// Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File: SMESH_MesherHelper.cxx // Created: 15.02.06 15:22:41 // Author: Sergey KUUL // #include "SMESH_MesherHelper.hxx" #include "SMDS_FacePosition.hxx" #include "SMDS_EdgePosition.hxx" #include "SMDS_VolumeTool.hxx" #include "SMESH_subMesh.hxx" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RETURN_BAD_RESULT(msg) { MESSAGE(msg); return false; } namespace { gp_XYZ XYZ(const SMDS_MeshNode* n) { return gp_XYZ(n->X(), n->Y(), n->Z()); } } //================================================================================ /*! * \brief Constructor */ //================================================================================ SMESH_MesherHelper::SMESH_MesherHelper(SMESH_Mesh& theMesh) : myMesh(&theMesh), myShapeID(0), myCreateQuadratic(false), myCheckNodePos(false) { mySetElemOnShape = ( ! myMesh->HasShapeToMesh() ); } //======================================================================= //function : CheckShape //purpose : //======================================================================= bool SMESH_MesherHelper::IsQuadraticSubMesh(const TopoDS_Shape& aSh) { SMESHDS_Mesh* meshDS = GetMeshDS(); // we can create quadratic elements only if all elements // created on subshapes of given shape are quadratic // also we have to fill myTLinkNodeMap myCreateQuadratic = true; mySeamShapeIds.clear(); myDegenShapeIds.clear(); TopAbs_ShapeEnum subType( aSh.ShapeType()==TopAbs_FACE ? TopAbs_EDGE : TopAbs_FACE ); SMDSAbs_ElementType elemType( subType==TopAbs_FACE ? SMDSAbs_Face : SMDSAbs_Edge ); int nbOldLinks = myTLinkNodeMap.size(); TopExp_Explorer exp( aSh, subType ); for (; exp.More() && myCreateQuadratic; exp.Next()) { if ( SMESHDS_SubMesh * subMesh = meshDS->MeshElements( exp.Current() )) { if ( SMDS_ElemIteratorPtr it = subMesh->GetElements() ) { while(it->more()) { const SMDS_MeshElement* e = it->next(); if ( e->GetType() != elemType || !e->IsQuadratic() ) { myCreateQuadratic = false; break; } else { // fill TLinkNodeMap switch ( e->NbNodes() ) { case 3: AddTLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(2)); break; case 6: AddTLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(3)); AddTLinkNode(e->GetNode(1),e->GetNode(2),e->GetNode(4)); AddTLinkNode(e->GetNode(2),e->GetNode(0),e->GetNode(5)); break; case 8: AddTLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(4)); AddTLinkNode(e->GetNode(1),e->GetNode(2),e->GetNode(5)); AddTLinkNode(e->GetNode(2),e->GetNode(3),e->GetNode(6)); AddTLinkNode(e->GetNode(3),e->GetNode(0),e->GetNode(7)); break; default: myCreateQuadratic = false; break; } } } } } } if ( nbOldLinks == myTLinkNodeMap.size() ) myCreateQuadratic = false; if(!myCreateQuadratic) { myTLinkNodeMap.clear(); } SetSubShape( aSh ); return myCreateQuadratic; } //================================================================================ /*! * \brief Set geomerty to make elements on * \param aSh - geomertic shape */ //================================================================================ void SMESH_MesherHelper::SetSubShape(const int aShID) { if ( aShID == myShapeID ) return; if ( aShID > 1 ) SetSubShape( GetMeshDS()->IndexToShape( aShID )); else SetSubShape( TopoDS_Shape() ); } //================================================================================ /*! * \brief Set geomerty to make elements on * \param aSh - geomertic shape */ //================================================================================ void SMESH_MesherHelper::SetSubShape(const TopoDS_Shape& aSh) { if ( myShape.IsSame( aSh )) return; myShape = aSh; mySeamShapeIds.clear(); myDegenShapeIds.clear(); if ( myShape.IsNull() ) { myShapeID = 0; return; } SMESHDS_Mesh* meshDS = GetMeshDS(); myShapeID = meshDS->ShapeToIndex(aSh); // treatment of periodic faces for ( TopExp_Explorer eF( aSh, TopAbs_FACE ); eF.More(); eF.Next() ) { const TopoDS_Face& face = TopoDS::Face( eF.Current() ); BRepAdaptor_Surface surface( face ); if ( surface.IsUPeriodic() || surface.IsVPeriodic() ) { for (TopExp_Explorer exp( face, TopAbs_EDGE ); exp.More(); exp.Next()) { // look for a seam edge const TopoDS_Edge& edge = TopoDS::Edge( exp.Current() ); if ( BRep_Tool::IsClosed( edge, face )) { // initialize myPar1, myPar2 and myParIndex if ( mySeamShapeIds.empty() ) { gp_Pnt2d uv1, uv2; BRep_Tool::UVPoints( edge, face, uv1, uv2 ); if ( Abs( uv1.Coord(1) - uv2.Coord(1) ) < Abs( uv1.Coord(2) - uv2.Coord(2) )) { myParIndex = 1; // U periodic myPar1 = surface.FirstUParameter(); myPar2 = surface.LastUParameter(); } else { myParIndex = 2; // V periodic myPar1 = surface.FirstVParameter(); myPar2 = surface.LastVParameter(); } } // store seam shape indices, negative if shape encounters twice int edgeID = meshDS->ShapeToIndex( edge ); mySeamShapeIds.insert( IsSeamShape( edgeID ) ? -edgeID : edgeID ); for ( TopExp_Explorer v( edge, TopAbs_VERTEX ); v.More(); v.Next() ) { int vertexID = meshDS->ShapeToIndex( v.Current() ); mySeamShapeIds.insert( IsSeamShape( vertexID ) ? -vertexID : vertexID ); } } // look for a degenerated edge if ( BRep_Tool::Degenerated( edge )) { myDegenShapeIds.insert( meshDS->ShapeToIndex( edge )); for ( TopExp_Explorer v( edge, TopAbs_VERTEX ); v.More(); v.Next() ) myDegenShapeIds.insert( meshDS->ShapeToIndex( v.Current() )); } } } } } //================================================================================ /*! * \brief Check if inFaceNode argument is necessary for call GetNodeUV(F,..) * \param F - the face * \retval bool - return true if the face is periodic */ //================================================================================ bool SMESH_MesherHelper::GetNodeUVneedInFaceNode(const TopoDS_Face& F) const { if ( F.IsNull() ) return !mySeamShapeIds.empty(); if ( !F.IsNull() && !myShape.IsNull() && myShape.IsSame( F )) return !mySeamShapeIds.empty(); TopLoc_Location loc; Handle(Geom_Surface) aSurface = BRep_Tool::Surface( F,loc ); if ( !aSurface.IsNull() ) return ( aSurface->IsUPeriodic() || aSurface->IsVPeriodic() ); return false; } //======================================================================= //function : IsMedium //purpose : //======================================================================= bool SMESH_MesherHelper::IsMedium(const SMDS_MeshNode* node, const SMDSAbs_ElementType typeToCheck) { return SMESH_MeshEditor::IsMedium( node, typeToCheck ); } //======================================================================= /*! * \brief Return support shape of a node * \param node - the node * \param meshDS - mesh DS * \retval TopoDS_Shape - found support shape */ //======================================================================= TopoDS_Shape SMESH_MesherHelper::GetSubShapeByNode(const SMDS_MeshNode* node, SMESHDS_Mesh* meshDS) { int shapeID = node->GetPosition()->GetShapeId(); if ( 0 < shapeID && shapeID <= meshDS->MaxShapeIndex() ) return meshDS->IndexToShape( shapeID ); else return TopoDS_Shape(); } //======================================================================= //function : AddTLinkNode //purpose : //======================================================================= /*! * Auxilary function for filling myTLinkNodeMap */ void SMESH_MesherHelper::AddTLinkNode(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n12) { // add new record to map SMESH_TLink link( n1, n2 ); myTLinkNodeMap.insert( make_pair(link,n12)); } //======================================================================= /*! * \brief Select UV on either of 2 pcurves of a seam edge, closest to the given UV * \param uv1 - UV on the seam * \param uv2 - UV within a face * \retval gp_Pnt2d - selected UV */ //======================================================================= gp_Pnt2d SMESH_MesherHelper::GetUVOnSeam( const gp_Pnt2d& uv1, const gp_Pnt2d& uv2 ) const { double p1 = uv1.Coord( myParIndex ); double p2 = uv2.Coord( myParIndex ); double p3 = ( Abs( p1 - myPar1 ) < Abs( p1 - myPar2 )) ? myPar2 : myPar1; if ( Abs( p2 - p1 ) > Abs( p2 - p3 )) p1 = p3; gp_Pnt2d result = uv1; result.SetCoord( myParIndex, p1 ); return result; } //======================================================================= /*! * \brief Return node UV on face * \param F - the face * \param n - the node * \param n2 - a node of element being created located inside a face * \retval gp_XY - resulting UV * * Auxilary function called form GetMediumNode() */ //======================================================================= gp_XY SMESH_MesherHelper::GetNodeUV(const TopoDS_Face& F, const SMDS_MeshNode* n, const SMDS_MeshNode* n2, bool* check) const { gp_Pnt2d uv( 1e100, 1e100 ); const SMDS_PositionPtr Pos = n->GetPosition(); if(Pos->GetTypeOfPosition()==SMDS_TOP_FACE) { // node has position on face const SMDS_FacePosition* fpos = static_cast(n->GetPosition().get()); uv.SetCoord(fpos->GetUParameter(),fpos->GetVParameter()); if ( check && *check ) { // check that uv is correct TopLoc_Location loc; Handle(Geom_Surface) surface = BRep_Tool::Surface( F,loc ); double tol = 2 * BRep_Tool::Tolerance( F ); gp_Pnt nodePnt = XYZ( n ); if ( !loc.IsIdentity() ) nodePnt.Transform( loc.Transformation().Inverted() ); if ( nodePnt.Distance( surface->Value( uv.X(), uv.Y() )) > tol ) { // uv