyp = data._hyps.begin(); for ( ; hyp != data._hyps.end(); ++hyp ) { data._maxThickness = Max( data._maxThickness, (*hyp)->GetTotalThickness() ); data._minThickness = Min( data._minThickness, (*hyp)->GetTotalThickness() ); } const double tgtThick = /*Min( 0.5 * data._geomSize, */data._maxThickness; // Find shapes needing smoothing; such a shape has _LayerEdge._normal on it's // boundry inclined to the shape at a sharp angle //list< TGeomID > shapesToSmooth; TopTools_MapOfShape edgesOfSmooFaces; SMESH_MesherHelper helper( *_mesh ); bool ok = true; vector< _EdgesOnShape >& edgesByGeom = data._edgesOnShape; data._nbShapesToSmooth = 0; for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check FACEs { _EdgesOnShape& eos = edgesByGeom[iS]; eos._toSmooth = false; if ( eos._edges.empty() || eos.ShapeType() != TopAbs_FACE ) continue; TopExp_Explorer eExp( edgesByGeom[iS]._shape, TopAbs_EDGE ); for ( ; eExp.More() && !eos._toSmooth; eExp.Next() ) { TGeomID iE = getMeshDS()->ShapeToIndex( eExp.Current() ); vector<_LayerEdge*>& eE = edgesByGeom[ iE ]._edges; if ( eE.empty() ) continue; // TopLoc_Location loc; // Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face( S ), loc ); // bool isPlane = GeomLib_IsPlanarSurface( surface ).IsPlanar(); //if ( eE[0]->_sWOL.IsNull() ) { double faceSize; for ( size_t i = 0; i < eE.size() && !eos._toSmooth; ++i ) if ( eE[i]->_cosin > theMinSmoothCosin ) { SMDS_ElemIteratorPtr fIt = eE[i]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() && !eos._toSmooth ) { const SMDS_MeshElement* face = fIt->next(); if ( getDistFromEdge( face, eE[i]->_nodes[0], faceSize )) eos._toSmooth = needSmoothing( eE[i]->_cosin, tgtThick, faceSize ); } } } // else // { // const TopoDS_Face& F1 = TopoDS::Face( S ); // const TopoDS_Face& F2 = TopoDS::Face( eE[0]->_sWOL ); // const TopoDS_Edge& E = TopoDS::Edge( eExp.Current() ); // for ( size_t i = 0; i < eE.size() && !eos._toSmooth; ++i ) // { // gp_Vec dir1 = getFaceDir( F1, E, eE[i]->_nodes[0], helper, ok ); // gp_Vec dir2 = getFaceDir( F2, E, eE[i]->_nodes[0], helper, ok ); // double angle = dir1.Angle( ); // double cosin = cos( angle ); // eos._toSmooth = ( cosin > theMinSmoothCosin ); // } // } } if ( eos._toSmooth ) { for ( eExp.ReInit(); eExp.More(); eExp.Next() ) edgesOfSmooFaces.Add( eExp.Current() ); data.PrepareEdgesToSmoothOnFace( &edgesByGeom[iS], /*substituteSrcNodes=*/false ); } data._nbShapesToSmooth += eos._toSmooth; } // check FACEs for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check EDGEs { _EdgesOnShape& eos = edgesByGeom[iS]; if ( eos._edges.empty() || eos.ShapeType() != TopAbs_EDGE ) continue; if ( !eos._hyp.ToSmooth() ) continue; const TopoDS_Edge& E = TopoDS::Edge( edgesByGeom[iS]._shape ); if ( SMESH_Algo::isDegenerated( E ) || !edgesOfSmooFaces.Contains( E )) continue; for ( TopoDS_Iterator vIt( E ); vIt.More() && !eos._toSmooth; vIt.Next() ) { TGeomID iV = getMeshDS()->ShapeToIndex( vIt.Value() ); vector<_LayerEdge*>& eV = edgesByGeom[ iV ]._edges; if ( eV.empty() ) continue; gp_Vec eDir = getEdgeDir( E, TopoDS::Vertex( vIt.Value() )); double angle = eDir.Angle( eV[0]->_normal ); double cosin = Cos( angle ); double cosinAbs = Abs( cosin ); if ( cosinAbs > theMinSmoothCosin ) { // always smooth analytic EDGEs eos._toSmooth = ! data.CurveForSmooth( E, eos, helper ).IsNull(); // compare tgtThick with the length of an end segment SMDS_ElemIteratorPtr eIt = eV[0]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Edge); while ( eIt->more() && !eos._toSmooth ) { const SMDS_MeshElement* endSeg = eIt->next(); if ( endSeg->getshapeId() == iS ) { double segLen = SMESH_TNodeXYZ( endSeg->GetNode(0) ).Distance( endSeg->GetNode(1 )); eos._toSmooth = needSmoothing( cosinAbs, tgtThick, segLen ); } } } } data._nbShapesToSmooth += eos._toSmooth; } // check EDGEs // Reset _cosin if no smooth is allowed by the user for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) { _EdgesOnShape& eos = edgesByGeom[iS]; if ( eos._edges.empty() ) continue; if ( !eos._hyp.ToSmooth() ) for ( size_t i = 0; i < eos._edges.size(); ++i ) eos._edges[i]->SetCosin( 0 ); } // int nbShapes = 0; // for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // { // nbShapes += ( edgesByGeom[iS]._edges.size() > 0 ); // } // data._edgesOnShape.reserve( nbShapes ); // // first we put _LayerEdge's on shapes to smooth (EGDEs go first) // vector< _LayerEdge* > edges; // list< TGeomID >::iterator gIt = shapesToSmooth.begin(); // for ( ; gIt != shapesToSmooth.end(); ++gIt ) // { // _EdgesOnShape& eos = edgesByGeom[ *gIt ]; // if ( eos._edges.empty() ) continue; // eos._edges.swap( edges ); // avoid copying array // eos._toSmooth = true; // data._edgesOnShape.push_back( eos ); // data._edgesOnShape.back()._edges.swap( edges ); // } // // then the rest _LayerEdge's // for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // { // _EdgesOnShape& eos = edgesByGeom[ *gIt ]; // if ( eos._edges.empty() ) continue; // eos._edges.swap( edges ); // avoid copying array // eos._toSmooth = false; // data._edgesOnShape.push_back( eos ); // data._edgesOnShape.back()._edges.swap( edges ); // } return ok; } //================================================================================ /*! * \brief initialize data of _EdgesOnShape */ //================================================================================ void _ViscousBuilder::setShapeData( _EdgesOnShape& eos, SMESH_subMesh* sm, _SolidData& data ) { if ( !eos._shape.IsNull() || sm->GetSubShape().ShapeType() == TopAbs_WIRE ) return; SMESH_MesherHelper helper( *_mesh ); eos._subMesh = sm; eos._shapeID = sm->GetId(); eos._shape = sm->GetSubShape(); if ( eos.ShapeType() == TopAbs_FACE ) eos._shape.Orientation( helper.GetSubShapeOri( data._solid, eos._shape )); eos._toSmooth = false; // set _SWOL map< TGeomID, TopoDS_Shape >::const_iterator s2s = data._shrinkShape2Shape.find( eos._shapeID ); if ( s2s != data._shrinkShape2Shape.end() ) eos._sWOL = s2s->second; // set _hyp if ( data._hyps.size() == 1 ) { eos._hyp = data._hyps.back(); } else { // compute average StdMeshers_ViscousLayers parameters map< TGeomID, const StdMeshers_ViscousLayers* >::iterator f2hyp; if ( eos.ShapeType() == TopAbs_FACE ) { if (( f2hyp = data._face2hyp.find( eos._shapeID )) != data._face2hyp.end() ) eos._hyp = f2hyp->second; } else { PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE ); while ( const TopoDS_Shape* face = fIt->next() ) { TGeomID faceID = getMeshDS()->ShapeToIndex( *face ); if (( f2hyp = data._face2hyp.find( faceID )) != data._face2hyp.end() ) eos._hyp.Add( f2hyp->second ); } } } // set _faceNormals if ( ! eos._hyp.UseSurfaceNormal() ) { if ( eos.ShapeType() == TopAbs_FACE ) // get normals to elements on a FACE { SMESHDS_SubMesh* smDS = sm->GetSubMeshDS(); eos._faceNormals.resize( smDS->NbElements() ); SMDS_ElemIteratorPtr eIt = smDS->GetElements(); for ( int iF = 0; eIt->more(); ++iF ) { const SMDS_MeshElement* face = eIt->next(); if ( !SMESH_MeshAlgos::FaceNormal( face, eos._faceNormals[iF], /*normalized=*/true )) eos._faceNormals[iF].SetCoord( 0,0,0 ); } if ( !helper.IsReversedSubMesh( TopoDS::Face( eos._shape ))) for ( size_t iF = 0; iF < eos._faceNormals.size(); ++iF ) eos._faceNormals[iF].Reverse(); } else // find EOS of adjacent FACEs { PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE ); while ( const TopoDS_Shape* face = fIt->next() ) { TGeomID faceID = getMeshDS()->ShapeToIndex( *face ); eos._faceEOS.push_back( & data._edgesOnShape[ faceID ]); if ( eos._faceEOS.back()->_shape.IsNull() ) // avoid using uninitialised _shapeID in GetNormal() eos._faceEOS.back()->_shapeID = faceID; } } } } //================================================================================ /*! * \brief Returns normal of a face */ //================================================================================ bool _EdgesOnShape::GetNormal( const SMDS_MeshElement* face, gp_Vec& norm ) { bool ok = false; const _EdgesOnShape* eos = 0; if ( face->getshapeId() == _shapeID ) { eos = this; } else { for ( size_t iF = 0; iF < _faceEOS.size() && !eos; ++iF ) if ( face->getshapeId() == _faceEOS[ iF ]->_shapeID ) eos = _faceEOS[ iF ]; } if (( eos ) && ( ok = ( face->getIdInShape() < eos->_faceNormals.size() ))) { norm = eos->_faceNormals[ face->getIdInShape() ]; } else if ( !eos ) { debugMsg( "_EdgesOnShape::Normal() failed for face "<GetID() << " on _shape #" << _shapeID ); } return ok; } //================================================================================ /*! * \brief Set data of _LayerEdge needed for smoothing * \param subIds - ids of sub-shapes of a SOLID to take into account faces from */ //================================================================================ bool _ViscousBuilder::setEdgeData(_LayerEdge& edge, _EdgesOnShape& eos, const set& subIds, SMESH_MesherHelper& helper, _SolidData& data) { const SMDS_MeshNode* node = edge._nodes[0]; // source node edge._len = 0; edge._2neibors = 0; edge._curvature = 0; // -------------------------- // Compute _normal and _cosin // -------------------------- edge._cosin = 0; edge._normal.SetCoord(0,0,0); int totalNbFaces = 0; TopoDS_Face F; std::pair< TopoDS_Face, gp_XYZ > face2Norm[20]; gp_Vec geomNorm; bool normOK = true; const bool onShrinkShape = !eos._sWOL.IsNull(); const bool useGeometry = (( eos._hyp.UseSurfaceNormal() ) || ( eos.ShapeType() != TopAbs_FACE && !onShrinkShape )); // get geom FACEs the node lies on //if ( useGeometry ) { set faceIds; if ( eos.ShapeType() == TopAbs_FACE ) { faceIds.insert( eos._shapeID ); } else { SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) faceIds.insert( fIt->next()->getshapeId() ); } set::iterator id = faceIds.begin(); for ( ; id != faceIds.end(); ++id ) { const TopoDS_Shape& s = getMeshDS()->IndexToShape( *id ); if ( s.IsNull() || s.ShapeType() != TopAbs_FACE || !subIds.count( *id )) continue; F = TopoDS::Face( s ); face2Norm[ totalNbFaces ].first = F; totalNbFaces++; } } // find _normal if ( useGeometry ) { if ( onShrinkShape ) // one of faces the node is on has no layers { if ( eos.SWOLType() == TopAbs_EDGE ) { // inflate from VERTEX along EDGE edge._normal = getEdgeDir( TopoDS::Edge( eos._sWOL ), TopoDS::Vertex( eos._shape )); } else if ( eos.ShapeType() == TopAbs_VERTEX ) { // inflate from VERTEX along FACE edge._normal = getFaceDir( TopoDS::Face( eos._sWOL ), TopoDS::Vertex( eos._shape ), node, helper, normOK, &edge._cosin); } else { // inflate from EDGE along FACE edge._normal = getFaceDir( TopoDS::Face( eos._sWOL ), TopoDS::Edge( eos._shape ), node, helper, normOK); } } // layers are on all faces of SOLID the node is on else { int nbOkNorms = 0; for ( int iF = 0; iF < totalNbFaces; ++iF ) { F = TopoDS::Face( face2Norm[ iF ].first ); geomNorm = getFaceNormal( node, F, helper, normOK ); if ( !normOK ) continue; nbOkNorms++; if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED ) geomNorm.Reverse(); face2Norm[ iF ].second = geomNorm.XYZ(); edge._normal += geomNorm.XYZ(); } if ( nbOkNorms == 0 ) return error(SMESH_Comment("Can't get normal to node ") << node->GetID(), data._index); if ( edge._normal.Modulus() < 1e-3 && nbOkNorms > 1 ) { // opposite normals, re-get normals at shifted positions (IPAL 52426) edge._normal.SetCoord( 0,0,0 ); for ( int iF = 0; iF < totalNbFaces; ++iF ) { const TopoDS_Face& F = face2Norm[iF].first; geomNorm = getFaceNormal( node, F, helper, normOK, /*shiftInside=*/true ); if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED ) geomNorm.Reverse(); if ( normOK ) face2Norm[ iF ].second = geomNorm.XYZ(); edge._normal += face2Norm[ iF ].second; } } if ( totalNbFaces < 3 ) { //edge._normal /= totalNbFaces; } else { edge._normal = getWeigthedNormal( node, face2Norm, totalNbFaces ); } } } else // !useGeometry - get _normal using surrounding mesh faces { SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) { const SMDS_MeshElement* face = fIt->next(); if ( eos.GetNormal( face, geomNorm )) { edge._normal += geomNorm.XYZ(); totalNbFaces++; } } } // compute _cosin //if ( eos._hyp.UseSurfaceNormal() ) { switch ( eos.ShapeType() ) { case TopAbs_FACE: { edge._cosin = 0; break; } case TopAbs_EDGE: { TopoDS_Edge E = TopoDS::Edge( eos._shape ); gp_Vec inFaceDir = getFaceDir( F, E, node, helper, normOK ); double angle = inFaceDir.Angle( edge._normal ); // [0,PI] edge._cosin = Cos( angle ); //cout << "Cosin on EDGE " << edge._cosin << " node " << node->GetID() << endl; break; } case TopAbs_VERTEX: { if ( eos.SWOLType() != TopAbs_FACE ) { // else _cosin is set by getFaceDir() TopoDS_Vertex V = TopoDS::Vertex( eos._shape ); gp_Vec inFaceDir = getFaceDir( F, V, node, helper, normOK ); double angle = inFaceDir.Angle( edge._normal ); // [0,PI] edge._cosin = Cos( angle ); if ( totalNbFaces > 2 || helper.IsSeamShape( node->getshapeId() )) for ( int iF = totalNbFaces-2; iF >=0; --iF ) { F = face2Norm[ iF ].first; inFaceDir = getFaceDir( F, V, node, helper, normOK=true ); if ( normOK ) { double angle = inFaceDir.Angle( edge._normal ); edge._cosin = Max( edge._cosin, Cos( angle )); } } } //cout << "Cosin on VERTEX " << edge._cosin << " node " << node->GetID() << endl; break; } default: return error(SMESH_Comment("Invalid shape position of node ")<::min() ) return error(SMESH_Comment("Bad normal at node ")<< node->GetID(), data._index ); edge._normal /= sqrt( normSize ); // TODO: if ( !normOK ) then get normal by mesh faces // Set the rest data // -------------------- if ( onShrinkShape ) { SMDS_MeshNode* tgtNode = const_cast( edge._nodes.back() ); if ( SMESHDS_SubMesh* sm = getMeshDS()->MeshElements( data._solid )) sm->RemoveNode( tgtNode , /*isNodeDeleted=*/false ); // set initial position which is parameters on _sWOL in this case if ( eos.SWOLType() == TopAbs_EDGE ) { double u = helper.GetNodeU( TopoDS::Edge( eos._sWOL ), node, 0, &normOK ); edge._pos.push_back( gp_XYZ( u, 0, 0 )); if ( edge._nodes.size() > 1 ) getMeshDS()->SetNodeOnEdge( tgtNode, TopoDS::Edge( eos._sWOL ), u ); } else // TopAbs_FACE { gp_XY uv = helper.GetNodeUV( TopoDS::Face( eos._sWOL ), node, 0, &normOK ); edge._pos.push_back( gp_XYZ( uv.X(), uv.Y(), 0)); if ( edge._nodes.size() > 1 ) getMeshDS()->SetNodeOnFace( tgtNode, TopoDS::Face( eos._sWOL ), uv.X(), uv.Y() ); } } else { edge._pos.push_back( SMESH_TNodeXYZ( node )); if ( eos.ShapeType() == TopAbs_FACE ) { _Simplex::GetSimplices( node, edge._simplices, data._ignoreFaceIds, &data ); } } // Set neighbour nodes for a _LayerEdge based on EDGE if ( eos.ShapeType() == TopAbs_EDGE /*|| ( onShrinkShape && posType == SMDS_TOP_VERTEX && fabs( edge._cosin ) < 1e-10 )*/) { edge._2neibors = new _2NearEdges; // target node instead of source ones will be set later // if ( ! findNeiborsOnEdge( &edge, // edge._2neibors->_nodes[0], // edge._2neibors->_nodes[1], eos, // data)) // return false; // edge.SetDataByNeighbors( edge._2neibors->_nodes[0], // edge._2neibors->_nodes[1], // helper); } edge.SetCosin( edge._cosin ); // to update edge._lenFactor return true; } //================================================================================ /*! * \brief Return normal to a FACE at a node * \param [in] n - node * \param [in] face - FACE * \param [in] helper - helper * \param [out] isOK - true or false * \param [in] shiftInside - to find normal at a position shifted inside the face * \return gp_XYZ - normal */ //================================================================================ gp_XYZ _ViscousBuilder::getFaceNormal(const SMDS_MeshNode* node, const TopoDS_Face& face, SMESH_MesherHelper& helper, bool& isOK, bool shiftInside) { gp_XY uv; if ( shiftInside ) { // get a shifted position gp_Pnt p = SMESH_TNodeXYZ( node ); gp_XYZ shift( 0,0,0 ); TopoDS_Shape S = helper.GetSubShapeByNode( node, helper.GetMeshDS() ); switch ( S.ShapeType() ) { case TopAbs_VERTEX: { shift = getFaceDir( face, TopoDS::Vertex( S ), node, helper, isOK ); break; } case TopAbs_EDGE: { shift = getFaceDir( face, TopoDS::Edge( S ), node, helper, isOK ); break; } default: isOK = false; } if ( isOK ) shift.Normalize(); p.Translate( shift * 1e-5 ); TopLoc_Location loc; GeomAPI_ProjectPointOnSurf& projector = helper.GetProjector( face, loc, 1e-7 ); if ( !loc.IsIdentity() ) p.Transform( loc.Transformation().Inverted() ); projector.Perform( p ); if ( !projector.IsDone() || projector.NbPoints() < 1 ) { isOK = false; return p.XYZ(); } Quantity_Parameter U,V; projector.LowerDistanceParameters(U,V); uv.SetCoord( U,V ); } else { uv = helper.GetNodeUV( face, node, 0, &isOK ); } gp_Dir normal; isOK = false; Handle(Geom_Surface) surface = BRep_Tool::Surface( face ); if ( !shiftInside && helper.IsDegenShape( node->getshapeId() ) && getFaceNormalAtSingularity( uv, face, helper, normal )) { isOK = true; return normal.XYZ(); } int pointKind = GeomLib::NormEstim( surface, uv, 1e-5, normal ); enum { REGULAR = 0, QUASYSINGULAR, CONICAL, IMPOSSIBLE }; if ( pointKind == IMPOSSIBLE && node->GetPosition()->GetDim() == 2 ) // node inside the FACE { // probably NormEstim() failed due to a too high tolerance pointKind = GeomLib::NormEstim( surface, uv, 1e-20, normal ); isOK = ( pointKind < IMPOSSIBLE ); } if ( pointKind < IMPOSSIBLE ) { if ( pointKind != REGULAR && !shiftInside && node->GetPosition()->GetDim() < 2 ) // FACE boundary { gp_XYZ normShift = getFaceNormal( node, face, helper, isOK, /*shiftInside=*/true ); if ( normShift * normal.XYZ() < 0. ) normal = normShift; } isOK = true; } if ( !isOK ) // hard singularity, to call with shiftInside=true ? { const TGeomID faceID = helper.GetMeshDS()->ShapeToIndex( face ); SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) { const SMDS_MeshElement* f = fIt->next(); if ( f->getshapeId() == faceID ) { isOK = SMESH_MeshAlgos::FaceNormal( f, (gp_XYZ&) normal.XYZ(), /*normalized=*/true ); if ( isOK ) { TopoDS_Face ff = face; ff.Orientation( TopAbs_FORWARD ); if ( helper.IsReversedSubMesh( ff )) normal.Reverse(); break; } } } } return normal.XYZ(); } //================================================================================ /*! * \brief Try to get normal at a singularity of a surface basing on it's nature */ //================================================================================ bool _ViscousBuilder::getFaceNormalAtSingularity( const gp_XY& uv, const TopoDS_Face& face, SMESH_MesherHelper& helper, gp_Dir& normal ) { BRepAdaptor_Surface surface( face ); gp_Dir axis; if ( !getRovolutionAxis( surface, axis )) return false; double f,l, d, du, dv; f = surface.FirstUParameter(); l = surface.LastUParameter(); d = ( uv.X() - f ) / ( l - f ); du = ( d < 0.5 ? +1. : -1 ) * 1e-5 * ( l - f ); f = surface.FirstVParameter(); l = surface.LastVParameter(); d = ( uv.Y() - f ) / ( l - f ); dv = ( d < 0.5 ? +1. : -1 ) * 1e-5 * ( l - f ); gp_Dir refDir; gp_Pnt2d testUV = uv; enum { REGULAR = 0, QUASYSINGULAR, CONICAL, IMPOSSIBLE }; double tol = 1e-5; Handle(Geom_Surface) geomsurf = surface.Surface().Surface(); for ( int iLoop = 0; true ; ++iLoop ) { testUV.SetCoord( testUV.X() + du, testUV.Y() + dv ); if ( GeomLib::NormEstim( geomsurf, testUV, tol, refDir ) == REGULAR ) break; if ( iLoop > 20 ) return false; tol /= 10.; } if ( axis * refDir < 0. ) axis.Reverse(); normal = axis; return true; } //================================================================================ /*! * \brief Return a normal at a node weighted with angles taken by FACEs * \param [in] n - the node * \param [in] fId2Normal - FACE ids and normals * \param [in] nbFaces - nb of FACEs meeting at the node * \return gp_XYZ - computed normal */ //================================================================================ gp_XYZ _ViscousBuilder::getWeigthedNormal( const SMDS_MeshNode* n, std::pair< TopoDS_Face, gp_XYZ > fId2Normal[], int nbFaces ) { gp_XYZ resNorm(0,0,0); TopoDS_Shape V = SMESH_MesherHelper::GetSubShapeByNode( n, getMeshDS() ); if ( V.ShapeType() != TopAbs_VERTEX ) { for ( int i = 0; i < nbFaces; ++i ) resNorm += fId2Normal[i].second; return resNorm; } // exclude equal normals //int nbUniqNorms = nbFaces; for ( int i = 0; i < nbFaces; ++i ) for ( int j = i+1; j < nbFaces; ++j ) if ( fId2Normal[i].second.IsEqual( fId2Normal[j].second, 0.1 )) { fId2Normal[i].second.SetCoord( 0,0,0 ); //--nbUniqNorms; break; } //if ( nbUniqNorms < 3 ) { for ( int i = 0; i < nbFaces; ++i ) resNorm += fId2Normal[i].second; return resNorm; } double angles[30]; for ( int i = 0; i < nbFaces; ++i ) { const TopoDS_Face& F = fId2Normal[i].first; // look for two EDGEs shared by F and other FACEs within fId2Normal TopoDS_Edge ee[2]; int nbE = 0; PShapeIteratorPtr eIt = SMESH_MesherHelper::GetAncestors( V, *_mesh, TopAbs_EDGE ); while ( const TopoDS_Shape* E = eIt->next() ) { if ( !SMESH_MesherHelper::IsSubShape( *E, F )) continue; bool isSharedEdge = false; for ( int j = 0; j < nbFaces && !isSharedEdge; ++j ) { if ( i == j ) continue; const TopoDS_Shape& otherF = fId2Normal[j].first; isSharedEdge = SMESH_MesherHelper::IsSubShape( *E, otherF ); } if ( !isSharedEdge ) continue; ee[ nbE ] = TopoDS::Edge( *E ); ee[ nbE ].Orientation( SMESH_MesherHelper::GetSubShapeOri( F, *E )); if ( ++nbE == 2 ) break; } // get an angle between the two EDGEs angles[i] = 0; if ( nbE < 1 ) continue; if ( nbE == 1 ) { ee[ 1 ] == ee[ 0 ]; } else { if ( !V.IsSame( SMESH_MesherHelper::IthVertex( 0, ee[ 1 ] ))) std::swap( ee[0], ee[1] ); } angles[i] = SMESH_MesherHelper::GetAngle( ee[0], ee[1], F, TopoDS::Vertex( V )); } // compute a weighted normal double sumAngle = 0; for ( int i = 0; i < nbFaces; ++i ) { angles[i] = ( angles[i] > 2*M_PI ) ? 0 : M_PI - angles[i]; sumAngle += angles[i]; } for ( int i = 0; i < nbFaces; ++i ) resNorm += angles[i] / sumAngle * fId2Normal[i].second; return resNorm; } //================================================================================ /*! * \brief Find 2 neigbor nodes of a node on EDGE */ //================================================================================ bool _ViscousBuilder::findNeiborsOnEdge(const _LayerEdge* edge, const SMDS_MeshNode*& n1, const SMDS_MeshNode*& n2, _EdgesOnShape& eos, _SolidData& data) { const SMDS_MeshNode* node = edge->_nodes[0]; const int shapeInd = eos._shapeID; SMESHDS_SubMesh* edgeSM = 0; if ( eos.ShapeType() == TopAbs_EDGE ) { edgeSM = eos._subMesh->GetSubMeshDS(); if ( !edgeSM || edgeSM->NbElements() == 0 ) return error(SMESH_Comment("Not meshed EDGE ") << shapeInd, data._index); } int iN = 0; n2 = 0; SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(SMDSAbs_Edge); while ( eIt->more() && !n2 ) { const SMDS_MeshElement* e = eIt->next(); const SMDS_MeshNode* nNeibor = e->GetNode( 0 ); if ( nNeibor == node ) nNeibor = e->GetNode( 1 ); if ( edgeSM ) { if (!edgeSM->Contains(e)) continue; } else { TopoDS_Shape s = SMESH_MesherHelper::GetSubShapeByNode( nNeibor, getMeshDS() ); if ( !SMESH_MesherHelper::IsSubShape( s, eos._sWOL )) continue; } ( iN++ ? n2 : n1 ) = nNeibor; } if ( !n2 ) return error(SMESH_Comment("Wrongly meshed EDGE ") << shapeInd, data._index); return true; } //================================================================================ /*! * \brief Set _curvature and _2neibors->_plnNorm by 2 neigbor nodes residing the same EDGE */ //================================================================================ void _LayerEdge::SetDataByNeighbors( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const _EdgesOnShape& eos, SMESH_MesherHelper& helper) { if ( eos.ShapeType() != TopAbs_EDGE ) return; gp_XYZ pos = SMESH_TNodeXYZ( _nodes[0] ); gp_XYZ vec1 = pos - SMESH_TNodeXYZ( n1 ); gp_XYZ vec2 = pos - SMESH_TNodeXYZ( n2 ); // Set _curvature double sumLen = vec1.Modulus() + vec2.Modulus(); _2neibors->_wgt[0] = 1 - vec1.Modulus() / sumLen; _2neibors->_wgt[1] = 1 - vec2.Modulus() / sumLen; double avgNormProj = 0.5 * ( _normal * vec1 + _normal * vec2 ); double avgLen = 0.5 * ( vec1.Modulus() + vec2.Modulus() ); if ( _curvature ) delete _curvature; _curvature = _Curvature::New( avgNormProj, avgLen ); // if ( _curvature ) // debugMsg( _nodes[0]->GetID() // << " CURV r,k: " << _curvature->_r<<","<<_curvature->_k // << " proj = "<second; for ( size_t iN = 1; iN < le->_nodes.size(); ++iN ) dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <_nodes[iN-1]->GetID() << ", " << le->_nodes[iN]->GetID() <<"])"); } dumpFunctionEnd(); dumpFunction( SMESH_Comment("makeNormals") << i ); for ( n2e = _sdVec[i]._n2eMap.begin(); n2e != _sdVec[i]._n2eMap.end(); ++n2e ) { _LayerEdge* edge = n2e->second; SMESH_TNodeXYZ nXYZ( edge->_nodes[0] ); nXYZ += edge->_normal * _sdVec[i]._stepSize; dumpCmd(SMESH_Comment("mesh.AddEdge([ ") << edge->_nodes[0]->GetID() << ", mesh.AddNode( " << nXYZ.X()<<","<< nXYZ.Y()<<","<< nXYZ.Z()<<")])"); } dumpFunctionEnd(); dumpFunction( SMESH_Comment("makeTmpFaces_") << i ); dumpCmd( "faceId1 = mesh.NbElements()" ); TopExp_Explorer fExp( _sdVec[i]._solid, TopAbs_FACE ); for ( ; fExp.More(); fExp.Next() ) { if (const SMESHDS_SubMesh* sm = _sdVec[i]._proxyMesh->GetProxySubMesh( fExp.Current())) { if ( sm->NbElements() == 0 ) continue; SMDS_ElemIteratorPtr fIt = sm->GetElements(); while ( fIt->more()) { const SMDS_MeshElement* e = fIt->next(); SMESH_Comment cmd("mesh.AddFace(["); for ( int j=0; j < e->NbCornerNodes(); ++j ) cmd << e->GetNode(j)->GetID() << (j+1NbCornerNodes() ? ",": "])"); dumpCmd( cmd ); } } } dumpCmd( "faceId2 = mesh.NbElements()" ); dumpCmd( SMESH_Comment( "mesh.MakeGroup( 'tmpFaces_" ) << i << "'," << "SMESH.FACE, SMESH.FT_RangeOfIds,'='," << "'%s-%s' % (faceId1+1, faceId2))"); dumpFunctionEnd(); } #endif } //================================================================================ /*! * \brief Find maximal _LayerEdge length (layer thickness) limited by geometry */ //================================================================================ void _ViscousBuilder::computeGeomSize( _SolidData& data ) { data._geomSize = Precision::Infinite(); double intersecDist; auto_ptr searcher ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), data._proxyMesh->GetFaces( data._solid )) ); for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[ iS ]; if ( eos._edges.empty() || eos.ShapeType() == TopAbs_EDGE ) continue; for ( size_t i = 0; i < eos._edges.size(); ++i ) { eos._edges[i]->FindIntersection( *searcher, intersecDist, data._epsilon, eos ); if ( data._geomSize > intersecDist && intersecDist > 0 ) data._geomSize = intersecDist; } } } //================================================================================ /*! * \brief Increase length of _LayerEdge's to reach the required thickness of layers */ //================================================================================ bool _ViscousBuilder::inflate(_SolidData& data) { SMESH_MesherHelper helper( *_mesh ); // Limit inflation step size by geometry size found by itersecting // normals of _LayerEdge's with mesh faces if ( data._stepSize > 0.3 * data._geomSize ) limitStepSize( data, 0.3 * data._geomSize ); const double tgtThick = data._maxThickness; if ( data._stepSize > data._minThickness ) limitStepSize( data, data._minThickness ); if ( data._stepSize < 1. ) data._epsilon = data._stepSize * 1e-7; debugMsg( "-- geomSize = " << data._geomSize << ", stepSize = " << data._stepSize ); const double safeFactor = ( 2*data._maxThickness < data._geomSize ) ? 1 : theThickToIntersection; double avgThick = 0, curThick = 0, distToIntersection = Precision::Infinite(); int nbSteps = 0, nbRepeats = 0; while ( avgThick < 0.99 ) { // new target length curThick += data._stepSize; if ( curThick > tgtThick ) { curThick = tgtThick + tgtThick*( 1.-avgThick ) * nbRepeats; nbRepeats++; } // Elongate _LayerEdge's dumpFunction(SMESH_Comment("inflate")<SetNewLength( shapeCurThick, eos, helper ); } } dumpFunctionEnd(); if ( !updateNormals( data, helper, nbSteps )) return false; // Improve and check quality if ( !smoothAndCheck( data, nbSteps, distToIntersection )) { if ( nbSteps > 0 ) { #ifdef __NOT_INVALIDATE_BAD_SMOOTH debugMsg("NOT INVALIDATED STEP!"); return error("Smoothing failed", data._index); #endif dumpFunction(SMESH_Comment("invalidate")<InvalidateStep( nbSteps+1, eos ); } dumpFunctionEnd(); } break; // no more inflating possible } nbSteps++; // Evaluate achieved thickness avgThick = 0; for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[iS]; if ( eos._edges.empty() ) continue; const double shapeTgtThick = eos._hyp.GetTotalThickness(); for ( size_t i = 0; i < eos._edges.size(); ++i ) { avgThick += Min( 1., eos._edges[i]->_len / shapeTgtThick ); } } avgThick /= data._n2eMap.size(); debugMsg( "-- Thickness " << curThick << " ("<< avgThick*100 << "%) reached" ); if ( distToIntersection < tgtThick * avgThick * safeFactor && avgThick < 0.9 ) { debugMsg( "-- Stop inflation since " << " distToIntersection( "<_warning || data._proxyMesh->_warning->IsOK() ) { data._proxyMesh->_warning.reset ( new SMESH_ComputeError (COMPERR_WARNING, SMESH_Comment("Thickness ") << tgtThick << " of viscous layers not reached," " average reached thickness is " << avgThick*tgtThick)); } } // Restore position of src nodes moved by infaltion on _noShrinkShapes dumpFunction(SMESH_Comment("restoNoShrink_So")<_nodes.size() == 1 ) for ( size_t i = 0; i < eos._edges.size(); ++i ) { restoreNoShrink( *eos._edges[ i ] ); } } dumpFunctionEnd(); return true; } //================================================================================ /*! * \brief Improve quality of layer inner surface and check intersection */ //================================================================================ bool _ViscousBuilder::smoothAndCheck(_SolidData& data, const int nbSteps, double & distToIntersection) { if ( data._nbShapesToSmooth == 0 ) return true; // no shapes needing smoothing bool moved, improved; vector< _LayerEdge* > badSmooEdges; SMESH_MesherHelper helper(*_mesh); Handle(Geom_Surface) surface; TopoDS_Face F; for ( int isFace = 0; isFace < 2; ++isFace ) // smooth on [ EDGEs, FACEs ] { const TopAbs_ShapeEnum shapeType = isFace ? TopAbs_FACE : TopAbs_EDGE; for ( int iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[ iS ]; if ( !eos._toSmooth || eos.ShapeType() != shapeType ) continue; // already smoothed? bool toSmooth = ( eos._edges[ 0 ]->NbSteps() >= nbSteps+1 ); if ( !toSmooth ) continue; if ( !eos._hyp.ToSmooth() ) { // smooth disabled by the user; check validy only if ( !isFace ) continue; double vol; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* edge = eos._edges[i]; const gp_XYZ& curPos ( ); for ( size_t iF = 0; iF < edge->_simplices.size(); ++iF ) if ( !edge->_simplices[iF].IsForward( edge->_nodes[0], &edge->_pos.back(), vol )) return false; } continue; // goto to the next EDGE or FACE } // prepare data if ( eos.SWOLType() == TopAbs_FACE ) { if ( !F.IsSame( eos._sWOL )) { F = TopoDS::Face( eos._sWOL ); helper.SetSubShape( F ); surface = BRep_Tool::Surface( F ); } } else { F.Nullify(); surface.Nullify(); } const TGeomID sInd = eos._shapeID; // perform smoothing if ( eos.ShapeType() == TopAbs_EDGE ) { dumpFunction(SMESH_Comment("smooth")<SmoothOnEdge( surface, F, helper ); } dumpCmd( SMESH_Comment("# end step ")<Smooth( step, isConcaveFace, false )) badSmooEdges.push_back( eos._edges[i] ); } else { for ( int i = eos._edges.size()-1; i >= 0; --i ) // iterate backward if ( eos._edges[i]->Smooth( step, isConcaveFace, false )) badSmooEdges.push_back( eos._edges[i] ); } badNb = badSmooEdges.size(); improved = ( badNb < oldBadNb ); if ( !badSmooEdges.empty() && step >= stepLimit / 2 ) { // look for the best smooth of _LayerEdge's neighboring badSmooEdges vector<_Simplex> simplices; for ( size_t i = 0; i < badSmooEdges.size(); ++i ) { _LayerEdge* ledge = badSmooEdges[i]; _Simplex::GetSimplices( ledge->_nodes[0], simplices, data._ignoreFaceIds ); for ( size_t iS = 0; iS < simplices.size(); ++iS ) { TNode2Edge::iterator n2e = data._n2eMap.find( simplices[iS]._nNext ); if ( n2e != data._n2eMap.end()) { _LayerEdge* ledge2 = n2e->second; if ( ledge2->_nodes[0]->getshapeId() == sInd ) ledge2->Smooth( step, isConcaveFace, /*findBest=*/true ); } } } } // issue 22576 -- no bad faces but still there are intersections to fix // if ( improved && badNb == 0 ) // stepLimit = step + 3; dumpFunctionEnd(); } if ( badNb > 0 ) { #ifdef __myDEBUG double vol = 0; for ( int i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* edge = eos._edges[i]; SMESH_TNodeXYZ tgtXYZ( edge->_nodes.back() ); for ( size_t j = 0; j < edge->_simplices.size(); ++j ) if ( !edge->_simplices[j].IsForward( edge->_nodes[0], &tgtXYZ, vol )) { cout << "Bad simplex ( " << edge->_nodes[0]->GetID()<< " "<< tgtXYZ._node->GetID() << " "<< edge->_simplices[j]._nPrev->GetID() << " "<< edge->_simplices[j]._nNext->GetID() << " )" << endl; return false; } } #endif return false; } } // // smooth on FACE's } // loop on shapes } // smooth on [ EDGEs, FACEs ] // Check orientation of simplices of _ConvexFace::_simplexTestEdges map< TGeomID, _ConvexFace >::iterator id2face = data._convexFaces.begin(); for ( ; id2face != data._convexFaces.end(); ++id2face ) { _ConvexFace & convFace = (*id2face).second; if ( !convFace._simplexTestEdges.empty() && convFace._simplexTestEdges[0]->_nodes[0]->GetPosition()->GetDim() == 2 ) continue; // _simplexTestEdges are based on FACE -- already checked while smoothing if ( !convFace.CheckPrisms() ) return false; } // Check if the last segments of _LayerEdge intersects 2D elements; // checked elements are either temporary faces or faces on surfaces w/o the layers auto_ptr searcher ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), data._proxyMesh->GetFaces( data._solid )) ); distToIntersection = Precision::Infinite(); double dist; const SMDS_MeshElement* intFace = 0; const SMDS_MeshElement* closestFace = 0; _LayerEdge* le = 0; for ( int iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[ iS ]; if ( eos._edges.empty() || !eos._sWOL.IsNull() ) continue; for ( size_t i = 0; i < eos._edges.size(); ++i ) { if ( eos._edges[i]->FindIntersection( *searcher, dist, data._epsilon, eos, &intFace )) return false; if ( distToIntersection > dist ) { // ignore intersection of a _LayerEdge based on a _ConvexFace with a face // lying on this _ConvexFace if ( _ConvexFace* convFace = data.GetConvexFace( intFace->getshapeId() )) if ( convFace->_subIdToEOS.count ( eos._shapeID )) continue; // ignore intersection of a _LayerEdge based on a FACE with an element on this FACE // ( avoid limiting the thickness on the case of issue 22576) if ( intFace->getshapeId() == eos._shapeID ) continue; distToIntersection = dist; le = eos._edges[i]; closestFace = intFace; } } } #ifdef __myDEBUG if ( closestFace ) { SMDS_MeshElement::iterator nIt = closestFace->begin_nodes(); cout << "Shortest distance: _LayerEdge nodes: tgt " << le->_nodes.back()->GetID() << " src " << le->_nodes[0]->GetID()<< ", intersection with face (" << (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID() << ") distance = " << distToIntersection<< endl; } #endif return true; } //================================================================================ /*! * \brief Return a curve of the EDGE to be used for smoothing and arrange * _LayerEdge's to be in a consequent order */ //================================================================================ Handle(Geom_Curve) _SolidData::CurveForSmooth( const TopoDS_Edge& E, _EdgesOnShape& eos, SMESH_MesherHelper& helper) { const TGeomID eIndex = eos._shapeID; map< TGeomID, Handle(Geom_Curve)>::iterator i2curve = _edge2curve.find( eIndex ); if ( i2curve == _edge2curve.end() ) { // sort _LayerEdge's by position on the EDGE