#  -*- coding: iso-8859-1 -*-
# Copyright (C) 2007-2021  CEA/DEN, EDF R&D, OPEN CASCADE
#
# Copyright (C) 2003-2007  OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
#
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#

# =======================================
#
import salome
salome.salome_init()
import GEOM
from salome.geom import geomBuilder
geompy = geomBuilder.New()

import SMESH, SALOMEDS
from salome.smesh import smeshBuilder
smesh =  smeshBuilder.New()

import time
t1= time.time()

# Geometry
# ========

# grid compound of 3 x 3 elements
# an element is compound of 3 concentric cylinders
# an element is centered in a square of the grid

# prism the grid, and mesh it in hexahedral way

# Values
# ------

g_x = 0
g_y = 0
g_z = 0

g_arete   = 50
g_hauteur = 30

g_rayon1 = 20
g_rayon2 = 30
g_rayon3 = 40

g_grid = 3

g_trim = 1000

# Solids and rotation to prevent repair
# -------------------------------------

s_boite = geompy.MakeBox(g_x-g_arete, g_y-g_hauteur, g_z-g_arete,  g_x+g_arete, g_y+g_hauteur, g_z+g_arete)

s_pi4     = 3.141592653/4
s_hauteur = 2*g_hauteur
s_centre  = geompy.MakeVertex(g_x, g_y-g_hauteur, g_z)
s_dir     = geompy.MakeVectorDXDYDZ(0, 1, 0)

s_cyl0 = geompy.MakeCylinder(s_centre, s_dir, g_rayon3, s_hauteur)
s_cyl1 = geompy.MakeRotation(s_cyl0, s_dir, s_pi4)

s_blo1 = geompy.MakeCut(s_boite, s_cyl1)

s_cyl0 = geompy.MakeCylinder(s_centre, s_dir, g_rayon2, s_hauteur)
s_cyl2 = geompy.MakeRotation(s_cyl0, s_dir, s_pi4)

s_blo2 = geompy.MakeCut(s_cyl1, s_cyl2)

s_cyl0 = geompy.MakeCylinder(s_centre, s_dir, g_rayon1, s_hauteur)
s_cyl3 = geompy.MakeRotation(s_cyl0, s_dir, s_pi4)

s_blo3 = geompy.MakeCut(s_cyl2, s_cyl3)

s_arete = g_rayon1/2

s_blo4 = geompy.MakeBox(g_x-s_arete, g_y-g_hauteur, g_z-s_arete,  g_x+s_arete, g_y+g_hauteur, g_z+s_arete)

s_blo5 = geompy.MakeCut(s_cyl3, s_blo4)

# Partition
# ---------

p_tools = []
p_tools.append(geompy.MakePlane(s_centre, geompy.MakeVectorDXDYDZ( 1, 0, 1), g_trim))
p_tools.append(geompy.MakePlane(s_centre, geompy.MakeVectorDXDYDZ(-1, 0, 1), g_trim))

p_partie = geompy.MakePartition([s_blo1, s_blo2, s_blo3, s_blo5], p_tools, [], [], geompy.ShapeType["SOLID"])

# Compound and glue
# -----------------

c_blocs = geompy.SubShapeAll(p_partie, geompy.ShapeType["SOLID"])
c_blocs.append(s_blo4)

c_cpd = geompy.MakeCompound(c_blocs)

c_element = geompy.MakeGlueFaces(c_cpd, 1e-4)

# Grid
# ----

piece = geompy.MakeMultiTranslation2D(c_element, geompy.MakeVectorDXDYDZ(1, 0, 0), 2*g_arete, g_grid, geompy.MakeVectorDXDYDZ(0, 0, 1), 2*g_arete, g_grid)

# Add in study
# ------------

piece_id = geompy.addToStudy(piece, "ex12_grid17partition")

t2= time.time()

# Meshing
# =======

# Create a hexahedral mesh
# ------------------------

hexa = smesh.Mesh(piece, "ex12_grid17partition:hexa")

algo = hexa.Segment()
algo.NumberOfSegments(2)

hexa.Quadrangle()

hexa.Hexahedron()

# Mesh calculus
# -------------

hexa.Compute()

t3= time.time()

print ("time geom",t2-t1)
print ("time mesh",t3-t2 )

# Update object browser
# ---------------------

salome.sg.updateObjBrowser()