// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH : idl implementation based on 'SMESH' unit's calsses // File : StdMeshers_ProjectionUtils.cxx // Created : Fri Oct 27 10:24:28 2006 // Author : Edward AGAPOV (eap) // #include "StdMeshers_ProjectionUtils.hxx" #include "SMDS_EdgePosition.hxx" #include "SMDS_FacePosition.hxx" #include "SMESHDS_Mesh.hxx" #include "SMESH_Algo.hxx" #include "SMESH_Block.hxx" #include "SMESH_Gen.hxx" #include "SMESH_HypoFilter.hxx" #include "SMESH_Hypothesis.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_MeshAlgos.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_subMesh.hxx" #include "SMESH_subMeshEventListener.hxx" #include "StdMeshers_ProjectionSource1D.hxx" #include "StdMeshers_ProjectionSource2D.hxx" #include "StdMeshers_ProjectionSource3D.hxx" #include "utilities.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define RETURN_BAD_RESULT(msg) { MESSAGE(")-: Error: " << msg); return false; } #define CONT_BAD_RESULT(msg) { MESSAGE(")-: Error: " << msg); continue; } #define SHOW_SHAPE(v,msg) \ // { show_shape((v),(msg)); } #define SHOW_LIST(msg,l) \ // { show_list((msg),(l)); } namespace HERE = StdMeshers_ProjectionUtils; namespace { static SMESHDS_Mesh* theMeshDS[2] = { 0, 0 }; // used for debug only long shapeIndex(const TopoDS_Shape& S) { if ( theMeshDS[0] && theMeshDS[1] ) return max(theMeshDS[0]->ShapeToIndex(S), theMeshDS[1]->ShapeToIndex(S) ); return long(S.TShape().operator->()); } void show_shape( TopoDS_Shape v, const char* msg ) // debug { if ( v.IsNull() ) cout << msg << " NULL SHAPE" << endl; else if (v.ShapeType() == TopAbs_VERTEX) { gp_Pnt p = BRep_Tool::Pnt( TopoDS::Vertex( v )); cout<& l ) // debug { cout << msg << " "; list< TopoDS_Edge >::const_iterator e = l.begin(); for ( int i = 0; e != l.end(); ++e, ++i ) { cout << i << "V (" << TopExp::FirstVertex( *e, true ).TShape().operator->() << ") " << i << "E (" << e->TShape().operator->() << "); "; } cout << endl; } //================================================================================ /*! * \brief Write shape for debug purposes */ //================================================================================ bool storeShapeForDebug(const TopoDS_Shape& shape) { #ifdef _DEBUG_ const char* type[] ={"COMPOUND","COMPSOLID","SOLID","SHELL","FACE","WIRE","EDGE","VERTEX"}; BRepTools::Write( shape, SMESH_Comment("/tmp/") << type[shape.ShapeType()] << "_" << shape.TShape().operator->() << ".brep"); if ( !theMeshDS[0] ) { show_shape( TopoDS_Shape(), "avoid warning: show_shape() defined but not used"); show_list( "avoid warning: show_list() defined but not used", list< TopoDS_Edge >() ); } #endif return false; } //================================================================================ /*! * \brief Reverse order of edges in a list and their orientation * \param edges - list of edges to reverse * \param nbEdges - number of edges to reverse */ //================================================================================ void reverseEdges( list< TopoDS_Edge > & edges, const int nbEdges, const int firstEdge=0) { SHOW_LIST("BEFORE REVERSE", edges); list< TopoDS_Edge >::iterator eIt = edges.begin(); std::advance( eIt, firstEdge ); list< TopoDS_Edge >::iterator eBackIt = eIt; for ( int i = 0; i < nbEdges; ++i, ++eBackIt ) eBackIt->Reverse(); // reverse edge // reverse list --eBackIt; while ( eIt != eBackIt ) { std::swap( *eIt, *eBackIt ); SHOW_LIST("# AFTER SWAP", edges) if ( (++eIt) != eBackIt ) --eBackIt; } SHOW_LIST("ATFER REVERSE", edges) } //================================================================================ /*! * \brief Check if propagation is possible * \param theMesh1 - source mesh * \param theMesh2 - target mesh * \retval bool - true if possible */ //================================================================================ bool isPropagationPossible( SMESH_Mesh* theMesh1, SMESH_Mesh* theMesh2 ) { if ( theMesh1 != theMesh2 ) { TopoDS_Shape mainShape1 = theMesh1->GetMeshDS()->ShapeToMesh(); TopoDS_Shape mainShape2 = theMesh2->GetMeshDS()->ShapeToMesh(); return mainShape1.IsSame( mainShape2 ); } return true; } //================================================================================ /*! * \brief Fix up association of edges in faces by possible propagation * \param nbEdges - nb of edges in an outer wire * \param edges1 - edges of one face * \param edges2 - matching edges of another face * \param theMesh1 - mesh 1 * \param theMesh2 - mesh 2 * \retval bool - true if association was fixed */ //================================================================================ bool fixAssocByPropagation( const int nbEdges, list< TopoDS_Edge > & edges1, list< TopoDS_Edge > & edges2, SMESH_Mesh* theMesh1, SMESH_Mesh* theMesh2) { if ( nbEdges == 2 && isPropagationPossible( theMesh1, theMesh2 ) ) { list< TopoDS_Edge >::iterator eIt2 = ++edges2.begin(); // 2nd edge of the 2nd face TopoDS_Edge edge2 = HERE::GetPropagationEdge( theMesh1, *eIt2, edges1.front() ).second; if ( !edge2.IsNull() ) { // propagation found for the second edge reverseEdges( edges2, nbEdges ); return true; } } return false; } //================================================================================ /*! * \brief Associate faces having one edge in the outer wire. * No check is done if there is really only one outer edge */ //================================================================================ bool assocFewEdgesFaces( const TopoDS_Face& face1, SMESH_Mesh* mesh1, const TopoDS_Face& face2, SMESH_Mesh* mesh2, HERE::TShapeShapeMap & theMap) { TopoDS_Vertex v1 = TopoDS::Vertex( HERE::OuterShape( face1, TopAbs_VERTEX )); TopoDS_Vertex v2 = TopoDS::Vertex( HERE::OuterShape( face2, TopAbs_VERTEX )); TopoDS_Vertex VV1[2] = { v1, v1 }; TopoDS_Vertex VV2[2] = { v2, v2 }; list< TopoDS_Edge > edges1, edges2; if ( int nbE = HERE::FindFaceAssociation( face1, VV1, face2, VV2, edges1, edges2 )) { HERE::InsertAssociation( face1, face2, theMap ); fixAssocByPropagation( nbE, edges1, edges2, mesh1, mesh2 ); list< TopoDS_Edge >::iterator eIt1 = edges1.begin(); list< TopoDS_Edge >::iterator eIt2 = edges2.begin(); for ( ; eIt1 != edges1.end(); ++eIt1, ++eIt2 ) { HERE::InsertAssociation( *eIt1, *eIt2, theMap ); v1 = SMESH_MesherHelper::IthVertex( 0, *eIt1 ); v2 = SMESH_MesherHelper::IthVertex( 0, *eIt2 ); HERE::InsertAssociation( v1, v2, theMap ); } theMap.SetAssocType( HERE::TShapeShapeMap::FEW_EF ); return true; } return false; } //================================================================================ /*! * \brief Look for a group containing a target shape and similar to a source group * \param tgtShape - target edge or face * \param tgtMesh1 - target mesh * \param srcGroup - source group * \retval TopoDS_Shape - found target group */ //================================================================================ TopoDS_Shape findGroupContaining(const TopoDS_Shape& tgtShape, const SMESH_Mesh* tgtMesh1, const TopoDS_Shape& srcGroup) { list subMeshes = tgtMesh1->GetGroupSubMeshesContaining(tgtShape); list::iterator sm = subMeshes.begin(); int type, last = TopAbs_SHAPE; for ( ; sm != subMeshes.end(); ++sm ) { const TopoDS_Shape & group = (*sm)->GetSubShape(); // check if group is similar to srcGroup for ( type = srcGroup.ShapeType(); type < last; ++type) if ( SMESH_MesherHelper::Count( srcGroup, (TopAbs_ShapeEnum)type, 0) != SMESH_MesherHelper::Count( group, (TopAbs_ShapeEnum)type, 0)) break; if ( type == last ) return group; } return TopoDS_Shape(); } //================================================================================ /*! * \brief Find association of groups at top and bottom of prism */ //================================================================================ bool assocGroupsByPropagation(const TopoDS_Shape& theGroup1, const TopoDS_Shape& theGroup2, SMESH_Mesh& theMesh, HERE::TShapeShapeMap& theMap) { // If groups are on top and bottom of prism then we can associate // them using "vertical" (or "side") edges and faces of prism since // they connect corresponding vertices and edges of groups. TopTools_IndexedMapOfShape subshapes1, subshapes2; TopExp::MapShapes( theGroup1, subshapes1 ); TopExp::MapShapes( theGroup2, subshapes2 ); TopTools_ListIteratorOfListOfShape ancestIt; // Iterate on vertices of group1 to find corresponding vertices in group2 // and associate adjacent edges and faces TopTools_MapOfShape verticShapes; TopExp_Explorer vExp1( theGroup1, TopAbs_VERTEX ); for ( ; vExp1.More(); vExp1.Next() ) { const TopoDS_Vertex& v1 = TopoDS::Vertex( vExp1.Current() ); if ( theMap.IsBound( v1 )) continue; // already processed // Find "vertical" edge ending in v1 and whose other vertex belongs to group2 TopoDS_Shape verticEdge, v2; ancestIt.Initialize( theMesh.GetAncestors( v1 )); for ( ; verticEdge.IsNull() && ancestIt.More(); ancestIt.Next() ) { if ( ancestIt.Value().ShapeType() != TopAbs_EDGE ) continue; v2 = HERE::GetNextVertex( TopoDS::Edge( ancestIt.Value() ), v1 ); if ( subshapes2.Contains( v2 )) verticEdge = ancestIt.Value(); } if ( verticEdge.IsNull() ) return false; HERE::InsertAssociation( v1, v2, theMap); // Associate edges by vertical faces sharing the found vertical edge ancestIt.Initialize( theMesh.GetAncestors( verticEdge ) ); for ( ; ancestIt.More(); ancestIt.Next() ) { if ( ancestIt.Value().ShapeType() != TopAbs_FACE ) continue; if ( !verticShapes.Add( ancestIt.Value() )) continue; const TopoDS_Face& face = TopoDS::Face( ancestIt.Value() ); // get edges