SortOnEdge( E, eos._edges, helper ); SMESHDS_SubMesh* smDS = eos._subMesh->GetSubMeshDS(); TopLoc_Location loc; double f,l; Handle(Geom_Line) line; Handle(Geom_Circle) circle; bool isLine, isCirc; if ( eos._sWOL.IsNull() ) /////////////////////////////////////////// 3D case { // check if the EDGE is a line Handle(Geom_Curve) curve = BRep_Tool::Curve( E, loc, f, l); if ( curve->IsKind( STANDARD_TYPE( Geom_TrimmedCurve ))) curve = Handle(Geom_TrimmedCurve)::DownCast( curve )->BasisCurve(); line = Handle(Geom_Line)::DownCast( curve ); circle = Handle(Geom_Circle)::DownCast( curve ); isLine = (!line.IsNull()); isCirc = (!circle.IsNull()); if ( !isLine && !isCirc ) // Check if the EDGE is close to a line { // Bnd_B3d bndBox; // SMDS_NodeIteratorPtr nIt = smDS->GetNodes(); // while ( nIt->more() ) // bndBox.Add( SMESH_TNodeXYZ( nIt->next() )); // gp_XYZ size = bndBox.CornerMax() - bndBox.CornerMin(); // gp_Pnt p0, p1; // if ( eos._edges.size() > 1 ) { // p0 = SMESH_TNodeXYZ( eos._edges[0]->_nodes[0] ); // p1 = SMESH_TNodeXYZ( eos._edges[1]->_nodes[0] ); // } // else { // p0 = curve->Value( f ); // p1 = curve->Value( l ); // } // const double lineTol = 1e-2 * p0.Distance( p1 ); // for ( int i = 0; i < 3 && !isLine; ++i ) // isLine = ( size.Coord( i+1 ) <= lineTol ); ////////// <--- WRONG isLine = SMESH_Algo::IsStraight( E ); if ( isLine ) line = new Geom_Line( gp::OX() ); // only type does matter } if ( !isLine && !isCirc && eos._edges.size() > 2) // Check if the EDGE is close to a circle { // TODO } } else //////////////////////////////////////////////////////////////////////// 2D case { const TopoDS_Face& F = TopoDS::Face( eos._sWOL ); // check if the EDGE is a line Handle(Geom2d_Curve) curve = BRep_Tool::CurveOnSurface( E, F, f, l); if ( curve->IsKind( STANDARD_TYPE( Geom2d_TrimmedCurve ))) curve = Handle(Geom2d_TrimmedCurve)::DownCast( curve )->BasisCurve(); Handle(Geom2d_Line) line2d = Handle(Geom2d_Line)::DownCast( curve ); Handle(Geom2d_Circle) circle2d = Handle(Geom2d_Circle)::DownCast( curve ); isLine = (!line2d.IsNull()); isCirc = (!circle2d.IsNull()); if ( !isLine && !isCirc) // Check if the EDGE is close to a line { Bnd_B2d bndBox; SMDS_NodeIteratorPtr nIt = smDS->GetNodes(); while ( nIt->more() ) bndBox.Add( helper.GetNodeUV( F, nIt->next() )); gp_XY size = bndBox.CornerMax() - bndBox.CornerMin(); const double lineTol = 1e-2 * sqrt( bndBox.SquareExtent() ); for ( int i = 0; i < 2 && !isLine; ++i ) isLine = ( size.Coord( i+1 ) <= lineTol ); } if ( !isLine && !isCirc && eos._edges.size() > 2) // Check if the EDGE is close to a circle { // TODO } if ( isLine ) { line = new Geom_Line( gp::OX() ); // only type does matter } else if ( isCirc ) { gp_Pnt2d p = circle2d->Location(); gp_Ax2 ax( gp_Pnt( p.X(), p.Y(), 0), gp::DX()); circle = new Geom_Circle( ax, 1.); // only center position does matter } } Handle(Geom_Curve)& res = _edge2curve[ eIndex ]; if ( isLine ) res = line; else if ( isCirc ) res = circle; return res; } return i2curve->second; } //================================================================================ /*! * \brief Sort _LayerEdge's by a parameter on a given EDGE */ //================================================================================ void _SolidData::SortOnEdge( const TopoDS_Edge& E, vector< _LayerEdge* >& edges, SMESH_MesherHelper& helper) { map< double, _LayerEdge* > u2edge; for ( size_t i = 0; i < edges.size(); ++i ) u2edge.insert( make_pair( helper.GetNodeU( E, edges[i]->_nodes[0] ), edges[i] )); ASSERT( u2edge.size() == edges.size() ); map< double, _LayerEdge* >::iterator u2e = u2edge.begin(); for ( int i = 0; i < edges.size(); ++i, ++u2e ) edges[i] = u2e->second; Sort2NeiborsOnEdge( edges ); } //================================================================================ /*! * \brief Set _2neibors according to the order of _LayerEdge on EDGE */ //================================================================================ void _SolidData::Sort2NeiborsOnEdge( vector< _LayerEdge* >& edges ) { for ( size_t i = 0; i < edges.size()-1; ++i ) if ( edges[i]->_2neibors->tgtNode(1) != edges[i+1]->_nodes.back() ) edges[i]->_2neibors->reverse(); const size_t iLast = edges.size() - 1; if ( edges.size() > 1 && edges[iLast]->_2neibors->tgtNode(0) != edges[iLast-1]->_nodes.back() ) edges[iLast]->_2neibors->reverse(); } //================================================================================ /*! * \brief Return _EdgesOnShape* corresponding to the shape */ //================================================================================ _EdgesOnShape* _SolidData::GetShapeEdges(const TGeomID shapeID ) { if ( shapeID < _edgesOnShape.size() && _edgesOnShape[ shapeID ]._shapeID == shapeID ) return & _edgesOnShape[ shapeID ]; for ( size_t i = 0; i < _edgesOnShape.size(); ++i ) if ( _edgesOnShape[i]._shapeID == shapeID ) return & _edgesOnShape[i]; return 0; } //================================================================================ /*! * \brief Return _EdgesOnShape* corresponding to the shape */ //================================================================================ _EdgesOnShape* _SolidData::GetShapeEdges(const TopoDS_Shape& shape ) { SMESHDS_Mesh* meshDS = _proxyMesh->GetMesh()->GetMeshDS(); return GetShapeEdges( meshDS->ShapeToIndex( shape )); } //================================================================================ /*! * \brief Prepare data of the _LayerEdge for smoothing on FACE */ //================================================================================ void _SolidData::PrepareEdgesToSmoothOnFace( _EdgesOnShape* eof, bool substituteSrcNodes ) { set< TGeomID > vertices; SMESH_MesherHelper helper( *_proxyMesh->GetMesh() ); if ( isConcave( TopoDS::Face( eof->_shape ), helper, &vertices )) _concaveFaces.insert( eof->_shapeID ); for ( size_t i = 0; i < eof->_edges.size(); ++i ) eof->_edges[i]->_smooFunction = 0; for ( size_t i = 0; i < eof->_edges.size(); ++i ) { _LayerEdge* edge = eof->_edges[i]; _Simplex::GetSimplices ( edge->_nodes[0], edge->_simplices, _ignoreFaceIds, this, /*sort=*/true ); edge->ChooseSmooFunction( vertices, _n2eMap ); double avgNormProj = 0, avgLen = 0; for ( size_t i = 0; i < edge->_simplices.size(); ++i ) { _Simplex& s = edge->_simplices[i]; gp_XYZ vec = edge->_pos.back() - SMESH_TNodeXYZ( s._nPrev ); avgNormProj += edge->_normal * vec; avgLen += vec.Modulus(); if ( substituteSrcNodes ) { s._nNext = _n2eMap[ s._nNext ]->_nodes.back(); s._nPrev = _n2eMap[ s._nPrev ]->_nodes.back(); } } avgNormProj /= edge->_simplices.size(); avgLen /= edge->_simplices.size(); edge->_curvature = _Curvature::New( avgNormProj, avgLen ); } } //================================================================================ /*! * \brief Add faces for smoothing */ //================================================================================ void _SolidData::AddShapesToSmooth( const set< _EdgesOnShape* >& eosSet ) { set< _EdgesOnShape * >::const_iterator eos = eosSet.begin(); for ( ; eos != eosSet.end(); ++eos ) { if ( !*eos || (*eos)->_toSmooth ) continue; (*eos)->_toSmooth = true; if ( (*eos)->ShapeType() == TopAbs_FACE ) { PrepareEdgesToSmoothOnFace( *eos, /*substituteSrcNodes=*/true ); } } } //================================================================================ /*! * \brief smooth _LayerEdge's on a staight EDGE or circular EDGE */ //================================================================================ bool _ViscousBuilder::smoothAnalyticEdge( _SolidData& data, _EdgesOnShape& eos, Handle(Geom_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper) { const TopoDS_Edge& E = TopoDS::Edge( eos._shape ); Handle(Geom_Curve) curve = data.CurveForSmooth( E, eos, helper ); if ( curve.IsNull() ) return false; const size_t iFrom = 0, iTo = eos._edges.size(); // compute a relative length of segments vector< double > len( iTo-iFrom+1 ); { double curLen, prevLen = len[0] = 1.0; for ( int i = iFrom; i < iTo; ++i ) { curLen = prevLen * eos._edges[i]->_2neibors->_wgt[0] / eos._edges[i]->_2neibors->_wgt[1]; len[i-iFrom+1] = len[i-iFrom] + curLen; prevLen = curLen; } } if ( curve->IsKind( STANDARD_TYPE( Geom_Line ))) { if ( F.IsNull() ) // 3D { SMESH_TNodeXYZ p0( eos._edges[iFrom]->_2neibors->tgtNode(0)); SMESH_TNodeXYZ p1( eos._edges[iTo-1]->_2neibors->tgtNode(1)); for ( int i = iFrom; i < iTo; ++i ) { double r = len[i-iFrom] / len.back(); gp_XYZ newPos = p0 * ( 1. - r ) + p1 * r; eos._edges[i]->_pos.back() = newPos; SMDS_MeshNode* tgtNode = const_cast( eos._edges[i]->_nodes.back() ); tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); dumpMove( tgtNode ); } } else { // gp_XY uv0 = helper.GetNodeUV( F, eos._edges[iFrom]->_2neibors->tgtNode(0)); // gp_XY uv1 = helper.GetNodeUV( F, eos._edges[iTo-1]->_2neibors->tgtNode(1)); _LayerEdge* e0 = eos._edges[iFrom]->_2neibors->_edges[0]; _LayerEdge* e1 = eos._edges[iTo-1]->_2neibors->_edges[1]; gp_XY uv0 = e0->LastUV( F, *data.GetShapeEdges( e0 )); gp_XY uv1 = e1->LastUV( F, *data.GetShapeEdges( e1 )); if ( eos._edges[iFrom]->_2neibors->tgtNode(0) == eos._edges[iTo-1]->_2neibors->tgtNode(1) ) // closed edge { int iPeriodic = helper.GetPeriodicIndex(); if ( iPeriodic == 1 || iPeriodic == 2 ) { uv1.SetCoord( iPeriodic, helper.GetOtherParam( uv1.Coord( iPeriodic ))); if ( uv0.Coord( iPeriodic ) > uv1.Coord( iPeriodic )) std::swap( uv0, uv1 ); } } const gp_XY rangeUV = uv1 - uv0; for ( int i = iFrom; i < iTo; ++i ) { double r = len[i-iFrom] / len.back(); gp_XY newUV = uv0 + r * rangeUV; eos._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 ); gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() ); SMDS_MeshNode* tgtNode = const_cast( eos._edges[i]->_nodes.back() ); tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); dumpMove( tgtNode ); SMDS_FacePosition* pos = static_cast( tgtNode->GetPosition() ); pos->SetUParameter( newUV.X() ); pos->SetVParameter( newUV.Y() ); } } return true; } if ( curve->IsKind( STANDARD_TYPE( Geom_Circle ))) { Handle(Geom_Circle) circle = Handle(Geom_Circle)::DownCast( curve ); gp_Pnt center3D = circle->Location(); if ( F.IsNull() ) // 3D { if ( eos._edges[iFrom]->_2neibors->tgtNode(0) == eos._edges[iTo-1]->_2neibors->tgtNode(1) ) return true; // closed EDGE - nothing to do return false; // TODO ??? } else // 2D { const gp_XY center( center3D.X(), center3D.Y() ); _LayerEdge* e0 = eos._edges[iFrom]->_2neibors->_edges[0]; _LayerEdge* eM = eos._edges[iFrom]; _LayerEdge* e1 = eos._edges[iTo-1]->_2neibors->_edges[1]; gp_XY uv0 = e0->LastUV( F, *data.GetShapeEdges( e0 ) ); gp_XY uvM = eM->LastUV( F, *data.GetShapeEdges( eM ) ); gp_XY uv1 = e1->LastUV( F, *data.GetShapeEdges( e1 ) ); gp_Vec2d vec0( center, uv0 ); gp_Vec2d vecM( center, uvM ); gp_Vec2d vec1( center, uv1 ); double uLast = vec0.Angle( vec1 ); // -PI - +PI double uMidl = vec0.Angle( vecM ); if ( uLast * uMidl <= 0. ) uLast += ( uMidl > 0 ? +2. : -2. ) * M_PI; const double radius = 0.5 * ( vec0.Magnitude() + vec1.Magnitude() ); gp_Ax2d axis( center, vec0 ); gp_Circ2d circ( axis, radius ); for ( int i = iFrom; i < iTo; ++i ) { double newU = uLast * len[i-iFrom] / len.back(); gp_Pnt2d newUV = ElCLib::Value( newU, circ ); eos._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 ); gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() ); SMDS_MeshNode* tgtNode = const_cast( eos._edges[i]->_nodes.back() ); tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); dumpMove( tgtNode ); SMDS_FacePosition* pos = static_cast( tgtNode->GetPosition() ); pos->SetUParameter( newUV.X() ); pos->SetVParameter( newUV.Y() ); } } return true; } return false; } //================================================================================ /*! * \brief Modify normals of _LayerEdge's on EDGE's to avoid intersection with * _LayerEdge's on neighbor EDGE's */ //================================================================================ bool _ViscousBuilder::updateNormals( _SolidData& data, SMESH_MesherHelper& helper, int stepNb ) { if ( stepNb > 0 ) return updateNormalsOfConvexFaces( data, helper, stepNb ); // make temporary quadrangles got by extrusion of // mesh edges along _LayerEdge._normal's vector< const SMDS_MeshElement* > tmpFaces; { set< SMESH_TLink > extrudedLinks; // contains target nodes vector< const SMDS_MeshNode*> nodes(4); // of a tmp mesh face dumpFunction(SMESH_Comment("makeTmpFacesOnEdges")<_nodes.back(); for ( int j = 0; j < 2; ++j ) // loop on _2NearEdges { const SMDS_MeshNode* tgt2 = edge->_2neibors->tgtNode(j); pair< set< SMESH_TLink >::iterator, bool > link_isnew = extrudedLinks.insert( SMESH_TLink( tgt1, tgt2 )); if ( !link_isnew.second ) { extrudedLinks.erase( link_isnew.first ); continue; // already extruded and will no more encounter } // a _LayerEdge containg tgt2 _LayerEdge* neiborEdge = edge->_2neibors->_edges[j]; _TmpMeshFaceOnEdge* f = new _TmpMeshFaceOnEdge( edge, neiborEdge, --_tmpFaceID ); tmpFaces.push_back( f ); dumpCmd(SMESH_Comment("mesh.AddFace([ ") <_nn[0]->GetID()<<", "<_nn[1]->GetID()<<", " <_nn[2]->GetID()<<", "<_nn[3]->GetID()<<" ])"); } } } dumpFunctionEnd(); } // Check if _LayerEdge's based on EDGE's intersects tmpFaces. // Perform two loops on _LayerEdge on EDGE's: // 1) to find and fix intersection // 2) to check that no new intersection appears as result of 1) SMDS_ElemIteratorPtr fIt( new SMDS_ElementVectorIterator( tmpFaces.begin(), tmpFaces.end())); auto_ptr searcher ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), fIt )); // 1) Find intersections double dist; const SMDS_MeshElement* face; typedef map< _LayerEdge*, set< _LayerEdge*, _LayerEdgeCmp >, _LayerEdgeCmp > TLEdge2LEdgeSet; TLEdge2LEdgeSet edge2CloseEdge; const double eps = data._epsilon * data._epsilon; for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[ iS ]; if (( eos.ShapeType() != TopAbs_EDGE ) && ( eos._sWOL.IsNull() || eos.SWOLType() != TopAbs_FACE )) continue; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* edge = eos._edges[i]; if ( edge->FindIntersection( *searcher, dist, eps, eos, &face )) { const _TmpMeshFaceOnEdge* f = (const _TmpMeshFaceOnEdge*) face; set< _LayerEdge*, _LayerEdgeCmp > & ee = edge2CloseEdge[ edge ]; ee.insert( f->_le1 ); ee.insert( f->_le2 ); if ( f->_le1->IsOnEdge() && data.GetShapeEdges( f->_le1 )->_sWOL.IsNull() ) edge2CloseEdge[ f->_le1 ].insert( edge ); if ( f->_le2->IsOnEdge() && data.GetShapeEdges( f->_le2 )->_sWOL.IsNull() ) edge2CloseEdge[ f->_le2 ].insert( edge ); } } } // Set _LayerEdge._normal if ( !edge2CloseEdge.empty() ) { dumpFunction(SMESH_Comment("updateNormals")< shapesToSmooth; // vector to store new _normal and _cosin for each edge in edge2CloseEdge vector< pair< _LayerEdge*, _LayerEdge > > edge2newEdge( edge2CloseEdge.size() ); TLEdge2LEdgeSet::iterator e2ee = edge2CloseEdge.begin(); for ( size_t iE = 0; e2ee != edge2CloseEdge.end(); ++e2ee, ++iE ) { _LayerEdge* edge1 = e2ee->first; _LayerEdge* edge2 = 0; set< _LayerEdge*, _LayerEdgeCmp >& ee = e2ee->second; edge2newEdge[ iE ].first = NULL; _EdgesOnShape* eos1 = data.GetShapeEdges( edge1 ); if ( !eos1 ) continue; // find EDGEs the edges reside // TopoDS_Edge E1, E2; // TopoDS_Shape S = helper.GetSubShapeByNode( edge1->_nodes[0], getMeshDS() ); // if ( S.ShapeType() != TopAbs_EDGE ) // continue; // TODO: find EDGE by VERTEX // E1 = TopoDS::Edge( S ); set< _LayerEdge*, _LayerEdgeCmp >::iterator eIt = ee.begin(); for ( ; !edge2 && eIt != ee.end(); ++eIt ) { if ( eos1->_sWOL == data.GetShapeEdges( *eIt )->_sWOL ) edge2 = *eIt; } if ( !edge2 ) continue; edge2newEdge[ iE ].first = edge1; _LayerEdge& newEdge = edge2newEdge[ iE ].second; // while ( E2.IsNull() && eIt != ee.end()) // { // _LayerEdge* e2 = *eIt++; // TopoDS_Shape S = helper.GetSubShapeByNode( e2->_nodes[0], getMeshDS() ); // if ( S.ShapeType() == TopAbs_EDGE ) // E2 = TopoDS::Edge( S ), edge2 = e2; // } // if ( E2.IsNull() ) continue; // TODO: find EDGE by VERTEX // find 3 FACEs sharing 2 EDGEs // TopoDS_Face FF1[2], FF2[2]; // PShapeIteratorPtr fIt = helper.GetAncestors(E1, *_mesh, TopAbs_FACE); // while ( fIt->more() && FF1[1].IsNull() ) // { // const TopoDS_Face *F = (const TopoDS_Face*) fIt->next(); // if ( helper.IsSubShape( *F, data._solid)) // FF1[ FF1[0].IsNull() ? 0 : 1 ] = *F; // } // fIt = helper.GetAncestors(E2, *_mesh, TopAbs_FACE); // while ( fIt->more() && FF2[1].IsNull()) // { // const TopoDS_Face *F = (const TopoDS_Face*) fIt->next(); // if ( helper.IsSubShape( *F, data._solid)) // FF2[ FF2[0].IsNull() ? 