// Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File: SMESH_MesherHelper.hxx // Created: 15.02.06 14:48:09 // Author: Sergey KUUL // #ifndef SMESH_MesherHelper_HeaderFile #define SMESH_MesherHelper_HeaderFile #include "SMESH_SMESH.hxx" #include "SMESH_MeshEditor.hxx" // needed for many meshers #include #include #include #include #include #include #include #include class GeomAPI_ProjectPointOnSurf; class GeomAPI_ProjectPointOnCurve; class SMESH_ProxyMesh; typedef std::map TLinkNodeMap; typedef std::map::iterator ItTLinkNode; typedef SMDS_Iterator PShapeIterator; typedef boost::shared_ptr< PShapeIterator > PShapeIteratorPtr; typedef std::vector TNodeColumn; typedef std::map< double, TNodeColumn > TParam2ColumnMap; typedef gp_XY (*xyFunPtr)(const gp_XY& uv1, const gp_XY& uv2); //======================================================================= /*! * \brief It helps meshers to add elements and provides other utilities * * - It allows meshers not to care about creation of medium nodes * when filling a quadratic mesh. Helper does it itself. * It defines order of elements to create when IsQuadraticSubMesh() * is called. * - It provides information on a shape it is initialized with: * periodicity, presence of singularities etc. * - ... */ //======================================================================= class SMESH_EXPORT SMESH_MesherHelper { public: // ---------- PUBLIC UTILITIES ---------- /*! * \brief Returns true if all elements of a sub-mesh are of same shape * \param smDS - sub-mesh to check elements of * \param shape - expected shape of elements * \param nullSubMeshRes - result value for the case of smDS == NULL * \retval bool - check result */ static bool IsSameElemGeometry(const SMESHDS_SubMesh* smDS, SMDSAbs_GeometryType shape, const bool nullSubMeshRes = true); /*! * \brief Load nodes bound to face into a map of node columns * \param theParam2ColumnMap - map of node columns to fill * \param theFace - the face on which nodes are searched for * \param theBaseSide - the edges holding nodes on which columns' bases * \param theMesh - the mesh containing nodes * \retval bool - false if something is wrong * * The key of the map is a normalized parameter of each * base node on theBaseSide. Edges in theBaseSide must be sequenced. * This method works in supposition that nodes on the face * forms a structured grid and elements can be quardrangles or triangles */ static bool LoadNodeColumns(TParam2ColumnMap & theParam2ColumnMap, const TopoDS_Face& theFace, const std::list& theBaseSide, SMESHDS_Mesh* theMesh, SMESH_ProxyMesh* theProxyMesh=0); /*! * \brief Variant of LoadNodeColumns() above with theBaseSide given by one edge */ static bool LoadNodeColumns(TParam2ColumnMap & theParam2ColumnMap, const TopoDS_Face& theFace, const TopoDS_Edge& theBaseEdge, SMESHDS_Mesh* theMesh, SMESH_ProxyMesh* theProxyMesh=0); /*! * \brief Return true if 2D mesh on FACE is structured */ static bool IsStructured( SMESH_subMesh* faceSM ); /*! * \brief Returns true if given node is medium * \param n - node to check * \param typeToCheck - type of elements containing the node to ask about node status * \retval bool - check result */ static bool IsMedium(const SMDS_MeshNode* node, const SMDSAbs_ElementType typeToCheck = SMDSAbs_All); /*! * \brief Return support shape of a node * \param node - the node * \param meshDS - mesh DS * \retval TopoDS_Shape - found support shape */ static TopoDS_Shape GetSubShapeByNode(const SMDS_MeshNode* node, const SMESHDS_Mesh* meshDS); /*! * \brief Return a valid node index, fixing the given one if necessary * \param ind - node index * \param nbNodes - total nb of nodes * \retval int - valid node index */ static int WrapIndex(const int ind, const int nbNodes) { if ( ind < 0 ) return nbNodes + ind % nbNodes; if ( ind >= nbNodes ) return ind % nbNodes; return ind; } /*! * \brief Return UV of a point inside a quadrilateral FACE by it's * normalized parameters within a unit quadrangle and the * corresponding projections on sub-shapes of the real-world FACE. * The used calculation method is called Trans-Finite Interpolation (TFI). * \param x,y - normalized parameters that should be in range [0,1] * \param a0,a1,a2,a3 - UV of VERTEXes of the FACE == projections on VERTEXes * \param p0,p1,p2,p3 - UV of the point projections on EDGEs of the FACE * \return gp_XY - UV of the point on the FACE * * Y ^ Order of those UV in the FACE is as follows. * | * a3 p2 a2 * o---x-----o * | : | * | :UV | * p3 x...O.....x p1 * | : | * o---x-----o ----> X * a0 p0 a1 */ inline static gp_XY calcTFI(double x, double y, const gp_XY a0,const gp_XY a1,const gp_XY a2,const gp_XY a3, const gp_XY p0,const gp_XY p1,const gp_XY p2,const gp_XY p3); /*! * \brief Same as "gp_XY calcTFI(...)" but in 3D */ inline static gp_XYZ calcTFI(double x, double y, const gp_XYZ a0,const gp_XYZ a1,const gp_XYZ a2,const gp_XYZ a3, const gp_XYZ p0,const gp_XYZ p1,const gp_XYZ p2,const gp_XYZ p3); /*! * \brief Count nb of sub-shapes * \param shape - the shape * \param type - the type of sub-shapes to count * \param ignoreSame - if true, use map not to count same shapes, esle use explorer * \retval int - the calculated number */ static int Count(const TopoDS_Shape& shape, const TopAbs_ShapeEnum type, const bool ignoreSame); /*! * \brief Return number of unique ancestors of the shape */ static int NbAncestors(const TopoDS_Shape& shape, const SMESH_Mesh& mesh, TopAbs_ShapeEnum ancestorType=TopAbs_SHAPE); /*! * \brief Return iterator on ancestors of the given type */ static PShapeIteratorPtr GetAncestors(const TopoDS_Shape& shape, const SMESH_Mesh& mesh, TopAbs_ShapeEnum ancestorType); /*! * \brief Find a common ancestor, of the given type, of two shapes */ static TopoDS_Shape GetCommonAncestor(const TopoDS_Shape& shape1, const TopoDS_Shape& shape2, const SMESH_Mesh& mesh, TopAbs_ShapeEnum ancestorType); /*! * \brief Return orientation of sub-shape in the main shape */ static TopAbs_Orientation GetSubShapeOri(const TopoDS_Shape& shape, const TopoDS_Shape& subShape); static bool IsSubShape( const TopoDS_Shape& shape, const TopoDS_Shape& mainShape ); static bool IsSubShape( const TopoDS_Shape& shape, SMESH_Mesh* aMesh ); static double MaxTolerance( const TopoDS_Shape& shape ); static double GetAngle( const TopoDS_Edge & E1, const TopoDS_Edge & E2, const TopoDS_Face & F); static bool IsClosedEdge( const TopoDS_Edge& anEdge ); static TopoDS_Vertex IthVertex( const bool is2nd, TopoDS_Edge anEdge, const bool CumOri=true ); static TopAbs_ShapeEnum GetGroupType(const TopoDS_Shape& group, const bool avoidCompound=false); public: // ---------- PUBLIC INSTANCE METHODS ---------- // constructor SMESH_MesherHelper(SMESH_Mesh& theMesh); SMESH_Mesh* GetMesh() const { return myMesh; } SMESHDS_Mesh* GetMeshDS() const { return GetMesh()->GetMeshDS(); } /*! * Check submesh for given shape: if all elements on this shape are quadratic, * quadratic elements will be created. Also fill myTLinkNodeMap */ bool IsQuadraticSubMesh(const TopoDS_Shape& theShape); /*! * \brief Set order of elements to create without calling IsQuadraticSubMesh() */ /*! * \brief Set myCreateQuadratic flag */ void SetIsQuadratic(const