of the face TopoDS_Edge edgeGr1, edgeGr2, verticEdge2; list< TopoDS_Edge > edges; list< int > nbEdgesInWire; SMESH_Block::GetOrderedEdges( face, edges, nbEdgesInWire, v1); if ( nbEdgesInWire.front() != 4 ) return storeShapeForDebug( face ); list< TopoDS_Edge >::iterator edge = edges.begin(); if ( verticEdge.IsSame( *edge )) { edgeGr2 = *(++edge); verticEdge2 = *(++edge); edgeGr1 = *(++edge); } else { edgeGr1 = *(edge++); verticEdge2 = *(edge++); edgeGr2 = *(edge++); } HERE::InsertAssociation( edgeGr1, edgeGr2.Reversed(), theMap); } } // Associate faces TopoDS_Iterator gr1It( theGroup1 ); if ( gr1It.Value().ShapeType() == TopAbs_FACE ) { // find a boundary edge of group1 to start from TopoDS_Shape bndEdge = HERE::GetBoundaryEdge( theGroup1, theMesh ); if ( bndEdge.IsNull() ) return false; list< TopoDS_Shape > edges(1, bndEdge); list< TopoDS_Shape >::iterator edge1 = edges.begin(); for ( ; edge1 != edges.end(); ++edge1 ) { // there must be one or zero not associated faces between ancestors of edge // belonging to theGroup1 TopoDS_Shape face1; ancestIt.Initialize( theMesh.GetAncestors( *edge1 ) ); for ( ; ancestIt.More() && face1.IsNull(); ancestIt.Next() ) { if ( ancestIt.Value().ShapeType() == TopAbs_FACE && !theMap.IsBound( ancestIt.Value() ) && subshapes1.Contains( ancestIt.Value() )) face1 = ancestIt.Value(); // add edges of face1 to start searching for adjacent faces from for ( TopExp_Explorer e(face1, TopAbs_EDGE); e.More(); e.Next()) if ( !edge1->IsSame( e.Current() )) edges.push_back( e.Current() ); } if ( !face1.IsNull() ) { // find the corresponding face of theGroup2 TopoDS_Shape edge2 = theMap( *edge1 ); TopoDS_Shape face2; ancestIt.Initialize( theMesh.GetAncestors( edge2 ) ); for ( ; ancestIt.More() && face2.IsNull(); ancestIt.Next() ) { if ( ancestIt.Value().ShapeType() == TopAbs_FACE && !theMap.IsBound( ancestIt.Value(), /*is2nd=*/true ) && subshapes2.Contains( ancestIt.Value() )) face2 = ancestIt.Value(); } if ( face2.IsNull() ) return false; HERE::InsertAssociation( face1, face2, theMap); } } } theMap.SetAssocType( HERE::TShapeShapeMap::PROPAGATION ); return true; } //================================================================================ /*! * \brief Return true if uv position of the vIndex-th vertex of edge on face is close * enough to given uv */ //================================================================================ bool sameVertexUV( const TopoDS_Edge& edge, const TopoDS_Face& face, const int& vIndex, const gp_Pnt2d& uv, const double& tol2d ) { TopoDS_Vertex V = SMESH_MesherHelper::IthVertex( vIndex, edge, /*CumOri=*/true ); gp_Pnt2d v1UV = BRep_Tool::Parameters( V, face); double dist2d = v1UV.Distance( uv ); return dist2d < tol2d; } //================================================================================ /*! * \brief Returns an EDGE suitable for search of initial vertex association */ //================================================================================ bool getOuterEdges( const TopoDS_Shape shape, SMESH_Mesh& mesh, std::list< TopoDS_Edge >& allBndEdges ) { if ( shape.ShapeType() == TopAbs_COMPOUND ) { TopoDS_Iterator it( shape ); if ( it.More() && it.Value().ShapeType() == TopAbs_FACE ) // group of FACEs { // look for a boundary EDGE of a group StdMeshers_ProjectionUtils::GetBoundaryEdge( shape, mesh, &allBndEdges ); if ( !allBndEdges.empty() ) return true; } } SMESH_MesherHelper helper( mesh ); helper.SetSubShape( shape ); TopExp_Explorer expF( shape, TopAbs_FACE ), expE; if ( expF.More() ) { for ( ; expF.More(); expF.Next() ) { TopoDS_Shape wire = StdMeshers_ProjectionUtils::OuterShape( TopoDS::Face( expF.Current() ), TopAbs_WIRE ); for ( expE.Init( wire, TopAbs_EDGE ); expE.More(); expE.Next() ) if ( ! helper.IsClosedEdge( TopoDS::Edge( expE.Current() ))) { if ( helper.IsSeamShape( expE.Current() )) allBndEdges.push_back( TopoDS::Edge( expE.Current() )); else allBndEdges.push_front( TopoDS::Edge( expE.Current() )); } } } else if ( shape.ShapeType() != TopAbs_EDGE) { // no faces for ( expE.Init( shape, TopAbs_EDGE ); expE.More(); expE.Next() ) if ( ! helper.IsClosedEdge( TopoDS::Edge( expE.Current() ))) { if ( helper.IsSeamShape( expE.Current() )) allBndEdges.push_back( TopoDS::Edge( expE.Current() )); else allBndEdges.push_front( TopoDS::Edge( expE.Current() )); } } else if ( shape.ShapeType() == TopAbs_EDGE ) { if ( ! helper.IsClosedEdge( TopoDS::Edge( shape ))) allBndEdges.push_back( TopoDS::Edge( shape )); } return !allBndEdges.empty(); } /*! * \brief Convertor used in Delaunay constructor */ struct SideVector2UVPtStructVec { std::vector< const UVPtStructVec* > _uvVecs; SideVector2UVPtStructVec( const TSideVector& wires ) { _uvVecs.resize( wires.size() ); for ( size_t i = 0; i < wires.size(); ++i ) _uvVecs[ i ] = & wires[i]->GetUVPtStruct(); } operator const std::vector< const UVPtStructVec* > & () const { return _uvVecs; } }; } // namespace //======================================================================= /* * Looks for association of all sub-shapes of two shapes * \param theShape1 - target shape * \param theMesh1 - mesh built on shape 1 * \param theShape2 - source shape * \param theMesh2 - mesh built on shape 2 * \param theAssociation - association map to be filled that may * contain association of one or two pairs of vertices * \retval bool - true if association found */ //======================================================================= bool StdMeshers_ProjectionUtils::FindSubShapeAssociation(const TopoDS_Shape& theShape1, SMESH_Mesh* theMesh1, const TopoDS_Shape& theShape2, SMESH_Mesh* theMesh2, TShapeShapeMap & theMap) { // Structure of this long function is following // 1) Group -> Group projection: theShape1 is a group member, // theShape2 is another group. We find the group theShape1 is in and recall self. // 2) Accosiate same shapes with different location (partners). // 3) If vertex association is given, perform association according to shape type: // switch ( ShapeType ) { // case TopAbs_EDGE: // case ...: // } // 4) else try to accosiate in different ways: // a) accosiate shapes by propagation and other simple cases // switch ( ShapeType ) { // case TopAbs_EDGE: // case ...: // } // b) find association of a couple of vertices and recall self. // theMeshDS[0] = theMesh1->GetMeshDS(); // debug theMeshDS[1] = theMesh2->GetMeshDS(); // ================================================================================= // 1) Is it the case of associating a group member -> another group? (PAL16202, 16203) // ================================================================================= if ( theShape1.ShapeType() != theShape2.ShapeType() ) { TopoDS_Shape group1, group2; if ( theShape1.ShapeType() == TopAbs_COMPOUND ) { group1 = theShape1; group2 = findGroupContaining( theShape2, theMesh2, group1 ); } else if ( theShape2.ShapeType() == TopAbs_COMPOUND ) { group2 = theShape2; group1 = findGroupContaining( theShape1, theMesh1, group2 ); } if ( group1.IsNull() || group2.IsNull() ) RETURN_BAD_RESULT("Different shape types"); // Associate compounds return FindSubShapeAssociation(group1, theMesh1, group2, theMesh2, theMap ); } // ============ // 2) Is partner? // ============ bool partner = theShape1.IsPartner( theShape2 ); TopTools_DataMapIteratorOfDataMapOfShapeShape vvIt( theMap._map1to2 ); for ( ; partner && vvIt.More(); vvIt.Next() ) partner = vvIt.Key().IsPartner( vvIt.Value() ); if ( partner ) // Same shape with different location { // recursively associate all sub-shapes of theShape1 and theShape2 typedef list< pair< TopoDS_Shape, TopoDS_Shape > > TShapePairsList; TShapePairsList shapesQueue( 1, make_pair( theShape1, theShape2 )); TShapePairsList::iterator s1_s2 = shapesQueue.begin(); for ( ; s1_s2 != shapesQueue.end(); ++s1_s2 ) { if ( theMap.IsBound( s1_s2->first )) // avoid re-binding for a seam edge continue; // to avoid this: Forward seam -> Reversed seam InsertAssociation( s1_s2->first, s1_s2->second, theMap ); TopoDS_Iterator s1It( s1_s2->first), s2It( s1_s2->second ); for ( ; s1It.More(); s1It.Next(), s2It.Next() ) shapesQueue.push_back( make_pair( s1It.Value(), s2It.Value() )); } theMap.SetAssocType( TShapeShapeMap::PARTNER ); return true; } if ( !theMap.IsEmpty() ) { //====================================================================== // 3) HAS initial vertex association //====================================================================== bool isVCloseness = ( theMap._assocType == TShapeShapeMap::CLOSE_VERTEX ); theMap.SetAssocType( TShapeShapeMap::INIT_VERTEX ); switch ( theShape1.ShapeType() ) { // ---------------------------------------------------------------------- case TopAbs_EDGE: { // TopAbs_EDGE // ---------------------------------------------------------------------- if ( theMap.Extent() != 1 ) RETURN_BAD_RESULT("Wrong map extent " << theMap.Extent() ); TopoDS_Edge edge1 = TopoDS::Edge( theShape1 ); TopoDS_Edge edge2 = TopoDS::Edge( theShape2 ); if ( edge1.Orientation() >= TopAbs_INTERNAL ) edge1.Orientation( TopAbs_FORWARD ); if ( edge2.Orientation() >= TopAbs_INTERNAL ) edge2.Orientation( TopAbs_FORWARD ); TopoDS_Vertex VV1[2], VV2[2]; TopExp::Vertices( edge1, VV1[0], VV1[1] ); TopExp::Vertices( edge2, VV2[0], VV2[1] ); int i1 = 0, i2 = 0; if ( theMap.IsBound( VV1[ i1 ] )) i1 = 1; if ( theMap.IsBound( VV2[ i2 ] )) i2 = 1; InsertAssociation( VV1[ i1 ], VV2[ i2 ], theMap ); InsertAssociation( theShape1, theShape2, theMap ); return true; } // ---------------------------------------------------------------------- case