0 : 1 ] = *F; // } // // exclude a FACE common to E1 and E2 (put it to FFn[1] ) // if ( FF1[0].IsSame( FF2[0]) || FF1[0].IsSame( FF2[1])) // std::swap( FF1[0], FF1[1] ); // if ( FF2[0].IsSame( FF1[0]) ) // std::swap( FF2[0], FF2[1] ); // if ( FF1[0].IsNull() || FF2[0].IsNull() ) // continue; // get a new normal for edge1 //bool ok; gp_Vec dir1 = edge1->_normal, dir2 = edge2->_normal; // if ( edge1->_cosin < 0 ) // dir1 = getFaceDir( FF1[0], E1, edge1->_nodes[0], helper, ok ).Normalized(); // if ( edge2->_cosin < 0 ) // dir2 = getFaceDir( FF2[0], E2, edge2->_nodes[0], helper, ok ).Normalized(); double cos1 = Abs( edge1->_cosin ), cos2 = Abs( edge2->_cosin ); double wgt1 = ( cos1 + 0.001 ) / ( cos1 + cos2 + 0.002 ); double wgt2 = ( cos2 + 0.001 ) / ( cos1 + cos2 + 0.002 ); newEdge._normal = ( wgt1 * dir1 + wgt2 * dir2 ).XYZ(); newEdge._normal.Normalize(); // cout << edge1->_nodes[0]->GetID() << " " // << edge2->_nodes[0]->GetID() << " NORM: " // << newEdge._normal.X() << ", " << newEdge._normal.Y() << ", " << newEdge._normal.Z() << endl; // get new cosin if ( cos1 < theMinSmoothCosin ) { newEdge._cosin = edge2->_cosin; } else if ( cos2 > theMinSmoothCosin ) // both cos1 and cos2 > theMinSmoothCosin { // gp_Vec dirInFace; // if ( edge1->_cosin < 0 ) // dirInFace = dir1; // else // dirInFace = getFaceDir( FF1[0], E1, edge1->_nodes[0], helper, ok ); // double angle = dirInFace.Angle( edge1->_normal ); // [0,PI] // edge1->SetCosin( Cos( angle )); //newEdge._cosin = 0; // ??????????? newEdge._cosin = ( wgt1 * cos1 + wgt2 * cos2 ) * edge1->_cosin / cos1; } else { newEdge._cosin = edge1->_cosin; } // find shapes that need smoothing due to change of _normal if ( edge1->_cosin < theMinSmoothCosin && newEdge._cosin > theMinSmoothCosin ) { if ( eos1->_sWOL.IsNull() ) { SMDS_ElemIteratorPtr fIt = edge1->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) shapesToSmooth.insert( data.GetShapeEdges( fIt->next()->getshapeId() )); //limitStepSize( data, fIt->next(), edge1->_cosin ); // too late } else // edge1 inflates along a FACE { TopoDS_Shape V = helper.GetSubShapeByNode( edge1->_nodes[0], getMeshDS() ); PShapeIteratorPtr eIt = helper.GetAncestors( V, *_mesh, TopAbs_EDGE ); while ( const TopoDS_Shape* E = eIt->next() ) { if ( !helper.IsSubShape( *E, /*FACE=*/eos1->_sWOL )) continue; gp_Vec edgeDir = getEdgeDir( TopoDS::Edge( *E ), TopoDS::Vertex( V )); double angle = edgeDir.Angle( newEdge._normal ); // [0,PI] if ( angle < M_PI / 2 ) shapesToSmooth.insert( data.GetShapeEdges( *E )); } } } } data.AddShapesToSmooth( shapesToSmooth ); // Update data of edges depending on a new _normal for ( size_t iE = 0; iE < edge2newEdge.size(); ++iE ) { _LayerEdge* edge1 = edge2newEdge[ iE ].first; _LayerEdge& newEdge = edge2newEdge[ iE ].second; if ( !edge1 ) continue; _EdgesOnShape* eos1 = data.GetShapeEdges( edge1 ); if ( !eos1 ) continue; edge1->_normal = newEdge._normal; edge1->SetCosin( newEdge._cosin ); edge1->InvalidateStep( 1, *eos1 ); edge1->_len = 0; edge1->SetNewLength( data._stepSize, *eos1, helper ); if ( edge1->IsOnEdge() ) { const SMDS_MeshNode * n1 = edge1->_2neibors->srcNode(0); const SMDS_MeshNode * n2 = edge1->_2neibors->srcNode(1); edge1->SetDataByNeighbors( n1, n2, *eos1, helper ); } // Update normals and other dependent data of not intersecting _LayerEdge's // neighboring the intersecting ones if ( !edge1->_2neibors ) continue; for ( int j = 0; j < 2; ++j ) // loop on 2 neighbors { _LayerEdge* neighbor = edge1->_2neibors->_edges[j]; if ( edge2CloseEdge.count ( neighbor )) continue; // j-th neighbor is also intersected _EdgesOnShape* eos = data.GetShapeEdges( neighbor ); if ( !eos ) continue; _LayerEdge* prevEdge = edge1; const int nbSteps = 10; for ( int step = nbSteps; step; --step ) // step from edge1 in j-th direction { if ( !neighbor->_2neibors ) break; // neighbor is on VERTEX int iNext = 0; _LayerEdge* nextEdge = neighbor->_2neibors->_edges[iNext]; if ( nextEdge == prevEdge ) nextEdge = neighbor->_2neibors->_edges[ ++iNext ]; double r = double(step-1)/nbSteps; if ( !nextEdge->_2neibors ) r = 0.5; gp_XYZ newNorm = prevEdge->_normal * r + nextEdge->_normal * (1-r); newNorm.Normalize(); neighbor->_normal = newNorm; neighbor->SetCosin( prevEdge->_cosin * r + nextEdge->_cosin * (1-r) ); neighbor->SetDataByNeighbors( prevEdge->_nodes[0], nextEdge->_nodes[0], *eos, helper ); neighbor->InvalidateStep( 1, *eos ); neighbor->_len = 0; neighbor->SetNewLength( data._stepSize, *eos, helper ); // goto the next neighbor prevEdge = neighbor; neighbor = nextEdge; } } } dumpFunctionEnd(); } // 2) Check absence of intersections // TODO? for ( size_t i = 0 ; i < tmpFaces.size(); ++i ) delete tmpFaces[i]; return true; } //================================================================================ /*! * \brief Modify normals of _LayerEdge's on _ConvexFace's */ //================================================================================ bool _ViscousBuilder::updateNormalsOfConvexFaces( _SolidData& data, SMESH_MesherHelper& helper, int stepNb ) { SMESHDS_Mesh* meshDS = helper.GetMeshDS(); bool isOK; map< TGeomID, _ConvexFace >::iterator id2face = data._convexFaces.begin(); for ( ; id2face != data._convexFaces.end(); ++id2face ) { _ConvexFace & convFace = (*id2face).second; if ( convFace._normalsFixed ) continue; // already fixed if ( convFace.CheckPrisms() ) continue; // nothing to fix convFace._normalsFixed = true; BRepAdaptor_Surface surface ( convFace._face, false ); BRepLProp_SLProps surfProp( surface, 2, 1e-6 ); // check if the convex FACE is of spherical shape Bnd_B3d centersBox; // bbox of centers of curvature of _LayerEdge's on VERTEXes Bnd_B3d nodesBox; gp_Pnt center; map< TGeomID, _EdgesOnShape* >::iterator id2oes = convFace._subIdToEOS.begin(); for ( ; id2oes != convFace._subIdToEOS.end(); ++id2oes ) { _EdgesOnShape& eos = *(id2oes->second); if ( eos.ShapeType() == TopAbs_VERTEX ) { _LayerEdge* ledge = eos._edges[ 0 ]; if ( convFace.GetCenterOfCurvature( ledge, surfProp, helper, center )) centersBox.Add( center ); } for ( size_t i = 0; i < eos._edges.size(); ++i ) nodesBox.Add( SMESH_TNodeXYZ( eos._edges[ i ]->_nodes[0] )); } if ( centersBox.IsVoid() ) { debugMsg( "Error: centersBox.IsVoid()" ); return false; } const bool isSpherical = ( centersBox.SquareExtent() < 1e-6 * nodesBox.SquareExtent() ); int nbEdges = helper.Count( convFace._face, TopAbs_EDGE, /*ignoreSame=*/false ); vector < _CentralCurveOnEdge > centerCurves( nbEdges ); if ( isSpherical ) { // set _LayerEdge::_normal as average of all normals // WARNING: different density of nodes on EDGEs is not taken into account that // can lead to an improper new normal gp_XYZ avgNormal( 0,0,0 ); nbEdges = 0; id2oes = convFace._subIdToEOS.begin(); for ( ; id2oes != convFace._subIdToEOS.end(); ++id2oes ) { _EdgesOnShape& eos = *(id2oes->second); // set data of _CentralCurveOnEdge if ( eos.ShapeType() == TopAbs_EDGE ) { _CentralCurveOnEdge& ceCurve = centerCurves[ nbEdges++ ]; ceCurve.SetShapes( TopoDS::Edge( eos._shape ), convFace, data, helper ); if ( !eos._sWOL.IsNull() ) ceCurve._adjFace.Nullify(); else ceCurve._ledges.insert( ceCurve._ledges.end(), eos._edges.begin(), eos._edges.end()); } // summarize normals for ( size_t i = 0; i < eos._edges.size(); ++i ) avgNormal += eos._edges[ i ]->_normal; } double normSize = avgNormal.SquareModulus(); if ( normSize < 1e-200 ) { debugMsg( "updateNormalsOfConvexFaces(): zero avgNormal" ); return false; } avgNormal /= Sqrt( normSize ); // compute new _LayerEdge::_cosin on EDGEs double avgCosin = 0; int nbCosin = 0; gp_Vec inFaceDir; for ( size_t iE = 0; iE < centerCurves.size(); ++iE ) { _CentralCurveOnEdge& ceCurve = centerCurves[ iE ]; if ( ceCurve._adjFace.IsNull() ) continue; for ( size_t iLE = 0; iLE < ceCurve._ledges.size(); ++iLE ) { const SMDS_MeshNode* node = ceCurve._ledges[ iLE ]->_nodes[0]; inFaceDir = getFaceDir( ceCurve._adjFace, ceCurve._edge, node, helper, isOK ); if ( isOK ) { double angle = inFaceDir.Angle( avgNormal ); // [0,PI] ceCurve._ledges[ iLE ]->_cosin = Cos( angle ); avgCosin += ceCurve._ledges[ iLE ]->_cosin; nbCosin++; } } } if ( nbCosin > 0 ) avgCosin /= nbCosin; // set _LayerEdge::_normal = avgNormal id2oes = convFace._subIdToEOS.begin(); for ( ; id2oes != convFace._subIdToEOS.end(); ++id2oes ) { _EdgesOnShape& eos = *(id2oes->second); if ( eos.ShapeType() != TopAbs_EDGE ) for ( size_t i = 0; i < eos._edges.size(); ++i ) eos._edges[ i ]->_cosin = avgCosin; for ( size_t i = 0; i < eos._edges.size(); ++i ) eos._edges[ i ]->_normal = avgNormal; } } else // if ( isSpherical ) { // We suppose that centers of curvature at all points of the FACE // lie on some curve, let's call it "central curve". For all _LayerEdge's // having a common center of curvature we define the same new normal // as a sum of normals of _LayerEdge's on EDGEs among them. // get all centers of curvature for each EDGE helper.SetSubShape( convFace._face ); _LayerEdge* vertexLEdges[2], **edgeLEdge, **edgeLEdgeEnd; TopExp_Explorer edgeExp( convFace._face, TopAbs_EDGE ); for ( int iE = 0; edgeExp.More(); edgeExp.Next(), ++iE ) { const TopoDS_Edge& edge = TopoDS::Edge( edgeExp.Current() ); // set adjacent FACE centerCurves[ iE ].SetShapes( edge, convFace, data, helper ); // get _LayerEdge's of the EDGE TGeomID edgeID = meshDS->ShapeToIndex( edge ); _EdgesOnShape* eos = data.GetShapeEdges( edgeID ); if ( !eos || eos->_edges.empty() ) { // no _LayerEdge's on EDGE, use _LayerEdge's on VERTEXes for ( int iV = 0; iV < 2; ++iV ) { TopoDS_Vertex v = helper.IthVertex( iV, edge ); TGeomID vID = meshDS->ShapeToIndex( v ); eos = data.GetShapeEdges( vID ); vertexLEdges[ iV ] = eos->_edges[ 0 ]; } edgeLEdge = &vertexLEdges[0]; edgeLEdgeEnd = edgeLEdge + 2; centerCurves[ iE ]._adjFace.Nullify(); } else { if ( ! eos->_toSmooth ) data.SortOnEdge( edge, eos->_edges, helper ); edgeLEdge = &eos->_edges[ 0 ]; edgeLEdgeEnd = edgeLEdge + eos->_edges.size(); vertexLEdges[0] = eos->_edges.front()->_2neibors->_edges[0]; vertexLEdges[1] = eos->_edges.back() ->_2neibors->_edges[1]; if ( ! eos->_sWOL.IsNull() ) centerCurves[ iE ]._adjFace.Nullify(); } // Get curvature centers centersBox.Clear(); if ( edgeLEdge[0]->IsOnEdge() && convFace.GetCenterOfCurvature( vertexLEdges[0], surfProp, helper, center )) { // 1st VERTEX centerCurves[ iE ].Append( center, vertexLEdges[0] ); centersBox.Add( center ); } for ( ; edgeLEdge < edgeLEdgeEnd; ++edgeLEdge ) if ( convFace.GetCenterOfCurvature( *edgeLEdge, surfProp, helper, center )) { // EDGE or VERTEXes centerCurves[ iE ].Append( center, *edgeLEdge ); centersBox.Add( center ); } if ( edgeLEdge[-1]->IsOnEdge() && convFace.GetCenterOfCurvature( vertexLEdges[1], surfProp, helper, center )) { // 2nd VERTEX centerCurves[ iE ].Append( center, vertexLEdges[1] ); centersBox.Add( center ); } centerCurves[ iE ]._isDegenerated = ( centersBox.IsVoid() || centersBox.SquareExtent() < 1e-6 * nodesBox.SquareExtent() ); } // loop on EDGES of convFace._face to set up data of centerCurves // Compute new normals for _LayerEdge's on EDGEs double avgCosin = 0; int nbCosin = 0; gp_Vec inFaceDir; for ( size_t iE1 = 0; iE1 < centerCurves.size(); ++iE1 ) { _CentralCurveOnEdge& ceCurve = centerCurves[ iE1 ]; if ( ceCurve._isDegenerated ) continue; const vector< gp_Pnt >& centers = ceCurve._curvaCenters; vector< gp_XYZ > & newNormals = ceCurve._normals; for ( size_t iC1 = 0; iC1 < centers.size(); ++iC1 ) { isOK = false; for ( size_t iE2 = 0; iE2 < centerCurves.size() && !isOK; ++iE2 ) { if ( iE1 != iE2 ) isOK = centerCurves[ iE2 ].FindNewNormal( centers[ iC1 ], newNormals[ iC1 ]); } if ( isOK && !ceCurve._adjFace.IsNull() ) { // compute new _LayerEdge::_cosin const SMDS_MeshNode* node = ceCurve._ledges[ iC1 ]->_nodes[0]; inFaceDir = getFaceDir( ceCurve._adjFace, ceCurve._edge, node, helper, isOK ); if ( isOK ) { double angle = inFaceDir.Angle( newNormals[ iC1 ] ); // [0,PI] ceCurve._ledges[ iC1 ]->_cosin = Cos( angle ); avgCosin += ceCurve._ledges[ iC1 ]->_cosin; nbCosin++; } } } } // set new normals to _LayerEdge's of NOT degenerated central curves for ( size_t iE = 0; iE < centerCurves.size(); ++iE ) { if ( centerCurves[ iE ]._isDegenerated ) continue; for ( size_t iLE = 0; iLE < centerCurves[ iE ]._ledges.size(); ++iLE ) centerCurves[ iE ]._ledges[ iLE ]->_normal = centerCurves[ iE ]._normals[ iLE ]; } // set new normals to _LayerEdge's of degenerated central curves for ( size_t iE = 0; iE < centerCurves.size(); ++iE ) { if ( !centerCurves[ iE ]._isDegenerated || centerCurves[ iE ]._ledges.size() < 3 ) continue; // new normal is an average of new normals at VERTEXes that // was computed on non-degenerated _CentralCurveOnEdge's gp_XYZ newNorm = ( centerCurves[ iE ]._ledges.front()->_normal + centerCurves[ iE ]._ledges.back ()->_normal ); double sz = newNorm.Modulus(); if ( sz < 1e-200 ) continue; newNorm /= sz; double newCosin = ( 0.5 * centerCurves[ iE ]._ledges.front()->_cosin + 0.5 * centerCurves[ iE ]._ledges.back ()->_cosin ); for ( size_t iLE = 1, nb = centerCurves[ iE ]._ledges.size() - 1; iLE < nb; ++iLE ) { centerCurves[ iE ]._ledges[ iLE ]->_normal = newNorm; centerCurves[ iE ]._ledges[ iLE ]->_cosin = newCosin; } } // Find new normals for _LayerEdge's based on FACE if ( nbCosin > 0 ) avgCosin /= nbCosin; const TGeomID faceID = meshDS->ShapeToIndex( convFace._face ); map< TGeomID, _EdgesOnShape* >::iterator id2oes = convFace._subIdToEOS.find( faceID ); if ( id2oes != convFace._subIdToEOS.end() ) { int iE = 0; gp_XYZ newNorm; _EdgesOnShape& eos = * ( id2oes->second ); for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* ledge = eos._edges[ i ]; if ( !convFace.GetCenterOfCurvature( ledge, surfProp, helper, center )) continue; for ( size_t i = 0; i < centerCurves.size(); ++i, ++iE ) { iE = iE % centerCurves.size(); if ( centerCurves[ iE ]._isDegenerated ) continue; newNorm.SetCoord( 0,0,0 ); if ( centerCurves[ iE ].FindNewNormal( center, newNorm )) { ledge->_normal = newNorm; ledge->_cosin = avgCosin; break; } } } } } // not a quasi-spherical FACE // Update _LayerEdge's data according to a new normal dumpFunction(SMESH_Comment("updateNormalsOfConvexFaces")<ShapeToIndex( convFace._face )); id2oes = convFace._subIdToEOS.begin(); for ( ; id2oes != convFace._subIdToEOS.end(); ++id2oes ) { _EdgesOnShape& eos = * ( id2oes->second ); for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* & ledge = eos._edges[ i ]; double len = ledge->_len; ledge->InvalidateStep( stepNb + 1, eos, /*restoreLength=*/true ); ledge->SetCosin( ledge->_cosin ); ledge->SetNewLength( len, eos, helper ); } } // loop on sub-shapes of convFace._face // Find FACEs adjacent to convFace._face that got necessity to smooth // as a result of normals modification set< _EdgesOnShape* > adjFacesToSmooth; for ( size_t iE = 0; iE < centerCurves.size(); ++iE ) { if ( centerCurves[ iE ]._adjFace.IsNull() || centerCurves[ iE ]._adjFaceToSmooth ) continue; for ( size_t iLE = 0; iLE < centerCurves[ iE ]._ledges.size(); ++iLE ) { if ( centerCurves[ iE ]._ledges[ iLE ]->_cosin > theMinSmoothCosin ) { adjFacesToSmooth.insert( data.GetShapeEdges( centerCurves[ iE ]._adjFace )); break; } } } data.AddShapesToSmooth( adjFacesToSmooth ); dumpFunctionEnd(); } // loop on data._convexFaces return true; } //================================================================================ /*! * \brief Finds a center of curvature of a surface at a _LayerEdge */ //================================================================================ bool _ConvexFace::GetCenterOfCurvature( _LayerEdge* ledge, BRepLProp_SLProps& surfProp, SMESH_MesherHelper& helper, gp_Pnt & center ) const { gp_XY uv = helper.GetNodeUV( _face, ledge->_nodes[0] ); surfProp.SetParameters( uv.X(), uv.Y() ); if ( !surfProp.IsCurvatureDefined() ) return false; const double oriFactor = ( _face.Orientation() == TopAbs_REVERSED ? +1. : -1. ); double surfCurvatureMax = surfProp.MaxCurvature() * oriFactor; double surfCurvatureMin = surfProp.MinCurvature() * oriFactor; if ( surfCurvatureMin > surfCurvatureMax ) center = surfProp.Value().Translated( surfProp.Normal().XYZ() / surfCurvatureMin * oriFactor ); else center = surfProp.Value().Translated( surfProp.Normal().XYZ() / surfCurvatureMax * oriFactor ); return true; } //================================================================================ /*! * \brief Check that prisms are not distorted */ //================================================================================ bool _ConvexFace::CheckPrisms() const { double vol = 0; for ( size_t i = 0; i < _simplexTestEdges.size(); ++i ) { const _LayerEdge* edge = _simplexTestEdges[i]; SMESH_TNodeXYZ tgtXYZ( edge->_nodes.back() ); for ( size_t j = 0; j < edge->_simplices.size(); ++j ) if ( !edge->_simplices[j].IsForward( edge->_nodes[0], &tgtXYZ, vol )) { debugMsg( "Bad simplex of _simplexTestEdges (" << " "<< edge->_nodes[0]->GetID()<< " "<< tgtXYZ._node->GetID() << " "<< edge->_simplices[j]._nPrev->GetID() << " "<< edge->_simplices[j]._nNext->GetID() << " )" ); return false; } } return true; } //================================================================================ /*! * \brief Try to compute a new normal by interpolating normals of _LayerEdge's * stored in this _CentralCurveOnEdge. * \param [in] center - curvature center of a point of another _CentralCurveOnEdge. * \param [in,out] newNormal - current normal at this point, to be redefined * \return bool - true if succeeded. */ //================================================================================ bool _CentralCurveOnEdge::FindNewNormal( const gp_Pnt& center, gp_XYZ& newNormal ) { if ( this->_isDegenerated ) return false; // find two centers the given one lies between for ( size_t i = 0, nb = _curvaCenters.size()-1; i < nb; ++i ) { double sl2 = 1.001 * _segLength2[ i ]; double d1 = center.SquareDistance( _curvaCenters[ i ]); if ( d1 > sl2 ) continue; double d2 = center.SquareDistance( _curvaCenters[ i+1 ]); if ( d2 > sl2 || d2 + d1 < 1e-100 ) continue; d1 = Sqrt( d1 ); d2 = Sqrt( d2 ); double r = d1 / ( d1 + d2 ); gp_XYZ norm = (( 1. - r ) * _ledges[ i ]->_normal + ( r ) * _ledges[ i+1 ]->_normal ); norm.Normalize(); newNormal += norm; double sz = newNormal.Modulus(); if ( sz < 1e-200 ) break; newNormal /= sz; return true; } return false; } //================================================================================ /*! * \brief Set shape members */ //================================================================================ void _CentralCurveOnEdge::SetShapes( const TopoDS_Edge& edge, const _ConvexFace& convFace, _SolidData& data, SMESH_MesherHelper& helper) { _edge = edge; PShapeIteratorPtr fIt = helper.GetAncestors( edge, *helper.GetMesh(), TopAbs_FACE ); while ( const TopoDS_Shape* F = fIt->next()) if ( !convFace._face.IsSame( *F )) { _adjFace = TopoDS::Face( *F ); _adjFaceToSmooth = false; // _adjFace already in a smoothing queue ? if ( _EdgesOnShape* eos = data.GetShapeEdges( _adjFace )) _adjFaceToSmooth = eos->_toSmooth; break; } } //================================================================================ /*! * \brief Looks for intersection of it's last segment with faces * \param distance - returns shortest distance from the last node to intersection */ //================================================================================ bool _LayerEdge::FindIntersection( SMESH_ElementSearcher& searcher, double & distance, const double& epsilon, _EdgesOnShape& eos, const SMDS_MeshElement** face) { vector< const SMDS_MeshElement* > suspectFaces; double segLen; gp_Ax1 lastSegment = LastSegment( segLen, eos ); searcher.GetElementsNearLine( lastSegment, SMDSAbs_Face, suspectFaces ); bool segmentIntersected = false; distance = Precision::Infinite(); int iFace = -1; // intersected face for ( size_t j = 0 ; j < suspectFaces.size() /*&& !segmentIntersected*/; ++j ) { const SMDS_MeshElement* face = suspectFaces[j]; if ( face->GetNodeIndex( _nodes.back() ) >= 0 || face->GetNodeIndex( _nodes[0] ) >= 0 ) continue; // face sharing _LayerEdge node const int nbNodes = face->NbCornerNodes(); bool intFound = false; double dist; SMDS_MeshElement::iterator nIt = face->begin_nodes(); if ( nbNodes == 3 ) { intFound = SegTriaInter( lastSegment, *nIt++, *nIt++, *nIt++, dist, epsilon ); } else { const SMDS_MeshNode* tria[3]; tria[0] = *nIt++; tria[1] = *nIt++; for ( int n2 = 2; n2 < nbNodes && !intFound; ++n2 ) { tria[2] = *nIt++; intFound = SegTriaInter(lastSegment, tria[0], tria[1], tria[2], dist, epsilon ); tria[1] = tria[2]; } } if ( intFound ) { if ( dist < segLen*(1.01) && dist > -(_len*_lenFactor-segLen) ) segmentIntersected = true; if ( distance > dist ) distance = dist, iFace = j; } } if ( iFace != -1 && face ) *face = suspectFaces[iFace]; if ( segmentIntersected ) { #ifdef __myDEBUG SMDS_MeshElement::iterator nIt = suspectFaces[iFace]->begin_nodes(); gp_XYZ intP( lastSegment.Location().XYZ() + lastSegment.Direction().XYZ() * distance ); cout << "nodes: tgt " << _nodes.back()->GetID() << " src " << _nodes[0]->GetID() << ", intersection with face (" << (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID() << ") at point (" << intP.X() << ", " << intP.Y() << ", " << intP.Z() << ") distance = " << distance - segLen<< endl; #endif } distance -= segLen; return segmentIntersected; } //================================================================================ /*! * \brief Returns size and direction of the last segment */ //================================================================================ gp_Ax1 _LayerEdge::LastSegment(double& segLen, _EdgesOnShape& eos) const { // find two non-coincident positions gp_XYZ orig = _pos.back(); gp_XYZ dir; int iPrev = _pos.size() - 2; const double tol = ( _len > 0 ) ? 0.3*_len : 1e-100; // adjusted for IPAL52478 + PAL22576 while ( iPrev >= 0 ) { dir = orig - _pos[iPrev]; if ( dir.SquareModulus() > tol*tol ) break; else iPrev--; } // make gp_Ax1 gp_Ax1 segDir; if ( iPrev < 0 ) { segDir.SetLocation( SMESH_TNodeXYZ( _nodes[0] )); segDir.SetDirection( _normal ); segLen = 0; } else { gp_Pnt pPrev = _pos[ iPrev ]; if ( !eos._sWOL.IsNull() ) { TopLoc_Location loc; if ( eos.SWOLType() == TopAbs_EDGE ) { double f,l; Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( eos._sWOL ), loc, f,l); pPrev = curve->Value( pPrev.X() ).Transformed( loc ); } else { Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face( eos._sWOL ), loc ); pPrev = surface->Value( pPrev.X(), pPrev.Y() ).Transformed( loc ); } dir = SMESH_TNodeXYZ( _nodes.back() ) - pPrev.XYZ(); } segDir.SetLocation( pPrev ); segDir.SetDirection( dir ); segLen = dir.Modulus(); } return segDir; } //================================================================================ /*! * \brief Return the last position of the target node on a FACE. * \param [in] F - the FACE this _LayerEdge is inflated along * \return gp_XY - result UV */ //================================================================================ gp_XY _LayerEdge::LastUV( const TopoDS_Face& F, _EdgesOnShape& eos ) const { if ( F.IsSame( eos._sWOL )) // F is my FACE return gp_XY( _pos.back().X(), _pos.back().Y() ); if ( eos.SWOLType() != TopAbs_EDGE ) // wrong call return gp_XY( 1e100, 1e100 ); // _sWOL is EDGE of F; _pos.back().X() is the last U on the EDGE double f, l, u = _pos.back().X(); Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface( TopoDS::Edge(eos._sWOL), F, f,l); if ( !C2d.IsNull() && f <= u && u <= l ) return C2d->Value( u ).XY(); return gp_XY( 1e100, 1e100 ); } //================================================================================ /*! * \brief Test intersection of the last segment with a given triangle * using Moller-Trumbore algorithm * Intersection is detected if distance to intersection is less than _LayerEdge._len */ //================================================================================ bool _LayerEdge::SegTriaInter( const gp_Ax1& lastSegment, const SMDS_MeshNode* n0, const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, double& t, const double& EPSILON) const { //const double EPSILON = 1e-6; const gp_Pnt& orig = lastSegment.Location(); const gp_Dir& dir = lastSegment.Direction(); SMESH_TNodeXYZ vert0( n0 ); SMESH_TNodeXYZ vert1( n1 ); SMESH_TNodeXYZ vert2( n2 ); /* calculate distance from vert0 to ray origin */ gp_XYZ tvec = orig.XYZ() - vert0; //if ( tvec * dir > EPSILON ) // intersected face is at back side of the temporary face this _LayerEdge belongs to //return false; gp_XYZ edge1 = vert1 - vert0; gp_XYZ edge2 = vert2 - vert0; /* begin calculating determinant - also used to calculate U parameter */ gp_XYZ pvec = dir.XYZ() ^ edge2; /* if determinant is near zero, ray lies in plane of triangle */ double det = edge1 * pvec; if (det > -EPSILON && det < EPSILON) return false; /* calculate U parameter and test bounds */ double u = ( tvec * pvec ) / det; //if (u < 0.0 || u > 1.0) if (u < -EPSILON || u > 1.0 + EPSILON) return false; /* prepare to test V parameter */ gp_XYZ qvec = tvec ^ edge1; /* calculate V parameter and test bounds */ double v = (dir.XYZ() * qvec) / det; //if ( v < 0.0 || u + v > 1.0 ) if ( v < -EPSILON || u + v > 1.0 + EPSILON) return false; /* calculate t, ray intersects triangle */ t = (edge2 * qvec) / det; //return true; return t > 0.; } //================================================================================ /*! * \brief Perform smooth of _LayerEdge's based on EDGE's * \retval bool - true if node has been moved */ //================================================================================ bool _LayerEdge::SmoothOnEdge(Handle(Geom_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper) { ASSERT( IsOnEdge() ); SMDS_MeshNode* tgtNode = const_cast( _nodes.back() ); SMESH_TNodeXYZ oldPos( tgtNode ); double dist01, distNewOld; SMESH_TNodeXYZ p0( _2neibors->tgtNode(0)); SMESH_TNodeXYZ p1( _2neibors->tgtNode(1)); dist01 = p0.Distance( _2neibors->tgtNode(1) ); gp_Pnt newPos = p0 * _2neibors->_wgt[0] + p1 * _2neibors->_wgt[1]; double lenDelta = 0; if ( _curvature ) { //lenDelta = _curvature->lenDelta( _len ); lenDelta = _curvature->lenDeltaByDist( dist01 ); newPos.ChangeCoord() += _normal * lenDelta; } distNewOld = newPos.Distance( oldPos ); if ( F.IsNull() ) { if ( _2neibors->_plnNorm ) { // put newPos on the plane defined by source node and _plnNorm gp_XYZ new2src = SMESH_TNodeXYZ( _nodes[0] ) - newPos.XYZ(); double new2srcProj = (*_2neibors->_plnNorm) * new2src; newPos.ChangeCoord() += (*_2neibors->_plnNorm) * new2srcProj; } tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); _pos.back() = newPos.XYZ(); } else { tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); gp_XY uv( Precision::Infinite(), 0 ); helper.CheckNodeUV( F, tgtNode, uv, 1e-10, /*force=*/true ); _pos.back().SetCoord( uv.X(), uv.Y(), 0 ); newPos = surface->Value( uv.X(), uv.Y() ); tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); } // commented for IPAL0052478 // if ( _curvature && lenDelta < 0 ) // { // gp_Pnt prevPos( _pos[ _pos.size()-2 ]); // _len -= prevPos.Distance( oldPos ); // _len += prevPos.Distance( newPos ); // } bool moved = distNewOld > dist01/50; //if ( moved ) dumpMove( tgtNode ); // debug return moved; } //================================================================================ /*! * \brief Perform laplacian smooth in 3D of nodes inflated from FACE * \retval bool - true if _tgtNode has been moved */ //================================================================================ int _LayerEdge::Smooth(const int step, const bool isConcaveFace, const bool findBest ) { if ( _simplices.size() < 2 ) return 0; // _LayerEdge inflated along EDGE or FACE const gp_XYZ& curPos ( _pos.back() ); const gp_XYZ& prevPos( _pos[ _pos.size()-2 ]); // quality metrics (orientation) of tetras around _tgtNode int nbOkBefore = 0; double vol, minVolBefore = 1e100; for ( size_t i = 0; i < _simplices.size(); ++i ) { nbOkBefore += _simplices[i].IsForward( _nodes[0], &curPos, vol ); minVolBefore = Min( minVolBefore, vol ); } int nbBad = _simplices.size() - nbOkBefore; // compute new position for the last _pos using different _funs gp_XYZ newPos; for ( int iFun = -1; iFun < theNbSmooFuns; ++iFun ) { if ( iFun < 0 ) newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction() else if ( _funs[ iFun ] == _smooFunction ) continue; // _smooFunction again else if ( step > 0 ) newPos = (this->*_funs[ iFun ])(); // try other smoothing fun else break; // let "easy" functions improve elements around distorted ones if ( _curvature ) { double delta = _curvature->lenDelta( _len ); if ( delta > 0 ) newPos += _normal * delta; else { double segLen = _normal * ( newPos - prevPos ); if ( segLen + delta > 0 ) newPos += _normal * delta; } // double segLenChange = _normal * ( curPos - newPos ); // newPos += 0.5 * _normal * segLenChange; } int nbOkAfter = 0; double minVolAfter = 1e100; for ( size_t i = 0; i < _simplices.size(); ++i ) { nbOkAfter += _simplices[i].IsForward( _nodes[0], &newPos, vol ); minVolAfter = Min( minVolAfter, vol ); } // get worse? if ( nbOkAfter < nbOkBefore ) continue; if (( isConcaveFace || findBest ) && ( nbOkAfter == nbOkBefore ) && //( iFun > -1 || nbOkAfter < _simplices.size() ) && ( minVolAfter <= minVolBefore )) continue; SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() ); // commented for IPAL0052478 // _len -= prevPos.Distance(SMESH_TNodeXYZ( n )); // _len += prevPos.Distance(newPos); n->setXYZ( newPos.X(), newPos.Y(), newPos.Z()); _pos.back() = newPos; dumpMoveComm( n, _funNames[ iFun < 0 ? smooFunID() : iFun ]); nbBad = _simplices.size() - nbOkAfter; if ( iFun > -1 ) { //_smooFunction = _funs[ iFun ]; // cout << "# " << _funNames[ iFun ] << "\t N:" << _nodes.back()->GetID() // << "\t nbBad: " << _simplices.size() - nbOkAfter // << " minVol: " << minVolAfter // << " " << newPos.X() << " " << newPos.Y() << " " << newPos.Z() // << endl; minVolBefore = minVolAfter; nbOkBefore = nbOkAfter; continue; // look for a better function } if ( !findBest ) break; } // loop on smoothing functions return nbBad; } //================================================================================ /*! * \brief Chooses a smoothing technic giving a position most close to an initial one. * For a correct result, _simplices must contain nodes lying on geometry. */ //================================================================================ void _LayerEdge::ChooseSmooFunction( const set< TGeomID >& concaveVertices, const TNode2Edge& n2eMap) { if ( _smooFunction ) return; // use smoothNefPolygon() near concaveVertices if ( !concaveVertices.empty() ) { for ( size_t i = 0; i < _simplices.size(); ++i ) { if ( concaveVertices.count( _simplices[i]._nPrev->getshapeId() )) { _smooFunction = _funs[ FUN_NEFPOLY ]; // set FUN_CENTROIDAL to neighbor edges TNode2Edge::const_iterator n2e; for ( i = 0; i < _simplices.size(); ++i ) { if (( _simplices[i]._nPrev->GetPosition()->GetDim() == 2 ) && (( n2e = n2eMap.find( _simplices[i]._nPrev )) != n2eMap.end() )) { n2e->second->_smooFunction = _funs[ FUN_CENTROIDAL ]; } } return; } } //} // this coice is done only if ( !concaveVertices.empty() ) for Grids/smesh/bugs_19/X1 // where the nodes are smoothed too far along a sphere thus creating // inverted _simplices double dist[theNbSmooFuns]; //double coef[theNbSmooFuns] = { 1., 1.2, 1.4, 1.4 }; double coef[theNbSmooFuns] = { 1., 1., 1., 1. }; double minDist = Precision::Infinite(); gp_Pnt p = SMESH_TNodeXYZ( _nodes[0] ); for ( int i = 0; i < FUN_NEFPOLY; ++i ) { gp_Pnt newP = (this->*_funs[i])(); dist[i] = p.SquareDistance( newP ); if ( dist[i]*coef[i] < minDist ) { _smooFunction = _funs[i]; minDist = dist[i]*coef[i]; } } } else { _smooFunction = _funs[ FUN_LAPLACIAN ]; } // int minDim = 3; // for ( size_t i = 0; i < _simplices.size(); ++i ) // minDim = Min( minDim, _simplices[i]._nPrev->GetPosition()->GetDim() ); // if ( minDim == 0 ) // _smooFunction = _funs[ FUN_CENTROIDAL ]; // else if ( minDim == 1 ) // _smooFunction = _funs[ FUN_CENTROIDAL ]; // int iMin; // for ( int i = 0; i < FUN_NB; ++i ) // { // //cout << dist[i] << " "; // if ( _smooFunction == _funs[i] ) { // iMin = i; // //debugMsg( fNames[i] ); // break; // } // } // cout << _funNames[ iMin ] << "\t N:" << _nodes.back()->GetID() << endl; } //================================================================================ /*! * \brief Returns a name of _SmooFunction */ //================================================================================ int _LayerEdge::smooFunID( _LayerEdge::PSmooFun fun) const { if ( !fun ) fun = _smooFunction; for ( int i = 0; i < theNbSmooFuns; ++i ) if ( fun == _funs[i] ) return i; return theNbSmooFuns; } //================================================================================ /*! * \brief Computes a new node position using Laplacian smoothing */ //================================================================================ gp_XYZ _LayerEdge::smoothLaplacian() { gp_XYZ newPos (0,0,0); for ( size_t i = 0; i < _simplices.size(); ++i ) newPos += SMESH_TNodeXYZ( _simplices[i]._nPrev ); newPos /= _simplices.size(); return newPos; } //================================================================================ /*! * \brief Computes a new node position using angular-based smoothing */ //================================================================================ gp_XYZ _LayerEdge::smoothAngular() { vector< gp_Vec > edgeDir; edgeDir. reserve( _simplices.size() + 1); vector< double > edgeSize; edgeSize.reserve( _simplices.size() ); vector< gp_XYZ > points; points. reserve( _simplices.size() ); gp_XYZ pPrev = SMESH_TNodeXYZ( _simplices.back()._nPrev ); gp_XYZ pN( 0,0,0 ); for ( size_t i = 0; i < _simplices.size(); ++i ) { gp_XYZ p = SMESH_TNodeXYZ( _simplices[i]._nPrev ); edgeDir.push_back( p - pPrev ); edgeSize.push_back( edgeDir.back().Magnitude() ); //double edgeSize = edgeDir.back().Magnitude(); if ( edgeSize.back() < numeric_limits::min() ) { edgeDir.pop_back(); edgeSize.pop_back(); } else { edgeDir.back() /= edgeSize.back(); points.push_back( p ); pN += p; } pPrev = p; } edgeDir.push_back ( edgeDir[0] ); edgeSize.push_back( edgeSize[0] ); pN /= points.size(); gp_XYZ newPos(0,0,0); //gp_XYZ pN = SMESH_TNodeXYZ( _nodes.back() ); double sumSize = 0; for ( size_t i = 0; i < points.size(); ++i ) { gp_Vec toN( pN - points[i]); double toNLen = toN.Magnitude(); if ( toNLen < numeric_limits::min() ) { newPos += pN; continue; } gp_Vec bisec = edgeDir[i] + edgeDir[i+1]; double bisecLen = bisec.SquareMagnitude(); if ( bisecLen < numeric_limits::min() ) { gp_Vec norm = edgeDir[i] ^ toN; bisec = norm ^ edgeDir[i]; bisecLen = bisec.SquareMagnitude(); } bisecLen = Sqrt( bisecLen ); bisec /= bisecLen; #if 1 //bisecLen = 1.; gp_XYZ pNew = ( points[i] + bisec.XYZ() * toNLen ) * bisecLen; sumSize += bisecLen; #else gp_XYZ pNew = ( points[i] + bisec.XYZ() * toNLen ) * ( edgeSize[i] + edgeSize[i+1] ); sumSize += ( edgeSize[i] + edgeSize[i+1] ); #endif newPos += pNew; } newPos /= sumSize; return newPos; } //================================================================================ /*! * \brief Computes a new node position using weigthed node positions */ //================================================================================ gp_XYZ _LayerEdge::smoothLengthWeighted() { vector< double > edgeSize; edgeSize.reserve( _simplices.size() + 1); vector< gp_XYZ > points; points. reserve( _simplices.size() ); gp_XYZ pPrev = SMESH_TNodeXYZ( _simplices.back()._nPrev ); for ( size_t i = 0; i < _simplices.size(); ++i ) { gp_XYZ p = SMESH_TNodeXYZ( _simplices[i]._nPrev ); edgeSize.push_back( ( p - pPrev ).Modulus() ); if ( edgeSize.back() < numeric_limits::min() ) { edgeSize.pop_back(); } else { points.push_back( p ); } pPrev = p; } edgeSize.push_back( edgeSize[0] ); gp_XYZ newPos(0,0,0); double sumSize = 0; for ( size_t i = 0; i < points.size(); ++i ) { newPos += points[i] * ( edgeSize[i] + edgeSize[i+1] ); sumSize += edgeSize[i] + edgeSize[i+1]; } newPos /= sumSize; return newPos; } //================================================================================ /*! * \brief Computes a new node position using angular-based smoothing */ //================================================================================ gp_XYZ _LayerEdge::smoothCentroidal() { gp_XYZ newPos(0,0,0); gp_XYZ pN = SMESH_TNodeXYZ( _nodes.back() ); double sumSize = 0; for ( size_t i = 0; i < _simplices.size(); ++i ) { gp_XYZ p1 = SMESH_TNodeXYZ( _simplices[i]._nPrev ); gp_XYZ p2 = SMESH_TNodeXYZ( _simplices[i]._nNext ); gp_XYZ gc = ( pN + p1 + p2 ) / 3.; double size = (( p1 - pN ) ^ ( p2 - pN )).Modulus(); sumSize += size; newPos += gc * size; } newPos /= sumSize; return newPos; } //================================================================================ /*! * \brief Computes a new node position located