// Copyright (C) 2007-2011 CEA/DEN, EDF R&D, OPEN CASCADE // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : StdMeshers_ViscousLayers.cxx // Created : Wed Dec 1 15:15:34 2010 // Author : Edward AGAPOV (eap) #include "StdMeshers_ViscousLayers.hxx" #include "SMDS_EdgePosition.hxx" #include "SMDS_FaceOfNodes.hxx" #include "SMDS_FacePosition.hxx" #include "SMDS_MeshNode.hxx" #include "SMDS_SetIterator.hxx" #include "SMESHDS_Group.hxx" #include "SMESHDS_Hypothesis.hxx" #include "SMESH_Algo.hxx" #include "SMESH_ComputeError.hxx" #include "SMESH_Gen.hxx" #include "SMESH_Group.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_subMesh.hxx" #include "SMESH_subMeshEventListener.hxx" #include "SMESH_ProxyMesh.hxx" #include "utilities.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define __myDEBUG using namespace std; //================================================================================ namespace VISCOUS { typedef int TGeomID; enum UIndex { U_TGT = 1, U_SRC, LEN_TGT }; /*! * \brief SMESH_ProxyMesh computed by _ViscousBuilder for a SOLID. * It is stored in a SMESH_subMesh of the SOLID as SMESH_subMeshEventListenerData */ struct _MeshOfSolid : public SMESH_ProxyMesh, public SMESH_subMeshEventListenerData { bool _n2nMapComputed; _MeshOfSolid( SMESH_Mesh* mesh) :SMESH_subMeshEventListenerData( /*isDeletable=*/true),_n2nMapComputed(false) { SMESH_ProxyMesh::setMesh( *mesh ); } // returns submesh for a geom face SMESH_ProxyMesh::SubMesh* getFaceSubM(const TopoDS_Face& F, bool create=false) { TGeomID i = SMESH_ProxyMesh::shapeIndex(F); return create ? SMESH_ProxyMesh::getProxySubMesh(i) : findProxySubMesh(i); } void setNode2Node(const SMDS_MeshNode* srcNode, const SMDS_MeshNode* proxyNode, const SMESH_ProxyMesh::SubMesh* subMesh) { SMESH_ProxyMesh::setNode2Node( srcNode,proxyNode,subMesh); } }; //-------------------------------------------------------------------------------- /*! * \brief Listener of events of 3D sub-meshes computed with viscous layers. * It is used to clear an inferior dim sub-mesh modified by viscous layers */ class _SrinkShapeListener : SMESH_subMeshEventListener { _SrinkShapeListener(): SMESH_subMeshEventListener(/*isDeletable=*/false) {} static SMESH_subMeshEventListener* Get() { static _SrinkShapeListener l; return &l; } public: virtual void ProcessEvent(const int event, const int eventType, SMESH_subMesh* solidSM, SMESH_subMeshEventListenerData* data, const SMESH_Hypothesis* hyp) { if ( SMESH_subMesh::COMPUTE_EVENT == eventType && solidSM->IsEmpty() && data ) { SMESH_subMeshEventListener::ProcessEvent(event,eventType,solidSM,data,hyp); } } static void ToClearSubMeshWithSolid( SMESH_subMesh* sm, const TopoDS_Shape& solid) { SMESH_subMesh* solidSM = sm->GetFather()->GetSubMesh( solid ); SMESH_subMeshEventListenerData* data = solidSM->GetEventListenerData( Get()); if ( data ) { if ( find( data->mySubMeshes.begin(), data->mySubMeshes.end(), sm ) == data->mySubMeshes.end()) data->mySubMeshes.push_back( sm ); } else { data = SMESH_subMeshEventListenerData::MakeData( /*dependent=*/sm ); sm->SetEventListener( Get(), data, /*whereToListenTo=*/solidSM ); } } }; //-------------------------------------------------------------------------------- /*! * \brief Listener of events of 3D sub-meshes computed with viscous layers. * It is used to store data computed by _ViscousBuilder for a sub-mesh and to * delete the data as soon as it has been used */ class _ViscousListener : SMESH_subMeshEventListener { _ViscousListener(): SMESH_subMeshEventListener(/*isDeletable=*/false) {} static SMESH_subMeshEventListener* Get() { static _ViscousListener l; return &l; } public: virtual void ProcessEvent(const int event, const int eventType, SMESH_subMesh* subMesh, SMESH_subMeshEventListenerData* data, const SMESH_Hypothesis* hyp) { if ( SMESH_subMesh::COMPUTE_EVENT == eventType ) { // delete SMESH_ProxyMesh containing temporary faces subMesh->DeleteEventListener( this ); } } // Finds or creates proxy mesh of the solid static _MeshOfSolid* GetSolidMesh(SMESH_Mesh* mesh, const TopoDS_Shape& solid, bool toCreate=false) { if ( !mesh ) return 0; SMESH_subMesh* sm = mesh->GetSubMesh(solid); _MeshOfSolid* data = (_MeshOfSolid*) sm->GetEventListenerData( Get() ); if ( !data && toCreate ) { data = new _MeshOfSolid(mesh); data->mySubMeshes.push_back( sm ); // to find SOLID by _MeshOfSolid sm->SetEventListener( Get(), data, sm ); } return data; } // Removes proxy mesh of the solid static void RemoveSolidMesh(SMESH_Mesh* mesh, const TopoDS_Shape& solid) { mesh->GetSubMesh(solid)->DeleteEventListener( _ViscousListener::Get() ); } }; //-------------------------------------------------------------------------------- /*! * \brief Simplex (triangle or tetrahedron) based on 1 (tria) or 2 (tet) nodes of * _LayerEdge and 2 nodes of the mesh surface beening smoothed. * The class is used to check validity of face or volumes around a smoothed node; * it stores only 2 nodes as the other nodes are stored by _LayerEdge. */ struct _Simplex { const SMDS_MeshNode *_nPrev, *_nNext; // nodes on a smoothed mesh surface _Simplex(const SMDS_MeshNode* nPrev=0, const SMDS_MeshNode* nNext=0) : _nPrev(nPrev), _nNext(nNext) {} bool IsForward(const SMDS_MeshNode* nSrc, const gp_XYZ* pntTgt) const { const double M[3][3] = {{ _nNext->X() - nSrc->X(), _nNext->Y() - nSrc->Y(), _nNext->Z() - nSrc->Z() }, { pntTgt->X() - nSrc->X(), pntTgt->Y() - nSrc->Y(), pntTgt->Z() - nSrc->Z() }, { _nPrev->X() - nSrc->X(), _nPrev->Y() - nSrc->Y(), _nPrev->Z() - nSrc->Z() }}; double determinant = ( + M[0][0]*M[1][1]*M[2][2] + M[0][1]*M[1][2]*M[2][0] + M[0][2]*M[1][0]*M[2][1] - M[0][0]*M[1][2]*M[2][1] - M[0][1]*M[1][0]*M[2][2] - M[0][2]*M[1][1]*M[2][0]); return determinant > 1e-100; } bool IsForward(const gp_XY& tgtUV, const TopoDS_Face& face, SMESH_MesherHelper& helper, const double refSign) const { gp_XY prevUV = helper.GetNodeUV( face, _nPrev ); gp_XY nextUV = helper.GetNodeUV( face, _nNext ); gp_Vec2d v1( tgtUV, prevUV ), v2( tgtUV, nextUV ); double d = v1 ^ v2; return d*refSign > 1e-100; } }; //-------------------------------------------------------------------------------- /*! * Structure used to take into account surface curvature while smoothing */ struct _Curvature { double _r; // radius double _k; // factor to correct node smoothed position public: static _Curvature* New( double avgNormProj, double avgDist ) { _Curvature* c = 0; if ( fabs( avgNormProj / avgDist ) > 1./200 ) { c = new _Curvature; c->_r = avgDist * avgDist / avgNormProj; c->_k = avgDist * avgDist / c->_r / c->_r; c->_k *= ( c->_r < 0 ? 1/1.1 : 1.1 ); // not to be too restrictive } return c; } double lenDelta(double len) const { return _k * ( _r + len ); } }; struct _LayerEdge; //-------------------------------------------------------------------------------- /*! * Structure used to smooth a _LayerEdge (master) based on an EDGE. */ struct _2NearEdges { // target nodes of 2 neighbour _LayerEdge's based on the same EDGE const SMDS_MeshNode* _nodes[2]; // vectors from source nodes of 2 _LayerEdge's to the source node of master _LayerEdge //gp_XYZ _vec[2]; double _wgt[2]; // weights of _nodes _LayerEdge* _edges[2]; // normal to plane passing through _LayerEdge._normal and tangent of EDGE gp_XYZ* _plnNorm; _2NearEdges() { _nodes[0]=_nodes[1]=0; _plnNorm = 0; } }; //-------------------------------------------------------------------------------- /*! * \brief Edge normal to surface, connecting a node on solid surface (_nodes[0]) * and a node of the most internal layer (_nodes.back()) */ struct _LayerEdge { vector< const SMDS_MeshNode*> _nodes; gp_XYZ _normal; // to solid surface vector _pos; // points computed during inflation double _len; // length achived with the last step double _cosin; // of angle (_normal ^ surface) double _lenFactor; // to compute _len taking _cosin into account // face or edge w/o layer along or near which _LayerEdge is inflated TopoDS_Shape _sWOL; // simplices connected to the source node (_nodes[0]); // used for smoothing and quality check of _LayerEdge's based on the FACE vector<_Simplex> _simplices; // data for smoothing of _LayerEdge's based on the EDGE _2NearEdges* _2neibors; _Curvature* _curvature; // TODO:: detele _Curvature, _plnNorm void SetNewLength( double len, SMESH_MesherHelper& helper ); bool SetNewLength2d( Handle(Geom_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper ); void SetDataByNeighbors( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, SMESH_MesherHelper& helper); void InvalidateStep( int curStep ); bool Smooth(int& badNb); bool SmoothOnEdge(Handle(Geom_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper); bool FindIntersection( SMESH_ElementSearcher& searcher, double & distance, const double& epsilon, const SMDS_MeshElement** face = 0); bool SegTriaInter( const gp_Ax1& lastSegment, const SMDS_MeshNode* n0, const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, double& dist, const double& epsilon) const; gp_Ax1 LastSegment(double& segLen) const; bool IsOnEdge() const { return _2neibors; } void Copy( _LayerEdge& other, SMESH_MesherHelper& helper ); void SetCosin( double cosin ); }; struct _LayerEdgeCmp { bool operator () (const _LayerEdge* e1, const _LayerEdge* e2) const { const bool cmpNodes = ( e1 && e2 && e1->_nodes.size() && e2->_nodes.size() ); return cmpNodes ? ( e1->_nodes[0]->GetID() < e2->_nodes[0]->GetID()) : ( e1 < e2 ); } }; //-------------------------------------------------------------------------------- typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge; //-------------------------------------------------------------------------------- /*! * \brief Data of a SOLID */ struct _SolidData { TopoDS_Shape _solid; const StdMeshers_ViscousLayers* _hyp; _MeshOfSolid* _proxyMesh; set _reversedFaceIds; double _stepSize, _stepSizeCoeff; const SMDS_MeshNode* _stepSizeNodes[2]; TNode2Edge _n2eMap; // edges of _n2eMap. We keep same data in two containers because // iteration over the map is 5 time longer than over the vector vector< _LayerEdge* > _edges; // key: an id of shape (EDGE or VERTEX) shared by a FACE with // layers and a FACE w/o layers // value: the shape (FACE or EDGE) to shrink mesh on. // _LayerEdge's basing on nodes on key shape are inflated along the value shape map< TGeomID, TopoDS_Shape > _shrinkShape2Shape; // FACE's WOL, srink on which is forbiden due to algo on the adjacent SOLID set< TGeomID > _noShrinkFaces; // end index in _edges of _LayerEdge's based on EDGE (map key) to // FACE (maybe NULL) they are inflated along //map< int, TopoDS_Face > _endEdge2Face; // end indices in _edges of _LayerEdge on one shape to smooth vector< int > _endEdgeToSmooth; double _epsilon; // precision for SegTriaInter() int _index; // for debug _SolidData(const TopoDS_Shape& s=TopoDS_Shape(), const StdMeshers_ViscousLayers* h=0, _MeshOfSolid* m=0) :_solid(s), _hyp(h), _proxyMesh(m) {} ~_SolidData(); }; //-------------------------------------------------------------------------------- /*! * \brief Data of node on a shrinked FACE */ struct _SmoothNode { const SMDS_MeshNode* _node; //vector _nodesAround; vector<_Simplex> _simplices; // for quality check bool Smooth(int& badNb, Handle(Geom_Surface)& surface, SMESH_MesherHelper& helper, const double refSign, bool set3D); }; //-------------------------------------------------------------------------------- /*! * \brief Builder of viscous layers */ class _ViscousBuilder { public: _ViscousBuilder(); // does it's job SMESH_ComputeErrorPtr Compute(SMESH_Mesh& mesh, const TopoDS_Shape& shape); // restore event listeners used to clear an inferior dim sub-mesh modified by viscous layers void RestoreListeners(); // computes SMESH_ProxyMesh::SubMesh::_n2n; bool MakeN2NMap( _MeshOfSolid* pm ); private: bool findSolidsWithLayers(); bool findFacesWithLayers(); bool makeLayer(_SolidData& data); bool setEdgeData(_LayerEdge& edge, const set& subIds, SMESH_MesherHelper& helper, _SolidData& data); bool findNeiborsOnEdge(const _LayerEdge* edge, const SMDS_MeshNode*& n1, const SMDS_MeshNode*& n2, _SolidData& data); void getSimplices( const SMDS_MeshNode* node, vector<_Simplex>& simplices, const set& ingnoreShapes, const _SolidData* dataToCheckOri = 0); bool sortEdges( _SolidData& data, vector< vector<_LayerEdge*> >& edgesByGeom); void limitStepSize( _SolidData& data, const SMDS_MeshElement* face, const double cosin); void limitStepSize( _SolidData& data, const double minSize); bool inflate(_SolidData& data); bool smoothAndCheck(_SolidData& data, int nbSteps, double & distToIntersection); bool updateNormals( _SolidData& data, SMESH_MesherHelper& helper ); bool refine(_SolidData& data); bool shrink(); bool prepareEdgeToShrink( _LayerEdge& edge, const TopoDS_Face& F, SMESH_MesherHelper& helper, const SMESHDS_SubMesh* faceSubMesh ); bool addBoundaryElements(); bool error( const