incorrect, project the node to surface GeomAPI_ProjectPointOnSurf projector( nodePnt, surface, tol ); if ( !projector.IsDone() || projector.NbPoints() < 1 ) { MESSAGE( "SMESH_MesherHelper::GetNodeUV() failed to project" ) return uv.XY(); } Quantity_Parameter U,V; projector.LowerDistanceParameters(U,V); if ( nodePnt.Distance( surface->Value( U, V )) > tol ) MESSAGE( "SMESH_MesherHelper::GetNodeUV(), invalid projection" ); uv.SetCoord( U,V ); } else if ( uv.XY().Modulus() > numeric_limits::min() ) { *check = false; // parameters are OK, do not check further more } } } else if(Pos->GetTypeOfPosition()==SMDS_TOP_EDGE) { // node has position on edge => it is needed to find // corresponding edge from face, get pcurve for this // edge and retrieve value from this pcurve const SMDS_EdgePosition* epos = static_cast(n->GetPosition().get()); int edgeID = Pos->GetShapeId(); TopoDS_Edge E = TopoDS::Edge(GetMeshDS()->IndexToShape(edgeID)); double f, l; Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, F, f, l); uv = C2d->Value( epos->GetUParameter() ); // for a node on a seam edge select one of UVs on 2 pcurves if ( n2 && IsSeamShape( edgeID ) ) uv = GetUVOnSeam( uv, GetNodeUV( F, n2, 0 )); // adjust uv to period TopLoc_Location loc; Handle(Geom_Surface) S = BRep_Tool::Surface(F,loc); Standard_Boolean isUPeriodic = S->IsUPeriodic(); Standard_Boolean isVPeriodic = S->IsVPeriodic(); if ( isUPeriodic || isVPeriodic ) { Standard_Real UF,UL,VF,VL; S->Bounds(UF,UL,VF,VL); if(isUPeriodic) uv.SetX( uv.X() + ShapeAnalysis::AdjustToPeriod(uv.X(),UF,UL)); if(isVPeriodic) uv.SetY( uv.Y() + ShapeAnalysis::AdjustToPeriod(uv.Y(),VF,VL)); } } else if(Pos->GetTypeOfPosition()==SMDS_TOP_VERTEX) { if ( int vertexID = n->GetPosition()->GetShapeId() ) { bool ok = true; const TopoDS_Vertex& V = TopoDS::Vertex(GetMeshDS()->IndexToShape(vertexID)); try { uv = BRep_Tool::Parameters( V, F ); } catch (Standard_Failure& exc) { ok = false; } if ( !ok ) { for ( TopExp_Explorer vert(F,TopAbs_VERTEX); !ok && vert.More(); vert.Next() ) ok = ( V == vert.Current() ); if ( !ok ) { #ifdef _DEBUG_ MESSAGE ( "SMESH_MesherHelper::GetNodeUV(); Vertex " << vertexID << " not in face " << GetMeshDS()->ShapeToIndex( F ) ); #endif // get UV of a vertex closest to the node double dist = 1e100; gp_Pnt pn = XYZ( n ); for ( TopExp_Explorer vert(F,TopAbs_VERTEX); !ok && vert.More(); vert.Next() ) { TopoDS_Vertex curV = TopoDS::Vertex( vert.Current() ); gp_Pnt p = BRep_Tool::Pnt( curV ); double curDist = p.SquareDistance( pn ); if ( curDist < dist ) { dist = curDist; uv = BRep_Tool::Parameters( curV, F ); if ( dist < DBL_MIN ) break; } } } else { TopTools_ListIteratorOfListOfShape it( myMesh->GetAncestors( V )); for ( ; it.More(); it.Next() ) { if ( it.Value().ShapeType() == TopAbs_EDGE ) { const TopoDS_Edge & edge = TopoDS::Edge( it.Value() ); double f,l; Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(edge, F, f, l); if ( !C2d.IsNull() ) { double u = ( V == TopExp::FirstVertex( edge ) ) ? f : l; uv = C2d->Value( u ); break; } } } } } if ( n2 && IsSeamShape( vertexID ) ) uv = GetUVOnSeam( uv, GetNodeUV( F, n2, 0 )); } } return uv.XY(); } //======================================================================= /*! * \brief Return middle UV taking in account surface period */ //======================================================================= gp_XY SMESH_MesherHelper::GetMiddleUV(const Handle(Geom_Surface)& surface, const gp_XY& p1, const gp_XY& p2) { if ( surface.IsNull() ) return 0.5 * ( p1 + p2 ); //checking if surface is periodic Standard_Real UF,UL,VF,VL; surface->Bounds(UF,UL,VF,VL); Standard_Real u,v; Standard_Boolean isUPeriodic = surface->IsUPeriodic(); if(isUPeriodic) { Standard_Real UPeriod = surface->UPeriod(); Standard_Real p2x = p2.X()+ShapeAnalysis::AdjustByPeriod(p2.X(),p1.X(),UPeriod); Standard_Real pmid = (p1.X()+p2x)/2.; u = pmid+ShapeAnalysis::AdjustToPeriod(pmid,UF,UL); } else { u= (p1.X()+p2.X())/2.; } Standard_Boolean isVPeriodic = surface->IsVPeriodic(); if(isVPeriodic) { Standard_Real VPeriod = surface->VPeriod(); Standard_Real p2y = p2.Y()+ShapeAnalysis::AdjustByPeriod(p2.Y(),p1.Y(),VPeriod); Standard_Real pmid = (p1.Y()+p2y)/2.; v = pmid+ShapeAnalysis::AdjustToPeriod(pmid,VF,VL); } else { v = (p1.Y()+p2.Y())/2.; } return gp_XY( u,v ); } //======================================================================= /*! * \brief Return node U on edge * \param E - the Edge * \param n - the node * \retval double - resulting U * * Auxilary function called form GetMediumNode() */ //======================================================================= double SMESH_MesherHelper::GetNodeU(const TopoDS_Edge& E, const SMDS_MeshNode* n, bool* check) { double param = 0; const SMDS_PositionPtr Pos = n->GetPosition(); if(Pos->GetTypeOfPosition()==SMDS_TOP_EDGE) { const SMDS_EdgePosition* epos = static_cast(n->GetPosition().get()); param = epos->GetUParameter(); } else if(Pos->GetTypeOfPosition()==SMDS_TOP_VERTEX) { SMESHDS_Mesh * meshDS = GetMeshDS(); int vertexID = n->GetPosition()->GetShapeId(); const TopoDS_Vertex& V = TopoDS::Vertex(meshDS->IndexToShape(vertexID)); param = BRep_Tool::Parameter( V, E ); } return param; } //================================================================================ /*! * \brief Return existing or create new medium nodes between given ones * \param force3d - if true, new node is the middle of n1 and n2, * else is located on geom face or geom edge */ //================================================================================ const SMDS_MeshNode* SMESH_MesherHelper::GetMediumNode(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, bool force3d) { SMESH_TLink link(n1,n2); ItTLinkNode itLN = myTLinkNodeMap.find( link ); if ( itLN != myTLinkNodeMap.end() ) { return (*itLN).second; } // create medium node SMDS_MeshNode* n12; SMESHDS_Mesh* meshDS = GetMeshDS(); int faceID = -1, edgeID = -1; const SMDS_PositionPtr Pos1 = n1->GetPosition(); const SMDS_PositionPtr Pos2 = n2->GetPosition(); if( myShape.IsNull() ) { if( Pos1->GetTypeOfPosition()==SMDS_TOP_FACE ) { faceID = Pos1->GetShapeId(); } else if( Pos2->GetTypeOfPosition()==SMDS_TOP_FACE ) { faceID = Pos2->GetShapeId(); } if( Pos1->GetTypeOfPosition()==SMDS_TOP_EDGE ) { edgeID = Pos1->GetShapeId(); } if( Pos2->GetTypeOfPosition()==SMDS_TOP_EDGE ) { edgeID = Pos2->GetShapeId(); } } if(!force3d) { // we try to create medium node using UV parameters of // nodes, else - medium between corresponding 3d points TopAbs_ShapeEnum shapeType = myShape.IsNull() ? TopAbs_SHAPE : myShape.ShapeType(); if(faceID>0 || shapeType == TopAbs_FACE) { // obtaining a face and 2d points for nodes TopoDS_Face F; if( myShape.IsNull() ) F = TopoDS::Face(meshDS->IndexToShape(faceID)); else { F = TopoDS::Face(myShape); faceID = myShapeID; } gp_XY p1 = GetNodeUV(F,n1,n2, &myCheckNodePos); gp_XY p2 = GetNodeUV(F,n2,n1, &myCheckNodePos); if ( IsDegenShape( Pos1->GetShapeId() )) p1.SetCoord( myParIndex, p2.Coord( myParIndex )); else if ( IsDegenShape( Pos2->GetShapeId() )) p2.SetCoord( myParIndex, p1.Coord( myParIndex )); TopLoc_Location loc; Handle(Geom_Surface) S = BRep_Tool::Surface(F,loc); gp_XY uv = GetMiddleUV( S, p1, p2 ); gp_Pnt P = S->Value( uv.X(), uv.Y() ).Transformed(loc); n12 = meshDS->AddNode(P.X(), P.Y(), P.Z()); meshDS->SetNodeOnFace(n12, faceID, uv.X(), uv.Y()); myTLinkNodeMap.insert(make_pair(link,n12)); return n12; } if (edgeID>0 || shapeType == TopAbs_EDGE) { TopoDS_Edge E; if( myShape.IsNull() ) E = TopoDS::Edge(meshDS->IndexToShape(edgeID)); else { E = TopoDS::Edge(myShape); edgeID = myShapeID; } double p1 = GetNodeU(E,n1, &myCheckNodePos); double p2 = GetNodeU(E,n2, &myCheckNodePos); double f,l; Handle(Geom_Curve) C = BRep_Tool::Curve(E, f, l); if(!C.IsNull()) { Standard_Boolean isPeriodic = C->IsPeriodic(); double u; if(isPeriodic) { Standard_Real Period = C->Period(); Standard_Real p = p2+ShapeAnalysis::AdjustByPeriod(p2,p1,Period); Standard_Real pmid = (p1+p)/2.; u = pmid+ShapeAnalysis::AdjustToPeriod(pmid,C->FirstParameter(),C->LastParameter()); } else u = (p1+p2)/2.; gp_Pnt P = C->Value( u ); n12 = meshDS->AddNode(P.X(), P.Y(), P.Z()); meshDS->SetNodeOnEdge(n12, edgeID, u); myTLinkNodeMap.insert(make_pair(link,n12)); return n12; } } } // 3d variant double x = ( n1->X() + n2->X() )/2.; double y = ( n1->Y() + n2->Y() )/2.; double z = ( n1->Z() + n2->Z() )/2.; n12 = meshDS->AddNode(x,y,z); if(edgeID>0) meshDS->SetNodeOnEdge(n12, edgeID); else if(faceID>0) meshDS->SetNodeOnFace(n12, faceID); else meshDS->SetNodeInVolume(n12, myShapeID); myTLinkNodeMap.insert( make_pair( link, n12 )); return n12; } //======================================================================= /*! * Creates a node */ //======================================================================= SMDS_MeshNode* SMESH_MesherHelper::AddNode(double x, double y, double z, int ID) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshNode* node = 0; if ( ID ) node = meshDS->AddNodeWithID( x, y, z, ID ); else node = meshDS->AddNode( x, y, z ); if ( mySetElemOnShape && myShapeID > 0 ) { switch ( myShape.ShapeType() ) { case TopAbs_SOLID: meshDS->SetNodeInVolume( node, myShapeID); break; case TopAbs_SHELL: meshDS->SetNodeInVolume( node, myShapeID); break; case TopAbs_FACE: meshDS->SetNodeOnFace( node, myShapeID); break; case TopAbs_EDGE: meshDS->SetNodeOnEdge( node, myShapeID); break; case TopAbs_VERTEX: meshDS->SetNodeOnVertex( node, myShapeID); break; default: ; } } return node; } //======================================================================= /*! * Creates quadratic or linear edge */ //======================================================================= SMDS_MeshEdge* SMESH_MesherHelper::AddEdge(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshEdge* edge = 0; if (myCreateQuadratic) { const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d); if(id) edge = meshDS->AddEdgeWithID(n1, n2, n12, id); else edge = meshDS->AddEdge(n1, n2, n12); } else { if(id) edge = meshDS->AddEdgeWithID(n1, n2, id); else edge = meshDS->AddEdge(n1, n2); } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( edge, myShapeID ); return edge; } //======================================================================= /*! * Creates quadratic or linear triangle */ //======================================================================= SMDS_MeshFace* SMESH_MesherHelper::AddFace(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshFace* elem = 0; if(!myCreateQuadratic) { if(id) elem = meshDS->AddFaceWithID(n1, n2, n3, id); else elem = meshDS->AddFace(n1, n2, n3); } else { const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d); const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d); const SMDS_MeshNode* n31 = GetMediumNode(n3,n1,force3d); if(id) elem = meshDS->AddFaceWithID(n1, n2, n3, n12, n23, n31, id); else elem = meshDS->AddFace(n1, n2, n3, n12, n23, n31); } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= /*! * Creates quadratic or linear quadrangle */ //======================================================================= SMDS_MeshFace* SMESH_MesherHelper::AddFace(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshFace* elem = 0; if(!myCreateQuadratic) { if(id) elem = meshDS->AddFaceWithID(n1, n2, n3, n4, id); else elem = meshDS->AddFace(n1, n2, n3, n4); } else { const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d); const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d); const SMDS_MeshNode* n34 = GetMediumNode(n3,n4,force3d); const SMDS_MeshNode* n41 = GetMediumNode(n4,n1,force3d); if(id) elem = meshDS->AddFaceWithID(n1, n2, n3, n4, n12, n23, n34, n41, id); else elem = meshDS->AddFace(n1, n2, n3, n4, n12, n23, n34, n41); } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= /*! * Creates quadratic or linear volume */ //======================================================================= SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const SMDS_MeshNode* n5, const SMDS_MeshNode* n6, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshVolume* elem = 0; if(!myCreateQuadratic) { if(id) elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, id); else elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6); } else { const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d); const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d); const SMDS_MeshNode* n31 = GetMediumNode(n3,n1,force3d); const SMDS_MeshNode* n45 = GetMediumNode(n4,n5,force3d); const SMDS_MeshNode* n56 = GetMediumNode(n5,n6,force3d); const SMDS_MeshNode* n64 = GetMediumNode(n6,n4,force3d); const SMDS_MeshNode* n14 = GetMediumNode(n1,n4,force3d); const SMDS_MeshNode* n25 = GetMediumNode(n2,n5,force3d); const SMDS_MeshNode* n36 = GetMediumNode(n3,n6,force3d); if(id) elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, n12, n23, n31, n45, n56, n64, n14, n25, n36, id); else elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6, n12, n23, n31, n45, n56, n64, n14, n25, n36); } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= /*! * Creates quadratic or linear volume */ //======================================================================= SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshVolume* elem = 0; if(!myCreateQuadratic) { if(id) elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, id); else elem = meshDS->AddVolume(n1, n2, n3, n4); } else { const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d); const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d); const SMDS_MeshNode* n31 = GetMediumNode(n3,n1,force3d); const SMDS_MeshNode* n14 = GetMediumNode(n1,n4,force3d); const SMDS_MeshNode* n24 = GetMediumNode(n2,n4,force3d); const SMDS_MeshNode* n34 = GetMediumNode(n3,n4,force3d); if(id) elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n12, n23, n31, n14, n24, n34, id); else elem = meshDS->AddVolume(n1, n2, n3, n4, n12, n23, n31, n14, n24, n34); } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= /*! * Creates quadratic or linear pyramid */ //======================================================================= SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const SMDS_MeshNode* n5, const int id, const bool force3d) { SMDS_MeshVolume* elem = 0; if(!myCreateQuadratic) { if(id) elem = GetMeshDS()->AddVolumeWithID(n1, n2, n3, n4, n5, id); else elem = GetMeshDS()->AddVolume(n1, n2, n3, n4, n5); } else { const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d); const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d); const SMDS_MeshNode* n34 = GetMediumNode(n3,n4,force3d); const SMDS_MeshNode* n41 = GetMediumNode(n4,n1,force3d); const SMDS_MeshNode* n15 = GetMediumNode(n1,n5,force3d); const SMDS_MeshNode* n25 = GetMediumNode(n2,n5,force3d); const SMDS_MeshNode* n35 = GetMediumNode(n3,n5,force3d); const SMDS_MeshNode* n45 = GetMediumNode(n4,n5,force3d); if(id) elem = GetMeshDS()->AddVolumeWithID ( n1, n2, n3, n4, n5, n12, n23, n34, n41, n15, n25, n35, n45, id); else elem = GetMeshDS()->AddVolume( n1, n2, n3, n4, n5, n12, n23, n34, n41, n15, n25, n35, n45); } if ( mySetElemOnShape && myShapeID > 0 ) GetMeshDS()->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= /*! * Creates quadratic or linear hexahedron */ //======================================================================= SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const SMDS_MeshNode* n5, const SMDS_MeshNode* n6, const SMDS_MeshNode* n7, const SMDS_MeshNode* n8, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshVolume* elem = 0; if(!myCreateQuadratic) { if(id) elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, n7, n8, id); else elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6, n7, n8); } else { const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d); const SMDS_MeshNode* n23 = GetMediumNode(n2,n3,force3d); const SMDS_MeshNode* n34 = GetMediumNode(n3,n4,force3d); const SMDS_MeshNode* n41 = GetMediumNode(n4,n1,force3d); const SMDS_MeshNode* n56 = GetMediumNode(n5,n6,force3d); const SMDS_MeshNode* n67 = GetMediumNode(n6,n7,force3d); const SMDS_MeshNode* n78 = GetMediumNode(n7,n8,force3d); const SMDS_MeshNode* n85 = GetMediumNode(n8,n5,force3d); const SMDS_MeshNode* n15 = GetMediumNode(n1,n5,force3d); const SMDS_MeshNode* n26 = GetMediumNode(n2,n6,force3d); const SMDS_MeshNode* n37 = GetMediumNode(n3,n7,force3d); const SMDS_MeshNode* n48 = GetMediumNode(n4,n8,force3d); if(id) elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, n7, n8, n12, n23, n34, n41, n56, n67, n78, n85, n15, n26, n37, n48, id); else elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6, n7, n8, n12, n23, n34, n41, n56, n67, n78, n85, n15, n26, n37, n48); } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= /*! * \brief Load nodes bound to face into a map of node columns * \param theParam2ColumnMap - map of node columns to fill * \param theFace - the face on which nodes are searched for * \param theBaseEdge - the edge nodes of which are columns' bases * \param theMesh - the mesh containing nodes * \retval bool - false if something is wrong * * The key of the map is a normalized parameter of each * base node on theBaseEdge. * This method works in supposition that nodes on the face * forms a rectangular grid and elements can be quardrangles or triangles */ //======================================================================= bool SMESH_MesherHelper::LoadNodeColumns(TParam2ColumnMap & theParam2ColumnMap, const TopoDS_Face& theFace, const TopoDS_Edge& theBaseEdge, SMESHDS_Mesh* theMesh) { // get vertices of theBaseEdge TopoDS_Vertex vfb, vlb, vft; // first and last, bottom and top vertices TopoDS_Edge eFrw = TopoDS::Edge( theBaseEdge.Oriented( TopAbs_FORWARD )); TopExp::Vertices( eFrw, vfb, vlb ); // find the other edges of theFace and orientation of e1 TopoDS_Edge e1, e2, eTop; bool rev1, CumOri = false; TopExp_Explorer exp( theFace, TopAbs_EDGE ); int nbEdges = 0; for ( ; exp.More(); exp.Next() ) { if ( ++nbEdges > 4 ) { return false; // more than 4 edges in theFace } TopoDS_Edge e = TopoDS::Edge( exp.Current() ); if ( theBaseEdge.IsSame( e )) continue; TopoDS_Vertex vCommon; if ( !TopExp::CommonVertex( theBaseEdge, e, vCommon )) eTop = e; else if ( vCommon.IsSame( vfb )) { e1 = e; vft = TopExp::LastVertex( e1, CumOri ); rev1 = vfb.IsSame( vft ); if ( rev1 ) vft = TopExp::FirstVertex( e1, CumOri ); } else e2 = e; } if ( nbEdges < 4 ) { return false; // less than 4 edges in theFace } if ( e2.IsNull() && vfb.IsSame( vlb )) e2 = e1; // submeshes corresponding to shapes SMESHDS_SubMesh* smFace = theMesh->MeshElements( theFace ); SMESHDS_SubMesh* smb = theMesh->MeshElements( theBaseEdge ); SMESHDS_SubMesh* smt = theMesh->MeshElements( eTop ); SMESHDS_SubMesh* sm1 = theMesh->MeshElements( e1 ); SMESHDS_SubMesh* sm2 = theMesh->MeshElements( e2 ); SMESHDS_SubMesh* smVfb = theMesh->MeshElements( vfb ); SMESHDS_SubMesh* smVlb = theMesh->MeshElements( vlb ); SMESHDS_SubMesh* smVft = theMesh->MeshElements( vft ); if (!smFace || !smb || !smt || !sm1 || !sm2 || !smVfb || !smVlb || !smVft ) { RETURN_BAD_RESULT( "NULL submesh " <NbNodes() != smt->NbNodes() || sm1->NbNodes() != sm2->NbNodes() ) { RETURN_BAD_RESULT(" Diff nb of nodes on opposite edges" ); } if (smVfb->NbNodes() != 1 || smVlb->NbNodes() != 1 || smVft->NbNodes() != 1) { RETURN_BAD_RESULT("Empty submesh of vertex"); } // define whether mesh is quadratic bool isQuadraticMesh = false; SMDS_ElemIteratorPtr eIt = smFace->GetElements(); if ( !eIt->more() ) { RETURN_BAD_RESULT("No elements on the face"); } const SMDS_MeshElement* e = eIt->next(); isQuadraticMesh = e->IsQuadratic(); if ( sm1->NbNodes() * smb->NbNodes() != smFace->NbNodes() ) { // check quadratic case if ( isQuadraticMesh ) { // what if there are quadrangles and triangles mixed? // int n1 = sm1->NbNodes()/2; // int n2 = smb->NbNodes()/2; // int n3 = sm1->NbNodes() - n1; // int n4 = smb->NbNodes() - n2; // int nf = sm1->NbNodes()*smb->NbNodes() - n3*n4; // if( nf != smFace->NbNodes() ) { // MESSAGE( "Wrong nb face nodes: " << // sm1->NbNodes()<<" "<NbNodes()<<" "<NbNodes()); // return false; // } } else { RETURN_BAD_RESULT( "Wrong nb face nodes: " << sm1->NbNodes()<<" "<NbNodes()<<" "<NbNodes()); } } // IJ size int vsize = sm1->NbNodes() + 2; int hsize = smb->NbNodes() + 2; if(isQuadraticMesh) { vsize = vsize - sm1->NbNodes()/2 -1; hsize = hsize - smb->NbNodes()/2 -1; } // load nodes from theBaseEdge std::set loadedNodes; const SMDS_MeshNode* nullNode = 0; std::vector & nVecf = theParam2ColumnMap[ 0.]; nVecf.resize( vsize, nullNode ); loadedNodes.insert( nVecf[ 0 ] = smVfb->GetNodes()->next() ); std::vector & nVecl = theParam2ColumnMap[ 1.]; nVecl.resize( vsize, nullNode ); loadedNodes.insert( nVecl[ 0 ] = smVlb->GetNodes()->next() ); double f, l; BRep_Tool::Range( eFrw, f, l ); double range = l - f; SMDS_NodeIteratorPtr nIt = smb->GetNodes(); const SMDS_MeshNode* node; while ( nIt->more() ) { node = nIt->next(); if(IsMedium(node, SMDSAbs_Edge)) continue; const SMDS_EdgePosition* pos = dynamic_cast( node->GetPosition().get() ); if ( !pos ) { return false; } double u = ( pos->GetUParameter() - f ) / range; std::vector & nVec = theParam2ColumnMap[ u ]; nVec.resize( vsize, nullNode ); loadedNodes.insert( nVec[ 0 ] = node ); } if ( theParam2ColumnMap.size() != hsize ) { RETURN_BAD_RESULT( "Wrong node positions on theBaseEdge" ); } // load nodes from e1 std::map< double, const SMDS_MeshNode*> sortedNodes; // sort by param on edge nIt = sm1->GetNodes(); while ( nIt->more() ) { node = nIt->next(); if(IsMedium(node)) continue; const SMDS_EdgePosition* pos = dynamic_cast( node->GetPosition().get() ); if ( !pos ) { return false; } sortedNodes.insert( std::make_pair( pos->GetUParameter(), node )); } loadedNodes.insert( nVecf[ vsize - 1 ] = smVft->GetNodes()->next() ); std::map< double, const SMDS_MeshNode*>::iterator u_n = sortedNodes.begin(); int row = rev1 ? vsize - 1 : 0; int dRow = rev1 ? -1 : +1; for ( ; u_n != sortedNodes.end(); u_n++ ) { row += dRow; loadedNodes.insert( nVecf[ row ] = u_n->second ); } // try to load the rest nodes // get all faces from theFace TIDSortedElemSet allFaces, foundFaces; eIt = smFace->GetElements(); while ( eIt->more() ) { const SMDS_MeshElement* e = eIt->next(); if ( e->GetType() == SMDSAbs_Face ) allFaces.insert( e ); } // Starting from 2 neighbour nodes on theBaseEdge, look for a face // the nodes belong to, and between the nodes of the found face, // look for a not loaded node considering this node to be the next // in a column of the starting second node. Repeat, starting // from nodes next to the previous starting nodes in their columns, // and so on while a face can be found. Then go the the next pair // of nodes on theBaseEdge. TParam2ColumnMap::iterator par_nVec_1 = theParam2ColumnMap.begin(); TParam2ColumnMap::iterator par_nVec_2 = par_nVec_1; // loop on columns int col = 0; for ( par_nVec_2++; par_nVec_2 != theParam2ColumnMap.end(); par_nVec_1++, par_nVec_2++ ) { col++; row = 0; const SMDS_MeshNode* n1 = par_nVec_1->second[ row ]; const SMDS_MeshNode* n2 = par_nVec_2->second[ row ]; const SMDS_MeshElement* face = 0; bool lastColOnClosedFace = ( nVecf[ row ] == n2 ); do { // look for a face by 2 nodes face = SMESH_MeshEditor::FindFaceInSet( n1, n2, allFaces, foundFaces ); if ( face ) { int nbFaceNodes = face->NbNodes(); if ( face->IsQuadratic() ) nbFaceNodes /= 2; if ( nbFaceNodes>4 ) { RETURN_BAD_RESULT(" Too many nodes in a face: " << nbFaceNodes ); } // look for a not loaded node of the bool found = false; const SMDS_MeshNode* n3 = 0; // a node defferent from n1 and n2 for ( int i = 0; i < nbFaceNodes && !found; ++i ) { node = face->GetNode( i ); found = loadedNodes.insert( node ).second; if ( !found && node != n1 && node != n2 ) n3 = node; } if ( lastColOnClosedFace && row + 1 < vsize ) { node = nVecf[ row + 1 ]; found = ( face->GetNodeIndex( node ) >= 0 ); } if ( found ) { if ( ++row > vsize - 1 ) { RETURN_BAD_RESULT( "Too many nodes in column "<< col <<": "<< row+1); } par_nVec_2->second[ row ] = node; foundFaces.insert( face ); n2 = node; if ( nbFaceNodes==4 ) { n1 = par_nVec_1->second[ row ]; } } else if ( nbFaceNodes==3 && n3 == par_nVec_1->second[ row + 1 ] ) { n1 = n3; } else { RETURN_BAD_RESULT( "Not quad mesh, column "<< col ); } } } while ( face && n1 && n2 ); if ( row < vsize - 1 ) { MESSAGE( "Too few nodes in column "<< col <<": "<< row+1); MESSAGE( "Base node 1: "<< par_nVec_1->second[0]); MESSAGE( "Base node 2: "<< par_nVec_2->second[0]); if ( n1 ) { MESSAGE( "Current node 1: "<< n1); } else { MESSAGE( "Current node 1: NULL"); } if ( n2 ) { MESSAGE( "Current node 2: "<< n2); } else { MESSAGE( "Current node 2: NULL"); } MESSAGE( "first base node: "<< theParam2ColumnMap.begin()->second[0]); MESSAGE( "last base node: "<< theParam2ColumnMap.rbegin()->second[0]); return false; } } // loop on columns return true; } //======================================================================= /*! * \brief Return number of unique ancestors of the shape */ //======================================================================= int SMESH_MesherHelper::NbAncestors(const TopoDS_Shape& shape, const SMESH_Mesh& mesh, TopAbs_ShapeEnum ancestorType/*=TopAbs_SHAPE*/) { TopTools_MapOfShape ancestors; TopTools_ListIteratorOfListOfShape ansIt( mesh.GetAncestors(shape) ); for ( ; ansIt.More(); ansIt.Next() ) { if ( ancestorType == TopAbs_SHAPE || ansIt.Value().ShapeType() == ancestorType ) ancestors.Add( ansIt.Value() ); } return ancestors.Extent(); } //======================================================================= /** * Check mesh without geometry for: if all elements on this shape are quadratic, * quadratic elements will be created. * Used then generated 3D mesh without geometry. */ //======================================================================= SMESH_MesherHelper:: MType SMESH_MesherHelper::IsQuadraticMesh() { int NbAllEdgsAndFaces=0; int NbQuadFacesAndEdgs=0; int NbFacesAndEdges=0; //All faces and edges NbAllEdgsAndFaces = myMesh->NbEdges() + myMesh->NbFaces(); //Quadratic faces and edges NbQuadFacesAndEdgs = myMesh->NbEdges(ORDER_QUADRATIC) + myMesh->NbFaces(ORDER_QUADRATIC); //Linear faces and edges NbFacesAndEdges = myMesh->NbEdges(ORDER_LINEAR) + myMesh->NbFaces(ORDER_LINEAR); if (NbAllEdgsAndFaces == NbQuadFacesAndEdgs) { //Quadratic mesh return SMESH_MesherHelper::QUADRATIC; } else if (NbAllEdgsAndFaces == NbFacesAndEdges) { //Linear mesh return SMESH_MesherHelper::LINEAR; } else //Mesh with both type of elements return SMESH_MesherHelper::COMP; } //======================================================================= /*! * \brief Return an alternative parameter for a node on seam */ //======================================================================= double SMESH_MesherHelper::GetOtherParam(const double param) const { return fabs(param-myPar1) < fabs(param-myPar2) ? myPar2 : myPar1; } //======================================================================= namespace { // Structures used by FixQuadraticElements() //======================================================================= #define __DMP__(txt) \ //cout << txt #define MSG(txt) __DMP__(txt< _faces; mutable gp_Vec _nodeMove; mutable int _nbMoves; QLink(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* nm): SMESH_TLink( n1,n2 ), _mediumNode(nm), _nodeMove(0,0,0), _nbMoves(0) { _faces.reserve(4); //if ( MediumPos() != SMDS_TOP_3DSPACE ) _nodeMove = MediumPnt() - MiddlePnt(); } void SetContinuesFaces() const; const QFace* GetContinuesFace( const QFace* face ) const; bool OnBoundary() const; gp_XYZ MiddlePnt() const { return ( XYZ( node1() ) + XYZ( node2() )) / 2.; } gp_XYZ MediumPnt() const { return XYZ( _mediumNode ); } SMDS_TypeOfPosition MediumPos() const { return _mediumNode->GetPosition()->GetTypeOfPosition(); } SMDS_TypeOfPosition EndPos(bool isSecond) const { return (isSecond ? node2() : node1())->GetPosition()->GetTypeOfPosition(); } const SMDS_MeshNode* EndPosNode(SMDS_TypeOfPosition pos) const { return EndPos(0) == pos ? node1() : EndPos(1) == pos ? node2() : 0; } void Move(const gp_Vec& move, bool sum=false) const { _nodeMove += move; _nbMoves += sum ? (_nbMoves==0) : 1; } gp_XYZ Move() const { return _nodeMove.XYZ() / _nbMoves; } bool IsMoved() const { return (_nbMoves > 0 && !IsStraight()); } bool IsStraight() const { return _nodeMove.SquareMagnitude() <= straightTol2; } bool operator<(const QLink& other) const { return (node1()->GetID() == other.node1()->GetID() ? node2()->GetID() < other.node2()->GetID() : node1()->GetID() < other.node1()->GetID()); } struct PtrComparator { bool operator() (const QLink* l1, const QLink* l2 ) const { return *l1 < *l2; } }; }; // --------------------------------------------------------- /*! * \brief Link in the chain of links; it connects two faces */ struct TChainLink { const QLink* _qlink; mutable const QFace* _qfaces[2]; TChainLink(const QLink* qlink=0):_qlink(qlink) { _qfaces[0] = _qfaces[1] = 0; } void SetFace(const QFace* face) { int iF = _qfaces[0] ? 