inside a Nef polygon */ //================================================================================ gp_XYZ _LayerEdge::smoothNefPolygon() { gp_XYZ newPos(0,0,0); // get a plane to seach a solution on vector< gp_XYZ > vecs( _simplices.size() + 1 ); size_t i; const double tol = numeric_limits::min(); gp_XYZ center(0,0,0); for ( i = 0; i < _simplices.size(); ++i ) { vecs[i] = ( SMESH_TNodeXYZ( _simplices[i]._nNext ) - SMESH_TNodeXYZ( _simplices[i]._nPrev )); center += SMESH_TNodeXYZ( _simplices[i]._nPrev ); } vecs.back() = vecs[0]; center /= _simplices.size(); gp_XYZ zAxis(0,0,0); for ( i = 0; i < _simplices.size(); ++i ) zAxis += vecs[i] ^ vecs[i+1]; gp_XYZ yAxis; for ( i = 0; i < _simplices.size(); ++i ) { yAxis = vecs[i]; if ( yAxis.SquareModulus() > tol ) break; } gp_XYZ xAxis = yAxis ^ zAxis; // SMESH_TNodeXYZ p0( _simplices[0]._nPrev ); // const double tol = 1e-6 * ( p0.Distance( _simplices[1]._nPrev ) + // p0.Distance( _simplices[2]._nPrev )); // gp_XYZ center = smoothLaplacian(); // gp_XYZ xAxis, yAxis, zAxis; // for ( i = 0; i < _simplices.size(); ++i ) // { // xAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; // if ( xAxis.SquareModulus() > tol*tol ) // break; // } // for ( i = 1; i < _simplices.size(); ++i ) // { // yAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; // zAxis = xAxis ^ yAxis; // if ( zAxis.SquareModulus() > tol*tol ) // break; // } // if ( i == _simplices.size() ) return newPos; yAxis = zAxis ^ xAxis; xAxis /= xAxis.Modulus(); yAxis /= yAxis.Modulus(); // get half-planes of _simplices vector< _halfPlane > halfPlns( _simplices.size() ); int nbHP = 0; for ( size_t i = 0; i < _simplices.size(); ++i ) { gp_XYZ OP1 = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; gp_XYZ OP2 = SMESH_TNodeXYZ( _simplices[i]._nNext ) - center; gp_XY p1( OP1 * xAxis, OP1 * yAxis ); gp_XY p2( OP2 * xAxis, OP2 * yAxis ); gp_XY vec12 = p2 - p1; double dist12 = vec12.Modulus(); if ( dist12 < tol ) continue; vec12 /= dist12; halfPlns[ nbHP ]._pos = p1; halfPlns[ nbHP ]._dir = vec12; halfPlns[ nbHP ]._inNorm.SetCoord( -vec12.Y(), vec12.X() ); ++nbHP; } // intersect boundaries of half-planes, define state of intersection points // in relation to all half-planes and calculate internal point of a 2D polygon double sumLen = 0; gp_XY newPos2D (0,0); enum { UNDEF = -1, NOT_OUT, IS_OUT, NO_INT }; typedef std::pair< gp_XY, int > TIntPntState; // coord and isOut state TIntPntState undefIPS( gp_XY(1e100,1e100), UNDEF ); vector< vector< TIntPntState > > allIntPnts( nbHP ); for ( int iHP1 = 0; iHP1 < nbHP; ++iHP1 ) { vector< TIntPntState > & intPnts1 = allIntPnts[ iHP1 ]; if ( intPnts1.empty() ) intPnts1.resize( nbHP, undefIPS ); int iPrev = SMESH_MesherHelper::WrapIndex( iHP1 - 1, nbHP ); int iNext = SMESH_MesherHelper::WrapIndex( iHP1 + 1, nbHP ); int nbNotOut = 0; const gp_XY* segEnds[2] = { 0, 0 }; // NOT_OUT points for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 ) { if ( iHP1 == iHP2 ) continue; TIntPntState & ips1 = intPnts1[ iHP2 ]; if ( ips1.second == UNDEF ) { // find an intersection point of boundaries of iHP1 and iHP2 if ( iHP2 == iPrev ) // intersection with neighbors is known ips1.first = halfPlns[ iHP1 ]._pos; else if ( iHP2 == iNext ) ips1.first = halfPlns[ iHP2 ]._pos; else if ( !halfPlns[ iHP1 ].FindInterestion( halfPlns[ iHP2 ], ips1.first )) ips1.second = NO_INT; // classify the found intersection point if ( ips1.second != NO_INT ) { ips1.second = NOT_OUT; for ( int i = 0; i < nbHP && ips1.second == NOT_OUT; ++i ) if ( i != iHP1 && i != iHP2 && halfPlns[ i ].IsOut( ips1.first, tol )) ips1.second = IS_OUT; } vector< TIntPntState > & intPnts2 = allIntPnts[ iHP2 ]; if ( intPnts2.empty() ) intPnts2.resize( nbHP, undefIPS ); TIntPntState & ips2 = intPnts2[ iHP1 ]; ips2 = ips1; } if ( ips1.second == NOT_OUT ) { ++nbNotOut; segEnds[ bool(segEnds[0]) ] = & ips1.first; } } // find a NOT_OUT segment of boundary which is located between // two NOT_OUT int points if ( nbNotOut < 2 ) continue; // no such a segment if ( nbNotOut > 2 ) { // sort points along the boundary map< double, TIntPntState* > ipsByParam; for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 ) { TIntPntState & ips1 = intPnts1[ iHP2 ]; if ( ips1.second != NO_INT ) { gp_XY op = ips1.first - halfPlns[ iHP1 ]._pos; double param = op * halfPlns[ iHP1 ]._dir; ipsByParam.insert( make_pair( param, & ips1 )); } } // look for two neighboring NOT_OUT points nbNotOut = 0; map< double, TIntPntState* >::iterator u2ips = ipsByParam.begin(); for ( ; u2ips != ipsByParam.end(); ++u2ips ) { TIntPntState & ips1 = *(u2ips->second); if ( ips1.second == NOT_OUT ) segEnds[ bool( nbNotOut++ ) ] = & ips1.first; else if ( nbNotOut >= 2 ) break; else nbNotOut = 0; } } if ( nbNotOut >= 2 ) { double len = ( *segEnds[0] - *segEnds[1] ).Modulus(); sumLen += len; newPos2D += 0.5 * len * ( *segEnds[0] + *segEnds[1] ); } } if ( sumLen > 0 ) { newPos2D /= sumLen; newPos = center + xAxis * newPos2D.X() + yAxis * newPos2D.Y(); } else { newPos = center; } return newPos; } //================================================================================ /*! * \brief Add a new segment to _LayerEdge during inflation */ //================================================================================ void _LayerEdge::SetNewLength( double len, _EdgesOnShape& eos, SMESH_MesherHelper& helper ) { if ( _len - len > -1e-6 ) { //_pos.push_back( _pos.back() ); return; } SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() ); gp_XYZ oldXYZ = SMESH_TNodeXYZ( n ); gp_XYZ newXYZ; if ( eos._hyp.IsOffsetMethod() ) { newXYZ = oldXYZ; gp_Vec faceNorm; SMDS_ElemIteratorPtr faceIt = _nodes[0]->GetInverseElementIterator( SMDSAbs_Face ); while ( faceIt->more() ) { const SMDS_MeshElement* face = faceIt->next(); if ( !eos.GetNormal( face, faceNorm )) continue; // translate plane of a face gp_XYZ baryCenter = oldXYZ + faceNorm.XYZ() * ( len - _len ); // find point of intersection of the face plane located at baryCenter // and _normal located at newXYZ double d = -( faceNorm.XYZ() * baryCenter ); // d of plane equation ax+by+cz+d=0 double dot = ( faceNorm.XYZ() * _normal ); if ( dot < std::numeric_limits::min() ) dot = ( len - _len ) * 1e-3; double step = -( faceNorm.XYZ() * newXYZ + d ) / dot; newXYZ += step * _normal; } } else { newXYZ = oldXYZ + _normal * ( len - _len ) * _lenFactor; } n->setXYZ( newXYZ.X(), newXYZ.Y(), newXYZ.Z() ); _pos.push_back( newXYZ ); _len = len; if ( !eos._sWOL.IsNull() ) { double distXYZ[4]; if ( eos.SWOLType() == TopAbs_EDGE ) { double u = Precision::Infinite(); // to force projection w/o distance check helper.CheckNodeU( TopoDS::Edge( eos._sWOL ), n, u, 1e-10, /*force=*/true, distXYZ ); _pos.back().SetCoord( u, 0, 0 ); if ( _nodes.size() > 1 ) { SMDS_EdgePosition* pos = static_cast( n->GetPosition() ); pos->SetUParameter( u ); } } else // TopAbs_FACE { gp_XY uv( Precision::Infinite(), 0 ); helper.CheckNodeUV( TopoDS::Face( eos._sWOL ), n, uv, 1e-10, /*force=*/true, distXYZ ); _pos.back().SetCoord( uv.X(), uv.Y(), 0 ); if ( _nodes.size() > 1 ) { SMDS_FacePosition* pos = static_cast( n->GetPosition() ); pos->SetUParameter( uv.X() ); pos->SetVParameter( uv.Y() ); } } n->setXYZ( distXYZ[1], distXYZ[2], distXYZ[3]); } dumpMove( n ); //debug } //================================================================================ /*! * \brief Remove last inflation step */ //================================================================================ void _LayerEdge::InvalidateStep( int curStep, const _EdgesOnShape& eos, bool restoreLength ) { if ( _pos.size() > curStep ) { if ( restoreLength ) _len -= ( _pos[ curStep-1 ] - _pos.back() ).Modulus(); _pos.resize( curStep ); gp_Pnt nXYZ = _pos.back(); SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() ); if ( !eos._sWOL.IsNull() ) { TopLoc_Location loc; if ( eos.SWOLType() == TopAbs_EDGE ) { SMDS_EdgePosition* pos = static_cast( n->GetPosition() ); pos->SetUParameter( nXYZ.X() ); double f,l; Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( eos._sWOL ), loc, f,l); nXYZ = curve->Value( nXYZ.X() ).Transformed( loc ); } else { SMDS_FacePosition* pos = static_cast( n->GetPosition() ); pos->SetUParameter( nXYZ.X() ); pos->SetVParameter( nXYZ.Y() ); Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face(eos._sWOL), loc ); nXYZ = surface->Value( nXYZ.X(), nXYZ.Y() ).Transformed( loc ); } } n->setXYZ( nXYZ.X(), nXYZ.Y(), nXYZ.Z() ); dumpMove( n ); } } //================================================================================ /*! * \brief Create layers of prisms */ //================================================================================ bool _ViscousBuilder::refine(_SolidData& data) { SMESH_MesherHelper helper( *_mesh ); helper.SetSubShape( data._solid ); helper.SetElementsOnShape(false); Handle(Geom_Curve) curve; Handle(Geom_Surface) surface; TopoDS_Edge geomEdge; TopoDS_Face geomFace; TopoDS_Shape prevSWOL; TopLoc_Location loc; double f,l, u; gp_XY uv; bool isOnEdge; TGeomID prevBaseId = -1; TNode2Edge* n2eMap = 0; TNode2Edge::iterator n2e; // Create intermediate nodes on each _LayerEdge for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[iS]; if ( eos._edges.empty() ) continue; if ( eos._edges[0]->_nodes.size() < 2 ) continue; // on _noShrinkShapes for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge& edge = *eos._edges[i]; // get accumulated length of segments vector< double > segLen( edge._pos.size() ); segLen[0] = 0.0; for ( size_t j = 1; j < edge._pos.size(); ++j ) segLen[j] = segLen[j-1] + (edge._pos[j-1] - edge._pos[j] ).Modulus(); // allocate memory for new nodes if it is not yet refined const SMDS_MeshNode* tgtNode = edge._nodes.back(); if ( edge._nodes.size() == 2 ) { edge._nodes.resize( eos._hyp.GetNumberLayers() + 1, 0 ); edge._nodes[1] = 0; edge._nodes.back() = tgtNode; } // get data of a shrink shape if ( !eos._sWOL.IsNull() && eos._sWOL != prevSWOL ) { isOnEdge = ( eos.SWOLType() == TopAbs_EDGE ); if ( isOnEdge ) { geomEdge = TopoDS::Edge( eos._sWOL ); curve = BRep_Tool::Curve( geomEdge, loc, f,l); } else { geomFace = TopoDS::Face( eos._sWOL ); surface = BRep_Tool::Surface( geomFace, loc ); } prevSWOL = eos._sWOL; } // restore shapePos of the last node by already treated _LayerEdge of another _SolidData const TGeomID baseShapeId = edge._nodes[0]->getshapeId(); if ( baseShapeId != prevBaseId ) { map< TGeomID, TNode2Edge* >::iterator s2ne = data._s2neMap.find( baseShapeId ); n2eMap = ( s2ne == data._s2neMap.end() ) ? 0 : n2eMap = s2ne->second; prevBaseId = baseShapeId; } _LayerEdge* edgeOnSameNode = 0; if ( n2eMap && (( n2e = n2eMap->find( edge._nodes[0] )) != n2eMap->end() )) { edgeOnSameNode = n2e->second; const gp_XYZ& otherTgtPos = edgeOnSameNode->_pos.back(); SMDS_PositionPtr lastPos = tgtNode->GetPosition(); if ( isOnEdge ) { SMDS_EdgePosition* epos = static_cast( lastPos ); epos->SetUParameter( otherTgtPos.X() ); } else { SMDS_FacePosition* fpos = static_cast( lastPos ); fpos->SetUParameter( otherTgtPos.X() ); fpos->SetVParameter( otherTgtPos.Y() ); } } // calculate height of the first layer double h0; const double T = segLen.back(); //data._hyp.GetTotalThickness(); const double f = eos._hyp.GetStretchFactor(); const int N = eos._hyp.GetNumberLayers(); const double fPowN = pow( f, N ); if ( fPowN - 1 <= numeric_limits::min() ) h0 = T / N; else h0 = T * ( f - 1 )/( fPowN - 1 ); const double zeroLen = std::numeric_limits::min(); // create intermediate nodes double hSum = 0, hi = h0/f; size_t iSeg = 1; for ( size_t iStep = 1; iStep < edge._nodes.size(); ++iStep ) { // compute an intermediate position hi *= f; hSum += hi; while ( hSum > segLen[iSeg] && iSeg < segLen.size()-1) ++iSeg; int iPrevSeg = iSeg-1; while ( fabs( segLen[iPrevSeg] - segLen[iSeg]) <= zeroLen && iPrevSeg > 0 ) --iPrevSeg; double r = ( segLen[iSeg] - hSum ) / ( segLen[iSeg] - segLen[iPrevSeg] ); gp_Pnt pos = r * edge._pos[iPrevSeg] + (1-r) * edge._pos[iSeg]; SMDS_MeshNode*& node = const_cast< SMDS_MeshNode*& >( edge._nodes[ iStep ]); if ( !eos._sWOL.IsNull() ) { // compute XYZ by parameters if ( isOnEdge ) { u = pos.X(); if ( !node ) pos = curve->Value( u ).Transformed(loc); } else { uv.SetCoord( pos.X(), pos.Y() ); if ( !node ) pos = surface->Value( pos.X(), pos.Y() ).Transformed(loc); } } // create or update the node if ( !node ) { node = helper.AddNode( pos.X(), pos.Y(), pos.Z()); if ( !eos._sWOL.IsNull() ) { if ( isOnEdge ) getMeshDS()->SetNodeOnEdge( node, geomEdge, u ); else getMeshDS()->SetNodeOnFace( node, geomFace, uv.X(), uv.Y() ); } else { getMeshDS()->SetNodeInVolume( node, helper.GetSubShapeID() ); } } else { if ( !eos._sWOL.IsNull() ) { // make average pos from new and current parameters if ( isOnEdge ) { u = 0.5 * ( u + helper.GetNodeU( geomEdge, node )); pos = curve->Value( u ).Transformed(loc); SMDS_EdgePosition* epos = static_cast( node->GetPosition() ); epos->SetUParameter( u ); } else { uv = 0.5 * ( uv + helper.GetNodeUV( geomFace, node )); pos = surface->Value( uv.X(), uv.Y()).Transformed(loc); SMDS_FacePosition* fpos = static_cast( node->GetPosition() ); fpos->SetUParameter( uv.X() ); fpos->SetVParameter( uv.Y() ); } } node->setXYZ( pos.X(), pos.Y(), pos.Z() ); } } // loop on edge._nodes if ( !eos._sWOL.IsNull() ) // prepare for shrink() { if ( isOnEdge ) edge._pos.back().SetCoord( u, 0,0); else edge._pos.back().SetCoord( uv.X(), uv.Y() ,0); if ( edgeOnSameNode ) edgeOnSameNode->_pos.back() = edge._pos.back(); } } // loop on eos._edges to create nodes if ( !getMeshDS()->IsEmbeddedMode() ) // Log node movement for ( size_t i = 0; i < eos._edges.size(); ++i ) { SMESH_TNodeXYZ p ( eos._edges[i]->_nodes.back() ); getMeshDS()->MoveNode( p._node, p.X(), p.Y(), p.Z() ); } } // Create volumes helper.SetElementsOnShape(true); vector< vector* > nnVec; set< vector* > nnSet; set< int > degenEdgeInd; vector degenVols; TopExp_Explorer exp( data._solid, TopAbs_FACE ); for ( ; exp.More(); exp.Next() ) { const TGeomID faceID = getMeshDS()->ShapeToIndex( exp.Current() ); if ( data._ignoreFaceIds.count( faceID )) continue; const bool isReversedFace = data._reversedFaceIds.count( faceID ); SMESHDS_SubMesh* fSubM = getMeshDS()->MeshElements( exp.Current() ); SMDS_ElemIteratorPtr fIt = fSubM->GetElements(); while ( fIt->more() ) { const SMDS_MeshElement* face = fIt->next(); const int nbNodes = face->NbCornerNodes(); nnVec.resize( nbNodes ); nnSet.clear(); degenEdgeInd.clear(); int nbZ = 0; SMDS_NodeIteratorPtr nIt = face->nodeIterator(); for ( int iN = 0; iN < nbNodes; ++iN ) { const SMDS_MeshNode* n = nIt->next(); const int i = isReversedFace ? nbNodes-1-iN : iN; nnVec[ i ] = & data._n2eMap[ n ]->_nodes; if ( nnVec[ i ]->size() < 2 ) degenEdgeInd.insert( iN ); else nbZ = nnVec[ i ]->size(); if ( helper.HasDegeneratedEdges() ) nnSet.insert( nnVec[ i ]); } if ( nbZ == 0 ) continue; if ( 0 < nnSet.size() && nnSet.size() < 3 ) continue; switch ( nbNodes ) { case 3: switch ( degenEdgeInd.size() ) { case 0: // PENTA { for ( int iZ = 1; iZ < nbZ; ++iZ ) helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1], (*nnVec[0])[iZ], (*nnVec[1])[iZ], (*nnVec[2])[iZ]); break; } case 1: // PYRAM { int i2 = *degenEdgeInd.begin(); int i0 = helper.WrapIndex( i2 - 1, nbNodes ); int i1 = helper.WrapIndex( i2 + 1, nbNodes ); for ( int iZ = 1; iZ < nbZ; ++iZ ) helper.AddVolume( (*nnVec[i0])[iZ-1], (*nnVec[i1])[iZ-1], (*nnVec[i1])[iZ], (*nnVec[i0])[iZ], (*nnVec[i2])[0]); break; } case 2: // TETRA { int i3 = !degenEdgeInd.count(0) ? 0 : !degenEdgeInd.count(1) ? 