bool theBuildQuadratic) { myCreateQuadratic = theBuildQuadratic; } /*! * \brief Set myCreateBiQuadratic flag */ void SetIsBiQuadratic(const bool theBuildBiQuadratic) { myCreateBiQuadratic = theBuildBiQuadratic; } /*! * \brief Return myCreateQuadratic flag */ bool GetIsQuadratic() const { return myCreateQuadratic; } /* * \brief Find out elements orientation on a geometrical face */ bool IsReversedSubMesh (const TopoDS_Face& theFace); /*! * \brief Return myCreateBiQuadratic flag */ bool GetIsBiQuadratic() const { return myCreateBiQuadratic; } /*! * \brief Move medium nodes of faces and volumes to fix distorted elements * \param error - container of fixed distorted elements * \param volumeOnly - fix nodes on geom faces or not if the shape is solid */ void FixQuadraticElements(SMESH_ComputeErrorPtr& error, bool volumeOnly=true); /*! * \brief To set created elements on the shape set by IsQuadraticSubMesh() * or the next methods. By defaul elements are set on the shape if * a mesh has no shape to be meshed */ bool SetElementsOnShape(bool toSet) { bool res = mySetElemOnShape; mySetElemOnShape = toSet; return res; } /*! * \brief Set shape to make elements on without calling IsQuadraticSubMesh() */ void SetSubShape(const int subShapeID);//!==SMESHDS_Mesh::ShapeToIndex(shape) void SetSubShape(const TopoDS_Shape& subShape); /*! * \brief Return ID of the shape set by IsQuadraticSubMesh() or SetSubShape() * \retval int - shape index in SMESHDS */ int GetSubShapeID() const { return myShapeID; } /*! * \brief Return the shape set by IsQuadraticSubMesh() or SetSubShape() */ const TopoDS_Shape& GetSubShape() const { return myShape; } /*! * Creates a node (!Note ID before u=0.,v0.) */ SMDS_MeshNode* AddNode(double x, double y, double z, int ID = 0, double u=0., double v=0.); /*! * Creates quadratic or linear edge */ SMDS_MeshEdge* AddEdge(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const int id = 0, const bool force3d = true); /*! * Creates quadratic or linear triangle */ SMDS_MeshFace* AddFace(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const int id=0, const bool force3d = false); /*! * Creates bi-quadratic, quadratic or linear quadrangle */ SMDS_MeshFace* AddFace(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const int id = 0, const bool force3d = false); /*! * Creates polygon, with additional nodes in quadratic mesh */ SMDS_MeshFace* AddPolygonalFace (const std::vector& nodes, const int id = 0, const bool force3d = false); /*! * Creates quadratic or linear tetrahedron */ SMDS_MeshVolume* AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const int id = 0, const bool force3d = true); /*! * Creates quadratic or linear pyramid */ SMDS_MeshVolume* AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const SMDS_MeshNode* n5, const int id = 0, const bool force3d = true); /*! * Creates quadratic or linear pentahedron */ SMDS_MeshVolume* AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const SMDS_MeshNode* n5, const SMDS_MeshNode* n6, const int id = 0, const bool force3d = true); /*! * Creates bi-quadratic, quadratic or linear hexahedron */ SMDS_MeshVolume* AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const SMDS_MeshNode* n5, const SMDS_MeshNode* n6, const SMDS_MeshNode* n7, const SMDS_MeshNode* n8, const int id = 0, bool force3d = true); /*! * Creates LINEAR!!!!!!!!! octahedron */ SMDS_MeshVolume* AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const SMDS_MeshNode* n5, const SMDS_MeshNode* n6, const SMDS_MeshNode* n7, const SMDS_MeshNode* n8, const SMDS_MeshNode* n9, const SMDS_MeshNode* n10, const