TopAbs_FACE: { // TopAbs_FACE // ---------------------------------------------------------------------- TopoDS_Face face1 = TopoDS::Face( theShape1 ); TopoDS_Face face2 = TopoDS::Face( theShape2 ); if ( face1.Orientation() >= TopAbs_INTERNAL ) face1.Orientation( TopAbs_FORWARD ); if ( face2.Orientation() >= TopAbs_INTERNAL ) face2.Orientation( TopAbs_FORWARD ); TopoDS_Vertex VV1[2], VV2[2]; // find a not closed edge of face1 both vertices of which are associated int nbEdges = 0; TopExp_Explorer exp ( face1, TopAbs_EDGE ); for ( ; VV2[ 1 ].IsNull() && exp.More(); exp.Next(), ++nbEdges ) { TopExp::Vertices( TopoDS::Edge( exp.Current() ), VV1[0], VV1[1] ); if ( theMap.IsBound( VV1[0] ) ) { VV2[ 0 ] = TopoDS::Vertex( theMap( VV1[0] )); if ( theMap.IsBound( VV1[1] ) && !VV1[0].IsSame( VV1[1] )) VV2[ 1 ] = TopoDS::Vertex( theMap( VV1[1] )); } } if ( VV2[ 1 ].IsNull() ) { // 2 bound vertices not found if ( nbEdges > 1 ) { RETURN_BAD_RESULT("2 bound vertices not found" ); } else { VV2[ 1 ] = VV2[ 0 ]; } } list< TopoDS_Edge > edges1, edges2; int nbE = FindFaceAssociation( face1, VV1, face2, VV2, edges1, edges2, isVCloseness ); if ( !nbE ) RETURN_BAD_RESULT("FindFaceAssociation() failed"); fixAssocByPropagation( nbE, edges1, edges2, theMesh1, theMesh2 ); list< TopoDS_Edge >::iterator eIt1 = edges1.begin(); list< TopoDS_Edge >::iterator eIt2 = edges2.begin(); for ( ; eIt1 != edges1.end(); ++eIt1, ++eIt2 ) { InsertAssociation( *eIt1, *eIt2, theMap ); VV1[0] = TopExp::FirstVertex( *eIt1, true ); VV2[0] = TopExp::FirstVertex( *eIt2, true ); InsertAssociation( VV1[0], VV2[0], theMap ); } InsertAssociation( theShape1, theShape2, theMap ); return true; } // ---------------------------------------------------------------------- case TopAbs_SHELL: // TopAbs_SHELL, TopAbs_SOLID case TopAbs_SOLID: { // ---------------------------------------------------------------------- TopoDS_Vertex VV1[2], VV2[2]; // try to find a not closed edge of shape1 both vertices of which are associated TopoDS_Edge edge1; TopExp_Explorer exp ( theShape1, TopAbs_EDGE ); for ( ; VV2[ 1 ].IsNull() && exp.More(); exp.Next() ) { edge1 = TopoDS::Edge( exp.Current() ); if ( edge1.Orientation() >= TopAbs_INTERNAL ) edge1.Orientation( TopAbs_FORWARD ); TopExp::Vertices( edge1 , VV1[0], VV1[1] ); if ( theMap.IsBound( VV1[0] )) { VV2[ 0 ] = TopoDS::Vertex( theMap( VV1[0] )); if ( theMap.IsBound( VV1[1] ) && !VV1[0].IsSame( VV1[1] )) VV2[ 1 ] = TopoDS::Vertex( theMap( VV1[1] )); } } if ( VV2[ 1 ].IsNull() ) // 2 bound vertices not found RETURN_BAD_RESULT("2 bound vertices not found" ); // get an edge2 of theShape2 corresponding to edge1 TopoDS_Edge edge2 = GetEdgeByVertices( theMesh2, VV2[ 0 ], VV2[ 1 ]); if ( edge2.IsNull() ) RETURN_BAD_RESULT("GetEdgeByVertices() failed"); // build map of edge to faces if shapes are not sub-shapes of main ones bool isSubOfMain = false; if ( SMESHDS_SubMesh * sm = theMesh1->GetMeshDS()->MeshElements( theShape1 )) isSubOfMain = !sm->IsComplexSubmesh(); else isSubOfMain = theMesh1->GetMeshDS()->ShapeToIndex( theShape1 ); TAncestorMap e2f1, e2f2; const TAncestorMap& edgeToFace1 = isSubOfMain ? theMesh1->GetAncestorMap() : e2f1; const TAncestorMap& edgeToFace2 = isSubOfMain ? theMesh2->GetAncestorMap() : e2f2; if (!isSubOfMain) { TopExp::MapShapesAndAncestors( theShape1, TopAbs_EDGE, TopAbs_FACE, e2f1 ); TopExp::MapShapesAndAncestors( theShape2, TopAbs_EDGE, TopAbs_FACE, e2f2 ); if ( !edgeToFace1.Contains( edge1 )) RETURN_BAD_RESULT("edge1 does not belong to theShape1"); if ( !edgeToFace2.Contains( edge2 )) RETURN_BAD_RESULT("edge2 does not belong to theShape2"); } // // Look for 2 corresponing faces: // TopoDS_Shape F1, F2; // get a face sharing edge1 (F1) TopTools_ListIteratorOfListOfShape ancestIt1( edgeToFace1.FindFromKey( edge1 )); for ( ; F1.IsNull() && ancestIt1.More(); ancestIt1.Next() ) if ( ancestIt1.Value().ShapeType() == TopAbs_FACE ) F1 = ancestIt1.Value().Oriented //( TopAbs_FORWARD ); ( SMESH_MesherHelper::GetSubShapeOri( theShape1, ancestIt1.Value() )); if ( F1.IsNull() ) RETURN_BAD_RESULT(" Face1 not found"); // get 2 faces sharing edge2 (one of them is F2) TopoDS_Shape FF2[2]; TopTools_ListIteratorOfListOfShape ancestIt2( edgeToFace2.FindFromKey( edge2 )); for ( int i = 0; FF2[1].IsNull() && ancestIt2.More(); ancestIt2.Next() ) if ( ancestIt2.Value().ShapeType() == TopAbs_FACE ) FF2[ i++ ] = ancestIt2.Value().Oriented // ( TopAbs_FORWARD ); ( SMESH_MesherHelper::GetSubShapeOri( theShape2, ancestIt2.Value() )); // get oriented edge1 and edge2 from F1 and FF2[0] for ( exp.Init( F1, TopAbs_EDGE ); exp.More(); exp.Next() ) if ( edge1.IsSame( exp.Current() )) { edge1 = TopoDS::Edge( exp.Current() ); break; } for ( exp.Init( FF2[ 0 ], TopAbs_EDGE ); exp.More(); exp.Next() ) if ( edge2.IsSame( exp.Current() )) { edge2 = TopoDS::Edge( exp.Current() ); break; } // compare first vertices of edge1 and edge2 TopExp::Vertices( edge1, VV1[0], VV1[1], true ); TopExp::Vertices( edge2, VV2[0], VV2[1], true ); F2 = FF2[ 0 ]; // (F2 !) if ( !VV1[ 0 ].IsSame( theMap( VV2[ 0 ], /*is2=*/true))) { edge2.Reverse(); if ( FF2[ 1 ].IsNull() ) F2.Reverse(); else F2 = FF2[ 1 ]; } // association of face sub-shapes and neighbour faces list< pair < TopoDS_Face, TopoDS_Edge > > FE1, FE2; list< pair < TopoDS_Face, TopoDS_Edge > >::iterator fe1, fe2; FE1.push_back( make_pair( TopoDS::Face( F1 ), edge1 )); FE2.push_back( make_pair( TopoDS::Face( F2 ), edge2 )); for ( fe1 = FE1.begin(), fe2 = FE2.begin(); fe1 != FE1.end(); ++fe1, ++fe2 ) { const TopoDS_Face& face1 = fe1->first; if ( theMap.IsBound( face1 ) ) continue; const TopoDS_Face& face2 = fe2->first; edge1 = fe1->second; edge2 = fe2->second; TopExp::Vertices( edge1, VV1[0], VV1[1], true ); TopExp::Vertices( edge2, VV2[0], VV2[1], true ); list< TopoDS_Edge > edges1, edges2; int nbE = FindFaceAssociation( face1, VV1, face2, VV2, edges1, edges2, isVCloseness ); if ( !nbE ) RETURN_BAD_RESULT("FindFaceAssociation() failed"); InsertAssociation( face1, face2, theMap ); // assoc faces // MESSAGE("Assoc FACE " << theMesh1->GetMeshDS()->ShapeToIndex( face1 )<< // " to " << theMesh2->GetMeshDS()->ShapeToIndex( face2 )); if ( nbE == 2 && (edge1.IsSame( edges1.front())) != (edge2.IsSame( edges2.front()))) { reverseEdges( edges2, nbE ); } list< TopoDS_Edge >::iterator eIt1 = edges1.begin(); list< TopoDS_Edge >::iterator eIt2 = edges2.begin(); for ( ; eIt1 != edges1.end(); ++eIt1, ++eIt2 ) { if ( !InsertAssociation( *eIt1, *eIt2, theMap )) // assoc edges continue; // already associated VV1[0] = TopExp::FirstVertex( *eIt1, true ); VV2[0] = TopExp::FirstVertex( *eIt2, true ); InsertAssociation( VV1[0], VV2[0], theMap ); // assoc vertices // add adjacent faces to process TopoDS_Face nextFace1 = GetNextFace( edgeToFace1, *eIt1, face1 ); TopoDS_Face nextFace2 = GetNextFace( edgeToFace2, *eIt2, face2 ); if ( !nextFace1.IsNull() && !nextFace2.IsNull() ) { if ( SMESH_MesherHelper::GetSubShapeOri( nextFace1, *eIt1 ) == eIt1->Orientation() ) nextFace1.Reverse(); if ( SMESH_MesherHelper::GetSubShapeOri( nextFace2, *eIt2 ) == eIt2->Orientation() ) nextFace2.Reverse(); FE1.push_back( make_pair( nextFace1, *eIt1 )); FE2.push_back( make_pair( nextFace2, *eIt2 )); } } } InsertAssociation( theShape1, theShape2, theMap ); return true; } // ---------------------------------------------------------------------- case TopAbs_COMPOUND: { // GROUP // ---------------------------------------------------------------------- // Maybe groups contain only one member TopoDS_Iterator it1( theShape1 ), it2( theShape2 ); TopAbs_ShapeEnum memberType = it1.Value().ShapeType(); int nbMembers = SMESH_MesherHelper::Count( theShape1, memberType, true ); if ( nbMembers == 0 ) return true; if ( nbMembers == 1 ) { return FindSubShapeAssociation( it1.Value(), theMesh1, it2.Value(), theMesh2, theMap ); } // Try to make shells of faces // BRep_Builder builder; TopoDS_Shell shell1, shell2; builder.MakeShell(shell1); builder.MakeShell(shell2); if ( memberType == TopAbs_FACE ) { // just add faces of groups to shells for (; it1.More(); it1.Next(), it2.Next() ) builder.Add( shell1, it1.Value() ), builder.Add( shell2, it2.Value() ); } else if ( memberType == TopAbs_EDGE ) { // Try to add faces sharing more than one edge of a group or // sharing all its vertices with the group TopTools_IndexedMapOfShape groupVertices[2]; TopExp::MapShapes( theShape1, TopAbs_VERTEX, groupVertices[0]); TopExp::MapShapes( theShape2, TopAbs_VERTEX, groupVertices[1]); // TopTools_MapOfShape groupEdges[2], addedFaces[2]; bool hasInitAssoc = (!theMap.IsEmpty()), initAssocOK = !hasInitAssoc; for (; it1.More(); it1.Next(), it2.Next() ) { groupEdges[0].Add( it1.Value() ); groupEdges[1].Add( it2.Value() ); if ( !initAssocOK ) { // for shell association there must be an edge with both vertices bound TopoDS_Vertex v1, v2; TopExp::Vertices( TopoDS::Edge( it1.Value().Oriented(TopAbs_FORWARD)), v1, v2 ); initAssocOK = ( theMap.IsBound( v1 ) && theMap.IsBound( v2 )); } } for (int is2ndGroup = 0; initAssocOK && is2ndGroup < 2; ++is2ndGroup) { const TopoDS_Shape& group = is2ndGroup ? theShape2: theShape1; SMESH_Mesh* mesh = is2ndGroup ? theMesh2 : theMesh1; TopoDS_Shell& shell = is2ndGroup ? shell2 : shell1; for ( TopoDS_Iterator it( group ); it.More(); it.Next() ) { const TopoDS_Edge& edge = TopoDS::Edge( it.Value() ); TopoDS_Face face; for ( int iF = 0; iF < 2; ++iF ) { // loop on 2 faces sharing edge face = GetNextFace(mesh->GetAncestorMap(), edge, face); if ( !face.IsNull() ) { int