string& text, int solidID=-1 ); SMESHDS_Mesh* getMeshDS() { return _mesh->GetMeshDS(); } // debug void makeGroupOfLE(); SMESH_Mesh* _mesh; SMESH_ComputeErrorPtr _error; vector< _SolidData > _sdVec; set _ignoreShapeIds; int _tmpFaceID; }; //-------------------------------------------------------------------------------- /*! * \brief Shrinker of nodes on the EDGE */ class _Shrinker1D { vector _initU; vector _normPar; vector _nodes; const _LayerEdge* _edges[2]; bool _done; public: void AddEdge( const _LayerEdge* e, SMESH_MesherHelper& helper ); void Compute(bool set3D, SMESH_MesherHelper& helper); void RestoreParams(); void SwapSrcTgtNodes(SMESHDS_Mesh* mesh); }; //-------------------------------------------------------------------------------- /*! * \brief Class of temporary mesh face. * We can't use SMDS_FaceOfNodes since it's impossible to set it's ID which is * needed because SMESH_ElementSearcher internaly uses set of elements sorted by ID */ struct TmpMeshFace : public SMDS_MeshElement { vector _nn; TmpMeshFace( const vector& nodes, int id): SMDS_MeshElement(id), _nn(nodes) {} virtual const SMDS_MeshNode* GetNode(const int ind) const { return _nn[ind]; } virtual SMDSAbs_ElementType GetType() const { return SMDSAbs_Face; } virtual vtkIdType GetVtkType() const { return -1; } virtual SMDSAbs_EntityType GetEntityType() const { return SMDSEntity_Last; } virtual SMDS_ElemIteratorPtr elementsIterator(SMDSAbs_ElementType type) const { return SMDS_ElemIteratorPtr( new SMDS_NodeVectorElemIterator( _nn.begin(), _nn.end()));} }; //-------------------------------------------------------------------------------- /*! * \brief Class of temporary mesh face storing _LayerEdge it's based on */ struct TmpMeshFaceOnEdge : public TmpMeshFace { _LayerEdge *_le1, *_le2; TmpMeshFaceOnEdge( _LayerEdge* le1, _LayerEdge* le2, int ID ): TmpMeshFace( vector(4), ID ), _le1(le1), _le2(le2) { _nn[0]=_le1->_nodes[0]; _nn[1]=_le1->_nodes.back(); _nn[2]=_le2->_nodes.back(); _nn[3]=_le2->_nodes[0]; } }; } // namespace VISCOUS //================================================================================ // StdMeshers_ViscousLayers hypothesis // StdMeshers_ViscousLayers::StdMeshers_ViscousLayers(int hypId, int studyId, SMESH_Gen* gen) :SMESH_Hypothesis(hypId, studyId, gen), _nbLayers(1), _thickness(1), _stretchFactor(1) { _name = StdMeshers_ViscousLayers::GetHypType(); _param_algo_dim = -3; // auxiliary hyp used by 3D algos } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetIgnoreFaces(const std::vector& faceIds) { if ( faceIds != _ignoreFaceIds ) _ignoreFaceIds = faceIds, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetTotalThickness(double thickness) { if ( thickness != _thickness ) _thickness = thickness, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetNumberLayers(int nb) { if ( _nbLayers != nb ) _nbLayers = nb, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetStretchFactor(double factor) { if ( _stretchFactor != factor ) _stretchFactor = factor, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- SMESH_ProxyMesh::Ptr StdMeshers_ViscousLayers::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape, const bool toMakeN2NMap) const { using namespace VISCOUS; _ViscousBuilder bulder; SMESH_ComputeErrorPtr err = bulder.Compute( theMesh, theShape ); if ( err && !err->IsOK() ) return SMESH_ProxyMesh::Ptr(); vector components; TopExp_Explorer exp( theShape, TopAbs_SOLID ); for ( ; exp.More(); exp.Next() ) { if ( _MeshOfSolid* pm = _ViscousListener::GetSolidMesh( &theMesh, exp.Current(), /*toCreate=*/false)) { if ( toMakeN2NMap && !pm->_n2nMapComputed ) if ( !bulder.MakeN2NMap( pm )) return SMESH_ProxyMesh::Ptr(); components.push_back( SMESH_ProxyMesh::Ptr( pm )); pm->myIsDeletable = false; // it will de deleted by boost::shared_ptr } _ViscousListener::RemoveSolidMesh ( &theMesh, exp.Current() ); } switch ( components.size() ) { case 0: break; case 1: return components[0]; default: return SMESH_ProxyMesh::Ptr( new SMESH_ProxyMesh( components )); } return SMESH_ProxyMesh::Ptr(); } // -------------------------------------------------------------------------------- std::ostream & StdMeshers_ViscousLayers::SaveTo(std::ostream & save) { save << " " << _nbLayers << " " << _thickness << " " << _stretchFactor << " " << _ignoreFaceIds.size(); for ( unsigned i = 0; i < _ignoreFaceIds.size(); ++i ) save << " " << _ignoreFaceIds[i]; return save; } // -------------------------------------------------------------------------------- std::istream & StdMeshers_ViscousLayers::LoadFrom(std::istream & load) { int nbFaces, faceID; load >> _nbLayers >> _thickness >> _stretchFactor >> nbFaces; while ( _ignoreFaceIds.size() < nbFaces && load >> faceID ) _ignoreFaceIds.push_back( faceID ); return load; } // -------------------------------------------------------------------------------- bool StdMeshers_ViscousLayers::SetParametersByMesh(const SMESH_Mesh* theMesh, const TopoDS_Shape& theShape) { // TODO return false; } // END StdMeshers_ViscousLayers hypothesis //================================================================================ namespace { gp_XYZ getEdgeDir( const TopoDS_Edge& E, const TopoDS_Vertex& fromV ) { gp_Vec dir; double f,l; Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l ); gp_Pnt p = BRep_Tool::Pnt( fromV ); double distF = p.SquareDistance( c->Value( f )); double distL = p.SquareDistance( c->Value( l )); c->D1(( distF < distL ? f : l), p, dir ); if ( distL < distF ) dir.Reverse(); return dir.XYZ(); } //-------------------------------------------------------------------------------- gp_XYZ getEdgeDir( const TopoDS_Edge& E, const SMDS_MeshNode* atNode, SMESH_MesherHelper& helper) { gp_Vec dir; double f,l; gp_Pnt p; Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l ); double u = helper.GetNodeU( E, atNode ); c->D1( u, p, dir ); return dir.XYZ(); } //-------------------------------------------------------------------------------- gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Edge& fromE, const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok) { gp_XY uv = helper.GetNodeUV( F, node, 0, &ok ); Handle(Geom_Surface) surface = BRep_Tool::Surface( F ); gp_Pnt p; gp_Vec du, dv, norm; surface->D1( uv.X(),uv.Y(), p, du,dv ); norm = du ^ dv; double f,l; Handle(Geom_Curve) c = BRep_Tool::Curve( fromE, f, l ); double u = helper.GetNodeU( fromE, node, 0, &ok ); c->D1( u, p, du ); TopAbs_Orientation o = helper.GetSubShapeOri( F.Oriented(TopAbs_FORWARD), fromE); if ( o == TopAbs_REVERSED ) du.Reverse(); gp_Vec dir = norm ^ du; if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX && helper.IsClosedEdge( fromE )) { if ( fabs(u-f) < fabs(u-l )) c->D1( l, p, dv ); else c->D1( f, p, dv ); if ( o == TopAbs_REVERSED ) dv.Reverse(); gp_Vec dir2 = norm ^ dv; dir = dir.Normalized() + dir2.Normalized(); } return dir.XYZ(); } //-------------------------------------------------------------------------------- gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Vertex& fromV, const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok, double* cosin=0) { double f,l; TopLoc_Location loc; vector< TopoDS_Edge > edges; // sharing a vertex PShapeIteratorPtr eIt = helper.GetAncestors( fromV, *helper.GetMesh(), TopAbs_EDGE); while ( eIt->more()) { const TopoDS_Edge* e = static_cast( eIt->next() ); if ( helper.IsSubShape( *e, F ) && BRep_Tool::Curve( *e, loc,f,l)) edges.push_back( *e ); } gp_XYZ dir(0,0,0); if ( !( ok = ( edges.size() > 0 ))) return dir; // get average dir of edges going fromV gp_Vec edgeDir; for ( unsigned i = 0; i < edges.size(); ++i ) { edgeDir = getEdgeDir( edges[i], fromV ); double size2 = edgeDir.SquareMagnitude(); if ( size2 > numeric_limits::min() ) edgeDir /= sqrt( size2 ); else ok = false; dir += edgeDir.XYZ(); } gp_XYZ fromEdgeDir = getFaceDir( F, edges[0], node, helper, ok ); if ( edges.size() == 1 || dir.SquareModulus() < 1e-10) dir = fromEdgeDir; else if ( dir * fromEdgeDir < 0 ) dir *= -1; if ( ok ) { //dir /= edges.size(); if ( cosin ) { double angle = edgeDir.Angle( dir ); *cosin = cos( angle ); } } return dir; } //-------------------------------------------------------------------------------- // DEBUG. Dump intermediate node positions into a python script #ifdef __myDEBUG ofstream* py; struct PyDump { PyDump() { const char* fname = "/tmp/viscous.py"; cout << "execfile('"<GetShapeToMesh(), TopAbs_SOLID, allSolids ); _sdVec.reserve( allSolids.Extent()); SMESH_Gen* gen = _mesh->GetGen(); for ( int i = 1; i <= allSolids.Extent(); ++i ) { // find StdMeshers_ViscousLayers hyp assigned to the i-th solid SMESH_Algo* algo = gen->GetAlgo( *_mesh, allSolids(i) ); if ( !algo ) continue; // TODO: check if algo is hidden const list & allHyps = algo->GetUsedHypothesis(*_mesh, allSolids(i), /*ignoreAuxiliary=*/false); list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin(); const StdMeshers_ViscousLayers* viscHyp = 0; for ( ; hyp != allHyps.end() && !viscHyp; ++hyp ) viscHyp = dynamic_cast( *hyp ); if ( viscHyp ) { _MeshOfSolid* proxyMesh = _ViscousListener::GetSolidMesh( _mesh, allSolids(i), /*toCreate=*/true); _sdVec.push_back( _SolidData( allSolids(i), viscHyp, proxyMesh )); _sdVec.back()._index = getMeshDS()->ShapeToIndex( allSolids(i)); } } if ( _sdVec.empty() ) return error ( SMESH_Comment(StdMeshers_ViscousLayers::GetHypType()) << " hypothesis not found",0); return true; } //================================================================================ /*! * \brief */ //================================================================================ bool _ViscousBuilder::findFacesWithLayers() { // collect all faces to ignore defined by hyp vector ignoreFaces; for ( unsigned i = 0; i < _sdVec.size(); ++i ) { vector ids = _sdVec[i]._hyp->GetIgnoreFaces(); for ( unsigned i = 0; i < ids.size(); ++i ) { const TopoDS_Shape& s = getMeshDS()->IndexToShape( ids[i] ); if ( !s.IsNull() && s.ShapeType() == TopAbs_FACE ) { _ignoreShapeIds.insert( ids[i] ); ignoreFaces.push_back( s ); } } } // ignore internal faces SMESH_MesherHelper helper( *_mesh ); TopExp_Explorer exp; for ( unsigned i = 0; i < _sdVec.size(); ++i ) { exp.Init( _sdVec[i]._solid.Oriented( TopAbs_FORWARD ), TopAbs_FACE ); for ( ; exp.More(); exp.Next() ) { TGeomID faceInd = getMeshDS()->ShapeToIndex( exp.Current() ); if ( helper.NbAncestors( exp.Current(), *_mesh, TopAbs_SOLID ) > 1 ) { _ignoreShapeIds.insert( faceInd ); ignoreFaces.push_back( exp.Current() ); if ( SMESH_Algo::IsReversedSubMesh( TopoDS::Face( exp.Current() ), getMeshDS())) _sdVec[i]._reversedFaceIds.insert( faceInd ); } } } // Find faces to shrink mesh on (solution 2 in issue 0020832); TopTools_IndexedMapOfShape shapes; for ( unsigned i = 0; i < _sdVec.size(); ++i ) { shapes.Clear(); TopExp::MapShapes(_sdVec[i]._solid, TopAbs_EDGE, shapes); for ( int iE = 1; iE <= shapes.Extent(); ++iE ) { const TopoDS_Shape& edge = shapes(iE); // find 2 faces sharing an edge TopoDS_Shape FF[2]; PShapeIteratorPtr fIt = helper.GetAncestors(edge, *_mesh, TopAbs_FACE); while ( fIt->more()) { const TopoDS_Shape* f = fIt->next(); if ( helper.IsSubShape( *f, _sdVec[i]._solid)) FF[ int( !FF[0].IsNull()) ] = *f; } if( FF[1].IsNull() ) continue; // seam edge can be shared by 1 FACE only // check presence of layers on them int ignore[2]; for ( int j = 0; j < 2; ++j ) ignore[j] = _ignoreShapeIds.count ( getMeshDS()->ShapeToIndex( FF[j] )); if ( ignore[0] == ignore[1] ) continue; // nothing interesting TopoDS_Shape fWOL = FF[ ignore[0] ? 