SMDS_MeshNode* n11, const SMDS_MeshNode* n12, const int id = 0, bool force3d = true); /*! * Creates polyhedron. In quadratic mesh, adds medium nodes */ SMDS_MeshVolume* AddPolyhedralVolume (const std::vector& nodes, const std::vector& quantities, const int ID=0, const bool force3d = true); /*! * \brief Enables fixing node parameters on EDGEs and FACEs by * GetNodeU(...,check=true), GetNodeUV(...,check=true), CheckNodeUV() and * CheckNodeU() in case if a node lies on a shape set via SetSubShape(). * Default is False */ void ToFixNodeParameters(bool toFix); /*! * \brief Return U of the given node on the edge */ double GetNodeU(const TopoDS_Edge& theEdge, const SMDS_MeshNode* theNode, const SMDS_MeshNode* inEdgeNode=0, bool* check=0) const; /*! * \brief Return node UV on face * \param inFaceNode - a node of element being created located inside a face * \param check - if provided, returns result of UV check that it enforces */ gp_XY GetNodeUV(const TopoDS_Face& F, const SMDS_MeshNode* n, const SMDS_MeshNode* inFaceNode=0, bool* check=0) const; /*! * \brief Check and fix node UV on a face * \param force - check even if checks of other nodes on this face passed OK * \param distXYZ - returns result distance and point coordinates * \retval bool - false if UV is bad and could not be fixed */ bool CheckNodeUV(const TopoDS_Face& F, const SMDS_MeshNode* n, gp_XY& uv, const double tol, const bool force=false, double distXYZ[4]=0) const; /*! * \brief Check and fix node U on an edge * \param force - check even if checks of other nodes on this edge passed OK * \param distXYZ - returns result distance and point coordinates * \retval bool - false if U is bad and could not be fixed */ bool CheckNodeU(const TopoDS_Edge& E, const SMDS_MeshNode* n, double& u, const double tol, const bool force=false, double distXYZ[4]=0) const; /*! * \brief Return middle UV taking in account surface period */ static gp_XY GetMiddleUV(const Handle(Geom_Surface)& surface, const gp_XY& uv1, const gp_XY& uv2); /*! * \brief Return UV for the central node of a biquadratic triangle */ static gp_XY GetCenterUV(const gp_XY& uv1, const gp_XY& uv2, const gp_XY& uv3, const gp_XY& uv12, const gp_XY& uv23, const gp_XY& uv31, bool * isBadTria=0); /*! * \brief Define a pointer to wrapper over a function of gp_XY class, * suitable to pass as xyFunPtr to applyIn2D(). * For exaple gp_XY_FunPtr(Added) defines pointer gp_XY_Added to function * calling gp_XY::Added(gp_XY), which is to be used like following * applyIn2D(surf, uv1, uv2, gp_XY_Added) */ #define gp_XY_FunPtr(meth) \ static gp_XY __gpXY_##meth (const gp_XY& uv1, const gp_XY& uv2) { return uv1.meth( uv2 ); } \ static xyFunPtr gp_XY_##meth = & __gpXY_##meth /*! * \brief Perform given operation on two 2d points in parameric space of given surface. * It takes into account period of the surface. Use gp_XY_FunPtr macro * to easily define pointer to function of gp_XY class. */ static gp_XY applyIn2D(const Handle(Geom_Surface)& surface, const gp_XY& uv1, const gp_XY& uv2, xyFunPtr fun, const bool resultInPeriod=true); /*! * \brief Check if inFaceNode argument is necessary for call GetNodeUV(F,..) * \retval bool - return true if the face is periodic * * If F is Null, answer about subshape set through IsQuadraticSubMesh() or * SetSubShape() */ bool GetNodeUVneedInFaceNode(const TopoDS_Face& F = TopoDS_Face()) const; /*! * \brief Return projector intitialized by given face without location, which is returned */ GeomAPI_ProjectPointOnSurf& GetProjector(const TopoDS_Face& F, TopLoc_Location& loc, double tol=0 ) const; /*! * \brief Check