nbGroupEdges = 0; for ( TopExp_Explorer f( face, TopAbs_EDGE ); f.More(); f.Next()) if ( groupEdges[ is2ndGroup ].Contains( f.Current() )) if ( ++nbGroupEdges > 1 ) break; bool add = (nbGroupEdges > 1 || SMESH_MesherHelper::Count( face, TopAbs_EDGE, true ) == 1 ); if ( !add ) { add = true; for ( TopExp_Explorer v( face, TopAbs_VERTEX ); add && v.More(); v.Next()) add = groupVertices[ is2ndGroup ].Contains( v.Current() ); } if ( add && addedFaces[ is2ndGroup ].Add( face )) builder.Add( shell, face ); } } } } } else { RETURN_BAD_RESULT("Unexpected group type"); } // Associate shells // int nbFaces1 = SMESH_MesherHelper::Count( shell1, TopAbs_FACE, 0 ); int nbFaces2 = SMESH_MesherHelper::Count( shell2, TopAbs_FACE, 0 ); if ( nbFaces1 != nbFaces2 ) RETURN_BAD_RESULT("Different nb of faces found for shells"); if ( nbFaces1 > 0 ) { bool ok = false; if ( nbFaces1 == 1 ) { TopoDS_Shape F1 = TopoDS_Iterator( shell1 ).Value(); TopoDS_Shape F2 = TopoDS_Iterator( shell2 ).Value(); ok = FindSubShapeAssociation( F1, theMesh1, F2, theMesh2, theMap ); } else { ok = FindSubShapeAssociation(shell1, theMesh1, shell2, theMesh2, theMap ); } // Check if all members are mapped if ( ok ) { TopTools_MapOfShape boundMembers[2]; TopoDS_Iterator mIt; for ( mIt.Initialize( theShape1 ); mIt.More(); mIt.Next()) if ( theMap.IsBound( mIt.Value() )) { boundMembers[0].Add( mIt.Value() ); boundMembers[1].Add( theMap( mIt.Value() )); } if ( boundMembers[0].Extent() != nbMembers ) { // make compounds of not bound members TopoDS_Compound comp[2]; for ( int is2ndGroup = 0; is2ndGroup < 2; ++is2ndGroup ) { builder.MakeCompound( comp[is2ndGroup] ); for ( mIt.Initialize( is2ndGroup ? theShape2:theShape1 ); mIt.More(); mIt.Next()) if ( ! boundMembers[ is2ndGroup ].Contains( mIt.Value() )) builder.Add( comp[ is2ndGroup ], mIt.Value() ); } // check if theMap contains initial association for the comp's bool hasInitialAssoc = false; if ( memberType == TopAbs_EDGE ) { for ( TopExp_Explorer v( comp[0], TopAbs_VERTEX ); v.More(); v.Next()) if ( theMap.IsBound( v.Current() )) { hasInitialAssoc = true; break; } } if ( hasInitialAssoc == bool( !theMap.IsEmpty() )) ok = FindSubShapeAssociation( comp[0], theMesh1, comp[1], theMesh2, theMap ); else { TShapeShapeMap tmpMap; ok = FindSubShapeAssociation( comp[0], theMesh1, comp[1], theMesh2, tmpMap ); if ( ok ) { TopTools_DataMapIteratorOfDataMapOfShapeShape mapIt( tmpMap._map1to2 ); for ( ; mapIt.More(); mapIt.Next() ) theMap.Bind( mapIt.Key(), mapIt.Value()); } } } } return ok; } // Each edge of an edge group is shared by own faces // ------------------------------------------------------------------ // // map vertices to edges sharing them, avoid doubling edges in lists TopTools_DataMapOfShapeListOfShape v2e[2]; for (int isFirst = 0; isFirst < 2; ++isFirst ) { const TopoDS_Shape& group = isFirst ? theShape1 : theShape2; TopTools_DataMapOfShapeListOfShape& veMap = v2e[ isFirst ? 0 : 1 ]; TopTools_MapOfShape addedEdges; for ( TopExp_Explorer e( group, TopAbs_EDGE ); e.More(); e.Next() ) { const TopoDS_Shape& edge = e.Current(); if ( addedEdges.Add( edge )) { for ( TopExp_Explorer v( edge, TopAbs_VERTEX ); v.More(); v.Next()) { const TopoDS_Shape& vertex = v.Current(); if ( !veMap.IsBound( vertex )) { TopTools_ListOfShape l; veMap.Bind( vertex, l ); } veMap( vertex ).Append( edge ); } } } } while ( !v2e[0].IsEmpty() ) { // find a bound vertex TopoDS_Vertex V[2]; TopTools_DataMapIteratorOfDataMapOfShapeListOfShape v2eIt( v2e[0] ); for ( ; v2eIt.More(); v2eIt.Next()) if ( theMap.IsBound( v2eIt.Key() )) { V[0] = TopoDS::Vertex( v2eIt.Key() ); V[1] = TopoDS::Vertex( theMap( V[0] )); break; } if ( V[0].IsNull() ) RETURN_BAD_RESULT("No more bound vertices"); while ( !V[0].IsNull() && v2e[0].IsBound( V[0] )) { TopTools_ListOfShape& edges0 = v2e[0]( V[0] ); TopTools_ListOfShape& edges1 = v2e[1]( V[1] ); int nbE0 = edges0.Extent(), nbE1 = edges1.Extent(); if ( nbE0 != nbE1 ) RETURN_BAD_RESULT("Different nb of edges: "<< nbE0 << " != " << nbE1); if ( nbE0 == 1 ) { TopoDS_Edge e0 = TopoDS::Edge( edges0.First() ); TopoDS_Edge e1 = TopoDS::Edge( edges1.First() ); v2e[0].UnBind( V[0] ); v2e[1].UnBind( V[1] ); InsertAssociation( e0, e1, theMap ); // MESSAGE("Assoc edge " << theMesh1->GetMeshDS()->ShapeToIndex( e0 )<< // " to " << theMesh2->GetMeshDS()->ShapeToIndex( e1 )); V[0] = GetNextVertex( e0, V[0] ); V[1] = GetNextVertex( e1, V[1] ); if ( !V[0].IsNull() ) { InsertAssociation( V[0], V[1], theMap ); // MESSAGE("Assoc vertex " << theMesh1->GetMeshDS()->ShapeToIndex( V[0] )<< // " to " << theMesh2->GetMeshDS()->ShapeToIndex( V[1] )); } } else if ( nbE0 == 2 ) { // one of edges must have both ends bound TopoDS_Vertex v0e0 = GetNextVertex( TopoDS::Edge( edges0.First() ), V[0] ); TopoDS_Vertex v1e0 = GetNextVertex( TopoDS::Edge( edges0.Last() ), V[0] ); TopoDS_Vertex v0e1 = GetNextVertex( TopoDS::Edge( edges1.First() ), V[1] ); TopoDS_Vertex v1e1 = GetNextVertex( TopoDS::Edge( edges1.Last() ), V[1] ); TopoDS_Shape e0b, e1b, e0n, e1n, v1b; // bound and not-bound TopoDS_Vertex v0n, v1n; if ( theMap.IsBound( v0e0 )) { v0n = v1e0; e0b = edges0.First(); e0n = edges0.Last(); v1b = theMap( v0e0 ); } else if ( theMap.IsBound( v1e0 )) { v0n = v0e0; e0n = edges0.First(); e0b = edges0.Last(); v1b = theMap( v1e0 ); } else { RETURN_BAD_RESULT("None of vertices bound"); } if ( v1b.IsSame( v1e1 )) { v1n = v0e1; e1n = edges1.First(); e1b = edges1.Last(); } else { v1n = v1e1; e1b = edges1.First(); e1n = edges1.Last(); } InsertAssociation( e0b, e1b, theMap ); InsertAssociation( e0n, e1n, theMap ); InsertAssociation( v0n, v1n, theMap ); // MESSAGE("Assoc edge " << theMesh1->GetMeshDS()->ShapeToIndex( e0b )<< // " to " << theMesh2->GetMeshDS()->ShapeToIndex( e1b )); // MESSAGE("Assoc edge " << theMesh1->GetMeshDS()->ShapeToIndex( e0n )<< // " to " << theMesh2->GetMeshDS()->ShapeToIndex( e1n )); // MESSAGE("Assoc vertex " << theMesh1->GetMeshDS()->ShapeToIndex( v0n )<< // " to " << theMesh2->GetMeshDS()->ShapeToIndex( v1n )); v2e[0].UnBind( V[0] ); v2e[1].UnBind( V[1] ); V[0] = v0n; V[1] = v1n; } else { RETURN_BAD_RESULT("Not implemented"); } } } //while ( !v2e[0].IsEmpty() ) return true; } default: RETURN_BAD_RESULT("Unexpected shape type"); } // end switch by shape type } // end case of available initial vertex association //====================================================================== // 4) NO INITIAL VERTEX ASSOCIATION //====================================================================== switch ( theShape1.ShapeType() ) { case TopAbs_EDGE: { // ---------------------------------------------------------------------- TopoDS_Edge edge1 = TopoDS::Edge( theShape1 ); TopoDS_Edge edge2 = TopoDS::Edge( theShape2 ); if ( isPropagationPossible( theMesh1, theMesh2 )) { TopoDS_Edge prpEdge = GetPropagationEdge( theMesh1, edge2, edge1 ).second; if ( !prpEdge.IsNull() ) { TopoDS_Vertex VV1[2], VV2[2]; TopExp::Vertices( edge1, VV1[0], VV1[1], true ); TopExp::Vertices( prpEdge, VV2[0], VV2[1], true ); InsertAssociation( VV1[ 0 ], VV2[ 0 ], theMap ); InsertAssociation( VV1[ 1 ], VV2[ 1 ], theMap ); if ( VV1[0].IsSame( VV1[1] ) || // one of edges is closed VV2[0].IsSame( VV2[1] ) ) { InsertAssociation( edge1, prpEdge, theMap ); // insert with a proper orientation } InsertAssociation( theShape1, theShape2, theMap ); theMap.SetAssocType( TShapeShapeMap::PROPAGATION ); return true; // done } } if ( SMESH_MesherHelper::IsClosedEdge( edge1 ) && SMESH_MesherHelper::IsClosedEdge( edge2 )) { // TODO: find out a proper orientation (is it possible?) InsertAssociation( edge1, edge2, theMap ); // insert with a proper orientation InsertAssociation( TopExp::FirstVertex(edge1), TopExp::FirstVertex(edge2), theMap ); InsertAssociation( theShape1, theShape2, theMap ); return true; // done } break; // try by vertex closeness } case TopAbs_FACE: { // ---------------------------------------------------------------------- if ( isPropagationPossible( theMesh1, theMesh2 )) // try by propagation in one mesh { TopoDS_Face face1 = TopoDS::Face(theShape1); TopoDS_Face face2 = TopoDS::Face(theShape2); if ( face1.Orientation() >= TopAbs_INTERNAL ) face1.Orientation( TopAbs_FORWARD ); if ( face2.Orientation() >= TopAbs_INTERNAL ) face2.Orientation( TopAbs_FORWARD ); TopoDS_Edge edge1, edge2; // get outer edge of theShape1 TopoDS_Shape wire = OuterShape( face1, TopAbs_WIRE ); //edge1 = TopoDS::Edge( OuterShape( face1, TopAbs_EDGE )); // use map to find the closest propagation edge map > propag_edges; for ( TopoDS_Iterator edgeIt( wire ); edgeIt.More(); edgeIt.Next() ) { edge1 = TopoDS::Edge( edgeIt.Value() ); // find out if any edge of face2 is a propagation edge of outer edge1 for ( TopExp_Explorer exp( face2, TopAbs_EDGE ); exp.More(); exp.Next() ) { edge2 = TopoDS::Edge( exp.Current() ); pair step_edge = GetPropagationEdge( theMesh1, edge2, edge1 ); if ( !step_edge.second.IsNull() ) { // propagation found propag_edges.insert( make_pair( step_edge.first, ( make_pair( edge1, step_edge.second )))); if ( step_edge.first == 1 ) break; // most close found } } if ( !propag_edges.empty() && propag_edges.begin()->first == 1 ) break; } if ( !propag_edges.empty() ) // propagation found { edge1 = propag_edges.begin()->second.first; edge2 = propag_edges.begin()->second.second; TopoDS_Vertex VV1[2], VV2[2]; TopExp::Vertices( edge1, VV1[0], VV1[1], true ); TopExp::Vertices( edge2, VV2[0], VV2[1], true ); list< TopoDS_Edge > edges1, edges2; int nbE = FindFaceAssociation( face1, VV1, face2, VV2, edges1, edges2 ); if ( !nbE ) RETURN_BAD_RESULT("FindFaceAssociation() failed"); // take care of proper association of propagated edges bool same1 = edge1.IsSame( edges1.front() ); bool same2 = edge2.IsSame( edges2.front() ); if ( !same1 && !same2 ) { same1 = ( edges1.back().Orientation() == edge1.Orientation() ); same2 = ( edges2.back().Orientation() == edge2.Orientation() ); } if ( same1 != same2 ) { reverseEdges(edges2, nbE); if ( nbE != 2 ) // 2 degen edges of 4 (issue 0021144) edges2.splice( edges2.end(), edges2, edges2.begin()); } // store association list< TopoDS_Edge >::iterator eIt1 = edges1.begin(); list< TopoDS_Edge >::iterator eIt2 = edges2.begin(); for ( ; eIt1 != edges1.end(); ++eIt1, ++eIt2 ) { InsertAssociation( *eIt1, *eIt2, theMap ); VV1[0] = SMESH_MesherHelper::IthVertex( 0, *eIt1, true ); VV2[0] = SMESH_MesherHelper::IthVertex( 0, *eIt2, true ); InsertAssociation( VV1[0], VV2[0], theMap ); } InsertAssociation( theShape1, theShape2, theMap ); theMap.SetAssocType( TShapeShapeMap::PROPAGATION ); return true; } } break; // try by vertex closeness } case TopAbs_COMPOUND: { // ---------------------------------------------------------------------- if ( isPropagationPossible( theMesh1, theMesh2 )) { // try to accosiate all using propagation if ( assocGroupsByPropagation( theShape1, theShape2, *theMesh1, theMap )) return true; // find a boundary edge of theShape1 TopoDS_Edge E = GetBoundaryEdge( theShape1, *theMesh1 ); if ( E.IsNull() ) break; // try by vertex closeness // find association for vertices of edge E TopoDS_Vertex VV1[2], VV2[2]; for(TopExp_Explorer eexp(E, TopAbs_VERTEX); eexp.More(); eexp.Next()) { TopoDS_Vertex V1 = TopoDS::Vertex( eexp.Current() ); // look for an edge ending in E whose one vertex is in theShape1 // and the other, in theShape2 const TopTools_ListOfShape& Ancestors = theMesh1->GetAncestors(V1); TopTools_ListIteratorOfListOfShape ita(Ancestors); for(; ita.More(); ita.Next()) { if( ita.Value().ShapeType() != TopAbs_EDGE ) continue; TopoDS_Edge edge = TopoDS::Edge(ita.Value()); bool FromShape1 = false; for(TopExp_Explorer expe(theShape1, TopAbs_EDGE); expe.More(); expe.Next() ) { if(edge.IsSame(expe.Current())) { FromShape1 = true; break; } } if(!FromShape1) { // is it an edge between theShape1 and theShape2? TopExp_Explorer expv(edge, TopAbs_VERTEX); TopoDS_Vertex V2 = TopoDS::Vertex( expv.Current() ); if(V2.IsSame(V1)) { expv.Next(); V2 = TopoDS::Vertex( expv.Current() ); } bool FromShape2 = false; for ( expv.Init( theShape2, TopAbs_VERTEX ); expv.More(); expv.Next()) { if ( V2.IsSame( expv.Current() )) { FromShape2 = true; break; } } if ( FromShape2 ) { if ( VV1[0].IsNull() ) VV1[0] = V1, VV2[0] = V2; else VV1[1] = V1, VV2[1] = V2; break; // from loop on ancestors of V1 } } } } if ( !VV1[1].IsNull() ) { InsertAssociation( VV1[0], VV2[0], theMap ); InsertAssociation( VV1[1], VV2[1], theMap ); TShapeShapeMap::EAssocType asType = theMap._assocType; theMap.SetAssocType( TShapeShapeMap::PROPAGATION ); if ( FindSubShapeAssociation( theShape1, theMesh1, theShape2, theMesh2, theMap )) return true; theMap._assocType = asType; } } break; // try by vertex closeness } default:; } // 4.b) Find association by closeness of vertices // ---------------------------------------------- TopTools_IndexedMapOfShape vMap1, vMap2; TopExp::MapShapes( theShape1, TopAbs_VERTEX, vMap1 ); TopExp::MapShapes( theShape2, TopAbs_VERTEX, vMap2 ); TopoDS_Vertex VV1[2], VV2[2]; if ( vMap1.Extent() != vMap2.Extent() ) { if ( SMESH_MesherHelper:: Count( theShape1, TopAbs_EDGE, /*ignoreSame=*/false ) != SMESH_MesherHelper:: Count( theShape2, TopAbs_EDGE, /*ignoreSame=*/false )) RETURN_BAD_RESULT("Different nb of vertices"); } if ( vMap1.Extent() == 1 || vMap2.Extent() == 1 ) { InsertAssociation( vMap1(1), vMap2(1), theMap ); if ( theShape1.ShapeType() == TopAbs_EDGE ) { if ( vMap1.Extent() == 2 ) InsertAssociation( vMap1(2), vMap2(1), theMap ); else if ( vMap2.Extent() == 2 ) InsertAssociation( vMap2(2), vMap1(1), theMap ); InsertAssociation( theShape1, theShape2, theMap ); return true; } return FindSubShapeAssociation( theShape1, theMesh1, theShape2, theMesh2, theMap); } // Try to associate by common vertices of an edge for ( int i = 1; i <= vMap1.Extent(); ++i ) { const TopoDS_Shape& v1 = vMap1(i); if ( vMap2.Contains( v1 )) { // find an egde sharing v1 and sharing at the same time another common vertex PShapeIteratorPtr edgeIt = SMESH_MesherHelper::GetAncestors( v1, *theMesh1, TopAbs_EDGE); bool edgeFound = false; while ( edgeIt->more() && !edgeFound ) { TopoDS_Edge edge = TopoDS::Edge( edgeIt->next()->Oriented(TopAbs_FORWARD)); TopExp::Vertices(edge, VV1[0], VV1[1]); if ( !VV1[0].IsSame( VV1[1] )) edgeFound = ( vMap2.Contains( VV1[ v1.IsSame(VV1[0]) ? 1:0])); } if ( edgeFound ) { InsertAssociation( VV1[0], VV1[0], theMap ); InsertAssociation( VV1[1], VV1[1], theMap ); TShapeShapeMap::EAssocType asType = theMap._assocType; theMap.SetAssocType( TShapeShapeMap::COMMON_VERTEX ); if ( FindSubShapeAssociation( theShape1, theMesh1, theShape2, theMesh2, theMap )) return true; theMap._assocType = asType; } } } // Find transformation to make the shapes be of similar size at same location Bnd_Box box[2]; for ( int i = 1; i <= vMap1.Extent(); ++i ) box[ 0 ].Add( BRep_Tool::Pnt ( TopoDS::Vertex( vMap1( i )))); for ( int i = 1; i <= vMap2.Extent(); ++i ) box[ 1 ].Add( BRep_Tool::Pnt ( TopoDS::Vertex( vMap2( i )))); gp_Pnt gc[2]; // box center double x0,y0,z0, x1,y1,z1; box[0].Get( x0,y0,z0, x1,y1,z1 ); gc[0] = 0.5 * ( gp_XYZ( x0,y0,z0 ) + gp_XYZ( x1,y1,z1 )); box[1].Get( x0,y0,z0, x1,y1,z1 ); gc[1] = 0.5 * ( gp_XYZ( x0,y0,z0 ) + gp_XYZ( x1,y1,z1 )); // 1 -> 2 gp_Vec vec01( gc[0], gc[1] ); double scale = sqrt( box[1].SquareExtent() / box[0].SquareExtent() ); // Find 2 closest vertices // get 2 linked vertices of shape 1 not belonging to an inner wire of a face std::list< TopoDS_Edge > allBndEdges1; if ( !getOuterEdges( theShape1, *theMesh1, allBndEdges1 )) { if ( theShape1.ShapeType() != TopAbs_FACE ) RETURN_BAD_RESULT("Edge not found"); return assocFewEdgesFaces( TopoDS::Face( theShape1 ), theMesh1, TopoDS::Face( theShape2 ), theMesh2, theMap ); } std::list< TopoDS_Edge >::iterator edge1 = allBndEdges1.begin(); double minDist = std::numeric_limits::max(); for ( int nbChecked=0; edge1 != allBndEdges1.end() && nbChecked++ < 10; ++edge1 ) { TopoDS_Vertex edge1VV[2]; TopExp::Vertices( TopoDS::Edge( edge1->Oriented(TopAbs_FORWARD)), edge1VV[0], edge1VV[1]); if ( edge1VV[0].IsSame( edge1VV[1] )) continue;//RETURN_BAD_RESULT("Only closed edges"); // find vertices closest to 2 linked vertices of shape 1 double dist2[2] = { 1e+100, 1e+100 }; TopoDS_Vertex edge2VV[2]; for ( int i1 = 0; i1 < 2; ++i1 ) { gp_Pnt p1 = BRep_Tool::Pnt( edge1VV[ i1 ]); p1.Scale( gc[0], scale ); p1.Translate( vec01 ); if ( !i1 ) { // select a closest vertex among all ones in vMap2 for ( int i2 = 1; i2 <= vMap2.Extent(); ++i2 ) { TopoDS_Vertex V2 = TopoDS::Vertex( vMap2( i2 )); gp_Pnt p2 = BRep_Tool::Pnt ( V2 ); double d2 = p1.SquareDistance( p2 ); if ( d2 < dist2[ 0 ] && d2 < minDist ) { edge2VV[ 0 ] = V2; dist2 [ 0 ] = d2; } } } else if ( !edge2VV[0].IsNull() ) { // select a closest vertex among ends of edges meeting at edge2VV[0] PShapeIteratorPtr edgeIt = SMESH_MesherHelper::GetAncestors( edge2VV[0], *theMesh2, TopAbs_EDGE); while ( const TopoDS_Shape* edge2 = edgeIt->next() ) for ( TopoDS_Iterator itV2( *edge2 ); itV2.More(); itV2.Next() ) { if ( itV2.Value().IsSame( edge2VV[ 0 ])) continue; if ( !vMap2.Contains( itV2.Value() )) continue; TopoDS_Vertex V2 = TopoDS::Vertex( itV2.Value() ); gp_Pnt p2 = BRep_Tool::Pnt ( V2 ); double d2 = p1.SquareDistance( p2 ); if ( d2 < dist2[1] && d2 < minDist ) { edge2VV[ 1 ] = V2; dist2 [ 1 ] = d2; } } } } if ( dist2[0] + dist2[1] < minDist ) { VV1[0] = edge1VV[0]; VV1[1] = edge1VV[1]; VV2[0] = edge2VV[0]; VV2[1] = edge2VV[1]; minDist = dist2[0] + dist2[1]; if ( minDist < 1e-10 ) break; } } theMap.SetAssocType( TShapeShapeMap::CLOSE_VERTEX ); InsertAssociation( VV1[ 0 ], VV2[ 0 ], theMap ); InsertAssociation( VV1[ 1 ], VV2[ 1 ], theMap ); // MESSAGE("Initial assoc VERT " << theMesh1->GetMeshDS()->ShapeToIndex( VV1[ 0 ] )<< // " to " << theMesh2->GetMeshDS()->ShapeToIndex( VV2[ 0 ] )<< // "\nand VERT " << theMesh1->GetMeshDS()->ShapeToIndex( VV1[ 1 ] )<< // " to " << theMesh2->GetMeshDS()->ShapeToIndex( VV2[ 1 ] )); if ( theShape1.ShapeType() == TopAbs_EDGE ) { InsertAssociation( theShape1, theShape2, theMap ); return true; } return FindSubShapeAssociation( theShape1, theMesh1, theShape2, theMesh2, theMap ); } //================================================================================ /* * Find association of edges of faces * \param face1 - face 1 * \param VV1 - vertices of face 1 * \param face2 - face 2 * \param VV2 - vertices of face 2 associated with ones of face 1 * \param edges1 - out list of edges of face 1 * \param edges2 - out list of edges of face 2 * \param isClosenessAssoc - is association starting by VERTEX closeness * \retval int - nb of edges in an outer wire in a success case, else zero */ //================================================================================ int StdMeshers_ProjectionUtils::FindFaceAssociation(const TopoDS_Face& face1, TopoDS_Vertex VV1[2], const TopoDS_Face& face2, TopoDS_Vertex VV2[2], list< TopoDS_Edge > & edges1, list< TopoDS_Edge > & edges2, const bool isClosenessAssoc) { bool OK = false; list< int > nbEInW1, nbEInW2; list< TopoDS_Edge >::iterator edgeIt; int i_ok_wire_algo = -1; for ( int outer_wire_algo = 0; outer_wire_algo < 2 && !OK; ++outer_wire_algo ) { edges1.clear(); edges2.clear(); if ( SMESH_Block::GetOrderedEdges( face1, edges1, nbEInW1, VV1[0], outer_wire_algo) != SMESH_Block::GetOrderedEdges( face2, edges2, nbEInW2, VV2[0], outer_wire_algo) ) CONT_BAD_RESULT("Different number of wires in faces "); if ( nbEInW1 != nbEInW2 && outer_wire_algo == 0 && ( std::accumulate( nbEInW1.begin(), nbEInW1.end(), 0) != std::accumulate( nbEInW2.begin(), nbEInW2.end(), 0))) RETURN_BAD_RESULT("Different number of edges in faces"); if ( nbEInW1.front() != nbEInW2.front() ) CONT_BAD_RESULT("Different number of edges in the outer wire: " << nbEInW1.front() << " != " << nbEInW2.front()); i_ok_wire_algo = outer_wire_algo; // Define if we need to reverse one of wires to make edges in lists match each other bool reverse = false; const bool severalWires = ( nbEInW1.size() > 1 ); if ( !VV1[1].IsSame( TopExp::LastVertex( edges1.front(), true ))) { reverse = true; // check if the second vertex belongs to the first or last edge in the wire edgeIt = --edges1.end(); // pointer to the last edge in the outer wire if ( severalWires ) { edgeIt = edges1.begin(); std::advance( edgeIt, nbEInW1.front()-1 ); } if ( TopExp::FirstVertex( *edgeIt ).IsSame( TopExp::LastVertex( *edgeIt )) && SMESH_Algo::isDegenerated( *edgeIt )) { --edgeIt; // skip a degenerated edge (test 3D_mesh_Projection_00/A3) } if ( !VV1[1].IsSame( TopExp::FirstVertex( *edgeIt, true ))) { CONT_BAD_RESULT("GetOrderedEdges() failed"); } } if ( !VV2[1].IsSame( TopExp::LastVertex( edges2.front(), true ))) { reverse = !reverse; // check if the second vertex belongs to the first or last edge in the wire edgeIt = --edges2.end(); // pointer to the last edge in the outer wire if ( severalWires ) { edgeIt = edges2.begin(); std::advance( edgeIt, nbEInW2.front()-1 ); } if ( TopExp::FirstVertex( *edgeIt ).IsSame( TopExp::LastVertex( *edgeIt )) && SMESH_Algo::isDegenerated( *edgeIt )) { --edgeIt; // skip a degenerated edge } if ( !VV2[1].IsSame( TopExp::FirstVertex( *edgeIt, true ))) { CONT_BAD_RESULT("GetOrderedEdges() failed"); } } if ( reverse ) { reverseEdges( edges2 , nbEInW2.front()); if ( SMESH_Algo::isDegenerated( edges2.front() )) { // move a degenerated edge to the back of the outer wire edgeIt = edges2.end(); if ( severalWires ) { edgeIt = edges2.begin(); std::advance( edgeIt, nbEInW2.front() ); } edges2.splice( edgeIt, edges2, edges2.begin() ); } if (( VV1[1].IsSame( TopExp::LastVertex( edges1.front(), true ))) != ( VV2[1].IsSame( TopExp::LastVertex( edges2.front(), true )))) CONT_BAD_RESULT("GetOrderedEdges() failed"); } OK = true; } // loop algos getting an outer wire if ( OK && nbEInW1.front() > 4 ) // care of a case where faces are closed (23032) { // check if the first edges are seam ones list< TopoDS_Edge >::iterator revSeam1, revSeam2; revSeam1 = std::find( ++edges1.begin(), edges1.end(), edges1.front().Reversed()); revSeam2 = edges2.end(); if ( revSeam1 != edges1.end() ) revSeam2 = std::find( ++edges2.begin(), edges2.end(), edges2.front().Reversed()); if ( revSeam2 != edges2.end() ) // two seams detected { bool reverse = std::distance( edges1.begin(), revSeam1 ) != std::distance( edges2.begin(), revSeam2 ); if ( !reverse && isClosenessAssoc ) { // compare orientations of a non-seam edges using 3D closeness; // look for a non-seam edges list< TopoDS_Edge >::iterator edge1 = ++edges1.begin(); list< TopoDS_Edge >::iterator edge2 = ++edges2.begin(); for ( ; edge1 != edges1.end(); ++edge1, ++edge2 ) { if (( edge1 == revSeam1 ) || ( SMESH_Algo::isDegenerated( *edge1 )) || ( std::find( ++edges1.begin(), edges1.end(), edge1->Reversed()) != edges1.end() )) continue; gp_Pnt p1 = BRep_Tool::Pnt( VV1[0] ); gp_Pnt p2 = BRep_Tool::Pnt( VV2[0] ); gp_Vec vec2to1( p2, p1 ); gp_Pnt pp1[2], pp2[2]; const double r = 0.2345; double f,l; Handle(Geom_Curve) C = BRep_Tool::Curve( *edge1, f,l ); pp1[0] = C->Value( f * r + l * ( 1. - r )); pp1[1] = C->Value( l * r + f * ( 1. - r )); if ( edge1->Orientation() == TopAbs_REVERSED ) std::swap( pp1[0], pp1[1] ); C = BRep_Tool::Curve( *edge2, f,l ); if ( C.IsNull() ) return 0; pp2[0] = C->Value( f * r + l * ( 1. - r )).Translated( vec2to1 ); pp2[1] = C->Value( l * r + f * ( 1. - r )).Translated( vec2to1 ); if ( edge2->Orientation() == TopAbs_REVERSED ) std::swap( pp2[0], pp2[1] ); double dist00 = pp1[0].SquareDistance( pp2[0] ); double dist01 = pp1[0].SquareDistance( pp2[1] ); reverse = ( dist00 > dist01 ); break; } } if ( reverse ) // make a seam counterpart be the first { list< TopoDS_Edge >::iterator outWireEnd = edges2.begin(); std::advance( outWireEnd, nbEInW2.front() ); edges2.splice( outWireEnd, edges2, edges2.begin(), ++revSeam2 ); reverseEdges( edges2 , nbEInW2.front()); } } } // Try to orient all (if !OK) or only internal wires (issue 0020996) by UV similarity if (( !OK || nbEInW1.size() > 1 ) && i_ok_wire_algo > -1 ) { // Check that Vec(VV1[0],VV1[1]) in 2D on face1 is the same // as Vec(VV2[0],VV2[1]) on face2 double vTol = BRep_Tool::Tolerance( VV1[0] ); BRepAdaptor_Surface surface1( face1, true ); BRepAdaptor_Surface surface2( face2, true ); // TODO: use TrsfFinder2D to superpose the faces gp_Pnt2d v0f1UV( surface1.FirstUParameter(), surface1.FirstVParameter() ); gp_Pnt2d v0f2UV( surface2.FirstUParameter(), surface2.FirstVParameter() ); gp_Pnt2d v1f1UV( surface1.LastUParameter(), surface1.LastVParameter() ); gp_Pnt2d v1f2UV( surface2.LastUParameter(), surface2.LastVParameter() ); double vTolUV = surface1.UResolution( vTol ) + surface1.VResolution( vTol ); // let's be tolerant // VV1[0] = TopExp::FirstVertex( edges1.front(), true ); // ori is important if face is closed // VV1[1] = TopExp::LastVertex ( edges1.front(), true ); // VV2[0] = TopExp::FirstVertex( edges2.front(), true ); // VV2[1] = TopExp::LastVertex ( edges2.front(), true ); // gp_Pnt2d v0f1UV = BRep_Tool::Parameters( VV1[0], face1 ); // gp_Pnt2d v0f2UV = BRep_Tool::Parameters( VV2[0], face2 ); // gp_Pnt2d v1f1UV = BRep_Tool::Parameters( VV1[1], face1 ); // gp_Pnt2d v1f2UV = BRep_Tool::Parameters( VV2[1], face2 ); gp_Vec2d v01f1Vec( v0f1UV, v1f1UV ); gp_Vec2d v01f2Vec( v0f2UV, v1f2UV ); if ( Abs( v01f1Vec.X()-v01f2Vec.X()) < vTolUV && Abs( v01f1Vec.Y()-v01f2Vec.Y()) < vTolUV ) { if ( !OK /*i_ok_wire_algo != 1*/ ) { edges1.clear(); edges2.clear(); SMESH_Block::GetOrderedEdges( face1, edges1, nbEInW1, VV1[0], i_ok_wire_algo); SMESH_Block::GetOrderedEdges( face2, edges2, nbEInW2, VV2[0], i_ok_wire_algo); } gp_XY dUV = v0f2UV.XY() - v0f1UV.XY(); // UV shift between 2 faces // // skip edges of the outer wire (if the outer wire is OK) list< int >::iterator nbE2, nbE1 = nbEInW1.begin(); list< TopoDS_Edge >::iterator edge2Beg, edge1Beg = edges1.begin(); if ( OK ) std::advance( edge1Beg, *nbE1++ ); list< TopoDS_Edge >::iterator edge2End, edge1End; // // find corresponding wires of face2 for ( int iW1 = OK; nbE1 != nbEInW1.end(); ++nbE1, ++iW1 ) // loop on wires of face1 { // reach an end of edges of a current wire1 edge1End = edge1Beg; std::advance( edge1End, *nbE1 ); // UV on face1 to find on face2 TopoDS_Vertex v01 = SMESH_MesherHelper::IthVertex(0,*edge1Beg); TopoDS_Vertex v11 = SMESH_MesherHelper::IthVertex(1,*edge1Beg); v0f1UV = BRep_Tool::Parameters( v01, face1 ); v1f1UV = BRep_Tool::Parameters( v11, face1 ); v0f1UV.ChangeCoord() += dUV; v1f1UV.ChangeCoord() += dUV; // // look through wires of face2 edge2Beg = edges2.begin(); nbE2 = nbEInW2.begin(); if ( OK ) std::advance( edge2Beg, *nbE2++ ); for ( int iW2 = OK; nbE2 != nbEInW2.end(); ++nbE2, ++iW2 ) // loop on wires of face2 { // reach an end of edges of a current wire2 edge2End = edge2Beg; std::advance( edge2End, *nbE2 ); if ( *nbE1 == *nbE2 && iW2 >= iW1 ) { // rotate edge2 until coincides with edge1 in 2D int i = *nbE2; bool sameUV = false; while ( !( sameUV = sameVertexUV( *edge2Beg, face2, 0, v0f1UV, vTolUV )) && --i > 0 ) // move edge2Beg to place before edge2End edges2.splice( edge2End, edges2, edge2Beg++ ); if ( sameUV ) { if ( iW1 == 0 ) OK = true; // OK is for the first wire // reverse edges2 if needed if ( SMESH_MesherHelper::IsClosedEdge( *edge1Beg )) { // Commented (so far?) as it's not checked if orientation must be same or reversed // double f,l; // Handle(Geom2d_Curve) c1 = BRep_Tool::CurveOnSurface( *edge1Beg, face1,f,l ); // if ( edge1Beg->Orientation() == TopAbs_REVERSED ) // std::swap( f,l ); // gp_Pnt2d uv1 = dUV + c1->Value( f * 0.8 + l * 0.2 ).XY(); // Handle(Geom2d_Curve) c2 = BRep_Tool::CurveOnSurface( *edge2Beg, face2,f,l ); // if ( edge2Beg->Orientation() == TopAbs_REVERSED ) // std::swap( f,l ); // gp_Pnt2d uv2 = c2->Value( f * 0.8 + l * 0.2 ); // gp_Pnt2d uv3 = c2->Value( l * 0.8 + f * 0.2 ); // if ( uv1.SquareDistance( uv2 ) > uv1.SquareDistance( uv3 )) // edge2Beg->Reverse(); } else { if ( !sameVertexUV( *edge2Beg, face2, 1, v1f1UV, vTolUV )) reverseEdges( edges2 , *nbE2, std::distance( edges2.begin(),edge2Beg )); } // put wire2 at a right place within edges2 if ( iW1 != iW2 ) { list< TopoDS_Edge >::iterator place2 = edges2.begin(); std::advance( place2, std::distance( edges1.begin(), edge1Beg )); edges2.splice( place2, edges2, edge2Beg, edge2End ); // move nbE2 as well list< int >::iterator placeNbE2 = nbEInW2.begin(); std::advance( placeNbE2, iW1 ); nbEInW2.splice( placeNbE2, nbEInW2, nbE2 ); } break; } } // prepare for the next wire loop edge2Beg = edge2End; } edge1Beg = edge1End; } } } const int nbEdges = nbEInW1.front(); if ( OK && nbEdges == 2 ) { // if wires include 