0 : 1 ]; // add edge to maps TGeomID edgeInd = getMeshDS()->ShapeToIndex( edge ); _sdVec[i]._shrinkShape2Shape.insert( make_pair( edgeInd, fWOL )); } } // Exclude from _shrinkShape2Shape FACE's that can't be shrinked since // the algo of the SOLID sharing the FACE does not support it set< string > notSupportAlgos; notSupportAlgos.insert("Hexa_3D"); for ( unsigned i = 0; i < _sdVec.size(); ++i ) { TopTools_MapOfShape noShrinkVertices; map< TGeomID, TopoDS_Shape >::iterator e2f = _sdVec[i]._shrinkShape2Shape.begin(); for ( ; e2f != _sdVec[i]._shrinkShape2Shape.end(); ++e2f ) { const TopoDS_Shape& fWOL = e2f->second; TGeomID edgeID = e2f->first; bool notShrinkFace = false; PShapeIteratorPtr soIt = helper.GetAncestors(fWOL, *_mesh, TopAbs_SOLID); while ( soIt->more()) { const TopoDS_Shape* solid = soIt->next(); if ( _sdVec[i]._solid.IsSame( *solid )) continue; SMESH_Algo* algo = _mesh->GetGen()->GetAlgo( *_mesh, *solid ); if ( !algo || !notSupportAlgos.count( algo->GetName() )) continue; notShrinkFace = true; for ( unsigned j = 0; j < _sdVec.size(); ++j ) { if ( _sdVec[j]._solid.IsSame( *solid ) ) if ( _sdVec[j]._shrinkShape2Shape.count( edgeID )) notShrinkFace = false; } } if ( notShrinkFace ) { _sdVec[i]._noShrinkFaces.insert( getMeshDS()->ShapeToIndex( fWOL )); for ( TopExp_Explorer vExp( fWOL, TopAbs_VERTEX ); vExp.More(); vExp.Next() ) noShrinkVertices.Add( vExp.Current() ); } } // erase from _shrinkShape2Shape all srink EDGE's of a SOLID connected // to the found not shrinked fWOL's e2f = _sdVec[i]._shrinkShape2Shape.begin(); for ( ; e2f != _sdVec[i]._shrinkShape2Shape.end(); ) { TGeomID edgeID = e2f->first; TopoDS_Vertex VV[2]; TopExp::Vertices( TopoDS::Edge( getMeshDS()->IndexToShape( edgeID )),VV[0],VV[1]); if ( noShrinkVertices.Contains( VV[0] ) || noShrinkVertices.Contains( VV[1] )) _sdVec[i]._shrinkShape2Shape.erase( e2f++ ); else e2f++; } } // Find the SHAPE along which to inflate _LayerEdge based on VERTEX for ( unsigned i = 0; i < _sdVec.size(); ++i ) { shapes.Clear(); TopExp::MapShapes(_sdVec[i]._solid, TopAbs_VERTEX, shapes); for ( int iV = 1; iV <= shapes.Extent(); ++iV ) { const TopoDS_Shape& vertex = shapes(iV); // find faces WOL sharing the vertex vector< TopoDS_Shape > facesWOL; int totalNbFaces = 0; PShapeIteratorPtr fIt = helper.GetAncestors(vertex, *_mesh, TopAbs_FACE); while ( fIt->more()) { const TopoDS_Shape* f = fIt->next(); const int fID = getMeshDS()->ShapeToIndex( *f ); if ( helper.IsSubShape( *f, _sdVec[i]._solid ) ) { totalNbFaces++; if ( _ignoreShapeIds.count ( fID ) && ! _sdVec[i]._noShrinkFaces.count( fID )) facesWOL.push_back( *f ); } } if ( facesWOL.size() == totalNbFaces || facesWOL.empty() ) continue; // no layers at this vertex or no WOL TGeomID vInd = getMeshDS()->ShapeToIndex( vertex ); switch ( facesWOL.size() ) { case 1: { _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, facesWOL[0] )); break; } case 2: { // find an edge shared by 2 faces PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE); while ( eIt->more()) { const TopoDS_Shape* e = eIt->next(); if ( helper.IsSubShape( *e, facesWOL[0]) && helper.IsSubShape( *e, facesWOL[1])) { _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, *e )); break; } } break; } default: return error("Not yet supported case", _sdVec[i]._index); } } } return true; } //================================================================================ /*! * \brief Create the inner surface of the viscous layer and prepare data for infation */ //================================================================================ bool _ViscousBuilder::makeLayer(_SolidData& data) { // get all sub-shapes to make layers on set subIds, faceIds; subIds = data._noShrinkFaces; TopExp_Explorer exp( data._solid, TopAbs_FACE ); for ( ; exp.More(); exp.Next() ) if ( ! _ignoreShapeIds.count( getMeshDS()->ShapeToIndex( exp.Current() ))) { SMESH_subMesh* fSubM = _mesh->GetSubMesh( exp.Current() ); faceIds.insert( fSubM->GetId() ); SMESH_subMeshIteratorPtr subIt = fSubM->getDependsOnIterator(/*includeSelf=*/true, /*complexShapeFirst=*/false); while ( subIt->more() ) subIds.insert( subIt->next()->GetId() ); } // make a map to find new nodes on sub-shapes shared with other SOLID map< TGeomID, TNode2Edge* > s2neMap; map< TGeomID, TNode2Edge* >::iterator s2ne; map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin(); for (; s2s != data._shrinkShape2Shape.end(); ++s2s ) { TGeomID shapeInd = s2s->first; for ( unsigned i = 0; i < _sdVec.size(); ++i ) { if ( _sdVec[i]._index == data._index ) continue; map< TGeomID, TopoDS_Shape >::iterator s2s2 = _sdVec[i]._shrinkShape2Shape.find( shapeInd ); if ( s2s2 != _sdVec[i]._shrinkShape2Shape.end() && *s2s == *s2s2 && !_sdVec[i]._n2eMap.empty() ) { s2neMap.insert( make_pair( shapeInd, &_sdVec[i]._n2eMap )); break; } } } // Create temporary faces and _LayerEdge's dumpFunction(SMESH_Comment("makeLayers_")< newNodes; // of a mesh face TNode2Edge::iterator n2e2; // collect _LayerEdge's of shapes they are based on const int nbShapes = getMeshDS()->MaxShapeIndex(); vector< vector<_LayerEdge*> > edgesByGeom( nbShapes+1 ); for ( set::iterator id = faceIds.begin(); id != faceIds.end(); ++id ) { SMESHDS_SubMesh* smDS = getMeshDS()->MeshElements( *id ); if ( !smDS ) return error(SMESH_Comment("Not meshed face ") << *id, data._index ); const TopoDS_Face& F = TopoDS::Face( getMeshDS()->IndexToShape( *id )); SMESH_ProxyMesh::SubMesh* proxySub = data._proxyMesh->getFaceSubM( F, /*create=*/true); SMDS_ElemIteratorPtr eIt = smDS->GetElements(); while ( eIt->more() ) { const SMDS_MeshElement* face = eIt->next(); newNodes.resize( face->NbCornerNodes() ); double faceMaxCosin = -1; for ( int i = 0 ; i < face->NbCornerNodes(); ++i ) { const SMDS_MeshNode* n = face->GetNode(i); TNode2Edge::iterator n2e = data._n2eMap.insert( make_pair( n, (_LayerEdge*)0 )).first; if ( !(*n2e).second ) { // add a _LayerEdge _LayerEdge* edge = new _LayerEdge(); n2e->second = edge; edge->_nodes.push_back( n ); const int shapeID = n->getshapeId(); edgesByGeom[ shapeID ].push_back( edge ); // set edge data or find already refined _LayerEdge and get data from it if ( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE && ( s2ne = s2neMap.find( shapeID )) != s2neMap.end() && ( n2e2 = (*s2ne).second->find( n )) != s2ne->second->end()) { _LayerEdge* foundEdge = (*n2e2).second; edge->Copy( *foundEdge, helper ); // location of the last node is modified but we can restore // it by node position on _sWOL stored by the node const_cast< SMDS_MeshNode* > ( edge->_nodes.back() )->setXYZ( n->X(), n->Y(), n->Z() ); } else { edge->_nodes.push_back( helper.AddNode( n->X(), n->Y(), n->Z() )); if ( !setEdgeData( *edge, subIds, helper, data )) return false; } dumpMove(edge->_nodes.back()); if ( edge->_cosin > 0.01 ) { if ( edge->_cosin > faceMaxCosin ) faceMaxCosin = edge->_cosin; } } newNodes[ i ] = n2e->second->_nodes.back(); } // create a temporary face const SMDS_MeshElement* newFace = new TmpMeshFace( newNodes, --_tmpFaceID ); proxySub->AddElement( newFace ); // compute inflation step size by min size of element on a convex surface if ( faceMaxCosin > 0.1 ) limitStepSize( data, face, faceMaxCosin ); } // loop on 2D elements on a FACE } // loop on FACEs of a SOLID data._epsilon = 1e-7; if ( data._stepSize < 1. ) data._epsilon *= data._stepSize; // Put _LayerEdge's into a vector if ( !sortEdges( data, edgesByGeom )) return false; // Set target nodes into _Simplex and _2NearEdges TNode2Edge::iterator n2e; for ( unsigned i = 0; i < data._edges.size(); ++i ) { if ( data._edges[i]->IsOnEdge()) for ( int j = 0; j < 2; ++j ) { if ( data._edges[i]->_nodes.back()->NbInverseElements(SMDSAbs_Volume) > 0 ) break; // _LayerEdge is shared by two _SolidData's const SMDS_MeshNode* & n = data._edges[i]->_2neibors->_nodes[j]; if (( n2e = data._n2eMap.find( n )) == data._n2eMap.end() ) return error("_LayerEdge not found by src node", data._index); n = (*n2e).second->_nodes.back(); data._edges[i]->_2neibors->_edges[j] = n2e->second; } else for ( unsigned j = 0; j < data._edges[i]->_simplices.size(); ++j ) { _Simplex& s = data._edges[i]->_simplices[j]; s._nNext = data._n2eMap[ s._nNext ]->_nodes.back(); s._nPrev = data._n2eMap[ s._nPrev ]->_nodes.back(); } } dumpFunctionEnd(); return true; } //================================================================================ /*! * \brief Compute inflation step size by min size of element on a convex surface */ //================================================================================ void _ViscousBuilder::limitStepSize( _SolidData& data, const SMDS_MeshElement* face, const double cosin) { int iN = 0; double minSize = 10 * data._stepSize; const int nbNodes = face->NbCornerNodes(); for ( int i = 0; i < nbNodes; ++i ) { const SMDS_MeshNode* nextN = face->GetNode( SMESH_MesherHelper::WrapIndex( i+1, nbNodes )); const SMDS_MeshNode* curN = face->GetNode( i ); if ( nextN->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE || curN->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) { double dist = SMESH_MeshEditor::TNodeXYZ( face->GetNode(i)).Distance( nextN ); if ( dist < minSize ) minSize = dist, iN = i; } } double newStep = 0.8 * minSize / cosin; if ( newStep < data._stepSize ) { data._stepSize = newStep; data._stepSizeCoeff = 0.8 / cosin; data._stepSizeNodes[0] = face->GetNode( iN ); data._stepSizeNodes[1] = face->GetNode( SMESH_MesherHelper::WrapIndex( iN+1, nbNodes )); } } //================================================================================ /*! * \brief Compute inflation step size by min size of element on a convex surface */ //================================================================================ void _ViscousBuilder::limitStepSize( _SolidData& data, const double minSize) { if ( minSize < data._stepSize ) { data._stepSize = minSize; if ( data._stepSizeNodes[0] ) { double dist = SMESH_MeshEditor::TNodeXYZ(data._stepSizeNodes[0]).Distance(data._stepSizeNodes[1]); data._stepSizeCoeff = data._stepSize / dist; } } } //================================================================================ /*! * \brief Separate shapes (and _LayerEdge's on them) to smooth from the rest ones */ //================================================================================ bool _ViscousBuilder::sortEdges( _SolidData& data, vector< vector<_LayerEdge*> >& edgesByGeom) { // Find shapes needing smoothing; such a shape has _LayerEdge._normal on it's // boundry inclined at a sharp angle to the shape list< TGeomID > shapesToSmooth; SMESH_MesherHelper helper( *_mesh ); bool ok; for ( unsigned iS = 0; iS < edgesByGeom.size(); ++iS ) { vector<_LayerEdge*>& eS = edgesByGeom[iS]; if ( eS.empty() ) continue; TopoDS_Shape S = getMeshDS()->IndexToShape( iS ); bool needSmooth = false; switch ( S.ShapeType() ) { case TopAbs_EDGE: { bool isShrinkEdge = !eS[0]->_sWOL.IsNull(); for ( TopoDS_Iterator vIt( S ); vIt.More() && !needSmooth; vIt.Next() ) { TGeomID iV = getMeshDS()->ShapeToIndex( vIt.Value() ); vector<_LayerEdge*>& eV = edgesByGeom[ iV ]; if ( eV.empty() ) continue; double cosin = eV[0]->_cosin; bool badCosin = ( !eV[0]->_sWOL.IsNull() && ( eV[0]->_sWOL.ShapeType() == TopAbs_EDGE || !isShrinkEdge)); if ( badCosin ) { gp_Vec dir1, dir2; if ( eV[0]->_sWOL.ShapeType() == TopAbs_EDGE ) dir1 = getEdgeDir( TopoDS::Edge( eV[0]->_sWOL ), TopoDS::Vertex( vIt.Value() )); else dir1 = getFaceDir( TopoDS::Face( eV[0]->_sWOL ), TopoDS::Vertex( vIt.Value() ), eV[0]->_nodes[0], helper, ok); dir2 = getEdgeDir( TopoDS::Edge( S ), TopoDS::Vertex( vIt.Value() )); double angle = dir1.Angle( dir2 ); cosin = cos( angle ); } needSmooth = ( cosin > 0.1 ); } break; } case TopAbs_FACE: { for ( TopExp_Explorer eExp( S, TopAbs_EDGE ); eExp.More() && !needSmooth; eExp.Next() ) { TGeomID iE = getMeshDS()->ShapeToIndex( eExp.Current() ); vector<_LayerEdge*>& eE = edgesByGeom[ iE ]; if ( eE.empty() ) continue; if ( eE[0]->_sWOL.IsNull() ) { for ( unsigned i = 0; i < eE.size() && !needSmooth; ++i ) needSmooth = ( eE[i]->_cosin > 0.1 ); } else { const TopoDS_Face& F1 = TopoDS::Face( S ); const TopoDS_Face& F2 = TopoDS::Face( eE[0]->_sWOL ); const TopoDS_Edge& E = TopoDS::Edge( eExp.Current() ); for ( unsigned i = 0; i < eE.size() && !needSmooth; ++i ) { gp_Vec dir1 = getFaceDir( F1, E, eE[i]->_nodes[0], helper, ok ); gp_Vec dir2 = getFaceDir( F2, E, eE[i]->_nodes[0], helper, ok ); double angle = dir1.Angle( dir2 ); double cosin = cos( angle ); needSmooth = ( cosin > 0.1 ); } } } break; } case TopAbs_VERTEX: continue; default:; } if ( needSmooth ) { if ( S.ShapeType() == TopAbs_EDGE ) shapesToSmooth.push_front( iS ); else shapesToSmooth.push_back ( iS ); } } // loop on edgesByGeom data._edges.reserve( data._n2eMap.size() ); data._endEdgeToSmooth.clear(); // first we put _LayerEdge's on shapes to smooth list< TGeomID >::iterator gIt = shapesToSmooth.begin(); for ( ; gIt != shapesToSmooth.end(); ++gIt ) { vector<_LayerEdge*>& eVec = edgesByGeom[ *gIt ]; if ( eVec.empty() ) continue; data._edges.insert( data._edges.end(), eVec.begin(), eVec.end() ); data._endEdgeToSmooth.push_back( data._edges.size() ); eVec.clear(); } // then the rest _LayerEdge's for ( unsigned iS = 0; iS < edgesByGeom.size(); ++iS ) { vector<_LayerEdge*>& eVec = edgesByGeom[iS]; data._edges.insert( data._edges.end(), eVec.begin(), eVec.end() ); eVec.clear(); } return ok; } //================================================================================ /*! * \brief Set data of _LayerEdge needed for smoothing * \param subIds - ids of sub-shapes of a SOLID to take into account faces from */ //================================================================================ bool _ViscousBuilder::setEdgeData(_LayerEdge& edge, const set& subIds, SMESH_MesherHelper& helper, _SolidData& data) { SMESH_MeshEditor editor(_mesh); const SMDS_MeshNode* node = edge._nodes[0]; // source node SMDS_TypeOfPosition posType = node->GetPosition()->GetTypeOfPosition(); edge._len = 0; edge._2neibors = 0; edge._curvature = 0; // -------------------------- // Compute _normal and _cosin // -------------------------- edge._cosin = 0; edge._normal.SetCoord(0,0,0); int totalNbFaces = 0; gp_Pnt p; gp_Vec du, dv, geomNorm; bool normOK = true; TGeomID shapeInd = node->getshapeId(); map< TGeomID, TopoDS_Shape >::const_iterator s2s = data._shrinkShape2Shape.find( shapeInd ); bool onShrinkShape ( s2s != data._shrinkShape2Shape.end() ); TopoDS_Shape vertEdge; if ( onShrinkShape ) // one of faces the node is on has no layers { vertEdge = getMeshDS()->IndexToShape( s2s->first ); // vertex or edge if ( s2s->second.ShapeType() == TopAbs_EDGE ) { // inflate from VERTEX along EDGE edge._normal = getEdgeDir( TopoDS::Edge( s2s->second ), TopoDS::Vertex( vertEdge )); } else if ( vertEdge.ShapeType() == TopAbs_VERTEX ) { // inflate from VERTEX along FACE edge._normal = getFaceDir( TopoDS::Face( s2s->second ), TopoDS::Vertex( vertEdge ), node, helper, normOK, &edge._cosin); } else { // inflate from EDGE along FACE edge._normal = getFaceDir( TopoDS::Face( s2s->second ), TopoDS::Edge( vertEdge ), node, helper, normOK); } } else // layers are on all faces of SOLID the node is on { // find indices of geom faces the node lies on set faceIds; if ( posType == SMDS_TOP_FACE ) { faceIds.insert( node->getshapeId() ); } else { SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) faceIds.insert( editor.FindShape(fIt->next())); } set::iterator id = faceIds.begin(); TopoDS_Face F; for ( ; id != faceIds.end(); ++id ) { const TopoDS_Shape& s = getMeshDS()->IndexToShape( *id ); if ( s.IsNull() || s.ShapeType() != TopAbs_FACE || !subIds.count( *id )) continue; totalNbFaces++; //nbLayerFaces += subIds.count( *id ); F = TopoDS::Face( s ); gp_XY uv = helper.GetNodeUV( F, node, 0, &normOK ); Handle(Geom_Surface) surface = BRep_Tool::Surface( F ); surface->D1( uv.X(),uv.Y(), p, du,dv ); geomNorm = du ^ dv; double size2 = geomNorm.SquareMagnitude(); if ( size2 > numeric_limits::min() ) geomNorm /= sqrt( size2 ); else normOK = false; if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED ) geomNorm.Reverse(); edge._normal += geomNorm.XYZ(); } if ( totalNbFaces == 0 ) return error(SMESH_Comment("Can't get normal to node ") << node->GetID(), data._index); edge._normal /= totalNbFaces; switch ( posType ) { case SMDS_TOP_FACE: edge._cosin = 0; break; case SMDS_TOP_EDGE: { TopoDS_Edge E = TopoDS::Edge( helper.GetSubShapeByNode( node, getMeshDS())); gp_Vec inFaceDir = getFaceDir( F, E, node, helper, normOK); double angle = inFaceDir.Angle( edge._normal ); // [0,PI] edge._cosin = cos( angle ); //cout << "Cosin on EDGE " << edge._cosin << " node " << node->GetID() << endl; break; } case SMDS_TOP_VERTEX: { TopoDS_Vertex V = TopoDS::Vertex( helper.GetSubShapeByNode( node, getMeshDS())); gp_Vec inFaceDir = getFaceDir( F, V, node, helper, normOK); double angle = inFaceDir.Angle( edge._normal ); // [0,PI] edge._cosin = cos( angle ); //cout << "Cosin on VERTEX " << edge._cosin << " node " << node->GetID() << endl; break; } default: return error(SMESH_Comment("Invalid shape position of node ")<::min() ) return error(SMESH_Comment("Bad normal at node ")<< node->GetID(), data._index ); edge._normal /= sqrt( normSize ); // TODO: if ( !normOK ) then get normal by mesh faces // Set the rest data // -------------------- if ( onShrinkShape ) { edge._sWOL = (*s2s).second; SMDS_MeshNode* tgtNode = const_cast( edge._nodes.back() ); if ( SMESHDS_SubMesh* sm = getMeshDS()->MeshElements( data._solid )) sm->RemoveNode( tgtNode , /*isNodeDeleted=*/false ); // set initial position which is parameters on _sWOL in this case if ( edge._sWOL.ShapeType() == TopAbs_EDGE ) { double u = helper.GetNodeU( TopoDS::Edge( edge._sWOL ), node, 0, &normOK ); edge._pos.push_back( gp_XYZ( u, 0, 0)); getMeshDS()->SetNodeOnEdge( tgtNode, TopoDS::Edge( edge._sWOL ), u ); } else // TopAbs_FACE { gp_XY uv = helper.GetNodeUV( TopoDS::Face( edge._sWOL ), node, 0, &normOK ); edge._pos.push_back( gp_XYZ( uv.X(), uv.Y(), 0)); getMeshDS()->SetNodeOnFace( tgtNode, TopoDS::Face( edge._sWOL ), uv.X(), uv.Y() ); } } else { edge._pos.push_back( SMESH_MeshEditor::TNodeXYZ( node )); if ( posType == SMDS_TOP_FACE ) { getSimplices( node, edge._simplices, _ignoreShapeIds, &data ); double avgNormProj = 0, avgLen = 0; for ( unsigned i = 0; i < edge._simplices.size(); ++i ) { gp_XYZ vec = edge._pos.back() - SMESH_MeshEditor::TNodeXYZ( edge._simplices[i]._nPrev ); avgNormProj += edge._normal * vec; avgLen += vec.Modulus(); } avgNormProj /= edge._simplices.size(); avgLen /= edge._simplices.size(); edge._curvature = _Curvature::New( avgNormProj, avgLen ); } } // Set neighbour nodes for a _LayerEdge based on EDGE if ( posType == SMDS_TOP_EDGE /*|| ( onShrinkShape && posType == SMDS_TOP_VERTEX && fabs( edge._cosin ) < 1e-10 )*/) { edge._2neibors = new _2NearEdges; // target node instead of source ones will be set later if ( ! findNeiborsOnEdge( &edge, edge._2neibors->_nodes[0], edge._2neibors->_nodes[1], data)) return false; edge.SetDataByNeighbors( edge._2neibors->_nodes[0], edge._2neibors->_nodes[1], helper); } edge.SetCosin( edge._cosin ); // to update edge._lenFactor return true; } //================================================================================ /*! * \brief Find 2 neigbor nodes of a node on EDGE */ //================================================================================ bool _ViscousBuilder::findNeiborsOnEdge(const _LayerEdge* edge, const SMDS_MeshNode*& n1, const SMDS_MeshNode*& n2, _SolidData& data) { const SMDS_MeshNode* node = edge->_nodes[0]; const int shapeInd = node->getshapeId(); SMESHDS_SubMesh* edgeSM = 0; if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_EDGE ) { edgeSM = getMeshDS()->MeshElements( shapeInd ); if ( !edgeSM || edgeSM->NbElements() == 0 ) return error(SMESH_Comment("Not meshed EDGE ") << shapeInd, data._index); } int iN = 0; n2 = 0; SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(SMDSAbs_Edge); while ( eIt->more() && !n2 ) { const SMDS_MeshElement* e = eIt->next(); const SMDS_MeshNode* nNeibor = e->GetNode( 0 ); if ( nNeibor == node ) nNeibor = e->GetNode( 1 ); if ( edgeSM ) { if (!edgeSM->Contains(e)) continue; } else { TopoDS_Shape s = SMESH_MesherHelper::GetSubShapeByNode(nNeibor, getMeshDS() ); if ( !SMESH_MesherHelper::IsSubShape( s, edge->_sWOL )) continue; } ( iN++ ? n2 : n1 ) = nNeibor; } if ( !n2 ) return error(SMESH_Comment("Wrongly meshed EDGE ") << shapeInd, data._index); return true; } //================================================================================ /*! * \brief Set _curvature and _2neibors->_plnNorm by 2 neigbor nodes residing the same EDGE */ //================================================================================ void _LayerEdge::SetDataByNeighbors( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, SMESH_MesherHelper& helper) { if ( _nodes[0]->GetPosition()->GetTypeOfPosition() != SMDS_TOP_EDGE ) return; gp_XYZ pos = SMESH_MeshEditor::TNodeXYZ( _nodes[0] ); gp_XYZ vec1 = pos - SMESH_MeshEditor::TNodeXYZ( n1 ); gp_XYZ vec2 = pos - SMESH_MeshEditor::TNodeXYZ( n2 ); // Set _curvature double sumLen = vec1.Modulus() + vec2.Modulus(); _2neibors->_wgt[0] = 1 - vec1.Modulus() / sumLen; _2neibors->_wgt[1] = 1 - vec2.Modulus() / sumLen; double avgNormProj = 0.5 * ( _normal * vec1 + _normal * vec2 ); double avgLen = 0.5 * ( vec1.Modulus() + vec2.Modulus() ); if ( _curvature ) delete _curvature; _curvature = _Curvature::New( avgNormProj, avgLen ); #ifdef __myDEBUG // if ( _curvature ) // cout << _nodes[0]->GetID() // << " CURV r,k: " << _curvature->_r<<","<<_curvature->_k // << " proj = "<AddGroup(SMDSAbs_Edge, name.c_str(), id ); // SMESHDS_Group* gDS = (SMESHDS_Group*)g->GetGroupDS(); // SMESHDS_Mesh* mDS = _mesh->GetMeshDS(); dumpFunction( SMESH_Comment("make_LayerEdge_") << i ); for ( unsigned j = 0 ; j < _sdVec[i]._edges.size(); ++j ) { _LayerEdge* le = _sdVec[i]._edges[j]; for ( unsigned iN = 1; iN < le->_nodes.size(); ++iN ) dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <_nodes[iN-1]->GetID() << ", " << le->_nodes[iN]->GetID() <<"])"); //gDS->SMDSGroup().Add( mDS->AddEdge( le->_nodes[iN-1], le->_nodes[iN])); } dumpFunctionEnd(); dumpFunction( SMESH_Comment("makeNormals") << i ); for ( unsigned j = 0 ; j < _sdVec[i]._edges.size(); ++j ) { _LayerEdge& edge = *_sdVec[i]._edges[j]; SMESH_MeshEditor::TNodeXYZ nXYZ( edge._nodes[0] ); nXYZ += edge._normal * _sdVec[i]._stepSize; dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <GetID() << ", mesh.AddNode( " << nXYZ.X()<<","<< nXYZ.Y()<<","<< nXYZ.Z()<<")])"); } dumpFunctionEnd(); // name = SMESH_Comment("tmp_faces ") << i; // g = _mesh->AddGroup(SMDSAbs_Face, name.c_str(), id ); // gDS = (SMESHDS_Group*)g->GetGroupDS(); // SMESH_MeshEditor editor( _mesh ); dumpFunction( SMESH_Comment("makeTmpFaces_") << i ); TopExp_Explorer fExp( _sdVec[i]._solid, TopAbs_FACE ); for ( ; fExp.More(); fExp.Next() ) { if (const SMESHDS_SubMesh* sm = _sdVec[i]._proxyMesh->GetProxySubMesh( fExp.Current())) { SMDS_ElemIteratorPtr fIt = sm->GetElements(); while ( fIt->more()) { const SMDS_MeshElement* e = fIt->next(); SMESH_Comment cmd("mesh.AddFace(["); for ( int j=0; j < e->NbCornerNodes(); ++j ) cmd << e->GetNode(j)->GetID() << (j+1NbCornerNodes() ? ",": "])"); dumpCmd( cmd ); //vector nodes( e->begin_nodes(), e->end_nodes() ); //gDS->SMDSGroup().Add( editor.AddElement( nodes, e->GetType(), e->IsPoly())); } } } dumpFunctionEnd(); } #endif } //================================================================================ /*! * \brief Increase length of _LayerEdge's to reach the required thickness of layers */ //================================================================================ bool _ViscousBuilder::inflate(_SolidData& data) { SMESH_MesherHelper helper( *_mesh ); // Limit inflation step size by geometry size found by itersecting // normals of _LayerEdge's with mesh faces double geomSize = Precision::Infinite(), intersecDist; SMESH_MeshEditor editor( _mesh ); auto_ptr searcher ( editor.GetElementSearcher( data._proxyMesh->GetFaces( data._solid )) ); for ( unsigned i = 0; i < data._edges.size(); ++i ) { if ( data._edges[i]->IsOnEdge() ) continue; data._edges[i]->FindIntersection( *searcher, intersecDist, data._epsilon ); if ( geomSize > intersecDist ) geomSize = intersecDist; } if ( data._stepSize > 0.3 * geomSize ) limitStepSize( data, 0.3 * geomSize ); const double tgtThick = data._hyp->GetTotalThickness(); if ( data._stepSize > tgtThick ) limitStepSize( data, tgtThick ); if ( data._stepSize < 1. ) data._epsilon = data._stepSize * 1e-7; #ifdef __myDEBUG cout << "-- geomSize = " << geomSize << ", stepSize = " << data._stepSize << endl; #endif double avgThick = 0, curThick = 0, distToIntersection = Precision::Infinite(); int nbSteps = 0, nbRepeats = 0; while ( 1.01 * avgThick < tgtThick ) { // new target length curThick += data._stepSize; if ( curThick > tgtThick ) { curThick = tgtThick + ( tgtThick-avgThick ) * nbRepeats; nbRepeats++; } // Elongate _LayerEdge's dumpFunction(SMESH_Comment("inflate")<SetNewLength( curThick, helper ); } dumpFunctionEnd(); if ( !nbSteps ) if ( !updateNormals( data, helper ) ) return false; // Improve and check quality if ( !smoothAndCheck( data, nbSteps, distToIntersection )) { if ( nbSteps > 0 ) { dumpFunction(SMESH_Comment("invalidate")<InvalidateStep( nbSteps+1 ); } dumpFunctionEnd(); } break; // no more inflating possible } nbSteps++; // Evaluate achieved thickness avgThick = 0; for ( unsigned i = 0; i < data._edges.size(); ++i ) avgThick += data._edges[i]->_len; avgThick /= data._edges.size(); #ifdef __myDEBUG cout << "-- Thickness " << avgThick << " reached" << endl; #endif if ( distToIntersection < avgThick*1.5 ) { #ifdef __myDEBUG cout << "-- Stop inflation since distToIntersection( "<_sWOL.IsNull() && data._edges[ iBeg ]->_sWOL.ShapeType() == TopAbs_FACE ) { if ( !F.IsSame( data._edges[ iBeg ]->_sWOL )) { F = TopoDS::Face( data._edges[ iBeg ]->_sWOL ); helper.SetSubShape( F ); surface = BRep_Tool::Surface( F ); } } else { F.Nullify(); surface.Nullify(); } TGeomID sInd = data._edges[ iBeg ]->_nodes[0]->getshapeId(); if ( data._edges[ iBeg ]->IsOnEdge() ) { dumpFunction(SMESH_Comment("smooth")<SmoothOnEdge(surface, F, helper); } dumpCmd( SMESH_Comment("# end step ")<Smooth(badNb); improved = ( badNb < oldBadNb ); dumpFunctionEnd(); } if ( badNb > 0 ) { #ifdef __myDEBUG for ( int i = iBeg; i < iEnd; ++i ) { _LayerEdge* edge = data._edges[i]; SMESH_MeshEditor::TNodeXYZ tgtXYZ( edge->_nodes.back() ); for ( unsigned j = 0; j < edge->_simplices.size(); ++j ) if ( !edge->_simplices[j].IsForward( edge->_nodes[0], &tgtXYZ )) { cout << "Bad simplex ( " << edge->_nodes[0]->GetID()<< " "<< tgtXYZ._node->GetID() << " "<< edge->_simplices[j]._nPrev->GetID() << " "<< edge->_simplices[j]._nNext->GetID() << " )" << endl; return false; } } #endif return false; } } } // loop on shapes to smooth // Check if the last segments of _LayerEdge intersects 2D elements; // checked elements are either temporary faces or faces on surfaces w/o the layers SMESH_MeshEditor editor( _mesh ); auto_ptr searcher ( editor.GetElementSearcher( data._proxyMesh->GetFaces( data._solid )) ); distToIntersection = Precision::Infinite(); double dist; const SMDS_MeshElement* intFace = 0, *closestFace = 0; int iLE = 0; for ( unsigned i = 0; i < data._edges.size(); ++i ) { if ( data._edges[i]->FindIntersection( *searcher, dist, data._epsilon, &intFace )) return false; if ( distToIntersection > dist ) distToIntersection = dist, closestFace = intFace, iLE = i; } #ifdef __myDEBUG if ( closestFace ) { SMDS_MeshElement::iterator nIt = closestFace->begin_nodes(); cout << "Shortest distance: _LayerEdge nodes: tgt " << data._edges[iLE]->_nodes.back()->GetID() << " src " << data._edges[iLE]->_nodes[0]->GetID()<< ", intersection with face (" << (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID() << ") distance = " << distToIntersection<< endl; } #endif return true; } //================================================================================ /*! * \brief Modify normals of _LayerEdge's on EDGE's to avoid intersection with * _LayerEdge's on neighbor EDGE's */ //================================================================================ bool _ViscousBuilder::updateNormals( _SolidData& data, SMESH_MesherHelper& helper ) { // make temporary quadrangles got by extrusion of // mesh edges along _LayerEdge._normal's vector< const SMDS_MeshElement* > tmpFaces; { set< SMESH_TLink > extrudedLinks; // contains target nodes vector< const SMDS_MeshNode*> nodes(4); // of a tmp mesh face dumpFunction(SMESH_Comment("makeTmpFacesOnEdges")<IsOnEdge() || !edge->_sWOL.IsNull() ) continue; const SMDS_MeshNode* tgt1 = edge->_nodes.back(); for ( int j = 0; j < 2; ++j ) // loop on _2NearEdges { const SMDS_MeshNode* tgt2 = edge->_2neibors->_nodes[j]; pair< set< SMESH_TLink >::iterator, bool > link_isnew = extrudedLinks.insert( SMESH_TLink( tgt1, tgt2 )); if ( !link_isnew.second ) { extrudedLinks.erase( link_isnew.first ); continue; // already extruded and will no more encounter } // look for a _LayerEdge containg tgt2 // _LayerEdge* neiborEdge = 0; // unsigned di = 0; // check _edges[i+di] and _edges[i-di] // while ( !neiborEdge && ++di <= data._edges.size() ) // { // if ( i+di < data._edges.size() && data._edges[i+di]->_nodes.back() == tgt2 ) // neiborEdge = data._edges[i+di]; // else if ( di <= i && data._edges[i-di]->_nodes.back() == tgt2 ) // neiborEdge = data._edges[i-di]; // } // if ( !neiborEdge ) // return error("updateNormals(): neighbor _LayerEdge not found", data._index); _LayerEdge* neiborEdge = edge->_2neibors->_edges[j]; TmpMeshFaceOnEdge* f = new TmpMeshFaceOnEdge( edge, neiborEdge, --_tmpFaceID ); tmpFaces.push_back( f ); dumpCmd(SMESH_Comment("mesh.AddFace([ ") <_nn[0]->GetID()<<", "<_nn[1]->GetID()<<", " <_nn[2]->GetID()<<", "<_nn[3]->GetID()<<" ])"); } } dumpFunctionEnd(); } // Check if _LayerEdge's based on EDGE's intersects tmpFaces. // Perform two loops on _LayerEdge on EDGE's: // 1) to find and fix intersection // 2) to check that no new intersection appears as result of 1) SMESH_MeshEditor editor( _mesh ); SMDS_ElemIteratorPtr fIt( new SMDS_ElementVectorIterator( tmpFaces.begin(), tmpFaces.end())); auto_ptr searcher ( editor.GetElementSearcher( fIt )); // 1) Find intersections double dist; const SMDS_MeshElement* face; typedef map< _LayerEdge*, set< _LayerEdge*, _LayerEdgeCmp >, _LayerEdgeCmp > TLEdge2LEdgeSet; TLEdge2LEdgeSet edge2CloseEdge; const double eps = data._epsilon * data._epsilon; for ( unsigned i = 0; i < data._edges.size(); ++i ) { _LayerEdge* edge = data._edges[i]; if ( !edge->IsOnEdge() || !edge->_sWOL.IsNull() ) continue; if ( edge->FindIntersection( *searcher, dist, eps, &face )) { const TmpMeshFaceOnEdge* f = (const TmpMeshFaceOnEdge*) face; set< _LayerEdge*, _LayerEdgeCmp > & ee = edge2CloseEdge[ edge ]; ee.insert( f->_le1 ); ee.insert( f->_le2 ); if ( f->_le1->IsOnEdge() && f->_le1->_sWOL.IsNull() ) edge2CloseEdge[ f->_le1 ].insert( edge ); if ( f->_le2->IsOnEdge() && f->_le2->_sWOL.IsNull() ) edge2CloseEdge[ f->_le2 ].insert( edge ); } } // Set _LayerEdge._normal if ( !edge2CloseEdge.empty() ) { dumpFunction(SMESH_Comment("updateNormals")<first; _LayerEdge* edge2 = 0; set< _LayerEdge*, _LayerEdgeCmp >& ee = e2ee->second; // find EDGEs the edges reside TopoDS_Edge E1, E2; TopoDS_Shape S = helper.GetSubShapeByNode( edge1->_nodes[0], getMeshDS() ); if ( S.ShapeType() != TopAbs_EDGE ) continue; // TODO: find EDGE by VERTEX E1 = TopoDS::Edge( S ); set< _LayerEdge* >::iterator eIt = ee.begin(); while ( E2.IsNull() && eIt != ee.end()) { _LayerEdge* e2 = *eIt++; TopoDS_Shape S = helper.GetSubShapeByNode( e2->_nodes[0], getMeshDS() ); if ( S.ShapeType() == TopAbs_EDGE ) E2 = TopoDS::Edge( S ), edge2 = e2; } if ( E2.IsNull() ) continue; // TODO: find EDGE by VERTEX // find 3 FACEs sharing 2 EDGEs TopoDS_Face FF1[2], FF2[2]; PShapeIteratorPtr fIt = helper.GetAncestors(E1, *_mesh, TopAbs_FACE); while ( fIt->more() && FF1[1].IsNull()) { const TopoDS_Face *F = (const TopoDS_Face*) fIt->next(); if ( helper.IsSubShape( *F, data._solid)) FF1[ FF1[0].IsNull() ? 0 : 1 ] = *F; } fIt = helper.GetAncestors(E2, *_mesh, TopAbs_FACE); while ( fIt->more() && FF2[1].IsNull()) { const TopoDS_Face *F = (const TopoDS_Face*) fIt->next(); if ( helper.IsSubShape( *F, data._solid)) FF2[ FF2[0].IsNull() ? 0 : 1 ] = *F; } // exclude a FACE common to E1 and E2 (put it at [1] in FF* ) if ( FF1[0].IsSame( FF2[0]) || FF1[0].IsSame( FF2[1])) std::swap( FF1[0], FF1[1] ); if ( FF2[0].IsSame( FF1[0]) ) std::swap( FF2[0], FF2[1] ); if ( FF1[0].IsNull() || FF2[0].IsNull() ) continue; // // get a new normal for edge1 bool ok; gp_Vec dir1 = edge1->_normal, dir2 = edge2->_normal; if ( edge1->_cosin < 0 ) dir1 = getFaceDir( FF1[0], E1, edge1->_nodes[0], helper, ok ).Normalized(); if ( edge2->_cosin < 0 ) dir2 = getFaceDir( FF2[0], E2, edge2->_nodes[0], helper, ok ).Normalized(); // gp_Vec dir1 = getFaceDir( FF1[0], E1, edge1->_nodes[0], helper, ok ); // gp_Vec dir2 = getFaceDir( FF2[0], E2, edge2->_nodes[0], helper, ok2 ); // double wgt1 = ( edge1->_cosin + 1 ) / ( edge1->_cosin + edge2->_cosin + 2 ); // double wgt2 = ( edge2->_cosin + 1 ) / ( edge1->_cosin + edge2->_cosin + 2 ); // gp_Vec newNorm = wgt1 * dir1 + wgt2 * dir2; // newNorm.Normalize(); double wgt1 = ( edge1->_cosin + 1 ) / ( edge1->_cosin + edge2->_cosin + 2 ); double wgt2 = ( edge2->_cosin + 1 ) / ( edge1->_cosin + edge2->_cosin + 2 ); gp_Vec newNorm = wgt1 * dir1 + wgt2 * dir2; newNorm.Normalize(); edge1->_normal = newNorm.XYZ(); // update data of edge1 depending on _normal const SMDS_MeshNode *n1, *n2; n1 = edge1->_2neibors->_edges[0]->_nodes[0]; n2 = edge1->_2neibors->_edges[1]->_nodes[0]; //if ( !findNeiborsOnEdge( edge1, n1, n2, data )) //continue; edge1->SetDataByNeighbors( n1, n2, helper ); gp_Vec dirInFace; if ( edge1->_cosin < 0 ) dirInFace = dir1; else getFaceDir( FF1[0], E1, edge1->_nodes[0], helper, ok ); double angle = dir1.Angle( edge1->_normal ); // [0,PI] edge1->SetCosin( cos( angle )); // limit data._stepSize if ( edge1->_cosin > 0.1 ) { SMDS_ElemIteratorPtr fIt = edge1->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) limitStepSize( data, fIt->next(), edge1->_cosin ); } // set new XYZ of target node edge1->InvalidateStep( 1 ); edge1->_len = 0; edge1->SetNewLength( data._stepSize, helper ); } // Update normals and other dependent data of not intersecting _LayerEdge's // neighboring the intersecting ones for ( e2ee = edge2CloseEdge.begin(); e2ee != edge2CloseEdge.end(); ++e2ee ) { _LayerEdge* edge1 = e2ee->first; if ( !edge1->_2neibors ) continue; for ( int j = 0; j < 2; ++j ) // loop on 2 neighbors { _LayerEdge* neighbor = edge1->_2neibors->_edges[j]; if ( edge2CloseEdge.count ( neighbor )) continue; // j-th neighbor is also intersected _LayerEdge* prevEdge = edge1; const int nbSteps = 6; for ( int step = nbSteps; step; --step ) // step from edge1 in j-th direction { if ( !neighbor->_2neibors ) break; // neighbor is on VERTEX int iNext = 0; _LayerEdge* nextEdge = neighbor->_2neibors->_edges[iNext]; if ( nextEdge == prevEdge ) nextEdge = neighbor->_2neibors->_edges[ ++iNext ]; // const double& wgtPrev = neighbor->_2neibors->_wgt[1-iNext]; // const double& wgtNext = neighbor->_2neibors->_wgt[iNext]; double r = double(step-1)/nbSteps; if ( !nextEdge->_2neibors ) r = 0.5; gp_XYZ newNorm = prevEdge->_normal * r + nextEdge->_normal * (1-r); newNorm.Normalize(); neighbor->_normal = newNorm; neighbor->SetCosin( prevEdge->_cosin * r + nextEdge->_cosin * (1-r) ); neighbor->SetDataByNeighbors( prevEdge->_nodes[0], nextEdge->_nodes[0], helper ); neighbor->InvalidateStep( 1 ); neighbor->_len = 0; neighbor->SetNewLength( data._stepSize, helper ); // goto the next neighbor prevEdge = neighbor; neighbor = nextEdge; } } } dumpFunctionEnd(); } // 2) Check absence of intersections // TODO? for ( unsigned i = 0 ; i < tmpFaces.size(); ++i ) delete tmpFaces[i]; return true; } //================================================================================ /*! * \brief Looks for intersection of it's last segment with faces * \param distance - returns shortest distance from the last node to intersection */ //================================================================================ bool _LayerEdge::FindIntersection( SMESH_ElementSearcher& searcher, double & distance, const double& epsilon, const SMDS_MeshElement** face) { vector< const SMDS_MeshElement* > suspectFaces; double segLen; gp_Ax1 lastSegment = LastSegment(segLen); searcher.GetElementsNearLine( lastSegment, SMDSAbs_Face, suspectFaces ); bool segmentIntersected = false; distance = Precision::Infinite(); int iFace = -1; // intersected face for ( unsigned j = 0 ; j < suspectFaces.size() && !segmentIntersected; ++j ) { const SMDS_MeshElement* face = suspectFaces[j]; if ( face->GetNodeIndex( _nodes.back() ) >= 0 || face->GetNodeIndex( _nodes[0] ) >= 0 ) continue; // face sharing _LayerEdge node const int nbNodes = face->NbCornerNodes(); bool intFound = false; double dist; SMDS_MeshElement::iterator nIt = face->begin_nodes(); if ( nbNodes == 3 ) { intFound = SegTriaInter( lastSegment, *nIt++, *nIt++, *nIt++, dist, epsilon ); } else { const SMDS_MeshNode* tria[3]; tria[0] = *nIt++; tria[1] = *nIt++;; for ( int n2 = 2; n2 < nbNodes && !intFound; ++n2 ) { tria[2] = *nIt++; intFound = SegTriaInter(lastSegment, tria[0], tria[1], tria[2], dist, epsilon ); tria[1] = tria[2]; } } if ( intFound ) { if ( dist < segLen*(1.01)) segmentIntersected = true; if ( distance > dist ) distance = dist, iFace = j; } } if ( iFace != -1 && face ) *face = suspectFaces[iFace]; // if ( distance && iFace > -1 ) // { // // distance is used to limit size of inflation step which depends on // // whether the intersected face bears viscous layers or not // bool faceHasVL = suspectFaces[iFace]->GetID() < 1; // if ( faceHasVL ) // *distance /= 2; // } if ( segmentIntersected ) { #ifdef __myDEBUG SMDS_MeshElement::iterator nIt = suspectFaces[iFace]->begin_nodes(); gp_XYZ intP( lastSegment.Location().XYZ() + lastSegment.Direction().XYZ() * distance ); cout << "nodes: tgt " << _nodes.back()->GetID() << " src " << _nodes[0]->GetID() << ", intersection with face (" << (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID() << ") at point (" << intP.X() << ", " << intP.Y() << ", " << intP.Z() << ") distance = " << distance - segLen<< endl; #endif } distance -= segLen; return segmentIntersected; } //================================================================================ /*! * \brief Returns size and direction of the last segment */ //================================================================================ gp_Ax1 _LayerEdge::LastSegment(double& segLen) const { // find two non-coincident positions gp_XYZ orig = _pos.back(); gp_XYZ dir; int iPrev = _pos.size() - 2; while ( iPrev >= 0 ) { dir = orig - _pos[iPrev]; if ( dir.SquareModulus() > 1e-100 ) break; else iPrev--; } // make gp_Ax1 gp_Ax1 segDir; if ( iPrev < 0 ) { segDir.SetLocation( SMESH_MeshEditor::TNodeXYZ( _nodes[0] )); segDir.SetDirection( _normal ); segLen = 0; } else { gp_Pnt pPrev = _pos[ iPrev ]; if ( !