if shape is a degenerated edge or it's vertex * \param subShape - edge or vertex index in SMESHDS * \retval bool - true if subShape is a degenerated shape * * It works only if IsQuadraticSubMesh() or SetSubShape() has been called */ bool IsDegenShape(const int subShape) const { return myDegenShapeIds.find( subShape ) != myDegenShapeIds.end(); } /*! * \brief Check if the shape set through IsQuadraticSubMesh() or SetSubShape() * has a degenerated edges * \retval bool - true if it has */ bool HasDegeneratedEdges() const { return !myDegenShapeIds.empty(); } /*! * \brief Check if shape is a seam edge or it's vertex * \param subShape - edge or vertex index in SMESHDS * \retval bool - true if subShape is a seam shape * * It works only if IsQuadraticSubMesh() or SetSubShape() has been called. * Seam shape has two 2D alternative represenations on the face */ bool IsSeamShape(const int subShape) const { return mySeamShapeIds.find( subShape ) != mySeamShapeIds.end(); } /*! * \brief Check if shape is a seam edge or it's vertex * \param subShape - edge or vertex * \retval bool - true if subShape is a seam shape * * It works only if IsQuadraticSubMesh() or SetSubShape() has been called. * Seam shape has two 2D alternative represenations on the face */ bool IsSeamShape(const TopoDS_Shape& subShape) const { return IsSeamShape( GetMeshDS()->ShapeToIndex( subShape )); } /*! * \brief Return true if an edge or a vertex encounters twice in face wire * \param subShape - Id of edge or vertex */ bool IsRealSeam(const int subShape) const { return mySeamShapeIds.find( -subShape ) != mySeamShapeIds.end(); } /*! * \brief Return true if an edge or a vertex encounters twice in face wire * \param subShape - edge or vertex */ bool IsRealSeam(const TopoDS_Shape& subShape) const { return IsRealSeam( GetMeshDS()->ShapeToIndex( subShape)); } /*! * \brief Check if the shape set through IsQuadraticSubMesh() or SetSubShape() * has a seam edge * \retval bool - true if it has */ bool HasSeam() const { return !mySeamShapeIds.empty(); } /*! * \brief Return index of periodic parametric direction of a closed face * \retval int - 1 for U, 2 for V direction */ int GetPeriodicIndex() const { return myParIndex; } /*! * \brief Return an alternative parameter for a node on seam */ double GetOtherParam(const double param) const; /*! * \brief Return existing or create new medium nodes between given ones * \param force3d - true means node creation at the middle between the * two given nodes, else node position is found on its * supporting geometrical shape, if any. */ const SMDS_MeshNode* GetMediumNode(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const bool force3d); /*! * \brief Return existing or create a new central node for a quardilateral * quadratic face given its 8 nodes. * \param force3d - true means node creation in between the given nodes, * else node position is found on a geometrical face if any. */ const SMDS_MeshNode* GetCentralNode(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const SMDS_MeshNode* n12, const SMDS_MeshNode* n23, const SMDS_MeshNode* n34, const SMDS_MeshNode* n41, bool force3d); /*! * \brief Return existing or create a new central node for a * quadratic triangle given its 6 nodes. * \param force3d - true means node creation in between the given nodes, * else node position is found on a geometrical face if any. */ const SMDS_MeshNode* GetCentralNode(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n12, const SMDS_MeshNode* n23, const SMDS_MeshNode* n31, bool force3d); /*! * \brief Return index and type of the shape (EDGE or FACE