1 : 0; _qfaces[iF]=face; } bool IsBoundary() const { return !_qfaces[1]; } void RemoveFace( const QFace* face ) const { _qfaces[(face == _qfaces[1])] = 0; if (!_qfaces[0]) swap(_qfaces[0],_qfaces[1]); } const QFace* NextFace( const QFace* f ) const { return _qfaces[0]==f ? _qfaces[1] : _qfaces[0]; } const SMDS_MeshNode* NextNode( const SMDS_MeshNode* n ) const { return n == _qlink->node1() ? _qlink->node2() : _qlink->node1(); } bool operator<(const TChainLink& other) const { return *_qlink < *other._qlink; } operator bool() const { return (_qlink); } const QLink* operator->() const { return _qlink; } gp_Vec Normal() const; }; // -------------------------------------------------------------------- typedef list< TChainLink > TChain; typedef set < TChainLink > TLinkSet; typedef TLinkSet::iterator TLinkInSet; const int theFirstStep = 5; enum { ERR_OK, ERR_TRI, ERR_PRISM, ERR_UNKNOWN }; // errors of QFace::GetLinkChain() // -------------------------------------------------------------------- /*! * \brief Face shared by two volumes and bound by QLinks */ struct QFace: public TIDSortedElemSet { mutable const SMDS_MeshElement* _volumes[2]; mutable vector< const QLink* > _sides; mutable bool _sideIsAdded[4]; // added in chain of links gp_Vec _normal; QFace( const vector< const QLink*>& links ); void SetVolume(const SMDS_MeshElement* v) const { _volumes[ _volumes[0] ? 1 : 0 ] = v; } int NbVolumes() const { return !_volumes[0] ? 0 : !_volumes[1] ? 1 : 2; } void AddSelfToLinks() const { for ( int i = 0; i < _sides.size(); ++i ) _sides[i]->_faces.push_back( this ); } int LinkIndex( const QLink* side ) const { for (int i=0; i<_sides.size(); ++i ) if ( _sides[i] == side ) return i; return -1; } bool GetLinkChain( int iSide, TChain& chain, SMDS_TypeOfPosition pos, int& error) const; bool GetLinkChain( TChainLink& link, TChain& chain, SMDS_TypeOfPosition pos, int& error) const { int i = LinkIndex( link._qlink ); if ( i < 0 ) return true; _sideIsAdded[i] = true; link.SetFace( this ); // continue from opposite link return GetLinkChain( (i+2)%_sides.size(), chain, pos, error ); } bool IsBoundary() const { return !_volumes[1]; } bool Contains( const SMDS_MeshNode* node ) const { return count(node); } TLinkInSet GetBoundaryLink( const TLinkSet& links, const TChainLink& avoidLink, TLinkInSet * notBoundaryLink = 0, const SMDS_MeshNode* nodeToContain = 0, bool * isAdjacentUsed = 0) const; TLinkInSet GetLinkByNode( const TLinkSet& links, const TChainLink& avoidLink, const SMDS_MeshNode* nodeToContain) const; const SMDS_MeshNode* GetNodeInFace() const { for ( int iL = 0; iL < _sides.size(); ++iL ) if ( _sides[iL]->MediumPos() == SMDS_TOP_FACE ) return _sides[iL]->_mediumNode; return 0; } gp_Vec LinkNorm(const int i, SMESH_MesherHelper* theFaceHelper=0) const; double MoveByBoundary( const TChainLink& theLink, const gp_Vec& theRefVec, const TLinkSet& theLinks, SMESH_MesherHelper* theFaceHelper=0, const double thePrevLen=0, const int theStep=theFirstStep, gp_Vec* theLinkNorm=0, double theSign=1.0) const; }; //================================================================================ /*! * \brief Dump QLink and QFace */ ostream& operator << (ostream& out, const QLink& l) { out <<"QLink nodes: " << l.node1()->GetID() << " - " << l._mediumNode->GetID() << " - " << l.node2()->GetID() << endl; return out; } ostream& operator << (ostream& out, const QFace& f) { out <<"QFace nodes: "/*<< &f << " "*/; for ( TIDSortedElemSet::iterator n = f.begin(); n != f.end(); ++n ) out << (*n)->GetID() << " "; out << " \tvolumes: " << (f._volumes[0] ? f._volumes[0]->GetID() : 0) << " " << (f._volumes[1] ? f._volumes[1]->GetID() : 0); out << " \tNormal: "<< f._normal.X() <<", "<& links ) { _volumes[0] = _volumes[1] = 0; _sides = links; _sideIsAdded[0]=_sideIsAdded[1]=_sideIsAdded[2]=_sideIsAdded[3]=false; _normal.SetCoord(0,0,0); for ( int i = 1; i < _sides.size(); ++i ) { const QLink *l1 = _sides[i-1], *l2 = _sides[i]; insert( l1->node1() ); insert( l1->node2() ); // compute normal gp_Vec v1( XYZ( l1->node2()), XYZ( l1->node1())); gp_Vec v2( XYZ( l2->node1()), XYZ( l2->node2())); if ( l1->node1() != l2->node1() && l1->node2() != l2->node2() ) v1.Reverse(); _normal += v1 ^ v2; } double normSqSize = _normal.SquareMagnitude(); if ( normSqSize > numeric_limits::min() ) _normal /= sqrt( normSqSize ); else _normal.SetCoord(1e-33,0,0); } //================================================================================ /*! * \brief Make up chain of links * \param iSide - link to add first * \param chain - chain to fill in * \param pos - postion of medium nodes the links should have * \param error - out, specifies what is wrong * \retval bool - false if valid chain can't be built; "valid" means that links * of the chain belongs to rectangles bounding hexahedrons */ //================================================================================ bool QFace::GetLinkChain( int iSide, TChain& chain, SMDS_TypeOfPosition pos, int& error) const { if ( iSide >= _sides.size() ) // wrong argument iSide return false; if ( _sideIsAdded[ iSide ]) // already in chain return true; if ( _sides.size() != 4 ) { // triangle - visit all my continous faces MSGBEG( *this ); for ( int i = 0; i < _sides.size(); ++i ) { if ( !_sideIsAdded[i] && _sides[i] ) { _sideIsAdded[i]=true; TChain::iterator chLink = chain.insert( chain.begin(), TChainLink(_sides[i])); chLink->SetFace( this ); if ( _sides[i]->MediumPos() >= pos ) if ( const QFace* f = _sides[i]->GetContinuesFace( this )) f->GetLinkChain( *chLink, chain, pos, error ); } } if ( error < ERR_TRI ) error = ERR_TRI; return false; } _sideIsAdded[iSide] = true; // not to add this link to chain again const QLink* link = _sides[iSide]; if ( !link) return true; // add link into chain TChain::iterator chLink = chain.insert( chain.begin(), TChainLink(link)); chLink->SetFace( this ); MSGBEG( *this ); // propagate from rectangle to neighbour faces if ( link->MediumPos() >= pos ) { int nbLinkFaces = link->_faces.size(); if ( nbLinkFaces == 4 || nbLinkFaces < 4 && link->OnBoundary()) { // hexahedral mesh or boundary quadrangles - goto a continous face if ( const QFace* f = link->GetContinuesFace( this )) return f->GetLinkChain( *chLink, chain, pos, error ); } else { TChainLink chLink(link); // side face of prismatic mesh - visit all faces of iSide for ( int i = 0; i < nbLinkFaces; ++i ) if ( link->_faces[i] ) link->_faces[i]->GetLinkChain( chLink, chain, pos, error ); if ( error < ERR_PRISM ) error = ERR_PRISM; return false; } } return true; } //================================================================================ /*! * \brief Return a boundary link of the triangle face * \param links - set of all links * \param avoidLink - link not to return * \param notBoundaryLink - out, neither the returned link nor avoidLink * \param nodeToContain - node the returned link must contain; if provided, search * also performed on adjacent faces * \param isAdjacentUsed - returns true if link is found in adjacent faces */ //================================================================================ TLinkInSet QFace::GetBoundaryLink( const TLinkSet& links, const TChainLink& avoidLink, TLinkInSet * notBoundaryLink, const SMDS_MeshNode* nodeToContain, bool * isAdjacentUsed) const { TLinkInSet linksEnd = links.end(), boundaryLink = linksEnd; typedef list< pair< const QFace*, TLinkInSet > > TFaceLinkList; TFaceLinkList adjacentFaces; for ( int iL = 0; iL < _sides.size(); ++iL ) { if ( avoidLink._qlink == _sides[iL] ) continue; TLinkInSet link = links.find( _sides[iL] ); if ( link == linksEnd ) continue; // check link if ( link->IsBoundary() ) { if ( !nodeToContain || (*link)->node1() == nodeToContain || (*link)->node2() == nodeToContain ) { boundaryLink = link; if ( !notBoundaryLink ) break; } } else if ( notBoundaryLink ) { *notBoundaryLink = link; if ( boundaryLink != linksEnd ) break; } if ( boundaryLink == linksEnd && nodeToContain ) // cellect adjacent faces if ( const QFace* adj = link->NextFace( this )) if ( adj->Contains( nodeToContain )) adjacentFaces.push_back( make_pair( adj, link )); } if ( isAdjacentUsed ) *isAdjacentUsed = false; if ( boundaryLink == linksEnd && nodeToContain ) // check adjacent faces { TFaceLinkList::iterator adj = adjacentFaces.begin(); for ( ; boundaryLink == linksEnd && adj != adjacentFaces.end(); ++adj ) boundaryLink = adj->first->GetBoundaryLink( links, *(adj->second), 0, nodeToContain, isAdjacentUsed); if ( isAdjacentUsed ) *isAdjacentUsed = true; } return boundaryLink; } //================================================================================ /*! * \brief Return a link ending at the given node but not avoidLink */ //================================================================================ TLinkInSet QFace::GetLinkByNode( const TLinkSet& links, const TChainLink& avoidLink, const SMDS_MeshNode* nodeToContain) const { for ( int i = 0; i < _sides.size(); ++i ) if ( avoidLink._qlink != _sides[i] && (_sides[i]->node1() == nodeToContain || _sides[i]->node2() == nodeToContain )) return links.find( _sides[ i ]); return links.end(); } //================================================================================ /*! * \brief Return normal to the i-th side pointing outside the face */ //================================================================================ gp_Vec QFace::LinkNorm(const int i, SMESH_MesherHelper* /*uvHelper*/) const { gp_Vec norm, vecOut; // if ( uvHelper ) { // TopoDS_Face face = TopoDS::Face( uvHelper->GetSubShape()); // const SMDS_MeshNode* inFaceNode = uvHelper->GetNodeUVneedInFaceNode() ? GetNodeInFace() : 0; // gp_XY uv1 = uvHelper->GetNodeUV( face, _sides[i]->node1(), inFaceNode ); // gp_XY uv2 = uvHelper->GetNodeUV( face, _sides[i]->node2(), inFaceNode ); // norm.SetCoord( uv1.Y() - uv2.Y(), uv2.X() - uv1.X(), 0 ); // const QLink* otherLink = _sides[(i + 1) % _sides.size()]; // const SMDS_MeshNode* otherNode = // otherLink->node1() == _sides[i]->node1() ? otherLink->node2() : otherLink->node1(); // gp_XY pIn = uvHelper->GetNodeUV( face, otherNode, inFaceNode ); // vecOut.SetCoord( uv1.X() - pIn.X(), uv1.Y() - pIn.Y(), 0 ); // } // else { norm = _normal ^ gp_Vec( XYZ(_sides[i]->node1()), XYZ(_sides[i]->node2())); gp_XYZ pIn = ( XYZ( _sides[0]->node1() ) + XYZ( _sides[0]->node2() ) + XYZ( _sides[1]->node1() )) / 3.; vecOut.SetXYZ( _sides[i]->MiddlePnt() - pIn ); //} if ( norm * vecOut < 0 ) norm.Reverse(); double mag2 = norm.SquareMagnitude(); if ( mag2 > numeric_limits::min() ) norm /= sqrt( mag2 ); return norm; } //================================================================================ /*! * \brief Move medium node of theLink according to its distance from boundary * \param theLink - link to fix * \param theRefVec - movement of boundary * \param theLinks - all adjacent links of continous triangles * \param theFaceHelper - helper is not used so far * \param thePrevLen - distance from the boundary * \param theStep - number of steps till movement propagation limit * \param theLinkNorm - out normal to theLink * \param theSign - 1 or -1 depending on movement of boundary * \retval double - distance from boundary to propagation limit or other boundary */ //================================================================================ double QFace::MoveByBoundary( const TChainLink& theLink, const gp_Vec& theRefVec, const TLinkSet& theLinks, SMESH_MesherHelper* theFaceHelper, const double thePrevLen, const int theStep, gp_Vec* theLinkNorm, double theSign) const { if ( !theStep ) return thePrevLen; // propagation limit reached int iL; // index of theLink for ( iL = 0; iL < _sides.size(); ++iL ) if ( theLink._qlink == _sides[ iL ]) break; MSG(string(theStep,'.')<<" Ref( "<NextFace( this ); // adjacent faces const QFace* f2 = link2->NextFace( this ); // propagate to adjacent faces till limit step or boundary double len1 = thePrevLen + (theLink->MiddlePnt() - _sides[iL1]->MiddlePnt()).Modulus(); double len2 = thePrevLen + (theLink->MiddlePnt() - _sides[iL2]->MiddlePnt()).Modulus(); gp_Vec linkDir1, linkDir2; try { OCC_CATCH_SIGNALS; if ( f1 ) len1 = f1->MoveByBoundary ( *link1, theRefVec, theLinks, theFaceHelper, len1, theStep-1, &linkDir1, theSign); else linkDir1 = LinkNorm( iL1/*, theFaceHelper*/ ); } catch (...) { MSG( " --------------- EXCEPTION"); return thePrevLen; } try { OCC_CATCH_SIGNALS; if ( f2 ) len2 = f2->MoveByBoundary ( *link2, theRefVec, theLinks, theFaceHelper, len2, theStep-1, &linkDir2, theSign); else linkDir2 = LinkNorm( iL2/*, theFaceHelper*/ ); } catch (...) { MSG( " --------------- EXCEPTION"); return thePrevLen; } double fullLen = 0; if ( theStep != theFirstStep ) { // choose chain length by direction of propagation most codirected with theRefVec bool choose1 = ( theRefVec * linkDir1 * theSign > theRefVec * linkDir2 * theSign ); fullLen = choose1 ? len1 : len2; double r = thePrevLen / fullLen; gp_Vec move = linkNorm * refProj * ( 1 - r ); theLink->Move( move, true ); MSG(string(theStep,'.')<<" Move "<< theLink->_mediumNode->GetID()<< " by " << refProj * ( 1 - r ) << " following " << (choose1 ? *link1->_qlink : *link2->_qlink)); if ( theLinkNorm ) *theLinkNorm = linkNorm; } return fullLen; } //================================================================================ /*! * \brief Find pairs of continues faces */ //================================================================================ void QLink::SetContinuesFaces() const { // x0 x - QLink, [-|] - QFace, v - volume // v0 | v1 // | Between _faces of link x2 two vertical faces are continues // x1----x2-----x3 and two horizontal faces are continues. We set vertical faces // | to _faces[0] and _faces[1] and horizontal faces to // v2 | v3 _faces[2] and _faces[3] (or vise versa). // x4 if ( _faces.empty() ) return; int iFaceCont = -1; for ( int iF = 1; iFaceCont < 0 && iF < _faces.size(); ++iF ) { // look for a face bounding none of volumes bound by _faces[0] bool sameVol = false; int nbVol = _faces[iF]->NbVolumes(); for ( int iV = 0; !sameVol && iV < nbVol; ++iV ) sameVol = ( _faces[iF]->_volumes[iV] == _faces[0]->_volumes[0] || _faces[iF]->_volumes[iV] == _faces[0]->_volumes[1]); if ( !sameVol ) iFaceCont = iF; } if ( iFaceCont > 0 ) // continues faces found, set one by the other { if ( iFaceCont != 1 ) swap( _faces[1], _faces[iFaceCont] ); } else if ( _faces.size() > 1 ) // not found, set NULL by the first face { _faces.insert( ++_faces.begin(), 0 ); } } //================================================================================ /*! * \brief Return a face continues to the given one */ //================================================================================ const QFace* QLink::GetContinuesFace( const QFace* face ) const { for ( int i = 0; i < _faces.size(); ++i ) { if ( _faces[i] == face ) { int iF = i < 2 ? 1-i : 5-i; return iF < _faces.size() ? _faces[iF] : 0; } } return 0; } //================================================================================ /*! * \brief True if link is on mesh boundary */ //================================================================================ bool QLink::OnBoundary() const { for ( int i = 0; i < _faces.size(); ++i ) if (_faces[i] && _faces[i]->IsBoundary()) return true; return false; } //================================================================================ /*! * \brief Return normal of link of the chain */ //================================================================================ gp_Vec TChainLink::Normal() const { gp_Vec norm; if (_qfaces[0]) norm = _qfaces[0]->_normal; if (_qfaces[1]) norm += _qfaces[1]->_normal; return norm; } //================================================================================ /*! * \brief Move medium nodes of vertical links of pentahedrons adjacent by side faces */ //================================================================================ void fixPrism( TChain& allLinks ) { // separate boundary links from internal ones typedef set QLinkSet; QLinkSet interLinks, bndLinks1, bndLink2; bool isCurved = false; for ( TChain::iterator lnk = allLinks.begin(); lnk != allLinks.end(); ++lnk ) { if ( (*lnk)->OnBoundary() ) bndLinks1.insert( lnk->_qlink ); else interLinks.insert( lnk->_qlink ); isCurved = isCurved || !