1 : 2; for ( int iZ = 1; iZ < nbZ; ++iZ ) helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1], (*nnVec[i3])[iZ]); break; } } break; case 4: switch ( degenEdgeInd.size() ) { case 0: // HEX { for ( int iZ = 1; iZ < nbZ; ++iZ ) helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1], (*nnVec[3])[iZ-1], (*nnVec[0])[iZ], (*nnVec[1])[iZ], (*nnVec[2])[iZ], (*nnVec[3])[iZ]); break; } case 2: // PENTA? { int i2 = *degenEdgeInd.begin(); int i3 = *degenEdgeInd.rbegin(); bool ok = ( i3 - i2 == 1 ); if ( i2 == 0 && i3 == 3 ) { i2 = 3; i3 = 0; ok = true; } int i0 = helper.WrapIndex( i3 + 1, nbNodes ); int i1 = helper.WrapIndex( i0 + 1, nbNodes ); for ( int iZ = 1; iZ < nbZ; ++iZ ) { const SMDS_MeshElement* vol = helper.AddVolume( (*nnVec[i3])[0], (*nnVec[i0])[iZ], (*nnVec[i0])[iZ-1], (*nnVec[i2])[0], (*nnVec[i1])[iZ], (*nnVec[i1])[iZ-1]); if ( !ok && vol ) degenVols.push_back( vol ); } break; } case 3: // degen HEX { const SMDS_MeshNode* nn[8]; for ( int iZ = 1; iZ < nbZ; ++iZ ) { const SMDS_MeshElement* vol = helper.AddVolume( nnVec[0]->size() > 1 ? (*nnVec[0])[iZ-1] : (*nnVec[0])[0], nnVec[1]->size() > 1 ? (*nnVec[1])[iZ-1] : (*nnVec[1])[0], nnVec[2]->size() > 1 ? (*nnVec[2])[iZ-1] : (*nnVec[2])[0], nnVec[3]->size() > 1 ? (*nnVec[3])[iZ-1] : (*nnVec[3])[0], nnVec[0]->size() > 1 ? (*nnVec[0])[iZ] : (*nnVec[0])[0], nnVec[1]->size() > 1 ? (*nnVec[1])[iZ] : (*nnVec[1])[0], nnVec[2]->size() > 1 ? (*nnVec[2])[iZ] : (*nnVec[2])[0], nnVec[3]->size() > 1 ? (*nnVec[3])[iZ] : (*nnVec[3])[0]); degenVols.push_back( vol ); } } break; } break; default: return error("Not supported type of element", data._index); } // switch ( nbNodes ) } // while ( fIt->more() ) } // loop on FACEs if ( !degenVols.empty() ) { SMESH_ComputeErrorPtr& err = _mesh->GetSubMesh( data._solid )->GetComputeError(); if ( !err || err->IsOK() ) { err.reset( new SMESH_ComputeError( COMPERR_WARNING, "Degenerated volumes created" )); err->myBadElements.insert( err->myBadElements.end(), degenVols.begin(),degenVols.end() ); } } return true; } //================================================================================ /*! * \brief Shrink 2D mesh on faces to let space for inflated layers */ //================================================================================ bool _ViscousBuilder::shrink() { // make map of (ids of FACEs to shrink mesh on) to (_SolidData containing _LayerEdge's // inflated along FACE or EDGE) map< TGeomID, _SolidData* > f2sdMap; for ( size_t i = 0 ; i < _sdVec.size(); ++i ) { _SolidData& data = _sdVec[i]; TopTools_MapOfShape FFMap; map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin(); for (; s2s != data._shrinkShape2Shape.end(); ++s2s ) if ( s2s->second.ShapeType() == TopAbs_FACE ) { f2sdMap.insert( make_pair( getMeshDS()->ShapeToIndex( s2s->second ), &data )); if ( FFMap.Add( (*s2s).second )) // Put mesh faces on the shrinked FACE to the proxy sub-mesh to avoid // usage of mesh faces made in addBoundaryElements() by the 3D algo or // by StdMeshers_QuadToTriaAdaptor if ( SMESHDS_SubMesh* smDS = getMeshDS()->MeshElements( s2s->second )) { SMESH_ProxyMesh::SubMesh* proxySub = data._proxyMesh->getFaceSubM( TopoDS::Face( s2s->second ), /*create=*/true); SMDS_ElemIteratorPtr fIt = smDS->GetElements(); while ( fIt->more() ) proxySub->AddElement( fIt->next() ); // as a result 3D algo will use elements from proxySub and not from smDS } } } SMESH_MesherHelper helper( *_mesh ); helper.ToFixNodeParameters( true ); // EDGE's to shrink map< TGeomID, _Shrinker1D > e2shrMap; vector< _EdgesOnShape* > subEOS; vector< _LayerEdge* > lEdges; // loop on FACES to srink mesh on map< TGeomID, _SolidData* >::iterator f2sd = f2sdMap.begin(); for ( ; f2sd != f2sdMap.end(); ++f2sd ) { _SolidData& data = *f2sd->second; const TopoDS_Face& F = TopoDS::Face( getMeshDS()->IndexToShape( f2sd->first )); SMESH_subMesh* sm = _mesh->GetSubMesh( F ); SMESHDS_SubMesh* smDS = sm->GetSubMeshDS(); Handle(Geom_Surface) surface = BRep_Tool::Surface(F); helper.SetSubShape(F); // =========================== // Prepare data for shrinking // =========================== // Collect nodes to smooth, as src nodes are not yet replaced by tgt ones // and thus all nodes on a FACE connected to 2d elements are to be smoothed vector < const SMDS_MeshNode* > smoothNodes; { SMDS_NodeIteratorPtr nIt = smDS->GetNodes(); while ( nIt->more() ) { const SMDS_MeshNode* n = nIt->next(); if ( n->NbInverseElements( SMDSAbs_Face ) > 0 ) smoothNodes.push_back( n ); } } // Find out face orientation double refSign = 1; const set ignoreShapes; bool isOkUV; if ( !smoothNodes.empty() ) { vector<_Simplex> simplices; _Simplex::GetSimplices( smoothNodes[0], simplices, ignoreShapes ); helper.GetNodeUV( F, simplices[0]._nPrev, 0, &isOkUV ); // fix UV of silpmex nodes helper.GetNodeUV( F, simplices[0]._nNext, 0, &isOkUV ); gp_XY uv = helper.GetNodeUV( F, smoothNodes[0], 0, &isOkUV ); if ( !simplices[0].IsForward(uv, smoothNodes[0], F, helper,refSign) ) refSign = -1; } // Find _LayerEdge's inflated along F subEOS.clear(); lEdges.clear(); { SMESH_subMeshIteratorPtr subIt = sm->getDependsOnIterator(/*includeSelf=*/false); while ( subIt->more() ) { const TGeomID subID = subIt->next()->GetId(); if ( data._noShrinkShapes.count( subID )) continue; _EdgesOnShape* eos = data.GetShapeEdges( subID ); if ( !eos || eos->_sWOL.IsNull() ) continue; subEOS.push_back( eos ); for ( size_t i = 0; i < eos->_edges.size(); ++i ) { lEdges.push_back( eos->_edges[ i ] ); prepareEdgeToShrink( *eos->_edges[ i ], *eos, helper, smDS ); } } } dumpFunction(SMESH_Comment("beforeShrinkFace")<first); // debug SMDS_ElemIteratorPtr fIt = smDS->GetElements(); while ( fIt->more() ) if ( const SMDS_MeshElement* f = fIt->next() ) dumpChangeNodes( f ); dumpFunctionEnd(); // Replace source nodes by target nodes in mesh faces to shrink dumpFunction(SMESH_Comment("replNodesOnFace")<first); // debug const SMDS_MeshNode* nodes[20]; for ( size_t iS = 0; iS < subEOS.size(); ++iS ) { _EdgesOnShape& eos = * subEOS[ iS ]; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge& edge = *eos._edges[i]; const SMDS_MeshNode* srcNode = edge._nodes[0]; const SMDS_MeshNode* tgtNode = edge._nodes.back(); SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) { const SMDS_MeshElement* f = fIt->next(); if ( !smDS->Contains( f )) continue; SMDS_NodeIteratorPtr nIt = f->nodeIterator(); for ( int iN = 0; nIt->more(); ++iN ) { const SMDS_MeshNode* n = nIt->next(); nodes[iN] = ( n == srcNode ? tgtNode : n ); } helper.GetMeshDS()->ChangeElementNodes( f, nodes, f->NbNodes() ); dumpChangeNodes( f ); } } } dumpFunctionEnd(); // find out if a FACE is concave const bool isConcaveFace = isConcave( F, helper ); // Create _SmoothNode's on face F vector< _SmoothNode > nodesToSmooth( smoothNodes.size() ); { dumpFunction(SMESH_Comment("fixUVOnFace")<first); // debug const bool sortSimplices = isConcaveFace; for ( size_t i = 0; i < smoothNodes.size(); ++i ) { const SMDS_MeshNode* n = smoothNodes[i]; nodesToSmooth[ i ]._node = n; // src nodes must be replaced by tgt nodes to have tgt nodes in _simplices _Simplex::GetSimplices( n, nodesToSmooth[ i ]._simplices, ignoreShapes, 0, sortSimplices); // fix up incorrect uv of nodes on the FACE helper.GetNodeUV( F, n, 0, &isOkUV); dumpMove( n ); } dumpFunctionEnd(); } //if ( nodesToSmooth.empty() ) continue; // Find EDGE's to shrink and set simpices to LayerEdge's set< _Shrinker1D* > eShri1D; { for ( size_t iS = 0; iS < subEOS.size(); ++iS ) { _EdgesOnShape& eos = * subEOS[ iS ]; if ( eos.SWOLType() == TopAbs_EDGE ) { SMESH_subMesh* edgeSM = _mesh->GetSubMesh( eos._sWOL ); _Shrinker1D& srinker = e2shrMap[ edgeSM->GetId() ]; eShri1D.insert( & srinker ); srinker.AddEdge( eos._edges[0], eos, helper ); VISCOUS_3D::ToClearSubWithMain( edgeSM, data._solid ); // restore params of nodes on EGDE if the EDGE has been already // srinked while srinking other FACE srinker.RestoreParams(); } for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge& edge = * eos._edges[i]; _Simplex::GetSimplices( /*tgtNode=*/edge._nodes.back(), edge._simplices, ignoreShapes ); } } } bool toFixTria = false; // to improve quality of trias by diagonal swap if ( isConcaveFace ) { const bool hasTria = _mesh->NbTriangles(), hasQuad = _mesh->NbQuadrangles(); if ( hasTria != hasQuad ) { toFixTria = hasTria; } else { set nbNodesSet; SMDS_ElemIteratorPtr fIt = smDS->GetElements(); while ( fIt->more() && nbNodesSet.size() < 2 ) nbNodesSet.insert( fIt->next()->NbCornerNodes() ); toFixTria = ( *nbNodesSet.begin() == 3 ); } } // ================== // Perform shrinking // ================== bool shrinked = true; int badNb, shriStep=0, smooStep=0; _SmoothNode::SmoothType smoothType = isConcaveFace ? _SmoothNode::ANGULAR : _SmoothNode::LAPLACIAN; while ( shrinked ) { shriStep++; // Move boundary nodes (actually just set new UV) // ----------------------------------------------- dumpFunction(SMESH_Comment("moveBoundaryOnF")<first<<"_st"<SetNewLength2d( surface, F, eos, helper ); } } dumpFunctionEnd(); // Move nodes on EDGE's // (XYZ is set as soon as a needed length reached in SetNewLength2d()) set< _Shrinker1D* >::iterator shr = eShri1D.begin(); for ( ; shr != eShri1D.end(); ++shr ) (*shr)->Compute( /*set3D=*/false, helper ); // Smoothing in 2D // ----------------- int nbNoImpSteps = 0; bool moved = true; badNb = 1; while (( nbNoImpSteps < 5 && badNb > 0) && moved) { dumpFunction(SMESH_Comment("shrinkFace")<first<<"_st"<<++smooStep); // debug int oldBadNb = badNb; badNb = 0; moved = false; for ( size_t i = 0; i < nodesToSmooth.size(); ++i ) { moved |= nodesToSmooth[i].Smooth( badNb, surface, helper, refSign, smoothType, /*set3D=*/isConcaveFace); } if ( badNb < oldBadNb ) nbNoImpSteps = 0; else nbNoImpSteps++; dumpFunctionEnd(); } if ( badNb > 0 ) return error(SMESH_Comment("Can't shrink 2D mesh on face ") << f2sd->first ); if ( shriStep > 200 ) return error(SMESH_Comment("Infinite loop at shrinking 2D mesh on face ") << f2sd->first ); // Fix narrow triangles by swapping diagonals // --------------------------------------- if ( toFixTria ) { set usedNodes; fixBadFaces( F, helper, /*is2D=*/true, shriStep, & usedNodes); // swap diagonals // update working data set::iterator n; for ( size_t i = 0; i < nodesToSmooth.size() && !usedNodes.empty(); ++i ) { n = usedNodes.find( nodesToSmooth[ i ]._node ); if ( n != usedNodes.end()) { _Simplex::GetSimplices( nodesToSmooth[ i ]._node, nodesToSmooth[ i ]._simplices, ignoreShapes, NULL, /*sortSimplices=*/ smoothType == _SmoothNode::ANGULAR ); usedNodes.erase( n ); } } for ( size_t i = 0; i < lEdges.size() && !usedNodes.empty(); ++i ) { n = usedNodes.find( /*tgtNode=*/ lEdges[i]->_nodes.back() ); if ( n != usedNodes.end()) { _Simplex::GetSimplices( lEdges[i]->_nodes.back(), lEdges[i]->_simplices, ignoreShapes ); usedNodes.erase( n ); } } } // TODO: check effect of this additional smooth // additional laplacian smooth to increase allowed shrink step // for ( int st = 1; st; --st ) // { // dumpFunction(SMESH_Comment("shrinkFace")<first<<"_st"<<++smooStep); // debug // for ( size_t i = 0; i < nodesToSmooth.size(); ++i ) // { // nodesToSmooth[i].Smooth( badNb,surface,helper,refSign, // _SmoothNode::LAPLACIAN,/*set3D=*/false); // } // } } // while ( shrinked ) // No wrongly shaped faces remain; final smooth. Set node XYZ. bool isStructuredFixed = false; if ( SMESH_2D_Algo* algo = dynamic_cast( sm->GetAlgo() )) isStructuredFixed = algo->FixInternalNodes( *data._proxyMesh, F ); if ( !isStructuredFixed ) { if ( isConcaveFace ) // fix narrow faces by swapping diagonals fixBadFaces( F, helper, /*is2D=*/false, ++shriStep ); for ( int st = 3; st; --st ) { switch( st ) { case 1: smoothType = _SmoothNode::LAPLACIAN; break; case 2: smoothType = _SmoothNode::LAPLACIAN; break; case 3: smoothType = _SmoothNode::ANGULAR; break; } dumpFunction(SMESH_Comment("shrinkFace")<first<<"_st"<<++smooStep); // debug for ( size_t i = 0; i < nodesToSmooth.size(); ++i ) { nodesToSmooth[i].Smooth( badNb,surface,helper,refSign, smoothType,/*set3D=*/st==1 ); } dumpFunctionEnd(); } } // Set an event listener to clear FACE sub-mesh together with SOLID sub-mesh VISCOUS_3D::ToClearSubWithMain( sm, data._solid ); if ( !getMeshDS()->IsEmbeddedMode() ) // Log node movement for ( size_t i = 0; i < nodesToSmooth.size(); ++i ) { SMESH_TNodeXYZ p ( nodesToSmooth[i]._node ); getMeshDS()->MoveNode( nodesToSmooth[i]._node, p.X(), p.Y(), p.Z() ); } } // loop on FACES to srink mesh on // Replace source nodes by target nodes in shrinked mesh edges map< int, _Shrinker1D >::iterator e2shr = e2shrMap.begin(); for ( ; e2shr != e2shrMap.end(); ++e2shr ) e2shr->second.SwapSrcTgtNodes( getMeshDS() ); return true; } //================================================================================ /*! * \brief Computes 2d shrink direction and finds nodes limiting shrinking */ //================================================================================ bool _ViscousBuilder::prepareEdgeToShrink( _LayerEdge& edge, _EdgesOnShape& eos, SMESH_MesherHelper& helper, const SMESHDS_SubMesh* faceSubMesh) { const SMDS_MeshNode* srcNode = edge._nodes[0]; const SMDS_MeshNode* tgtNode = edge._nodes.back(); if ( eos.SWOLType() == TopAbs_FACE ) { gp_XY srcUV ( edge._pos[0].X(), edge._pos[0].Y() ); //helper.GetNodeUV( F, srcNode ); gp_XY tgtUV = edge.LastUV( TopoDS::Face( eos._sWOL ), eos ); //helper.GetNodeUV( F, tgtNode ); gp_Vec2d uvDir( srcUV, tgtUV ); double uvLen = uvDir.Magnitude(); uvDir /= uvLen; edge._normal.SetCoord( uvDir.X(),uvDir.Y(), 0 ); edge._len = uvLen; edge._pos.resize(1); edge._pos[0].SetCoord( tgtUV.X(), tgtUV.Y(), 0 ); // set UV of source node to target node SMDS_FacePosition* pos = static_cast( tgtNode->GetPosition() ); pos->SetUParameter( srcUV.X() ); pos->SetVParameter( srcUV.Y() ); } else // _sWOL is TopAbs_EDGE { const TopoDS_Edge& E = TopoDS::Edge( eos._sWOL ); SMESHDS_SubMesh* edgeSM = getMeshDS()->MeshElements( E ); if ( !edgeSM || edgeSM->NbElements() == 0 ) return error(SMESH_Comment("Not meshed EDGE ") << getMeshDS()->ShapeToIndex( E )); const SMDS_MeshNode* n2 = 0; SMDS_ElemIteratorPtr eIt = srcNode->GetInverseElementIterator(SMDSAbs_Edge); while ( eIt->more() && !n2 ) { const SMDS_MeshElement* e = eIt->next(); if ( !edgeSM->Contains(e)) continue; n2 = e->GetNode( 0 ); if ( n2 == srcNode ) n2 = e->GetNode( 1 ); } if ( !n2 ) return error(SMESH_Comment("Wrongly meshed EDGE ") << getMeshDS()->ShapeToIndex( E )); double uSrc = helper.GetNodeU( E, srcNode, n2 ); double uTgt = helper.GetNodeU( E, tgtNode, srcNode ); double u2 = helper.GetNodeU( E, n2, srcNode ); edge._pos.clear(); if ( fabs( uSrc-uTgt ) < 0.99 * fabs( uSrc-u2 )) { // tgtNode is located so that it does not make faces with wrong orientation return true; } edge._pos.resize(1); edge._pos[0].SetCoord( U_TGT, uTgt ); edge._pos[0].SetCoord( U_SRC, uSrc ); edge._pos[0].SetCoord( LEN_TGT, fabs( uSrc-uTgt )); edge._simplices.resize( 1 ); edge._simplices[0]._nPrev = n2; // set U of source node to the target node SMDS_EdgePosition* pos = static_cast( tgtNode->GetPosition() ); pos->SetUParameter( uSrc ); } return true; } //================================================================================ /*! * \brief Restore position of a sole node of a _LayerEdge based on _noShrinkShapes */ //================================================================================ void _ViscousBuilder::restoreNoShrink( _LayerEdge& edge ) const { if ( edge._nodes.size() == 1 ) { edge._pos.clear(); edge._len = 0; const SMDS_MeshNode* srcNode = edge._nodes[0]; TopoDS_Shape S = SMESH_MesherHelper::GetSubShapeByNode( srcNode, getMeshDS() ); if ( S.IsNull() ) return; gp_Pnt p; switch ( S.ShapeType() ) { case TopAbs_EDGE: { double f,l; TopLoc_Location loc; Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( S ), loc, f, l ); if ( curve.IsNull() ) return; SMDS_EdgePosition* ePos = static_cast( srcNode->GetPosition() ); p = curve->Value( ePos->GetUParameter() ); break; } case TopAbs_VERTEX: { p = BRep_Tool::Pnt( TopoDS::Vertex( S )); break; } default: return; } getMeshDS()->MoveNode( srcNode, p.X(), p.Y(), p.Z() ); dumpMove( srcNode ); } } //================================================================================ /*! * \brief Try to fix triangles with high aspect ratio by swaping diagonals */ //================================================================================ void _ViscousBuilder::fixBadFaces(const TopoDS_Face& F, SMESH_MesherHelper& helper, const bool is2D, const int step, set * involvedNodes) { SMESH::Controls::AspectRatio qualifier; SMESH::Controls::TSequenceOfXYZ points(3), points1(3), points2(3); const double maxAspectRatio = is2D ? 4. : 2; _NodeCoordHelper xyz( F, helper, is2D ); // find bad triangles vector< const SMDS_MeshElement* > badTrias; vector< double > badAspects; SMESHDS_SubMesh* sm = helper.GetMeshDS()->MeshElements( F ); SMDS_ElemIteratorPtr fIt = sm->GetElements(); while ( fIt->more() ) { const SMDS_MeshElement * f = fIt->next(); if ( f->NbCornerNodes() != 3 ) continue; for ( int iP = 0; iP < 3; ++iP ) points(iP+1) = xyz( f->GetNode(iP)); double aspect = qualifier.GetValue( points ); if ( aspect > maxAspectRatio ) { badTrias.push_back( f ); badAspects.push_back( aspect ); } } if ( step == 1 ) { dumpFunction(SMESH_Comment("beforeSwapDiagonals_F")<GetElements(); while ( fIt->more() ) { const SMDS_MeshElement * f = fIt->next(); if ( f->NbCornerNodes() == 3 ) dumpChangeNodes( f ); } dumpFunctionEnd(); } if ( badTrias.empty() ) return; // find couples of faces to swap diagonal typedef pair < const SMDS_MeshElement* , const SMDS_MeshElement* > T2Trias; vector< T2Trias > triaCouples; TIDSortedElemSet involvedFaces, emptySet; for ( size_t iTia = 0; iTia < badTrias.size(); ++iTia ) { T2Trias trias [3]; double aspRatio [3]; int i1, i2, i3; if ( !involvedFaces.insert( badTrias[iTia] ).second ) continue; for ( int iP = 0; iP < 3; ++iP ) points(iP+1) = xyz( badTrias[iTia]->GetNode(iP)); // find triangles adjacent to badTrias[iTia] with better aspect ratio after diag-swaping int bestCouple = -1; for ( int iSide = 0; iSide < 3; ++iSide ) { const SMDS_MeshNode* n1 = badTrias[iTia]->GetNode( iSide ); const SMDS_MeshNode* n2 = badTrias[iTia]->GetNode(( iSide+1 ) % 3 ); trias [iSide].first = badTrias[iTia]; trias [iSide].second = SMESH_MeshAlgos::FindFaceInSet( n1, n2, emptySet, involvedFaces, & i1, & i2 ); if (( ! trias[iSide].second ) || ( trias[iSide].second->NbCornerNodes() != 3 ) || ( ! sm->Contains( trias[iSide].second ))) continue; // aspect ratio of an adjacent tria for ( int iP = 0; iP < 3; ++iP ) points2(iP+1) = xyz( trias[iSide].second->GetNode(iP)); double aspectInit = qualifier.GetValue( points2 ); // arrange nodes as after diag-swaping if ( helper.WrapIndex( i1+1, 3 ) == i2 ) i3 = helper.WrapIndex( i1-1, 3 ); else i3 = helper.WrapIndex( i1+1, 3 ); points1 = points; points1( 1+ iSide ) = points2( 1+ i3 ); points2( 1+ i2 ) = points1( 1+ ( iSide+2 ) % 3 ); // aspect ratio after diag-swaping aspRatio[ iSide ] = qualifier.GetValue( points1 ) + qualifier.GetValue( points2 ); if ( aspRatio[ iSide ] > aspectInit + badAspects[ iTia ] ) continue; // prevent inversion of a triangle gp_Vec norm1 = gp_Vec( points1(1), points1(3) ) ^ gp_Vec( points1(1), points1(2) ); gp_Vec norm2 = gp_Vec( points2(1), points2(3) ) ^ gp_Vec( points2(1), points2(2) ); if ( norm1 * norm2 < 0. && norm1.Angle( norm2 ) > 70./180.