# -*- coding: iso-8859-1 -*- # Copyright (C) 2007-2015 CEA/DEN, EDF R&D, OPEN CASCADE # # Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, # CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com # # Tetrahedrization of the geometry generated by the Python script GEOM_Partition1.py # Hypothesis and algorithms for the mesh generation are global # -- Rayon de la bariere # import salome salome.salome_init() import GEOM from salome.geom import geomBuilder geompy = geomBuilder.New(salome.myStudy) import SMESH, SALOMEDS from salome.smesh import smeshBuilder smesh = smeshBuilder.New(salome.myStudy) from math import sqrt #--------------------------------------------------------------- barier_height = 7.0 barier_radius = 5.6 / 2 # Rayon de la bariere colis_radius = 1.0 / 2 # Rayon du colis colis_step = 2.0 # Distance s‰parant deux colis cc_width = 0.11 # Epaisseur du complement de colisage # -- cc_radius = colis_radius + cc_width colis_center = sqrt(2.0)*colis_step/2 # -- boolean_common = 1 boolean_cut = 2 boolean_fuse = 3 boolean_section = 4 # -- p0 = geompy.MakeVertex(0.,0.,0.) vz = geompy.MakeVectorDXDYDZ(0.,0.,1.) # -- barier = geompy.MakeCylinder(p0, vz, barier_radius, barier_height) # -- colis = geompy.MakeCylinder(p0, vz, colis_radius, barier_height) cc = geompy.MakeCylinder(p0, vz, cc_radius, barier_height) colis_cc = geompy.MakeCompound([colis, cc]) colis_cc = geompy.MakeTranslation(colis_cc, colis_center, 0.0, 0.0) colis_cc_multi = geompy.MultiRotate1D(colis_cc, vz, 4) # -- Compound1 = geompy.MakeCompound([colis_cc_multi, barier]) SubShape_theShape = geompy.SubShapeAll(Compound1,geompy.ShapeType["SOLID"]) alveole = geompy.MakePartition(SubShape_theShape) print "Analysis of the geometry to mesh (right after the Partition) :" subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"]) subFaceList = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"]) subEdgeList = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"]) print "number of Shells in alveole : ", len(subShellList) print "number of Faces in alveole : ", len(subFaceList) print "number of Edges in alveole : ", len(subEdgeList) subshapes = geompy.SubShapeAll(alveole, geompy.ShapeType["SHAPE"]) ## there are 9 sub-shapes comp1 = geompy.MakeCompound( [ subshapes[0], subshapes[1] ] ) comp2 = geompy.MakeCompound( [ subshapes[2], subshapes[3] ] ) comp3 = geompy.MakeCompound( [ subshapes[4], subshapes[5] ] ) comp4 = geompy.MakeCompound( [ subshapes[6], subshapes[7] ] ) compGOs = [] compGOs.append( comp1 ) compGOs.append( comp2 ) compGOs.append( comp3 ) compGOs.append( comp4 ) comp = geompy.MakeCompound( compGOs ) alveole = geompy.MakeCompound( [ comp, subshapes[8] ]) idalveole = geompy.addToStudy(alveole, "alveole") print "Analysis of the geometry to mesh (right after the MakeCompound) :" subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"]) subFaceList = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"]) subEdgeList = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"]) print "number of Shells in alveole : ", len(subShellList) print "number of Faces in alveole : ", len(subFaceList) print "number of Edges in alveole : ", len(subEdgeList) status = geompy.CheckShape(alveole) print " check status ", status # ---- init a Mesh with the alveole shape_mesh = salome.IDToObject( idalveole ) mesh = smesh.Mesh(shape_mesh, "MeshAlveole") print "-------------------------- create Hypothesis (In this case global hypothesis are used)" print "-------------------------- NumberOfSegments" numberOfSegments = 10 regular1D = mesh.Segment() hypNbSeg = regular1D.NumberOfSegments(numberOfSegments) print hypNbSeg.GetName() print hypNbSeg.GetId() print hypNbSeg.GetNumberOfSegments() smesh.SetName(hypNbSeg, "NumberOfSegments_" + str(numberOfSegments)) print "-------------------------- MaxElementArea" maxElementArea = 0.1 mefisto2D = mesh.Triangle() hypArea = mefisto2D.MaxElementArea(maxElementArea) print hypArea.GetName() print hypArea.GetId() print hypArea.GetMaxElementArea() smesh.SetName(hypArea, "MaxElementArea_" + str(maxElementArea)) print "-------------------------- MaxElementVolume" maxElementVolume = 0.5 netgen3D = mesh.Tetrahedron(smeshBuilder.NETGEN) hypVolume = netgen3D.MaxElementVolume(maxElementVolume) print hypVolume.GetName() print hypVolume.GetId() print hypVolume.GetMaxElementVolume() smesh.SetName(hypVolume, "MaxElementVolume_" + str(maxElementVolume)) print "-------------------------- compute the mesh of alveole " ret = mesh.Compute() if ret != 0: log=mesh.GetLog(0) # no erase trace for linelog in log: print linelog print "Information about the Mesh_mechanic:" print "Number of nodes : ", mesh.NbNodes() print "Number of edges : ", mesh.NbEdges() print "Number of faces : ", mesh.NbFaces() print "Number of triangles : ", mesh.NbTriangles() print "Number of volumes : ", mesh.NbVolumes() print "Number of tetrahedrons: ", mesh.NbTetras() else: print "problem when computing the mesh" salome.sg.updateObjBrowser(1)