(*lnk)->IsStraight(); } if ( !isCurved ) return; // no need to move QLinkSet *curBndLinks = &bndLinks1, *newBndLinks = &bndLink2; while ( !interLinks.empty() && !curBndLinks->empty() ) { // propagate movement from boundary links to connected internal links QLinkSet::iterator bnd = curBndLinks->begin(), bndEnd = curBndLinks->end(); for ( ; bnd != bndEnd; ++bnd ) { const QLink* bndLink = *bnd; for ( int i = 0; i < bndLink->_faces.size(); ++i ) // loop on faces of bndLink { const QFace* face = bndLink->_faces[i]; // quadrange lateral face of a prism if ( !face ) continue; // find and move internal link opposite to bndLink within the face int interInd = ( face->LinkIndex( bndLink ) + 2 ) % face->_sides.size(); const QLink* interLink = face->_sides[ interInd ]; QLinkSet::iterator pInterLink = interLinks.find( interLink ); if ( pInterLink == interLinks.end() ) continue; // not internal link interLink->Move( bndLink->_nodeMove ); // treated internal links become new boundary ones interLinks. erase( pInterLink ); newBndLinks->insert( interLink ); } } curBndLinks->clear(); swap( curBndLinks, newBndLinks ); } } //================================================================================ /*! * \brief Fix links of continues triangles near curved boundary */ //================================================================================ void fixTriaNearBoundary( TChain & allLinks, SMESH_MesherHelper& /*helper*/) { if ( allLinks.empty() ) return; TLinkSet linkSet( allLinks.begin(), allLinks.end()); TLinkInSet linkIt = linkSet.begin(), linksEnd = linkSet.end(); // move in 2d if we are on geom face // TopoDS_Face face; // TopLoc_Location loc; // SMESH_MesherHelper faceHelper( *helper.GetMesh()); // while ( linkIt->IsBoundary()) ++linkIt; // if ( linkIt == linksEnd ) return; // if ( (*linkIt)->MediumPos() == SMDS_TOP_FACE ) { // bool checkPos = true; // TopoDS_Shape f = helper.GetSubShapeByNode( (*linkIt)->_mediumNode, helper.GetMeshDS() ); // if ( !f.IsNull() && f.ShapeType() == TopAbs_FACE ) { // face = TopoDS::Face( f ); // helper.GetNodeUV( face, (*linkIt)->_mediumNode, 0, &checkPos); // if (checkPos) // face.Nullify(); // else // faceHelper.SetSubShape( face ); // } // } for ( linkIt = linkSet.begin(); linkIt != linksEnd; ++linkIt) { if ( linkIt->IsBoundary() && !(*linkIt)->IsStraight() && linkIt->_qfaces[0]) { // if ( !face.IsNull() ) { // const SMDS_MeshNode* inFaceNode = // faceHelper.GetNodeUVneedInFaceNode() ? linkIt->_qfaces[0]->GetNodeInFace() : 0; // gp_XY uvm = helper.GetNodeUV( face, (*linkIt)->_mediumNode, inFaceNode ); // gp_XY uv1 = helper.GetNodeUV( face, (*linkIt)->node1(), inFaceNode); // gp_XY uv2 = helper.GetNodeUV( face, (*linkIt)->node2(), inFaceNode); // gp_XY uvMove = uvm - helper.GetMiddleUV( BRep_Tool::Surface(face,loc), uv1, uv2); // gp_Vec move( uvMove.X(), uvMove.Y(), 0 ); // linkIt->_qfaces[0]->MoveByBoundary( *linkIt, move, linkSet, &faceHelper ); // } // else { linkIt->_qfaces[0]->MoveByBoundary( *linkIt, (*linkIt)->_nodeMove, linkSet ); //} } } } //================================================================================ /*! * \brief Detect rectangular structure of links and build chains from them */ //================================================================================ enum TSplitTriaResult { _OK, _NO_CORNERS, _FEW_ROWS, _MANY_ROWS, _NO_SIDELINK, _BAD_MIDQUAD, _NOT_RECT, _NO_MIDQUAD, _NO_UPTRIA, _BAD_SET_SIZE, _BAD_CORNER, _BAD_START, _NO_BOTLINK }; TSplitTriaResult splitTrianglesIntoChains( TChain & allLinks, vector< TChain> & resultChains, SMDS_TypeOfPosition pos ) { // put links in the set and evalute number of result chains by number of boundary links TLinkSet linkSet; int nbBndLinks = 0; for ( TChain::iterator lnk = allLinks.begin(); lnk != allLinks.end(); ++lnk ) { linkSet.insert( *lnk ); nbBndLinks += lnk->IsBoundary(); } resultChains.clear(); resultChains.reserve( nbBndLinks / 2 ); TLinkInSet linkIt, linksEnd = linkSet.end(); // find a boundary link with corner node; corner node has position pos-2 // i.e. SMDS_TOP_VERTEX for links on faces and SMDS_TOP_EDGE for // links in volume SMDS_TypeOfPosition cornerPos = SMDS_TypeOfPosition(pos-2); const SMDS_MeshNode* corner = 0; for ( linkIt = linkSet.begin(); linkIt != linksEnd; ++linkIt ) if ( linkIt->IsBoundary() && (corner = (*linkIt)->EndPosNode(cornerPos))) break; if ( !corner) return _NO_CORNERS; TLinkInSet startLink = linkIt; const SMDS_MeshNode* startCorner = corner; vector< TChain* > rowChains; int iCol = 0; while ( startLink != linksEnd) // loop on columns { // We suppose we have a rectangular structure like shown here. We have found a // corner of the rectangle (startCorner) and a boundary link sharing // |/ |/ | the startCorner (startLink). We are going to loop on rows of the // --o---o---o structure making several chains at once. One chain (columnChain) // |\ | /| starts at startLink and continues upward (we look at the structure // \ | \ | / | from such point that startLink is on the bottom of the structure). // \| \|/ | While going upward we also fill horizontal chains (rowChains) we // --o---o---o encounter. // /|\ |\ | // / | \ | \ | startCorner // | \| \|,' // --o---o---o // `.startLink if ( resultChains.size() == nbBndLinks / 2 ) return _NOT_RECT; resultChains.push_back( TChain() ); TChain& columnChain = resultChains.back(); TLinkInSet botLink = startLink; // current horizontal link to go up from corner = startCorner; // current corner the botLink ends at int iRow = 0; while ( botLink != linksEnd ) // loop on rows { // add botLink to the columnChain columnChain.push_back( *botLink ); const QFace* botTria = botLink->_qfaces[0]; // bottom triangle bound by botLink if ( !botTria ) { // the column ends linkSet.erase( botLink ); if ( iRow != rowChains.size() ) return _FEW_ROWS; // different nb of rows in columns break; } // find the link dividing the quadrangle (midQuadLink) and vertical boundary // link ending at (sideLink); there are two cases: // 1) midQuadLink does not end at , then we easily find it by botTria, // since midQuadLink is not at boundary while sideLink is. // 2) midQuadLink ends at bool isCase2; TLinkInSet midQuadLink = linksEnd; TLinkInSet sideLink = botTria->GetBoundaryLink( linkSet, *botLink, &midQuadLink, corner, &isCase2 ); if ( isCase2 ) { // find midQuadLink among links of botTria midQuadLink = botTria->GetLinkByNode( linkSet, *botLink, corner ); if ( midQuadLink->IsBoundary() ) return _BAD_MIDQUAD; } if ( sideLink == linksEnd || midQuadLink == linksEnd || sideLink == midQuadLink ) return sideLink == linksEnd ? _NO_SIDELINK : _NO_MIDQUAD; // fill chains columnChain.push_back( *midQuadLink ); if ( iRow >= rowChains.size() ) { if ( iCol > 0 ) return _MANY_ROWS; // different nb of rows in columns if ( resultChains.size() == nbBndLinks / 2 ) return _NOT_RECT; resultChains.push_back( TChain() ); rowChains.push_back( & resultChains.back() ); } rowChains[iRow]->push_back( *sideLink ); rowChains[iRow]->push_back( *midQuadLink ); const QFace* upTria = midQuadLink->NextFace( botTria ); // upper tria of the rectangle if ( !upTria) return _NO_UPTRIA; if ( iRow == 0 ) { // prepare startCorner and startLink for the next column startCorner = startLink->NextNode( startCorner ); if (isCase2) startLink = botTria->GetBoundaryLink( linkSet, *botLink, 0, startCorner ); else startLink = upTria->GetBoundaryLink( linkSet, *midQuadLink, 0, startCorner ); // check if no more columns remains if ( startLink != linksEnd ) { const SMDS_MeshNode* botNode = startLink->NextNode( startCorner ); if ( (isCase2 ? botTria : upTria)->Contains( botNode )) startLink = linksEnd; // startLink bounds upTria or botTria else if ( startLink == botLink || startLink == midQuadLink || startLink == sideLink ) return _BAD_START; } } // find bottom link and corner for the next row corner = sideLink->NextNode( corner ); // next bottom link ends at the new corner linkSet.erase( botLink ); botLink = upTria->GetLinkByNode( linkSet, (isCase2 ? *sideLink : *midQuadLink), corner ); if ( botLink == linksEnd || botLink == (isCase2 ? midQuadLink : sideLink)) return _NO_BOTLINK; linkSet.erase( midQuadLink ); linkSet.erase( sideLink ); // make faces neighboring the found ones be boundary if ( startLink != linksEnd ) { const QFace* tria = isCase2 ? botTria : upTria; for ( int iL = 0; iL < 3; ++iL ) { linkIt = linkSet.find( tria->_sides[iL] ); if ( linkIt != linksEnd ) linkIt->RemoveFace( tria ); } } if ( botLink->_qfaces[0] == upTria || botLink->_qfaces[1] == upTria ) botLink->RemoveFace( upTria ); // make next botTria first in vector iRow++; } // loop on rows iCol++; } // In the linkSet, there must remain the last links of rowChains; add them if ( linkSet.size() != rowChains.size() ) return _BAD_SET_SIZE; for ( int iRow = 0; iRow < rowChains.size(); ++iRow ) { // find the link (startLink) ending at startCorner corner = 0; for ( startLink = linkSet.begin(); startLink != linksEnd; ++startLink ) { if ( (*startLink)->node1() == startCorner ) { corner = (*startLink)->node2(); break; } else if ( (*startLink)->node2() == startCorner) { corner = (*startLink)->node1(); break; } } if ( startLink == linksEnd ) return _BAD_CORNER; rowChains[ iRow ]->push_back( *startLink ); linkSet.erase( startLink ); startCorner = corner; } return _OK; } } //======================================================================= /*! * \brief Move medium nodes of faces and volumes to fix distorted elements * \param volumeOnly - to fix nodes on faces or not, if the shape is solid * * Issue 0020307: EDF 992 SMESH : Linea/Quadratic with Medium Node on Geometry */ //======================================================================= void SMESH_MesherHelper::FixQuadraticElements(bool volumeOnly) { // apply algorithm to solids or geom faces // ---------------------------------------------- if ( myShape.IsNull() ) { if ( !myMesh->HasShapeToMesh() ) return; SetSubShape( myMesh->GetShapeToMesh() ); TopTools_MapOfShape faces; // faces not in solid or in not meshed solid for ( TopExp_Explorer