2 edges, it's impossible to associate them using // topological information only. Try to use length of edges for association. double l1[2], l2[2]; edgeIt = edges1.begin(); l1[0] = SMESH_Algo::EdgeLength( *edgeIt++ ); l1[1] = SMESH_Algo::EdgeLength( *edgeIt++ ); if ( Abs( l1[0] - l1[1] ) > 0.1 * Max( l1[0], l1[1] ) ) { edgeIt = edges2.begin(); l2[0] = SMESH_Algo::EdgeLength( *edgeIt++ ); l2[1] = SMESH_Algo::EdgeLength( *edgeIt++ ); if (( l1[0] < l1[1] ) != ( l2[0] < l2[1] )) { reverseEdges( edges2, nbEdges ); } } } return OK ? nbEInW1.front() : 0; } //======================================================================= //function : InitVertexAssociation //purpose : //======================================================================= void StdMeshers_ProjectionUtils::InitVertexAssociation( const SMESH_Hypothesis* theHyp, TShapeShapeMap & theAssociationMap) { string hypName = theHyp->GetName(); if ( hypName == "ProjectionSource1D" ) { const StdMeshers_ProjectionSource1D * hyp = static_cast( theHyp ); if ( hyp->HasVertexAssociation() ) InsertAssociation( hyp->GetTargetVertex(),hyp->GetSourceVertex(),theAssociationMap ); } else if ( hypName == "ProjectionSource2D" ) { const StdMeshers_ProjectionSource2D * hyp = static_cast( theHyp ); if ( hyp->HasVertexAssociation() ) { InsertAssociation( hyp->GetTargetVertex(1),hyp->GetSourceVertex(1),theAssociationMap); InsertAssociation( hyp->GetTargetVertex(2),hyp->GetSourceVertex(2),theAssociationMap); } } else if ( hypName == "ProjectionSource3D" ) { const StdMeshers_ProjectionSource3D * hyp = static_cast( theHyp ); if ( hyp->HasVertexAssociation() ) { InsertAssociation( hyp->GetTargetVertex(1),hyp->GetSourceVertex(1),theAssociationMap); InsertAssociation( hyp->GetTargetVertex(2),hyp->GetSourceVertex(2),theAssociationMap); } } } //======================================================================= /* * Inserts association theShape1 <-> theShape2 to TShapeShapeMap * \param theShape1 - target shape * \param theShape2 - source shape * \param theAssociationMap - association map * \retval bool - true if there was no association for these shapes before */ //======================================================================= bool StdMeshers_ProjectionUtils::InsertAssociation( const TopoDS_Shape& theShape1, // tgt const TopoDS_Shape& theShape2, // src TShapeShapeMap & theAssociationMap) { if ( !theShape1.IsNull() && !theShape2.IsNull() ) { SHOW_SHAPE(theShape1,"Assoc "); SHOW_SHAPE(theShape2," to "); bool isNew = ( theAssociationMap.Bind( theShape1, theShape2 )); return isNew; } else { throw SALOME_Exception("StdMeshers_ProjectionUtils: attempt to associate NULL shape"); } return false; } //======================================================================= /* * Finds an edge by its vertices in a main shape of the mesh * \param aMesh - the mesh * \param V1 - vertex 1 * \param V2 - vertex 2 * \retval TopoDS_Edge - found edge */ //======================================================================= TopoDS_Edge StdMeshers_ProjectionUtils::GetEdgeByVertices( SMESH_Mesh* theMesh, const TopoDS_Vertex& theV1, const TopoDS_Vertex& theV2) { if ( theMesh && !theV1.IsNull() && !theV2.IsNull() ) { TopTools_ListIteratorOfListOfShape ancestorIt( theMesh->GetAncestors( theV1 )); for ( ; ancestorIt.More(); ancestorIt.Next() ) if ( ancestorIt.Value().ShapeType() == TopAbs_EDGE ) for ( TopExp_Explorer expV ( ancestorIt.Value(), TopAbs_VERTEX ); expV.More(); expV.Next() ) if ( theV2.IsSame( expV.Current() )) return TopoDS::Edge( ancestorIt.Value() ); } return TopoDS_Edge(); } //================================================================================ /* * Return another face sharing an edge * \param edgeToFaces - data map of descendants to ancestors * \param edge - edge * \param face - face * \retval TopoDS_Face - found face */ //================================================================================ TopoDS_Face StdMeshers_ProjectionUtils::GetNextFace( const TAncestorMap& edgeToFaces, const TopoDS_Edge& edge, const TopoDS_Face& face) { // if ( !edge.IsNull() && !face.IsNull() && edgeToFaces.Contains( edge )) if ( !edge.IsNull() && edgeToFaces.Contains( edge )) // PAL16202 { TopTools_ListIteratorOfListOfShape ancestorIt( edgeToFaces.FindFromKey( edge )); for ( ; ancestorIt.More(); ancestorIt.Next() ) if ( ancestorIt.Value().ShapeType() == TopAbs_FACE && !face.IsSame( ancestorIt.Value() )) return TopoDS::Face( ancestorIt.Value() ); } return TopoDS_Face(); } //================================================================================ /* * Return other vertex of an edge */ //================================================================================ TopoDS_Vertex StdMeshers_ProjectionUtils::GetNextVertex(const TopoDS_Edge& edge, const TopoDS_Vertex& vertex) { TopoDS_Vertex vF,vL; TopExp::Vertices(edge,vF,vL); if ( vF.IsSame( vL )) return TopoDS_Vertex(); return vertex.IsSame( vF ) ? vL : vF; } //================================================================================ /* * Return a propagation edge * \param aMesh - mesh * \param anEdge - edge to find by propagation * \param fromEdge - start edge for propagation * \param chain - return, if !NULL, a propagation chain passed till * anEdge; if anEdge.IsNull() then a full propagation chain is returned; * fromEdge is the 1st in the chain * \retval pair - propagation step and found edge */ //================================================================================ pair StdMeshers_ProjectionUtils::GetPropagationEdge( SMESH_Mesh* aMesh, const TopoDS_Edge& anEdge, const TopoDS_Edge& fromEdge, TopTools_IndexedMapOfShape* chain) { TopTools_IndexedMapOfShape locChain; TopTools_IndexedMapOfShape& aChain = chain ? *chain : locChain; int step = 0; //TopTools_IndexedMapOfShape checkedWires; BRepTools_WireExplorer aWE; TopoDS_Shape fourEdges[4]; // List of edges, added to chain on the previous cycle pass TopTools_ListOfShape listPrevEdges; listPrevEdges.Append( fromEdge ); aChain.Add( fromEdge ); // Collect all edges pass by pass while (listPrevEdges.Extent() > 0) { step++; // List of edges, added to chain on this cycle pass TopTools_ListOfShape listCurEdges; // Find the next portion of edges TopTools_ListIteratorOfListOfShape itE (listPrevEdges); for (; itE.More(); itE.Next()) { const TopoDS_Shape& anE = itE.Value(); // Iterate on faces, having edge TopTools_ListIteratorOfListOfShape itA (aMesh->GetAncestors(anE)); for (; itA.More(); itA.Next()) { const TopoDS_Shape& aW = itA.Value(); // There are objects of different type among the ancestors of edge if ( aW.ShapeType() == TopAbs_WIRE /*&& checkedWires.Add( aW )*/) { Standard_Integer nb = 0, found = -1; for ( aWE.Init( TopoDS::Wire( aW )); aWE.More(); aWE.Next() ) { if (nb+1 > 4) { found = -1; break; } fourEdges[ nb ] = aWE.Current(); if ( aWE.Current().IsSame( anE )) found = nb; nb++; } if (nb == 4 && found >= 0) { // Quadrangle face found, get an opposite edge TopoDS_Shape& anOppE = fourEdges[( found + 2 ) % 4 ]; // add anOppE to aChain if ... int prevChainSize = aChain.Extent(); if ( aChain.Add(anOppE) > prevChainSize ) { // ... anOppE is not in aChain // Add found edge to the chain oriented so that to // have it co-directed with a fromEdge TopAbs_Orientation ori = anE.Orientation(); if ( anOppE.Orientation() == fourEdges[found].Orientation() ) ori = TopAbs::Reverse( ori ); anOppE.Orientation( ori ); if ( anOppE.IsSame( anEdge )) return make_pair( step, TopoDS::Edge( anOppE )); listCurEdges.Append(anOppE); } } // if (nb == 4 && found >= 0) } // if (aF.ShapeType() == TopAbs_WIRE) } // loop on ancestors of anE } // loop on listPrevEdges listPrevEdges = listCurEdges; } // while (listPrevEdges.Extent() > 0) return make_pair( INT_MAX, TopoDS_Edge()); } //================================================================================ /* * Find corresponding nodes on two faces * \param face1 - the first face * \param mesh1 - mesh containing elements on the first face * \param face2 - the second face * \param mesh2 - mesh containing elements on the second face * \param assocMap - map associating sub-shapes of the faces * \param node1To2Map - map containing found matching nodes * \retval bool - is a success */ //================================================================================ bool StdMeshers_ProjectionUtils:: FindMatchingNodesOnFaces( const TopoDS_Face& face1, SMESH_Mesh* mesh1, const TopoDS_Face& face2, SMESH_Mesh* mesh2, const TShapeShapeMap & assocMap, TNodeNodeMap & node1To2Map) { SMESHDS_Mesh* meshDS1 = mesh1->GetMeshDS(); SMESHDS_Mesh* meshDS2 = mesh2->GetMeshDS(); SMESH_MesherHelper helper1( *mesh1 ); SMESH_MesherHelper helper2( *mesh2 ); // Get corresponding submeshes and roughly check match of meshes SMESHDS_SubMesh * SM2 = meshDS2->MeshElements( face2 ); SMESHDS_SubMesh * SM1 = meshDS1->MeshElements( face1 ); if ( !SM2 || !SM1 ) RETURN_BAD_RESULT("Empty submeshes"); if ( SM2->NbNodes() != SM1->NbNodes() || SM2->NbElements() != SM1->NbElements() ) RETURN_BAD_RESULT("Different meshes on corresponding faces " << meshDS1->ShapeToIndex( face1 ) << " and " << meshDS2->ShapeToIndex( face2 )); if ( SM2->NbElements() == 0 ) RETURN_BAD_RESULT("Empty submeshes"); helper1.SetSubShape( face1 ); helper2.SetSubShape( face2 ); if ( helper1.HasRealSeam() != helper2.HasRealSeam() ) RETURN_BAD_RESULT("Different faces' geometry"); // Data to call SMESH_MeshEditor::FindMatchingNodes(): // 1. Nodes of corresponding links: // get 2 matching edges, try to find not seam