_sWOL.IsNull() ) { TopLoc_Location loc; if ( _sWOL.ShapeType() == TopAbs_EDGE ) { double f,l; Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( _sWOL ), loc, f,l); pPrev = curve->Value( pPrev.X() ).Transformed( loc ); } else { Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face(_sWOL), loc ); pPrev = surface->Value( pPrev.X(), pPrev.Y() ).Transformed( loc ); } dir = SMESH_MeshEditor::TNodeXYZ( _nodes.back() ) - pPrev.XYZ(); } segDir.SetLocation( pPrev ); segDir.SetDirection( dir ); segLen = dir.Modulus(); } return segDir; } //================================================================================ /*! * \brief Test intersection of the last segment with a given triangle * using Moller-Trumbore algorithm * Intersection is detected if distance to intersection is less than _LayerEdge._len */ //================================================================================ bool _LayerEdge::SegTriaInter( const gp_Ax1& lastSegment, const SMDS_MeshNode* n0, const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, double& t, const double& EPSILON) const { //const double EPSILON = 1e-6; gp_XYZ orig = lastSegment.Location().XYZ(); gp_XYZ dir = lastSegment.Direction().XYZ(); SMESH_MeshEditor::TNodeXYZ vert0( n0 ); SMESH_MeshEditor::TNodeXYZ vert1( n1 ); SMESH_MeshEditor::TNodeXYZ vert2( n2 ); /* calculate distance from vert0 to ray origin */ gp_XYZ tvec = orig - vert0; if ( tvec * dir > EPSILON ) // intersected face is at back side of the temporary face this _LayerEdge belongs to return false; gp_XYZ edge1 = vert1 - vert0; gp_XYZ edge2 = vert2 - vert0; /* begin calculating determinant - also used to calculate U parameter */ gp_XYZ pvec = dir ^ edge2; /* if determinant is near zero, ray lies in plane of triangle */ double det = edge1 * pvec; if (det > -EPSILON && det < EPSILON) return 0; double inv_det = 1.0 / det; /* calculate U parameter and test bounds */ double u = ( tvec * pvec ) * inv_det; if (u < 0.0 || u > 1.0) return 0; /* prepare to test V parameter */ gp_XYZ qvec = tvec ^ edge1; /* calculate V parameter and test bounds */ double v = (dir * qvec) * inv_det; if ( v < 0.0 || u + v > 1.0 ) return 0; /* calculate t, ray intersects triangle */ t = (edge2 * qvec) * inv_det; // if (det < EPSILON) // return false; // /* calculate distance from vert0 to ray origin */ // gp_XYZ tvec = orig - vert0; // /* calculate U parameter and test bounds */ // double u = tvec * pvec; // if (u < 0.0 || u > det) // return 0; // /* prepare to test V parameter */ // gp_XYZ qvec = tvec ^ edge1; // /* calculate V parameter and test bounds */ // double v = dir * qvec; // if (v < 0.0 || u + v > det) // return 0; // /* calculate t, scale parameters, ray intersects triangle */ // double t = edge2 * qvec; // double inv_det = 1.0 / det; // t *= inv_det; // //u *= inv_det; // //v *= inv_det; return true; } //================================================================================ /*! * \brief Perform smooth of _LayerEdge's based on EDGE's * \retval bool - true if node has been moved */ //================================================================================ bool _LayerEdge::SmoothOnEdge(Handle(Geom_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper) { ASSERT( IsOnEdge() ); SMDS_MeshNode* tgtNode = const_cast( _nodes.back() ); SMESH_MeshEditor::TNodeXYZ oldPos( tgtNode ); double dist01, distNewOld; SMESH_MeshEditor::TNodeXYZ p0( _2neibors->_nodes[0]); SMESH_MeshEditor::TNodeXYZ p1( _2neibors->_nodes[1]); dist01 = p0.Distance( _2neibors->_nodes[1] ); gp_Pnt newPos = p0 * _2neibors->_wgt[0] + p1 * _2neibors->_wgt[1]; double lenDelta = 0; if ( _curvature ) { lenDelta = _curvature->lenDelta( _len ); newPos.ChangeCoord() += _normal * lenDelta; } distNewOld = newPos.Distance( oldPos ); if ( F.IsNull() ) { if ( _2neibors->_plnNorm ) { // put newPos on the plane defined by source node and _plnNorm gp_XYZ new2src = SMESH_MeshEditor::TNodeXYZ( _nodes[0] ) - newPos.XYZ(); double new2srcProj = (*_2neibors->_plnNorm) * new2src; newPos.ChangeCoord() += (*_2neibors->_plnNorm) * new2srcProj; } tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); _pos.back() = newPos.XYZ(); } else { tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); gp_XY uv( Precision::Infinite(), 0 ); helper.CheckNodeUV( F, tgtNode, uv, 1e-10, /*force=*/true ); _pos.back().SetCoord( uv.X(), uv.Y(), 0 ); newPos = surface->Value( uv.X(), uv.Y() ); tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); } if ( _curvature && lenDelta < 0 ) { gp_Pnt prevPos( _pos[ _pos.size()-2 ]); _len -= prevPos.Distance( oldPos ); _len += prevPos.Distance( newPos ); } bool moved = distNewOld > dist01/50; //if ( moved ) dumpMove( tgtNode ); // debug return moved; } //================================================================================ /*! * \brief Perform laplacian smooth in 3D of nodes inflated from FACE * \retval bool - true if _tgtNode has been moved */ //================================================================================ bool _LayerEdge::Smooth(int& badNb) { if ( _simplices.size() < 2 ) return false; // _LayerEdge inflated along EDGE or FACE // compute new position for the last _pos gp_XYZ newPos (0,0,0); for ( unsigned i = 0; i < _simplices.size(); ++i ) newPos += SMESH_MeshEditor::TNodeXYZ( _simplices[i]._nPrev ); newPos /= _simplices.size(); if ( _curvature ) newPos += _normal * _curvature->lenDelta( _len ); gp_Pnt prevPos( _pos[ _pos.size()-2 ]); // if ( _cosin < -0.1) // { // // Avoid decreasing length of edge on concave surface // //gp_Vec oldMove( _pos[ _pos.size()-2 ], _pos.back() ); // gp_Vec newMove( prevPos, newPos ); // newPos = _pos.back() + newMove.XYZ(); // } // else if ( _cosin > 0.3 ) // { // // Avoid increasing length of edge too much // } // count quality metrics (orientation) of tetras around _tgtNode int nbOkBefore = 0; SMESH_MeshEditor::TNodeXYZ tgtXYZ( _nodes.back() ); for ( unsigned i = 0; i < _simplices.size(); ++i ) nbOkBefore += _simplices[i].IsForward( _nodes[0], &tgtXYZ ); int nbOkAfter = 0; for ( unsigned i = 0; i < _simplices.size(); ++i ) nbOkAfter += _simplices[i].IsForward( _nodes[0], &newPos ); if ( nbOkAfter < nbOkBefore ) return false; SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() ); _len -= prevPos.Distance(SMESH_MeshEditor::TNodeXYZ( n )); _len += prevPos.Distance(newPos); n->setXYZ( newPos.X(), newPos.Y(), newPos.Z()); _pos.back() = newPos; badNb += _simplices.size() - nbOkAfter; dumpMove( n ); return true; } //================================================================================ /*! * \brief Add a new segment to _LayerEdge during inflation */ //================================================================================ void _LayerEdge::SetNewLength( double len, SMESH_MesherHelper& helper ) { if ( _len - len > -1e-6 ) { _pos.push_back( _pos.back() ); return; } SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() ); SMESH_MeshEditor::TNodeXYZ oldXYZ( n ); gp_XYZ nXYZ = oldXYZ + _normal * ( len - _len ) * _lenFactor; n->setXYZ( nXYZ.X(), nXYZ.Y(), nXYZ.Z() ); _pos.push_back( nXYZ ); _len = len; if ( !_sWOL.IsNull() ) { double distXYZ[4]; if ( _sWOL.ShapeType() == TopAbs_EDGE ) { double u = Precision::Infinite(); // to force projection w/o distance check helper.CheckNodeU( TopoDS::Edge( _sWOL ), n, u, 1e-10, /*force=*/true, distXYZ ); _pos.back().SetCoord( u, 0, 0 ); SMDS_EdgePosition* pos = static_cast( n->GetPosition() ); pos->SetUParameter( u ); } else // TopAbs_FACE { gp_XY uv( Precision::Infinite(), 0 ); helper.CheckNodeUV( TopoDS::Face( _sWOL ), n, uv, 1e-10, /*force=*/true, distXYZ ); _pos.back().SetCoord( uv.X(), uv.Y(), 0 ); SMDS_FacePosition* pos = static_cast( n->GetPosition() ); pos->SetUParameter( uv.X() ); pos->SetVParameter( uv.Y() ); } n->setXYZ( distXYZ[1], distXYZ[2], distXYZ[3]); } dumpMove( n ); //debug } //================================================================================ /*! * \brief Remove last inflation step */ //================================================================================ void _LayerEdge::InvalidateStep( int curStep ) { if ( _pos.size() > curStep ) { _pos.resize( curStep ); gp_Pnt nXYZ = _pos.back(); SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() ); if ( !_sWOL.IsNull() ) { TopLoc_Location loc; if ( _sWOL.ShapeType() == TopAbs_EDGE ) { SMDS_EdgePosition* pos = static_cast( n->GetPosition() ); pos->SetUParameter( nXYZ.X() ); double f,l; Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( _sWOL ), loc, f,l); nXYZ = curve->Value( nXYZ.X() ).Transformed( loc ); } else { SMDS_FacePosition* pos = static_cast( n->GetPosition() ); pos->SetUParameter( nXYZ.X() ); pos->SetVParameter( nXYZ.Y() ); Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face(_sWOL), loc ); nXYZ = surface->Value( nXYZ.X(), nXYZ.Y() ).Transformed( loc ); } } n->setXYZ( nXYZ.X(), nXYZ.Y(), nXYZ.Z() ); dumpMove( n ); } } //================================================================================ /*! * \brief Create layers of prisms */ //================================================================================ bool _ViscousBuilder::refine(_SolidData& data) { SMESH_MesherHelper helper( *_mesh ); helper.SetSubShape( data._solid ); helper.SetElementsOnShape(false); Handle(Geom_Curve) curve; Handle(Geom_Surface) surface; TopoDS_Edge geomEdge; TopoDS_Face geomFace; TopLoc_Location loc; double f,l, u/*, distXYZ[4]*/; gp_XY uv; bool isOnEdge; for ( unsigned i = 0; i < data._edges.size(); ++i ) { _LayerEdge& edge = *data._edges[i]; // get accumulated length of segments vector< double > segLen( edge._pos.size() ); segLen[0] = 0.0; for ( unsigned j = 1; j < edge._pos.size(); ++j ) segLen[j] = segLen[j-1] + (edge._pos[j-1] - edge._pos[j] ).Modulus(); // allocate memory for new nodes if it is not yet refined const SMDS_MeshNode* tgtNode = edge._nodes.back(); if ( edge._nodes.size() == 2 ) { edge._nodes.resize( data._hyp->GetNumberLayers() + 1, 0 ); edge._nodes[1] = 0; edge._nodes.back() = tgtNode; } if ( !edge._sWOL.IsNull() ) { isOnEdge = ( edge._sWOL.ShapeType() == TopAbs_EDGE ); // restore position of the last node // gp_Pnt p; if ( isOnEdge ) { geomEdge = TopoDS::Edge( edge._sWOL ); curve = BRep_Tool::Curve( geomEdge, loc, f,l); // double u = helper.GetNodeU( tgtNode ); // p = curve->Value( u ); } else { geomFace = TopoDS::Face( edge._sWOL ); surface = BRep_Tool::Surface( geomFace, loc ); // gp_XY uv = helper.GetNodeUV( tgtNode ); // p = surface->Value( uv.X(), uv.Y() ); } // p.Transform( loc ); // const_cast< SMDS_MeshNode* >( tgtNode )->setXYZ( p.X(), p.Y(), p.Z() ); } // calculate height of the first layer double h0; const double T = segLen.back(); //data._hyp.GetTotalThickness(); const double f = data._hyp->GetStretchFactor(); const int N = data._hyp->GetNumberLayers(); const double fPowN = pow( f, N ); if ( fPowN - 1 <= numeric_limits::min() ) h0 = T / N; else h0 = T * ( f - 1 )/( fPowN - 1 ); const double zeroLen = std::numeric_limits::min(); // create intermediate nodes double hSum = 0, hi = h0/f; unsigned iSeg = 1; for ( unsigned iStep = 1; iStep < edge._nodes.size(); ++iStep ) { // compute an intermediate position hi *= f; hSum += hi; while ( hSum > segLen[iSeg] && iSeg < segLen.size()-1) ++iSeg; int iPrevSeg = iSeg-1; while ( fabs( segLen[iPrevSeg] - segLen[iSeg]) <= zeroLen && iPrevSeg > 0 ) --iPrevSeg; double r = ( segLen[iSeg] - hSum ) / ( segLen[iSeg] - segLen[iPrevSeg] ); gp_Pnt pos = r * edge._pos[iPrevSeg] + (1-r) * edge._pos[iSeg]; SMDS_MeshNode*& node = const_cast< SMDS_MeshNode*& >(edge._nodes[ iStep ]); if ( !edge._sWOL.IsNull() ) { // compute XYZ by parameters if ( isOnEdge ) { u = pos.X(); pos = curve->Value( u ).Transformed(loc); } else { uv.SetCoord( pos.X(), pos.Y() ); pos = surface->Value( pos.X(), pos.Y() ).Transformed(loc); } } // create or update the node if ( !node ) { node = helper.AddNode( pos.X(), pos.Y(), pos.Z()); if ( !edge._sWOL.IsNull() ) { if ( isOnEdge ) getMeshDS()->SetNodeOnEdge( node, geomEdge, u ); else getMeshDS()->SetNodeOnFace( node, geomFace, uv.X(), uv.Y() ); } else { getMeshDS()->SetNodeInVolume( node, helper.GetSubShapeID() ); } } else { if ( !edge._sWOL.IsNull() ) { // make average pos from new and current parameters if ( isOnEdge ) { u = 0.5 * ( u + helper.GetNodeU( geomEdge, node )); pos = curve->Value( u ).Transformed(loc); } else { uv = 0.5 * ( uv + helper.GetNodeUV( geomFace, node )); pos = surface->Value( uv.X(), uv.Y()).Transformed(loc); } } node->setXYZ( pos.X(), pos.Y(), pos.Z() ); } } } // TODO: make quadratic prisms and polyhedrons(?) helper.SetElementsOnShape(true); TopExp_Explorer exp( data._solid, TopAbs_FACE ); for ( ; exp.More(); exp.Next() ) { if ( _ignoreShapeIds.count( getMeshDS()->ShapeToIndex( exp.Current() ))) continue; SMESHDS_SubMesh* fSubM = getMeshDS()->MeshElements( exp.Current() ); SMDS_ElemIteratorPtr fIt = fSubM->GetElements(); vector< vector* > nnVec; while ( fIt->more() ) { const SMDS_MeshElement* face = fIt->next(); int nbNodes = face->NbCornerNodes(); nnVec.resize( nbNodes ); SMDS_ElemIteratorPtr nIt = face->nodesIterator(); for ( int iN = 0; iN < nbNodes; ++iN ) { const SMDS_MeshNode* n = static_cast( nIt->next() ); nnVec[ iN ] = & data._n2eMap[ n ]->_nodes; } int nbZ = nnVec[0]->size(); switch ( nbNodes ) { case 3: for ( int iZ = 1; iZ < nbZ; ++iZ ) helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1], (*nnVec[0])[iZ], (*nnVec[1])[iZ], (*nnVec[2])[iZ]); break; case 4: for ( int iZ = 1; iZ < nbZ; ++iZ ) helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1], (*nnVec[3])[iZ-1], (*nnVec[0])[iZ], (*nnVec[1])[iZ], (*nnVec[2])[iZ], (*nnVec[3])[iZ]); break; default: return error("Not supported type of element", data._index); } } } return true; } //================================================================================ /*! * \brief Shrink 2D mesh on faces to let space for inflated layers */ //================================================================================ bool _ViscousBuilder::shrink() { // make map of (ids of FACEs to shrink mesh on) to (_SolidData containing _LayerEdge's // inflated along FACE or EDGE) map< TGeomID, _SolidData* > f2sdMap; for ( unsigned i = 0 ; i < _sdVec.size(); ++i ) { _SolidData& data = _sdVec[i]; TopTools_MapOfShape FFMap; map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin(); for (; s2s != data._shrinkShape2Shape.end(); ++s2s ) if ( s2s->second.ShapeType() == TopAbs_FACE ) { f2sdMap.insert( make_pair( getMeshDS()->ShapeToIndex( s2s->second ), &data )); if ( FFMap.Add( (*s2s).second )) // Put mesh faces on the shrinked FACE to the proxy sub-mesh to avoid // usage of mesh faces made in addBoundaryElements() by the 3D algo or // by StdMeshers_QuadToTriaAdaptor if ( SMESHDS_SubMesh* smDS = getMeshDS()->MeshElements( s2s->second )) { SMESH_ProxyMesh::SubMesh* proxySub = data._proxyMesh->getFaceSubM( TopoDS::Face( s2s->second ), /*create=*/true); SMDS_ElemIteratorPtr fIt = smDS->GetElements(); while ( fIt->more() ) proxySub->AddElement( fIt->next() ); } } } SMESH_MesherHelper helper( *_mesh ); // EDGE's to shrink map< int, _Shrinker1D > e2shrMap; // loop on FACES to srink mesh on map< TGeomID, _SolidData* >::iterator f2sd = f2sdMap.begin(); for ( ; f2sd != f2sdMap.end(); ++f2sd ) { _SolidData& data = *f2sd->second; TNode2Edge& n2eMap = data._n2eMap; const TopoDS_Face& F = TopoDS::Face( getMeshDS()->IndexToShape( f2sd->first )); const bool reverse = ( data._reversedFaceIds.count( f2sd->first )); Handle(Geom_Surface) surface = BRep_Tool::Surface(F); SMESH_subMesh* sm = _mesh->GetSubMesh( F ); SMESHDS_SubMesh* smDS = sm->GetSubMeshDS(); helper.SetSubShape(F); // =========================== // Prepare data for shrinking // =========================== // Collect nodes to smooth as src nodes are not yet replaced by tgt ones // and thus all nodes on FACE connected to 2d elements are to be smoothed vector < const SMDS_MeshNode* > smoothNodes; { SMDS_NodeIteratorPtr nIt = smDS->GetNodes(); while ( nIt->more() ) { const SMDS_MeshNode* n = nIt->next(); if ( n->NbInverseElements( SMDSAbs_Face ) > 0 ) smoothNodes.push_back( n ); } } // Find out face orientation double refSign = 1; const set ignoreShapes; if ( !smoothNodes.empty() ) { gp_XY uv = helper.GetNodeUV( F, smoothNodes[0] ); vector<_Simplex> simplices; getSimplices( smoothNodes[0], simplices, ignoreShapes ); if ( simplices[0].IsForward(uv, F, helper,refSign) != (!reverse)) refSign = -1; } // Find _LayerEdge's inflated along F vector< _LayerEdge* > lEdges; { SMESH_subMeshIteratorPtr subIt = sm->getDependsOnIterator(/*includeSelf=*/false, /*complexShapeFirst=*/false); while ( subIt->more() ) { SMESH_subMesh* sub = subIt->next(); SMESHDS_SubMesh* subDS = sub->GetSubMeshDS(); if ( subDS->NbNodes() == 0 || !n2eMap.count( subDS->GetNodes()->next() )) continue; SMDS_NodeIteratorPtr nIt = subDS->GetNodes(); while ( nIt->more() ) { _LayerEdge* edge = n2eMap[ nIt->next() ]; lEdges.push_back( edge ); prepareEdgeToShrink( *edge, F, helper, smDS ); } } } // Replace source nodes by target nodes in mesh faces to shrink const SMDS_MeshNode* nodes[20]; for ( unsigned i = 0; i < lEdges.size(); ++i ) { _LayerEdge& edge = *lEdges[i]; const SMDS_MeshNode* srcNode = edge._nodes[0]; const SMDS_MeshNode* tgtNode = edge._nodes.back(); SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) { const SMDS_MeshElement* f = fIt->next(); if ( !smDS->Contains( f )) continue; SMDS_ElemIteratorPtr nIt = f->nodesIterator(); for ( int iN = 0; iN < f->NbNodes(); ++iN ) { const SMDS_MeshNode* n = static_cast( nIt->next() ); nodes[iN] = ( n == srcNode ? tgtNode : n ); } helper.GetMeshDS()->ChangeElementNodes( f, nodes, f->NbNodes() ); } } // Create _SmoothNode's on face F vector< _SmoothNode > nodesToSmooth( smoothNodes.size() ); { dumpFunction(SMESH_Comment("beforeShrinkFace")<first); // debug for ( unsigned i = 0; i < smoothNodes.size(); ++i ) { const SMDS_MeshNode* n = smoothNodes[i]; nodesToSmooth[ i ]._node = n; // src nodes must be replaced by tgt nodes to have tgt nodes in _simplices getSimplices( n, nodesToSmooth[ i ]._simplices, ignoreShapes ); dumpMove( n ); } dumpFunctionEnd(); } //if ( nodesToSmooth.empty() ) continue; // Find EDGE's to shrink set< _Shrinker1D* > eShri1D; { for ( unsigned i = 0; i < lEdges.size(); ++i ) { _LayerEdge* edge = lEdges[i]; if ( edge->_sWOL.ShapeType() == TopAbs_EDGE ) { TGeomID edgeIndex = getMeshDS()->ShapeToIndex( edge->_sWOL ); _Shrinker1D& srinker = e2shrMap[ edgeIndex ]; eShri1D.insert( & srinker ); srinker.AddEdge( edge, helper ); // restore params of nodes on EGDE if the EDGE has been already // srinked while srinking another FACE srinker.RestoreParams(); } } } // ================== // Perform shrinking // ================== bool shrinked = true; int badNb, shriStep=0, smooStep=0; while ( shrinked ) { // Move boundary nodes (actually just set new UV) // ----------------------------------------------- dumpFunction(SMESH_Comment("moveBoundaryOnF")<first<<"_st"<SetNewLength2d( surface,F,helper ); } dumpFunctionEnd(); if ( !shrinked ) break; // Move nodes on EDGE's set< _Shrinker1D* >::iterator shr = eShri1D.begin(); for ( ; shr != eShri1D.end(); ++shr ) (*shr)->Compute( /*set3D=*/false, helper ); // Smoothing in 2D // ----------------- int nbNoImpSteps = 0; bool moved = true; badNb = 1; while (( nbNoImpSteps < 5 && badNb > 0) && moved) { dumpFunction(SMESH_Comment("shrinkFace")<first<<"_st"<<++smooStep); // debug int oldBadNb = badNb; badNb = 0; moved = false; for ( unsigned i = 0; i < nodesToSmooth.size(); ++i ) { moved |= nodesToSmooth[i].Smooth( badNb,surface,helper,refSign,/*set3D=*/false ); } if ( badNb < oldBadNb ) nbNoImpSteps = 0; else nbNoImpSteps++; dumpFunctionEnd(); } if ( badNb > 0 ) return error(SMESH_Comment("Can't shrink 2D mesh on face ") << f2sd->first ); } // No wrongly shaped faces remain; final smooth. Set node XYZ for ( int st = 3; st; --st ) { dumpFunction(SMESH_Comment("shrinkFace")<first<<"_st"<<++smooStep); // debug for ( unsigned i = 0; i < nodesToSmooth.size(); ++i ) nodesToSmooth[i].Smooth( badNb,surface,helper,refSign,/*set3D=*/st==1 ); dumpFunctionEnd(); } // Set event listener to clear FACE sub-mesh together with SOLID sub-mesh _SrinkShapeListener::ToClearSubMeshWithSolid( sm, data._solid ); }// loop on FACES to srink mesh on // Replace source nodes by target nodes in shrinked mesh edges map< int, _Shrinker1D >::iterator e2shr = e2shrMap.begin(); for ( ; e2shr != e2shrMap.end(); ++e2shr ) e2shr->second.SwapSrcTgtNodes( getMeshDS() ); return true; } //================================================================================ /*! * \brief Computes 2d shrink direction and finds nodes limiting shrinking */ //================================================================================ bool _ViscousBuilder::prepareEdgeToShrink( _LayerEdge& edge, const TopoDS_Face& F, SMESH_MesherHelper& helper, const SMESHDS_SubMesh* faceSubMesh) { const SMDS_MeshNode* srcNode = edge._nodes[0]; const SMDS_MeshNode* tgtNode = edge._nodes.back(); edge._pos.clear(); if ( edge._sWOL.ShapeType() == TopAbs_FACE ) { gp_XY srcUV = helper.GetNodeUV( F, srcNode ); gp_XY tgtUV = helper.GetNodeUV( F, tgtNode ); gp_Vec2d uvDir( srcUV, tgtUV ); double uvLen = uvDir.Magnitude(); uvDir /= uvLen; edge._normal.SetCoord( uvDir.X(),uvDir.Y(), 0); // IMPORTANT to have src nodes NOT yet REPLACED by tgt nodes in shrinked faces vector faces; multimap< double, const SMDS_MeshNode* > proj2node; SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) { const SMDS_MeshElement* f = fIt->next(); if ( faceSubMesh->Contains( f )) faces.push_back( f ); } for ( unsigned i = 0; i < faces.size(); ++i ) { const int nbNodes = faces[i]->NbCornerNodes(); for ( int j = 0; j < nbNodes; ++j ) { const SMDS_MeshNode* n = faces[i]->GetNode(j); if ( n == srcNode ) continue; if ( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE && ( faces.size() > 1 || nbNodes > 3 )) continue; gp_Pnt2d uv = helper.GetNodeUV( F, n ); gp_Vec2d uvDirN( srcUV, uv ); double proj = uvDirN * uvDir; proj2node.insert( make_pair( proj, n )); } } multimap< double, const SMDS_MeshNode* >::iterator p2n = proj2node.begin(), p2nEnd; const double minProj = p2n->first; const double projThreshold = 1.1 * uvLen; if ( minProj > projThreshold ) { // tgtNode is located so that it does not make faces with wrong orientation return true; } edge._pos.resize(1); edge._pos[0].SetCoord( tgtUV.X(), tgtUV.Y(), 0 ); // store most risky nodes in _simplices p2nEnd = proj2node.lower_bound( projThreshold ); int nbSimpl = ( std::distance( p2n, p2nEnd ) + 1) / 2; edge._simplices.resize( nbSimpl ); for ( int i = 0; i < nbSimpl; ++i ) { edge._simplices[i]._nPrev = p2n->second; if ( ++p2n != p2nEnd ) edge._simplices[i]._nNext = p2n->second; } // set UV of source node to target node SMDS_FacePosition* pos = static_cast( tgtNode->GetPosition() ); pos->SetUParameter( srcUV.X() ); pos->SetVParameter( srcUV.Y() ); } else // _sWOL is TopAbs_EDGE { TopoDS_Edge E = TopoDS::Edge( edge._sWOL); SMESHDS_SubMesh* edgeSM = getMeshDS()->MeshElements( E ); if ( !edgeSM || edgeSM->NbElements() == 0 ) return error(SMESH_Comment("Not meshed EDGE ") << getMeshDS()->ShapeToIndex( E )); const SMDS_MeshNode* n2 = 0; SMDS_ElemIteratorPtr eIt = srcNode->GetInverseElementIterator(SMDSAbs_Edge); while ( eIt->more() && !n2 ) { const SMDS_MeshElement* e = eIt->next(); if ( !edgeSM->Contains(e)) continue; n2 = e->GetNode( 0 ); if ( n2 == srcNode ) n2 = e->GetNode( 1 ); } if ( !n2 ) return error(SMESH_Comment("Wrongly meshed EDGE ") << getMeshDS()->ShapeToIndex( E )); double uSrc = helper.GetNodeU( E, srcNode, n2 ); double uTgt = helper.GetNodeU( E, tgtNode, srcNode ); double u2 = helper.GetNodeU( E, n2, srcNode ); if ( fabs( uSrc-uTgt ) < 0.99 * fabs( uSrc-u2 )) { // tgtNode is located so that it does not make faces with wrong orientation return true; } edge._pos.resize(1); edge._pos[0].SetCoord( U_TGT, uTgt ); edge._pos[0].SetCoord( U_SRC, uSrc ); edge._pos[0].SetCoord( LEN_TGT, fabs( uSrc-uTgt )); edge._simplices.resize( 1 ); edge._simplices[0]._nPrev = n2; // set UV of source node to target node SMDS_EdgePosition* pos = static_cast( tgtNode->GetPosition() ); pos->SetUParameter( uSrc ); } return true; //================================================================================ /*! * \brief Compute positions (UV) to set to a node on edge moved during shrinking */ //================================================================================ // Compute UV to follow during shrinking // const SMDS_MeshNode* srcNode = edge._nodes[0]; // const SMDS_MeshNode* tgtNode = edge._nodes.back(); // gp_XY srcUV = helper.GetNodeUV( F, srcNode ); // gp_XY tgtUV = helper.GetNodeUV( F, tgtNode ); // gp_Vec2d uvDir( srcUV, tgtUV ); // double uvLen = uvDir.Magnitude(); // uvDir /= uvLen; // // Select shrinking step such that not to make faces with wrong orientation. // // IMPORTANT to have src nodes NOT yet REPLACED by tgt nodes in shrinked faces // const double minStepSize = uvLen / 20; // double stepSize = uvLen; // SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face); // while ( fIt->more() ) // { // const SMDS_MeshElement* f = fIt->next(); // if ( !faceSubMesh->Contains( f )) continue; // const int nbNodes = f->NbCornerNodes(); // for ( int i = 0; i < nbNodes; ++i ) // { // const SMDS_MeshNode* n = f->GetNode(i); // if ( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE || n == srcNode) // continue; // gp_XY uv = helper.GetNodeUV( F, n ); // gp_Vec2d uvDirN( srcUV, uv ); // double proj = uvDirN * uvDir; // if ( proj < stepSize && proj > minStepSize ) // stepSize = proj; // } // } // stepSize *= 0.8; // const int nbSteps = ceil( uvLen / stepSize ); // gp_XYZ srcUV0( srcUV.X(), srcUV.Y(), 0 ); // gp_XYZ tgtUV0( tgtUV.X(), tgtUV.Y(), 0 ); // edge._pos.resize( nbSteps ); // edge._pos[0] = tgtUV0; // for ( int i = 1; i < nbSteps; ++i ) // { // double r = i / double( nbSteps ); // edge._pos[i] = (1-r) * tgtUV0 + r * srcUV0; // } // return true; } //================================================================================ /*! * \brief Move target node to it's final position on the FACE during shrinking */ //================================================================================ bool _LayerEdge::SetNewLength2d( Handle(Geom_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper ) { if ( _pos.empty() ) return false; // already at the target position SMDS_MeshNode* tgtNode = const_cast< SMDS_MeshNode*& >( _nodes.back() ); if ( _sWOL.ShapeType() == TopAbs_FACE ) { gp_XY curUV = helper.GetNodeUV( F, tgtNode ); gp_Pnt2d tgtUV( _pos[0].X(), _pos[0].Y()); gp_Vec2d uvDir( _normal.X(), _normal.Y() ); const double uvLen = tgtUV.Distance( curUV ); // Select shrinking step such that not to make faces with wrong orientation. const double kSafe = 0.8; const double minStepSize = uvLen / 10; double stepSize = uvLen; for ( unsigned i = 0; i < _simplices.size(); ++i ) { const SMDS_MeshNode* nn[2] = { _simplices[i]._nPrev, _simplices[i]._nNext }; for ( int j = 0; j < 2; ++j ) if ( const SMDS_MeshNode* n = nn[j] ) { gp_XY uv = helper.GetNodeUV( F, n ); gp_Vec2d uvDirN( curUV, uv ); double proj = uvDirN * uvDir * kSafe; if ( proj < stepSize && proj > minStepSize ) stepSize = proj; } } gp_Pnt2d newUV; if ( stepSize == uvLen ) { newUV = tgtUV; _pos.clear(); } else { newUV = curUV + uvDir.XY() * stepSize; } SMDS_FacePosition* pos = static_cast( tgtNode->GetPosition() ); pos->SetUParameter( newUV.X() ); pos->SetVParameter( newUV.Y() ); #ifdef __myDEBUG gp_Pnt p = surface->Value( newUV.X(), newUV.Y() ); tgtNode->setXYZ( p.X(), p.Y(), p.Z() ); dumpMove( tgtNode ); #endif } else // _sWOL is TopAbs_EDGE { TopoDS_Edge E = TopoDS::Edge( _sWOL ); const SMDS_MeshNode* n2 = _simplices[0]._nPrev; const double u2 = helper.GetNodeU( E, n2, tgtNode ); const double uSrc = _pos[0].Coord( U_SRC ); const double lenTgt = _pos[0].Coord( LEN_TGT ); double newU = _pos[0].Coord( U_TGT ); if ( lenTgt < 0.99 * fabs( uSrc-u2 )) { _pos.clear(); } else { newU = 0.1 * uSrc + 0.9 * u2; } SMDS_EdgePosition* pos = static_cast( tgtNode->GetPosition() ); pos->SetUParameter( newU ); #ifdef __myDEBUG gp_XY newUV = helper.GetNodeUV( F, tgtNode, _nodes[0]); gp_Pnt p = surface->Value( newUV.X(), newUV.Y() ); tgtNode->setXYZ( p.X(), p.Y(), p.Z() ); dumpMove( tgtNode ); #endif } return true; } //================================================================================ /*! * \brief Perform laplacian smooth on the FACE * \retval bool - true if the node has been moved */ //================================================================================ bool _SmoothNode::Smooth(int& badNb, Handle(Geom_Surface)& surface, SMESH_MesherHelper& helper, const double refSign, bool set3D) { const TopoDS_Face& face = TopoDS::Face( helper.GetSubShape() ); // compute new UV for the node gp_XY newPos (0,0); for ( unsigned i = 0; i < _simplices.size(); ++i ) newPos += helper.GetNodeUV( face, _simplices[i]._nPrev ); newPos /= _simplices.size(); // count quality metrics (orientation) of triangles around the node int nbOkBefore = 0; gp_XY tgtUV = helper.GetNodeUV( face, _node ); for ( unsigned i = 0; i < _simplices.size(); ++i ) nbOkBefore += _simplices[i].IsForward( tgtUV, face, helper, refSign ); int nbOkAfter = 0; for ( unsigned i = 0; i < _simplices.size(); ++i ) nbOkAfter += _simplices[i].IsForward( newPos, face, helper, refSign ); if ( nbOkAfter < nbOkBefore ) return false; SMDS_FacePosition* pos = static_cast( _node->GetPosition() ); pos->SetUParameter( newPos.X() ); pos->SetVParameter( newPos.Y() ); #ifdef __myDEBUG set3D = true; #endif if ( set3D ) { gp_Pnt p = surface->Value( newPos.X(), newPos.Y() ); const_cast< SMDS_MeshNode* >( _node )->setXYZ( p.X(), p.Y(), p.Z() ); dumpMove( _node ); } badNb += _simplices.size() - nbOkAfter; return ( (tgtUV-newPos).SquareModulus() > 1e-10 ); } //================================================================================ /*! * \brief Delete _SolidData */ //================================================================================ _SolidData::~_SolidData() { for ( unsigned i = 0; i < _edges.size(); ++i ) { if ( _edges[i] && _edges[i]->_2neibors ) delete _edges[i]->_2neibors; delete _edges[i]; } _edges.clear(); } //================================================================================ /*! * \brief Add a _LayerEdge inflated along the EDGE */ //================================================================================ void _Shrinker1D::AddEdge( const _LayerEdge* e, SMESH_MesherHelper& helper ) { // init if ( _nodes.empty() ) { _edges[0] = _edges[1] = 0; _done = false; } // check _LayerEdge if ( e == _edges[0] || e == _edges[1] ) return; if ( e->_sWOL.IsNull() || e->_sWOL.ShapeType() != TopAbs_EDGE ) throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added")); if ( _edges[0] && _edges[0]->_sWOL != e->_sWOL ) throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added")); // store _LayerEdge const TopoDS_Edge& E = TopoDS::Edge( e->_sWOL ); double f,l; BRep_Tool::Range( E, f,l ); double u = helper.GetNodeU( E, e->_nodes[0], e->_nodes.back()); _edges[ u < 0.5*(f+l) ? 0 : 1 ] = e; // Update _nodes const SMDS_MeshNode* tgtNode0 = _edges[0] ? _edges[0]->_nodes.back() : 0; const SMDS_MeshNode* tgtNode1 = _edges[1] ? _edges[1]->_nodes.back() : 0; if ( _nodes.empty() ) { SMESHDS_SubMesh * eSubMesh = helper.GetMeshDS()->MeshElements( E ); if ( !eSubMesh || eSubMesh->NbNodes() < 1 ) return; TopLoc_Location loc; Handle(Geom_Curve) C = BRep_Tool::Curve(E, loc, f,l); GeomAdaptor_Curve aCurve(C); const double totLen = GCPnts_AbscissaPoint::Length(aCurve, f, l); int nbExpectNodes = eSubMesh->NbNodes() - e->_nodes.size(); _initU .reserve( nbExpectNodes ); _normPar.reserve( nbExpectNodes ); _nodes .reserve( nbExpectNodes ); SMDS_NodeIteratorPtr nIt = eSubMesh->GetNodes(); while ( nIt->more() ) { const SMDS_MeshNode* node = nIt->next(); if ( node->NbInverseElements(SMDSAbs_Edge) == 0 || node == tgtNode0 || node == tgtNode1 ) continue; // refinement nodes _nodes.push_back( node ); _initU.push_back( helper.GetNodeU( E, node )); double len = GCPnts_AbscissaPoint::Length(aCurve, f, _initU.back()); _normPar.push_back( len / totLen ); } } else { // remove target node of the _LayerEdge from _nodes int nbFound = 0; for ( unsigned i = 0; i < _nodes.size(); ++i ) if ( !_nodes[i] || _nodes[i] == tgtNode0 || _nodes[i] == tgtNode1 ) _nodes[i] = 0, nbFound++; if ( nbFound == _nodes.size() ) _nodes.clear(); } } //================================================================================ /*! * \brief Move nodes on EDGE from ends where _LayerEdge's are inflated */ //================================================================================ void _Shrinker1D::Compute(bool set3D, SMESH_MesherHelper& helper) { if ( _done || _nodes.empty()) return; const _LayerEdge* e = _edges[0]; if ( !e ) e = _edges[1]; if ( !e ) return; _done = (( !_edges[0] || _edges[0]->_pos.empty() ) && ( !_edges[1] || _edges[1]->_pos.empty() )); const TopoDS_Edge& E = TopoDS::Edge( e->_sWOL ); double f,l; if ( set3D || _done ) { Handle(Geom_Curve) C = BRep_Tool::Curve(E, f,l); GeomAdaptor_Curve aCurve(C); if ( _edges[0] ) f = helper.GetNodeU( E, _edges[0]->_nodes.back(), _nodes[0] ); if ( _edges[1] ) l = helper.GetNodeU( E, _edges[1]->_nodes.back(), _nodes.back() ); double totLen = GCPnts_AbscissaPoint::Length( aCurve, f, l ); for ( unsigned i = 0; i < _nodes.size(); ++i ) { if ( !_nodes[i] ) continue; double len = totLen * _normPar[i]; GCPnts_AbscissaPoint discret( aCurve, len, f ); if ( !discret.IsDone() ) return throw SALOME_Exception(LOCALIZED("GCPnts_AbscissaPoint failed")); double u = discret.Parameter(); SMDS_EdgePosition* pos = static_cast( _nodes[i]->GetPosition() ); pos->SetUParameter( u ); gp_Pnt p = C->Value( u ); const_cast< SMDS_MeshNode*>( _nodes[i] )->setXYZ( p.X(), p.Y(), p.Z() ); } } else { BRep_Tool::Range( E, f,l ); if ( _edges[0] ) f = helper.GetNodeU( E, _edges[0]->_nodes.back(), _nodes[0] ); if ( _edges[1] ) l = helper.GetNodeU( E, _edges[1]->_nodes.back(), _nodes.back() ); for ( unsigned i = 0; i < _nodes.size(); ++i ) { if ( !_nodes[i] ) continue; double u = f * ( 1-_normPar[i] ) + l * _normPar[i]; SMDS_EdgePosition* pos = static_cast( _nodes[i]->GetPosition() ); pos->SetUParameter( u ); } } } //================================================================================ /*! * \brief Restore initial parameters of nodes on EDGE */ //================================================================================ void _Shrinker1D::RestoreParams() { if ( _done ) for ( unsigned i = 0; i < _nodes.size(); ++i ) { if ( !_nodes[i] ) continue; SMDS_EdgePosition* pos = static_cast( _nodes[i]->GetPosition() ); pos->SetUParameter( _initU[i] ); } _done = false; } //================================================================================ /*! * \brief Replace source nodes by target nodes in shrinked mesh edges */ //================================================================================ void _Shrinker1D::SwapSrcTgtNodes( SMESHDS_Mesh* mesh ) { const SMDS_MeshNode* nodes[3]; for ( int i = 0; i < 2; ++i ) { if ( !_edges[i] ) continue; SMESHDS_SubMesh * eSubMesh = mesh->MeshElements( _edges[i]->_sWOL ); if ( !eSubMesh ) return; const SMDS_MeshNode* srcNode = _edges[i]->_nodes[0]; const SMDS_MeshNode* tgtNode = _edges[i]->_nodes.back(); SMDS_ElemIteratorPtr eIt = srcNode->GetInverseElementIterator(SMDSAbs_Edge); while ( eIt->more() ) { const SMDS_MeshElement* e = eIt->next(); if ( !eSubMesh->Contains( e )) continue; SMDS_ElemIteratorPtr nIt = e->nodesIterator(); for ( int iN = 0; iN < e->NbNodes(); ++iN ) { const SMDS_MeshNode* n = static_cast( nIt->next() ); nodes[iN] = ( n == srcNode ? tgtNode : n ); } mesh->ChangeElementNodes( e, nodes, e->NbNodes() ); } } } //================================================================================ /*! * \brief Creates 2D and 1D elements on boundaries of new prisms */ //================================================================================ bool _ViscousBuilder::addBoundaryElements() { SMESH_MesherHelper helper( *_mesh ); for ( unsigned i = 0; i < _sdVec.size(); ++i ) { _SolidData& data = _sdVec[i]; TopTools_IndexedMapOfShape geomEdges; TopExp::MapShapes( data._solid, TopAbs_EDGE, geomEdges ); for ( int iE = 1; iE <= geomEdges.Extent(); ++iE ) { const TopoDS_Edge& E = TopoDS::Edge( geomEdges(iE)); // Get _LayerEdge's based on E map< double, const SMDS_MeshNode* > u2nodes; if ( !SMESH_Algo::GetSortedNodesOnEdge( getMeshDS(), E, /*ignoreMedium=*/false, u2nodes)) continue; vector< _LayerEdge* > ledges; ledges.reserve( u2nodes.size() ); TNode2Edge & n2eMap = data._n2eMap; map< double, const SMDS_MeshNode* >::iterator u2n = u2nodes.begin(); { //check if 2D elements are needed on E TNode2Edge::iterator n2e = n2eMap.find( u2n->second ); if ( n2e == n2eMap.end() ) continue; // no layers on vertex ledges.push_back( n2e->second ); u2n++; if (( n2e = n2eMap.find( u2n->second )) == n2eMap.end() ) continue; // no layers on E ledges.push_back( n2eMap[ u2n->second ]); const SMDS_MeshNode* tgtN0 = ledges[0]->_nodes.back(); const SMDS_MeshNode* tgtN1 = ledges[1]->_nodes.back(); int nbSharedPyram = 0; SMDS_ElemIteratorPtr vIt = tgtN0->GetInverseElementIterator(SMDSAbs_Volume); while ( vIt->more() ) { const SMDS_MeshElement* v = vIt->next(); nbSharedPyram += int( v->GetNodeIndex( tgtN1 ) >= 0 ); } if ( nbSharedPyram > 1 ) continue; // not free border of the pyramid if ( getMeshDS()->FindFace( ledges[0]->_nodes[0], ledges[0]->_nodes[1], ledges[1]->_nodes[0], ledges[1]->_nodes[1])) continue; // faces already created } for ( ++u2n; u2n != u2nodes.end(); ++u2n ) ledges.push_back( n2eMap[ u2n->second ]); // Find out orientation and type of face to create bool reverse = false, tria = false, isOnFace; map< TGeomID, TopoDS_Shape >::iterator e2f = data._shrinkShape2Shape.find( getMeshDS()->ShapeToIndex( E )); TopoDS_Shape F; if ( isOnFace = ( e2f != data._shrinkShape2Shape.end() )) { F = e2f->second.Oriented( TopAbs_FORWARD ); reverse = ( helper.GetSubShapeOri( F, E ) == TopAbs_REVERSED ); if ( helper.GetSubShapeOri( data._solid, F ) == TopAbs_REVERSED ) reverse = !reverse; } else { // find FACE with layers sharing E PShapeIteratorPtr fIt = helper.GetAncestors( E, *_mesh, TopAbs_FACE ); while ( fIt->more() && F.IsNull() ) { const TopoDS_Shape* pF = fIt->next(); if ( helper.IsSubShape( *pF, data._solid) && !_ignoreShapeIds.count( e2f->first )) F = *pF; } tria = true; } // Find the sub-mesh to add new faces SMESHDS_SubMesh* sm = 0; if ( isOnFace ) sm = getMeshDS()->MeshElements( F ); else sm = data._proxyMesh->getFaceSubM( TopoDS::Face(F), /*create=*/true ); if ( !sm ) return error("error in addBoundaryElements()", data._index); // Make faces const int dj1 = reverse ? 0 : 1; const int dj2 = reverse ? 1 : 0; vector newFaces; newFaces.reserve(( ledges.size() - 1 ) * (ledges[0]->_nodes.size() - 1 )); for ( unsigned j = 1; j < ledges.size(); ++j ) { vector< const SMDS_MeshNode*>& nn1 = ledges[j-dj1]->_nodes; vector< const SMDS_MeshNode*>& nn2 = ledges[j-dj2]->_nodes; if ( isOnFace ) for ( unsigned z = 1; z < nn1.size(); ++z ) sm->AddElement( getMeshDS()->AddFace( nn1[z-1], nn2[z-1], nn2[z], nn1[z] )); else for ( unsigned z = 1; z < nn1.size(); ++z ) sm->AddElement( new SMDS_FaceOfNodes( nn1[z-1], nn2[z-1], nn2[z], nn1[z])); } } } return true; }