f(myShape,TopAbs_FACE,TopAbs_SOLID); f.More(); f.Next() ) { faces.Add( f.Current() ); } for ( TopExp_Explorer v(myShape,TopAbs_SOLID); v.More(); v.Next() ) { if ( myMesh->GetSubMesh( v.Current() )->IsEmpty() ) { // get faces of solid for ( TopExp_Explorer f( v.Current(), TopAbs_FACE); f.More(); f.Next() ) faces.Add( f.Current() ); } else { // fix nodes in the solid and its faces SMESH_MesherHelper h(*myMesh); h.SetSubShape( v.Current() ); h.FixQuadraticElements(false); } } // fix nodes on geom faces for ( TopTools_MapIteratorOfMapOfShape fIt( faces ); fIt.More(); fIt.Next() ) { SMESH_MesherHelper h(*myMesh); h.SetSubShape( fIt.Key() ); h.FixQuadraticElements(); } return; } // Find out type of elements and get iterator on them // --------------------------------------------------- SMDS_ElemIteratorPtr elemIt; SMDSAbs_ElementType elemType = SMDSAbs_All; SMESH_subMesh* submesh = myMesh->GetSubMeshContaining( myShapeID ); if ( !submesh ) return; if ( SMESHDS_SubMesh* smDS = submesh->GetSubMeshDS() ) { elemIt = smDS->GetElements(); if ( elemIt->more() ) { elemType = elemIt->next()->GetType(); elemIt = smDS->GetElements(); } } if ( !elemIt || !elemIt->more() || elemType < SMDSAbs_Face ) return; // Fill in auxiliary data structures // ---------------------------------- set< QLink > links; set< QFace > faces; set< QLink >::iterator pLink; set< QFace >::iterator pFace; bool isCurved = false; bool hasRectFaces = false; set nbElemNodeSet; if ( elemType == SMDSAbs_Volume ) { SMDS_VolumeTool volTool; while ( elemIt->more() ) // loop on volumes { const SMDS_MeshElement* vol = elemIt->next(); if ( !vol->IsQuadratic() || !volTool.Set( vol )) return; //continue; for ( int iF = 0; iF < volTool.NbFaces(); ++iF ) // loop on faces of volume { int nbN = volTool.NbFaceNodes( iF ); nbElemNodeSet.insert( nbN ); const SMDS_MeshNode** faceNodes = volTool.GetFaceNodes( iF ); vector< const QLink* > faceLinks( nbN/2 ); for ( int iN = 0; iN < nbN; iN += 2 ) // loop on links of a face { // store QLink QLink link( faceNodes[iN], faceNodes[iN+2], faceNodes[iN+1] ); pLink = links.insert( link ).first; faceLinks[ iN/2 ] = & *pLink; if ( !isCurved ) isCurved = !link.IsStraight(); if ( link.MediumPos() == SMDS_TOP_3DSPACE && !link.IsStraight() ) return; // already fixed } // store QFace pFace = faces.insert( QFace( faceLinks )).first; if ( pFace->NbVolumes() == 0 ) pFace->AddSelfToLinks(); pFace->SetVolume( vol ); hasRectFaces = hasRectFaces || ( volTool.GetVolumeType() == SMDS_VolumeTool::QUAD_HEXA || volTool.GetVolumeType() == SMDS_VolumeTool::QUAD_PENTA ); } } set< QLink >::iterator pLink = links.begin(); for ( ; pLink != links.end(); ++pLink ) pLink->SetContinuesFaces(); } else { while ( elemIt->more() ) // loop on faces { const SMDS_MeshElement* face = elemIt->next(); if ( !face->IsQuadratic() ) continue; nbElemNodeSet.insert( face->NbNodes() ); int nbN = face->NbNodes()/2; vector< const QLink* > faceLinks( nbN ); for ( int iN = 0; iN < nbN; ++iN ) // loop on links of a face { // store QLink QLink link( face->GetNode(iN), face->GetNode((iN+1)%nbN), face->GetNode(iN+nbN) ); pLink = links.insert( link ).first; faceLinks[ iN ] = & *pLink; if ( !isCurved ) isCurved = !link.IsStraight(); } // store QFace pFace = faces.insert( QFace( faceLinks )).first; pFace->AddSelfToLinks(); hasRectFaces = ( hasRectFaces || nbN == 4 ); } } if ( !isCurved ) return; // no curved edges of faces // Compute displacement of medium nodes // ------------------------------------- // two loops on faces: the first is to treat boundary links, the second is for internal ones TopLoc_Location loc; // not treat boundary of volumic submesh int isInside = ( elemType == SMDSAbs_Volume && volumeOnly ) ? 1 : 0; for ( ; isInside < 2; ++isInside ) { MSG( "--------------- LOOP " << isInside << " ------------------"); SMDS_TypeOfPosition pos = isInside ? SMDS_TOP_3DSPACE : SMDS_TOP_FACE; for ( pFace = faces.begin(); pFace != faces.end(); ++pFace ) { if ( bool(isInside) == pFace->IsBoundary() ) continue; for ( int dir = 0; dir < 2; ++dir ) // 2 directions of propagation from quadrangle { MSG( "CHAIN"); // make chain of links connected via continues faces int error = ERR_OK; TChain rawChain; if ( !pFace->GetLinkChain( dir, rawChain, pos, error) && error ==ERR_UNKNOWN ) continue; rawChain.reverse(); if ( !pFace->GetLinkChain( dir+2, rawChain, pos, error ) && error ==ERR_UNKNOWN ) continue; vector< TChain > chains; if ( error == ERR_OK ) { // chains contains continues rectangles chains.resize(1); chains[0].splice( chains[0].begin(), rawChain ); } else if ( error == ERR_TRI ) { // chains contains continues triangles TSplitTriaResult res = splitTrianglesIntoChains( rawChain, chains, pos ); if ( res != _OK ) { // not rectangles split into triangles fixTriaNearBoundary( rawChain, *this ); break; } } else if ( error == ERR_PRISM ) { // side faces of prisms fixPrism( rawChain ); break; } else { continue; } for ( int iC = 0; iC < chains.size(); ++iC ) { TChain& chain = chains[iC]; if ( chain.empty() ) continue; if ( chain.front()->IsStraight() && chain.back()->IsStraight() ) { MSG("3D straight"); continue; } // mesure chain length and compute link position along the chain double chainLen = 0; vector< double > linkPos; MSGBEG( "Link medium nodes: "); TChain::iterator link0 = chain.begin(), link1 = chain.begin(), link2; for ( ++link1; link1 != chain.end(); ++link1, ++link0 ) { MSGBEG( (*link0)->_mediumNode->GetID() << "-" <<(*link1)->_mediumNode->GetID()<<" "); double len = ((*link0)->MiddlePnt() - (*link1)->MiddlePnt()).Modulus(); while ( len < numeric_limits::min() ) { // remove degenerated link link1 = chain.erase( link1 ); if ( link1 == chain.end() ) break; len = ((*link0)->MiddlePnt() - (*link1)->MiddlePnt()).Modulus(); } chainLen += len; linkPos.push_back( chainLen ); } MSG(""); if ( linkPos.size() < 2 ) continue; gp_Vec move0 = chain.front()->_nodeMove; gp_Vec move1 = chain.back ()->_nodeMove; TopoDS_Face face; bool checkUV = true; if ( !isInside ) { // compute node displacement of end links in parametric space of face const SMDS_MeshNode* nodeOnFace = (*(++chain.begin()))->_mediumNode; TopoDS_Shape f = GetSubShapeByNode( nodeOnFace, GetMeshDS() ); if ( !f.IsNull() && f.ShapeType() == TopAbs_FACE ) { face = TopoDS::Face( f ); for ( int is1 = 0; is1 < 2; ++is1 ) { // move0 or move1 TChainLink& link = is1 ? chain.back() : chain.front(); gp_XY uv1 = GetNodeUV( face, link->node1(), nodeOnFace, &checkUV); gp_XY uv2 = GetNodeUV( face, link->node2(), nodeOnFace, &checkUV); gp_XY uvm = GetNodeUV( face, link->_mediumNode, nodeOnFace, &checkUV); gp_XY uvMove = uvm - GetMiddleUV( BRep_Tool::Surface(face,loc), uv1, uv2); if ( is1 ) move1.SetCoord( uvMove.X(), uvMove.Y(), 0 ); else move0.SetCoord( uvMove.X(), uvMove.Y(), 0 ); } if ( move0.SquareMagnitude() < straightTol2 && move1.SquareMagnitude() < straightTol2 ) { MSG("2D straight"); continue; // straight - no need to move nodes of internal links } } } gp_Trsf trsf; if ( isInside || face.IsNull() ) { // compute node displacement of end links in their local coord systems { TChainLink& ln0 = chain.front(), ln1 = *(++chain.begin()); trsf.SetTransformation( gp_Ax3( gp::Origin(), ln0.Normal(), gp_Vec( ln0->MiddlePnt(), ln1->MiddlePnt() ))); move0.Transform(trsf); } { TChainLink& ln0 = *(++chain.rbegin()), ln1 = chain.back(); trsf.SetTransformation( gp_Ax3( gp::Origin(), ln1.Normal(), gp_Vec( ln0->MiddlePnt(), ln1->MiddlePnt() ))); move1.Transform(trsf); } } // compute displacement of medium nodes link2 = chain.begin(); link0 = link2++; link1 = link2++; for ( int i = 0; link2 != chain.end(); ++link0, ++link1, ++link2, ++i ) { double r = linkPos[i] / chainLen; // displacement in local coord system gp_Vec move = (1. - r) * move0 + r * move1; if ( isInside || face.IsNull()) { // transform to global gp_Vec x01( (*link0)->MiddlePnt(), (*link1)->MiddlePnt() ); gp_Vec x12( (*link1)->MiddlePnt(), (*link2)->MiddlePnt() ); gp_Vec x = x01.Normalized() + x12.Normalized(); trsf.SetTransformation( gp_Ax3( gp::Origin(), link1->Normal(), x), gp_Ax3() ); move.Transform(trsf); } else { // compute 3D displacement by 2D one gp_XY oldUV = GetNodeUV( face, (*link1)->_mediumNode, 0, &checkUV); gp_XY newUV = oldUV + gp_XY( move.X(), move.Y() ); gp_Pnt newPnt = BRep_Tool::Surface(face,loc)->Value( newUV.X(), newUV.Y()); move = gp_Vec( XYZ((*link1)->_mediumNode), newPnt.Transformed(loc) ); #ifdef _DEBUG_ if ( (XYZ((*link1)->node1()) - XYZ((*link1)->node2())).SquareModulus() < move.SquareMagnitude()) { gp_XY uv0 = GetNodeUV( face, (*link0)->_mediumNode, 0, &checkUV); gp_XY uv2 = GetNodeUV( face, (*link2)->_mediumNode, 0, &checkUV); MSG( "uv0: "<Move( move ); MSG( "Move " << (*link1)->_mediumNode->GetID() << " following " << chain.front()->_mediumNode->GetID() <<"-" << chain.back ()->_mediumNode->GetID() << " by " << move.Magnitude()); } } // loop on chains of links } // loop on 2 directions of propagation from quadrangle } // loop on faces } // Move nodes // ----------- for ( pLink = links.begin(); pLink != links.end(); ++pLink ) { if ( pLink->IsMoved() ) { //gp_Pnt p = pLink->MediumPnt() + pLink->Move(); gp_Pnt p = pLink->MiddlePnt() + pLink->Move(); GetMeshDS()->MoveNode( pLink->_mediumNode, p.X(), p.Y(), p.Z()); } } }