*M_PI ) continue; if ( bestCouple < 0 || aspRatio[ bestCouple ] > aspRatio[ iSide ] ) bestCouple = iSide; } if ( bestCouple >= 0 ) { triaCouples.push_back( trias[bestCouple] ); involvedFaces.insert ( trias[bestCouple].second ); } else { involvedFaces.erase( badTrias[iTia] ); } } if ( triaCouples.empty() ) return; // swap diagonals SMESH_MeshEditor editor( helper.GetMesh() ); dumpFunction(SMESH_Comment("beforeSwapDiagonals_F")<insert( triaCouples[i].first->begin_nodes(), triaCouples[i].first->end_nodes() ); involvedNodes->insert( triaCouples[i].second->begin_nodes(), triaCouples[i].second->end_nodes() ); } // just for debug dump resulting triangles dumpFunction(SMESH_Comment("swapDiagonals_F")<( _nodes.back() ); if ( eos.SWOLType() == TopAbs_FACE ) { gp_XY curUV = helper.GetNodeUV( F, tgtNode ); gp_Pnt2d tgtUV( _pos[0].X(), _pos[0].Y() ); gp_Vec2d uvDir( _normal.X(), _normal.Y() ); const double uvLen = tgtUV.Distance( curUV ); const double kSafe = Max( 0.5, 1. - 0.1 * _simplices.size() ); // Select shrinking step such that not to make faces with wrong orientation. double stepSize = 1e100; for ( size_t i = 0; i < _simplices.size(); ++i ) { // find intersection of 2 lines: curUV-tgtUV and that connecting simplex nodes gp_XY uvN1 = helper.GetNodeUV( F, _simplices[i]._nPrev ); gp_XY uvN2 = helper.GetNodeUV( F, _simplices[i]._nNext ); gp_XY dirN = uvN2 - uvN1; double det = uvDir.Crossed( dirN ); if ( Abs( det ) < std::numeric_limits::min() ) continue; gp_XY dirN2Cur = curUV - uvN1; double step = dirN.Crossed( dirN2Cur ) / det; if ( step > 0 ) stepSize = Min( step, stepSize ); } gp_Pnt2d newUV; if ( uvLen <= stepSize ) { newUV = tgtUV; _pos.clear(); } else if ( stepSize > 0 ) { newUV = curUV + uvDir.XY() * stepSize * kSafe; } else { return true; } SMDS_FacePosition* pos = static_cast( tgtNode->GetPosition() ); pos->SetUParameter( newUV.X() ); pos->SetVParameter( newUV.Y() ); #ifdef __myDEBUG gp_Pnt p = surface->Value( newUV.X(), newUV.Y() ); tgtNode->setXYZ( p.X(), p.Y(), p.Z() ); dumpMove( tgtNode ); #endif } else // _sWOL is TopAbs_EDGE { const TopoDS_Edge& E = TopoDS::Edge( eos._sWOL ); const SMDS_MeshNode* n2 = _simplices[0]._nPrev; SMDS_EdgePosition* tgtPos = static_cast( tgtNode->GetPosition() ); const double u2 = helper.GetNodeU( E, n2, tgtNode ); const double uSrc = _pos[0].Coord( U_SRC ); const double lenTgt = _pos[0].Coord( LEN_TGT ); double newU = _pos[0].Coord( U_TGT ); if ( lenTgt < 0.99 * fabs( uSrc-u2 )) // n2 got out of src-tgt range { _pos.clear(); } else { newU = 0.1 * tgtPos->GetUParameter() + 0.9 * u2; } tgtPos->SetUParameter( newU ); #ifdef __myDEBUG gp_XY newUV = helper.GetNodeUV( F, tgtNode, _nodes[0]); gp_Pnt p = surface->Value( newUV.X(), newUV.Y() ); tgtNode->setXYZ( p.X(), p.Y(), p.Z() ); dumpMove( tgtNode ); #endif } return true; } //================================================================================ /*! * \brief Perform smooth on the FACE * \retval bool - true if the node has been moved */ //================================================================================ bool _SmoothNode::Smooth(int& badNb, Handle(Geom_Surface)& surface, SMESH_MesherHelper& helper, const double refSign, SmoothType how, bool set3D) { const TopoDS_Face& face = TopoDS::Face( helper.GetSubShape() ); // get uv of surrounding nodes vector uv( _simplices.size() ); for ( size_t i = 0; i < _simplices.size(); ++i ) uv[i] = helper.GetNodeUV( face, _simplices[i]._nPrev, _node ); // compute new UV for the node gp_XY newPos (0,0); if ( how == TFI && _simplices.size() == 4 ) { gp_XY corners[4]; for ( size_t i = 0; i < _simplices.size(); ++i ) if ( _simplices[i]._nOpp ) corners[i] = helper.GetNodeUV( face, _simplices[i]._nOpp, _node ); else throw SALOME_Exception(LOCALIZED("TFI smoothing: _Simplex::_nOpp not set!")); newPos = helper.calcTFI ( 0.5, 0.5, corners[0], corners[1], corners[2], corners[3], uv[1], uv[2], uv[3], uv[0] ); } else if ( how == ANGULAR ) { newPos = computeAngularPos( uv, helper.GetNodeUV( face, _node ), refSign ); } else if ( how == CENTROIDAL && _simplices.size() > 3 ) { // average centers of diagonals wieghted with their reciprocal lengths if ( _simplices.size() == 4 ) { double w1 = 1. / ( uv[2]-uv[0] ).SquareModulus(); double w2 = 1. / ( uv[3]-uv[1] ).SquareModulus(); newPos = ( w1 * ( uv[2]+uv[0] ) + w2 * ( uv[3]+uv[1] )) / ( w1+w2 ) / 2; } else { double sumWeight = 0; int nb = _simplices.size() == 4 ? 2 : _simplices.size(); for ( int i = 0; i < nb; ++i ) { int iFrom = i + 2; int iTo = i + _simplices.size() - 1; for ( int j = iFrom; j < iTo; ++j ) { int i2 = SMESH_MesherHelper::WrapIndex( j, _simplices.size() ); double w = 1. / ( uv[i]-uv[i2] ).SquareModulus(); sumWeight += w; newPos += w * ( uv[i]+uv[i2] ); } } newPos /= 2 * sumWeight; // 2 is to get a middle between uv's } } else { // Laplacian smooth for ( size_t i = 0; i < _simplices.size(); ++i ) newPos += uv[i]; newPos /= _simplices.size(); } // count quality metrics (orientation) of triangles around the node int nbOkBefore = 0; gp_XY tgtUV = helper.GetNodeUV( face, _node ); for ( size_t i = 0; i < _simplices.size(); ++i ) nbOkBefore += _simplices[i].IsForward( tgtUV, _node, face, helper, refSign ); int nbOkAfter = 0; for ( size_t i = 0; i < _simplices.size(); ++i ) nbOkAfter += _simplices[i].IsForward( newPos, _node, face, helper, refSign ); if ( nbOkAfter < nbOkBefore ) { badNb += _simplices.size() - nbOkBefore; return false; } SMDS_FacePosition* pos = static_cast( _node->GetPosition() ); pos->SetUParameter( newPos.X() ); pos->SetVParameter( newPos.Y() ); #ifdef __myDEBUG set3D = true; #endif if ( set3D ) { gp_Pnt p = surface->Value( newPos.X(), newPos.Y() ); const_cast< SMDS_MeshNode* >( _node )->setXYZ( p.X(), p.Y(), p.Z() ); dumpMove( _node ); } badNb += _simplices.size() - nbOkAfter; return ( (tgtUV-newPos).SquareModulus() > 1e-10 ); } //================================================================================ /*! * \brief Computes new UV using angle based smoothing technic */ //================================================================================ gp_XY _SmoothNode::computeAngularPos(vector& uv, const gp_XY& uvToFix, const double refSign) { uv.push_back( uv.front() ); vector< gp_XY > edgeDir ( uv.size() ); vector< double > edgeSize( uv.size() ); for ( size_t i = 1; i < edgeDir.size(); ++i ) { edgeDir [i-1] = uv[i] - uv[i-1]; edgeSize[i-1] = edgeDir[i-1].Modulus(); if ( edgeSize[i-1] < numeric_limits::min() ) edgeDir[i-1].SetX( 100 ); else edgeDir[i-1] /= edgeSize[i-1] * refSign; } edgeDir.back() = edgeDir.front(); edgeSize.back() = edgeSize.front(); gp_XY newPos(0,0); //int nbEdges = 0; double sumSize = 0; for ( size_t i = 1; i < edgeDir.size(); ++i ) { if ( edgeDir[i-1].X() > 1. ) continue; int i1 = i-1; while ( edgeDir[i].X() > 1. && ++i < edgeDir.size() ); if ( i == edgeDir.size() ) break; gp_XY p = uv[i]; gp_XY norm1( -edgeDir[i1].Y(), edgeDir[i1].X() ); gp_XY norm2( -edgeDir[i].Y(), edgeDir[i].X() ); gp_XY bisec = norm1 + norm2; double bisecSize = bisec.Modulus(); if ( bisecSize < numeric_limits::min() ) { bisec = -edgeDir[i1] + edgeDir[i]; bisecSize = bisec.Modulus(); } bisec /= bisecSize; gp_XY dirToN = uvToFix - p; double distToN = dirToN.Modulus(); if ( bisec * dirToN < 0 ) distToN = -distToN; newPos += ( p + bisec * distToN ) * ( edgeSize[i1] + edgeSize[i] ); //++nbEdges; sumSize += edgeSize[i1] + edgeSize[i]; } newPos /= /*nbEdges * */sumSize; return newPos; } //================================================================================ /*! * \brief Delete _SolidData */ //================================================================================ _SolidData::~_SolidData() { TNode2Edge::iterator n2e = _n2eMap.begin(); for ( ; n2e != _n2eMap.end(); ++n2e ) { _LayerEdge* & e = n2e->second; if ( e && e->_2neibors ) delete e->_2neibors; delete e; e = NULL; } _n2eMap.clear(); } //================================================================================ /*! * \brief Keep a _LayerEdge inflated along the EDGE */ //================================================================================ void _Shrinker1D::AddEdge( const _LayerEdge* e, _EdgesOnShape& eos, SMESH_MesherHelper& helper ) { // init if ( _nodes.empty() ) { _edges[0] = _edges[1] = 0; _done = false; } // check _LayerEdge if ( e == _edges[0] || e == _edges[1] ) return; if ( eos.SWOLType() != TopAbs_EDGE ) throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added")); if ( _edges[0] && !_geomEdge.IsSame( eos._sWOL )) throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added")); // store _LayerEdge _geomEdge = TopoDS::Edge( eos._sWOL ); double f,l; BRep_Tool::Range( _geomEdge, f,l ); double u = helper.GetNodeU( _geomEdge, e->_nodes[0], e->_nodes.back()); _edges[ u < 0.5*(f+l) ? 0 : 1 ] = e; // Update _nodes const SMDS_MeshNode* tgtNode0 = _edges[0] ? _edges[0]->_nodes.back() : 0; const SMDS_MeshNode* tgtNode1 = _edges[1] ? _edges[1]->_nodes.back() : 0; if ( _nodes.empty() ) { SMESHDS_SubMesh * eSubMesh = helper.GetMeshDS()->MeshElements( _geomEdge ); if ( !eSubMesh || eSubMesh->NbNodes() < 1 ) return; TopLoc_Location loc; Handle(Geom_Curve) C = BRep_Tool::Curve( _geomEdge, loc, f,l ); GeomAdaptor_Curve aCurve(C, f,l); const double totLen = GCPnts_AbscissaPoint::Length(aCurve, f, l); int nbExpectNodes = eSubMesh->NbNodes(); _initU .reserve( nbExpectNodes ); _normPar.reserve( nbExpectNodes ); _nodes .reserve( nbExpectNodes ); SMDS_NodeIteratorPtr nIt = eSubMesh->GetNodes(); while ( nIt->more() ) { const SMDS_MeshNode* node = nIt->next(); if ( node->NbInverseElements(SMDSAbs_Edge) == 0 || node == tgtNode0 || node == tgtNode1 ) continue; // refinement nodes _nodes.push_back( node ); _initU.push_back( helper.GetNodeU( _geomEdge, node )); double len = GCPnts_AbscissaPoint::Length(aCurve, f, _initU.back()); _normPar.push_back( len / totLen ); } } else { // remove target node of the _LayerEdge from _nodes int nbFound = 0; for ( size_t i = 0; i < _nodes.size(); ++i ) if ( !_nodes[i] || _nodes[i] == tgtNode0 || _nodes[i] == tgtNode1 ) _nodes[i] = 0, nbFound++; if ( nbFound == _nodes.size() ) _nodes.clear(); } } //================================================================================ /*! * \brief Move nodes on EDGE from ends where _LayerEdge's are inflated */ //================================================================================ void _Shrinker1D::Compute(bool set3D, SMESH_MesherHelper& helper) { if ( _done || _nodes.empty()) return; const _LayerEdge* e = _edges[0]; if ( !e ) e = _edges[1]; if ( !e ) return; _done = (( !_edges[0] || _edges[0]->_pos.empty() ) && ( !_edges[1] || _edges[1]->_pos.empty() )); double f,l; if ( set3D || _done ) { Handle(Geom_Curve) C = BRep_Tool::Curve(_geomEdge, f,l); GeomAdaptor_Curve aCurve(C, f,l); if ( _edges[0] ) f = helper.GetNodeU( _geomEdge, _edges[0]->_nodes.back(), _nodes[0] ); if ( _edges[1] ) l = helper.GetNodeU( _geomEdge, _edges[1]->_nodes.back(), _nodes.back() ); double totLen = GCPnts_AbscissaPoint::Length( aCurve, f, l ); for ( size_t i = 0; i < _nodes.size(); ++i ) { if ( !_nodes[i] ) continue; double len = totLen * _normPar[i]; GCPnts_AbscissaPoint discret( aCurve, len, f ); if ( !discret.IsDone() ) return throw SALOME_Exception(LOCALIZED("GCPnts_AbscissaPoint failed")); double u = discret.Parameter(); SMDS_EdgePosition* pos = static_cast( _nodes[i]->GetPosition() ); pos->SetUParameter( u ); gp_Pnt p = C->Value( u ); const_cast< SMDS_MeshNode*>( _nodes[i] )->setXYZ( p.X(), p.Y(), p.Z() ); } } else { BRep_Tool::Range( _geomEdge, f,l ); if ( _edges[0] ) f = helper.GetNodeU( _geomEdge, _edges[0]->_nodes.back(), _nodes[0] ); if ( _edges[1] ) l = helper.GetNodeU( _geomEdge, _edges[1]->_nodes.back(), _nodes.back() ); for ( size_t i = 0; i < _nodes.size(); ++i ) { if ( !_nodes[i] ) continue; double u = f * ( 1-_normPar[i] ) + l * _normPar[i]; SMDS_EdgePosition* pos = static_cast( _nodes[i]->GetPosition() ); pos->SetUParameter( u ); } } } //================================================================================ /*! * \brief Restore initial parameters of nodes on EDGE */ //================================================================================ void _Shrinker1D::RestoreParams() { if ( _done ) for ( size_t i = 0; i < _nodes.size(); ++i ) { if ( !_nodes[i] ) continue; SMDS_EdgePosition* pos = static_cast( _nodes[i]->GetPosition() ); pos->SetUParameter( _initU[i] ); } _done = false; } //================================================================================ /*! * \brief Replace source nodes by target nodes in shrinked mesh edges */ //================================================================================ void _Shrinker1D::SwapSrcTgtNodes( SMESHDS_Mesh* mesh ) { const SMDS_MeshNode* nodes[3]; for ( int i = 0; i < 2; ++i ) { if ( !_edges[i] ) continue; SMESHDS_SubMesh * eSubMesh = mesh->MeshElements( _geomEdge ); if ( !eSubMesh ) return; const SMDS_MeshNode* srcNode = _edges[i]->_nodes[0]; const SMDS_MeshNode* tgtNode = _edges[i]->_nodes.back(); SMDS_ElemIteratorPtr eIt = srcNode->GetInverseElementIterator(SMDSAbs_Edge); while ( eIt->more() ) { const SMDS_MeshElement* e = eIt->next(); if ( !eSubMesh->Contains( e )) continue; SMDS_ElemIteratorPtr nIt = e->nodesIterator(); for ( int iN = 0; iN < e->NbNodes(); ++iN ) { const SMDS_MeshNode* n = static_cast( nIt->next() ); nodes[iN] = ( n == srcNode ? tgtNode : n ); } mesh->ChangeElementNodes( e, nodes, e->NbNodes() ); } } } //================================================================================ /*! * \brief Creates 2D and 1D elements on boundaries of new prisms */ //================================================================================ bool _ViscousBuilder::addBoundaryElements() { SMESH_MesherHelper helper( *_mesh ); vector< const SMDS_MeshNode* > faceNodes; for ( size_t i = 0; i < _sdVec.size(); ++i ) { _SolidData& data = _sdVec[i]; TopTools_IndexedMapOfShape geomEdges; TopExp::MapShapes( data._solid, TopAbs_EDGE, geomEdges ); for ( int iE = 1; iE <= geomEdges.Extent(); ++iE ) { const TopoDS_Edge& E = TopoDS::Edge( geomEdges(iE)); if ( data._noShrinkShapes.count( getMeshDS()->ShapeToIndex( E ))) continue; // Get _LayerEdge's based on E map< double, const SMDS_MeshNode* > u2nodes; if ( !SMESH_Algo::GetSortedNodesOnEdge( getMeshDS(), E, /*ignoreMedium=*/false, u2nodes)) continue; vector< _LayerEdge* > ledges; ledges.reserve( u2nodes.size() ); TNode2Edge & n2eMap = data._n2eMap; map< double, const SMDS_MeshNode* >::iterator u2n = u2nodes.begin(); { //check if 2D elements are needed on E TNode2Edge::iterator n2e = n2eMap.find( u2n->second ); if ( n2e == n2eMap.end() ) continue; // no layers on vertex ledges.push_back( n2e->second ); u2n++; if (( n2e = n2eMap.find( u2n->second )) == n2eMap.end() ) continue; // no layers on E ledges.push_back( n2eMap[ u2n->second ]); const SMDS_MeshNode* tgtN0 = ledges[0]->_nodes.back(); const SMDS_MeshNode* tgtN1 = ledges[1]->_nodes.back(); int nbSharedPyram = 0; SMDS_ElemIteratorPtr vIt = tgtN0->GetInverseElementIterator(SMDSAbs_Volume); while ( vIt->more() ) { const SMDS_MeshElement* v = vIt->next(); nbSharedPyram += int( v->GetNodeIndex( tgtN1 ) >= 0 ); } if ( nbSharedPyram > 1 ) continue; // not free border of the pyramid faceNodes.clear(); faceNodes.push_back( ledges[0]->_nodes[0] ); faceNodes.push_back( ledges[1]->_nodes[0] ); if ( ledges[0]->_nodes.size() > 1 ) faceNodes.push_back( ledges[0]->_nodes[1] ); if ( ledges[1]->_nodes.size() > 1 ) faceNodes.push_back( ledges[1]->_nodes[1] ); if ( getMeshDS()->FindElement( faceNodes, SMDSAbs_Face, /*noMedium=*/true)) continue; // faces already created } for ( ++u2n; u2n != u2nodes.end(); ++u2n ) ledges.push_back( n2eMap[ u2n->second ]); // Find out orientation and type of face to create bool reverse = false, isOnFace; map< TGeomID, TopoDS_Shape >::iterator e2f = data._shrinkShape2Shape.find( getMeshDS()->ShapeToIndex( E )); TopoDS_Shape F; if (( isOnFace = ( e2f != data._shrinkShape2Shape.end() ))) { F = e2f->second.Oriented( TopAbs_FORWARD ); reverse = ( helper.GetSubShapeOri( F, E ) == TopAbs_REVERSED ); if ( helper.GetSubShapeOri( data._solid, F ) == TopAbs_REVERSED ) reverse = !reverse, F.Reverse(); if ( helper.IsReversedSubMesh( TopoDS::Face(F) )) reverse = !reverse; } else { // find FACE with layers sharing E PShapeIteratorPtr fIt = helper.GetAncestors( E, *_mesh, TopAbs_FACE ); while ( fIt->more() && F.IsNull() ) { const TopoDS_Shape* pF = fIt->next(); if ( helper.IsSubShape( *pF, data._solid) && !data._ignoreFaceIds.count( e2f->first )) F = *pF; } } // Find the sub-mesh to add new faces SMESHDS_SubMesh* sm = 0; if ( isOnFace ) sm = getMeshDS()->MeshElements( F ); else sm = data._proxyMesh->getFaceSubM( TopoDS::Face(F), /*create=*/true ); if ( !sm ) return error("error in addBoundaryElements()", data._index); // Make faces const int dj1 = reverse ? 0 : 1; const int dj2 = reverse ? 1 : 0; for ( size_t j = 1; j < ledges.size(); ++j ) { vector< const SMDS_MeshNode*>& nn1 = ledges[j-dj1]->_nodes; vector< const SMDS_MeshNode*>& nn2 = ledges[j-dj2]->_nodes; if ( nn1.size() == nn2.size() ) { if ( isOnFace ) for ( size_t z = 1; z < nn1.size(); ++z ) sm->AddElement( getMeshDS()->AddFace( nn1[z-1], nn2[z-1], nn2[z], nn1[z] )); else for ( size_t z = 1; z < nn1.size(); ++z ) sm->AddElement( new SMDS_FaceOfNodes( nn1[z-1], nn2[z-1], nn2[z], nn1[z] )); } else if ( nn1.size() == 1 ) { if ( isOnFace ) for ( size_t z = 1; z < nn2.size(); ++z ) sm->AddElement( getMeshDS()->AddFace( nn1[0], nn2[z-1], nn2[z] )); else for ( size_t z = 1; z < nn2.size(); ++z ) sm->AddElement( new SMDS_FaceOfNodes( nn1[0], nn2[z-1], nn2[z] )); } else { if ( isOnFace ) for ( size_t z = 1; z < nn1.size(); ++z ) sm->AddElement( getMeshDS()->AddFace( nn1[z-1], nn2[0], nn1[z] )); else for ( size_t z = 1; z < nn1.size(); ++z ) sm->AddElement( new SMDS_FaceOfNodes( nn1[z-1], nn2[0], nn2[z] )); } } // Make edges for ( int isFirst = 0; isFirst < 2; ++isFirst ) { _LayerEdge* edge = isFirst ? ledges.front() : ledges.back(); _EdgesOnShape* eos = data.GetShapeEdges( edge ); if ( eos && eos->SWOLType() == TopAbs_EDGE ) { vector< const SMDS_MeshNode*>& nn = edge->_nodes; if ( nn.size() < 2 || nn[1]->GetInverseElementIterator( SMDSAbs_Edge )->more() ) continue; helper.SetSubShape( eos->_sWOL ); helper.SetElementsOnShape( true ); for ( size_t z = 1; z < nn.size(); ++z ) helper.AddEdge( nn[z-1], nn[z] ); } } } // loop on EDGE's } // loop on _SolidData's return true; }