only) to set a medium node on */ std::pair GetMediumPos(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const bool useCurSubShape=false); /*! * \brief Add a link in my data structure */ void AddTLinkNode(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n12); /*! * \brief Add many links in my data structure */ void AddTLinkNodeMap(const TLinkNodeMap& aMap) { myTLinkNodeMap.insert(aMap.begin(), aMap.end()); } void AddTLinks(const SMDS_MeshEdge* edge); void AddTLinks(const SMDS_MeshFace* face); void AddTLinks(const SMDS_MeshVolume* vol); /** * Returns myTLinkNodeMap */ const TLinkNodeMap& GetTLinkNodeMap() const { return myTLinkNodeMap; } /** * Check mesh without geometry for: if all elements on this shape are quadratic, * quadratic elements will be created. * Used then generated 3D mesh without geometry. */ enum MType{ LINEAR, QUADRATIC, COMP }; MType IsQuadraticMesh(); virtual ~SMESH_MesherHelper(); protected: /*! * \brief Select UV on either of 2 pcurves of a seam edge, closest to the given UV * \param uv1 - UV on the seam * \param uv2 - UV within a face * \retval gp_Pnt2d - selected UV */ gp_Pnt2d GetUVOnSeam( const gp_Pnt2d& uv1, const gp_Pnt2d& uv2 ) const; const SMDS_MeshNode* getMediumNodeOnComposedWire(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, bool force3d); private: // Forbiden copy constructor SMESH_MesherHelper (const SMESH_MesherHelper& theOther); // key of a map of bi-quadratic face to it's central node struct TBiQuad: public std::pair > { TBiQuad(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4=0) { TIDSortedNodeSet s; s.insert(n1); s.insert(n2); s.insert(n3); if ( n4 ) s.insert(n4); TIDSortedNodeSet::iterator n = s.begin(); first = (*n++)->GetID(); second.first = (*n++)->GetID(); second.second = (*n++)->GetID(); } }; // maps used during creation of quadratic elements TLinkNodeMap myTLinkNodeMap; // medium nodes on links std::map< TBiQuad, const SMDS_MeshNode* > myMapWithCentralNode; // central nodes of faces std::set< int > myDegenShapeIds; std::set< int > mySeamShapeIds; double myPar1[2], myPar2[2]; // U and V bounds of a closed periodic surface int myParIndex; // bounds' index (1-U, 2-V, 3-both) typedef std::map< int, GeomAPI_ProjectPointOnSurf* > TID2ProjectorOnSurf; TID2ProjectorOnSurf myFace2Projector; typedef std::map< int, GeomAPI_ProjectPointOnCurve* > TID2ProjectorOnCurve; TID2ProjectorOnCurve myEdge2Projector; TopoDS_Shape myShape; SMESH_Mesh* myMesh; int myShapeID; bool myCreateQuadratic; bool myCreateBiQuadratic; bool mySetElemOnShape; bool myFixNodeParameters; std::map< int,bool > myNodePosShapesValidity; bool toCheckPosOnShape(int shapeID ) const; void setPosOnShapeValidity(int shapeID, bool ok ) const; }; //======================================================================= inline gp_XY SMESH_MesherHelper::calcTFI(double x, double y, const gp_XY a0,const gp_XY a1,const gp_XY a2,const gp_XY a3, const gp_XY p0,const gp_XY p1,const gp_XY p2,const gp_XY p3) { return ((1 - y) * p0 + x * p1 + y * p2 + (1 - x) * p3 ) - ((1 - x) * (1 - y) * a0 + x * (1 - y) * a1 + x * y * a2 + (1 - x) * y * a3); } //======================================================================= inline gp_XYZ SMESH_MesherHelper::calcTFI(double x, double y, const gp_XYZ a0,const gp_XYZ a1,const gp_XYZ a2,const gp_XYZ a3, const gp_XYZ p0,const gp_XYZ p1,const gp_XYZ p2,const gp_XYZ p3) { return ((1 - y) * p0 + x * p1 + y * p2 + (1 - x) * p3 ) - ((1 - x) * (1 - y) * a0 + x * (1 - y) * a1 + x * y * a2 + (1 - x) * y * a3); } //======================================================================= #endif