ones TopoDS_Edge edge1, edge2, seam1, seam2, anyEdge1, anyEdge2; TopExp_Explorer eE( OuterShape( face2, TopAbs_WIRE ), TopAbs_EDGE ); do { // edge 2 TopoDS_Edge e2 = TopoDS::Edge( eE.Current() ); eE.Next(); // edge 1 if ( !assocMap.IsBound( e2, /*is2nd=*/true )) continue; //RETURN_BAD_RESULT("Association not found for edge " << meshDS2->ShapeToIndex( e2 )); TopoDS_Edge e1 = TopoDS::Edge( assocMap( e2, /*is2nd=*/true )); if ( !helper1.IsSubShape( e1, face1 )) RETURN_BAD_RESULT("Wrong association, edge " << meshDS1->ShapeToIndex( e1 ) << " isn't a sub-shape of face " << meshDS1->ShapeToIndex( face1 )); // check that there are nodes on edges SMESHDS_SubMesh * eSM1 = meshDS1->MeshElements( e1 ); SMESHDS_SubMesh * eSM2 = meshDS2->MeshElements( e2 ); bool nodesOnEdges = ( eSM1 && eSM2 && eSM1->NbNodes() && eSM2->NbNodes() ); // check that the nodes on edges belong to faces // (as NETGEN ignores nodes on the degenerated geom edge) bool nodesOfFaces = false; if ( nodesOnEdges ) { const SMDS_MeshNode* n1 = eSM1->GetNodes()->next(); const SMDS_MeshNode* n2 = eSM2->GetNodes()->next(); nodesOfFaces = ( n1->GetInverseElementIterator(SMDSAbs_Face)->more() && n2->GetInverseElementIterator(SMDSAbs_Face)->more() ); } if ( nodesOfFaces ) { if ( helper2.IsRealSeam( e2 )) { seam1 = e1; seam2 = e2; } else { edge1 = e1; edge2 = e2; } } else { anyEdge1 = e1; anyEdge2 = e2; } } while ( edge2.IsNull() && eE.More() ); // if ( edge2.IsNull() ) { edge1 = seam1; edge2 = seam2; } bool hasNodesOnEdge = (! edge2.IsNull() ); if ( !hasNodesOnEdge ) { // 0020338 - nb segments == 1 edge1 = anyEdge1; edge2 = anyEdge2; } // get 2 matching vertices TopoDS_Vertex V2 = TopExp::FirstVertex( TopoDS::Edge( edge2 )); if ( !assocMap.IsBound( V2, /*is2nd=*/true )) { V2 = TopExp::LastVertex( TopoDS::Edge( edge2 )); if ( !assocMap.IsBound( V2, /*is2nd=*/true )) RETURN_BAD_RESULT("Association not found for vertex " << meshDS2->ShapeToIndex( V2 )); } TopoDS_Vertex V1 = TopoDS::Vertex( assocMap( V2, /*is2nd=*/true )); // nodes on vertices const SMDS_MeshNode* vNode1 = SMESH_Algo::VertexNode( V1, meshDS1 ); const SMDS_MeshNode* vNode2 = SMESH_Algo::VertexNode( V2, meshDS2 ); if ( !vNode1 ) RETURN_BAD_RESULT("No node on vertex #" << meshDS1->ShapeToIndex( V1 )); if ( !vNode2 ) RETURN_BAD_RESULT("No node on vertex #" << meshDS2->ShapeToIndex( V2 )); // nodes on edges linked with nodes on vertices const SMDS_MeshNode* nullNode = 0; vector< const SMDS_MeshNode*> eNode1( 2, nullNode ); vector< const SMDS_MeshNode*> eNode2( 2, nullNode ); if ( hasNodesOnEdge ) { int nbNodeToGet = 1; if ( helper1.IsClosedEdge( edge1 ) || helper2.IsClosedEdge( edge2 ) ) nbNodeToGet = 2; for ( int is2 = 0; is2 < 2; ++is2 ) { TopoDS_Edge & edge = is2 ? edge2 : edge1; SMESHDS_Mesh * smDS = is2 ? meshDS2 : meshDS1; SMESHDS_SubMesh* edgeSM = smDS->MeshElements( edge ); // nodes linked with ones on vertices const SMDS_MeshNode* vNode = is2 ? vNode2 : vNode1; vector< const SMDS_MeshNode*>& eNode = is2 ? eNode2 : eNode1; int nbGotNode = 0; SMDS_ElemIteratorPtr vElem = vNode->GetInverseElementIterator(SMDSAbs_Edge); while ( vElem->more() && nbGotNode != nbNodeToGet ) { const SMDS_MeshElement* elem = vElem->next(); if ( edgeSM->Contains( elem )) eNode[ nbGotNode++ ] = ( elem->GetNode(0) == vNode ) ? elem->GetNode(1) : elem->GetNode(0); } if ( nbGotNode > 1 ) // sort found nodes by param on edge { SMESH_MesherHelper* helper = is2 ? &helper2 : &helper1; double u0 = helper->GetNodeU( edge, eNode[ 0 ]); double u1 = helper->GetNodeU( edge, eNode[ 1 ]); if ( u0 > u1 ) std::swap( eNode[ 0 ], eNode[ 1 ]); } if ( nbGotNode == 0 ) RETURN_BAD_RESULT("Found no nodes on edge " << smDS->ShapeToIndex( edge ) << " linked to " << vNode ); } } else // 0020338 - nb segments == 1 { // get 2 other matching vertices V2 = TopExp::LastVertex( TopoDS::Edge( edge2 )); if ( !assocMap.IsBound( V2, /*is2nd=*/true )) RETURN_BAD_RESULT("Association not found for vertex " << meshDS2->ShapeToIndex( V2 )); V1 = TopoDS::Vertex( assocMap( V2, /*is2nd=*/true )); // nodes on vertices eNode1[0] = SMESH_Algo::VertexNode( V1, meshDS1 ); eNode2[0] = SMESH_Algo::VertexNode( V2, meshDS2 ); if ( !eNode1[0] ) RETURN_BAD_RESULT("No node on vertex #" << meshDS1->ShapeToIndex( V1 )); if ( !eNode2[0] ) RETURN_BAD_RESULT("No node on vertex #" << meshDS2->ShapeToIndex( V2 )); } // 2. face sets int assocRes; for ( int iAttempt = 0; iAttempt < 2; ++iAttempt ) { set Elems1, Elems2; for ( int is2 = 0; is2 < 2; ++is2 ) { set & elems = is2 ? Elems2 : Elems1; SMESHDS_SubMesh* sm = is2 ? SM2 : SM1; SMESH_MesherHelper* helper = is2 ? &helper2 : &helper1; const TopoDS_Face & face = is2 ? face2 : face1; SMDS_ElemIteratorPtr eIt = sm->GetElements(); if ( !helper->IsRealSeam( is2 ? edge2 : edge1 )) { while ( eIt->more() ) elems.insert( elems.end(), eIt->next() ); } else { // the only suitable edge is seam, i.e. it is a sphere. // FindMatchingNodes() will not know which way to go from any edge. // So we ignore all faces having nodes on edges or vertices except // one of faces sharing current start nodes // find a face to keep const SMDS_MeshElement* faceToKeep = 0; const SMDS_MeshNode* vNode = is2 ? vNode2 : vNode1; const SMDS_MeshNode* eNode = is2 ? eNode2[0] : eNode1[0]; TIDSortedElemSet inSet, notInSet; const SMDS_MeshElement* f1 = SMESH_MeshAlgos::FindFaceInSet( vNode, eNode, inSet, notInSet ); if ( !f1 ) RETURN_BAD_RESULT("The first face on seam not found"); notInSet.insert( f1 ); const SMDS_MeshElement* f2 = SMESH_MeshAlgos::FindFaceInSet( vNode, eNode, inSet, notInSet ); if ( !f2 ) RETURN_BAD_RESULT("The second face on seam not found"); // select a face with less UV of vNode const SMDS_MeshNode* notSeamNode[2] = {0, 0}; for ( int iF = 0; iF < 2; ++iF ) { const SMDS_MeshElement* f = ( iF ? f2 : f1 ); for ( int i = 0; !notSeamNode[ iF ] && i < f->NbNodes(); ++i ) { const SMDS_MeshNode* node = f->GetNode( i ); if ( !helper->IsSeamShape( node->getshapeId() )) notSeamNode[ iF ] = node; } } gp_Pnt2d uv1 = helper->GetNodeUV( face, vNode, notSeamNode[0] ); gp_Pnt2d uv2 = helper->GetNodeUV( face, vNode, notSeamNode[1] ); if ( uv1.X() + uv1.Y() > uv2.X() + uv2.Y() ) faceToKeep = f2; else faceToKeep = f1; // fill elem set elems.insert( faceToKeep ); while ( eIt->more() ) { const SMDS_MeshElement* f = eIt->next(); int nbNodes = f->NbNodes(); if ( f->IsQuadratic() ) nbNodes /= 2; bool onBnd = false; for ( int i = 0; !onBnd && i < nbNodes; ++i ) { const SMDS_MeshNode* node = f->GetNode( i ); onBnd = ( node->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE); } if ( !onBnd ) elems.insert( f ); } // add also faces adjacent to faceToKeep int nbNodes = faceToKeep->NbNodes(); if ( faceToKeep->IsQuadratic() ) nbNodes /= 2; notInSet.insert( f1 ); notInSet.insert( f2 ); for ( int i = 0; i < nbNodes; ++i ) { const SMDS_MeshNode* n1 = faceToKeep->GetNode( i ); const SMDS_MeshNode* n2 = faceToKeep->GetNode(( i+1 ) % nbNodes ); f1 = SMESH_MeshAlgos::FindFaceInSet( n1, n2, inSet, notInSet ); if ( f1 ) elems.insert( f1 ); } } // case on a sphere } // loop on 2 faces node1To2Map.clear(); assocRes = SMESH_MeshEditor::FindMatchingNodes( Elems1, Elems2, vNode1, vNode2, eNode1[0], eNode2[0], node1To2Map); if (( assocRes != SMESH_MeshEditor::SEW_OK ) && ( eNode1[1] || eNode2[1] )) // there is another node to try (on a closed EDGE) { node1To2Map.clear(); if ( eNode1[1] ) std::swap( eNode1[0], eNode1[1] ); else std::swap( eNode2[0], eNode2[1] ); continue; // one more attempt } break; } if ( assocRes != SMESH_MeshEditor::SEW_OK ) RETURN_BAD_RESULT("FindMatchingNodes() result " << assocRes ); // On a sphere, add matching nodes on the edge if ( helper1.IsRealSeam( edge1 )) { // sort nodes on edges by param on edge map< double, const SMDS_MeshNode* > u2nodesMaps[2]; for ( int is2 = 0; is2 < 2; ++is2 ) { TopoDS_Edge & edge = is2 ? edge2 : edge1; SMESHDS_Mesh * smDS = is2 ? meshDS2 : meshDS1; SMESHDS_SubMesh* edgeSM = smDS->MeshElements( edge ); map< double, const SMDS_MeshNode* > & pos2nodes = u2nodesMaps[ is2 ]; SMDS_NodeIteratorPtr nIt = edgeSM->GetNodes(); while ( nIt->more() ) { const SMDS_MeshNode* node = nIt->next(); const SMDS_EdgePosition* pos = static_cast(node->GetPosition()); pos2nodes.insert( make_pair( pos->GetUParameter(), node )); } if ((int) pos2nodes.size() != edgeSM->NbNodes() ) RETURN_BAD_RESULT("Equal params of nodes on edge " << smDS->ShapeToIndex( edge ) << " of face " << is2 ); } if ( u2nodesMaps[0].size() != u2nodesMaps[1].size() ) RETURN_BAD_RESULT("Different nb of new nodes on edges or wrong params"); // compare edge orientation double u1 = helper1.GetNodeU( edge1, vNode1 ); double u2 = helper2.GetNodeU( edge2, vNode2 ); bool isFirst1 = ( u1 < u2nodesMaps[0].begin()->first ); bool isFirst2 = ( u2 < u2nodesMaps[1].begin()->first ); bool reverse ( isFirst1 != isFirst2 ); // associate matching nodes map< double, const SMDS_MeshNode* >::iterator u_Node1, u_Node2, end1; map< double, const SMDS_MeshNode* >::reverse_iterator uR_Node2; u_Node1 = u2nodesMaps[0].begin(); u_Node2 = u2nodesMaps[1].begin(); uR_Node2 = u2nodesMaps[1].rbegin(); end1 = u2nodesMaps[0].end(); for ( ; u_Node1 != end1; ++u_Node1 ) { const SMDS_MeshNode* n1 = u_Node1->second; const SMDS_MeshNode* n2 = ( reverse ? (uR_Node2++)->second : (u_Node2++)->second ); node1To2Map.insert( make_pair( n1, n2 )); } // associate matching nodes on the last vertices V2 = TopExp::LastVertex( TopoDS::Edge( edge2 )); if ( !assocMap.IsBound( V2, /*is2nd=*/true )) RETURN_BAD_RESULT("Association not found for vertex " << meshDS2->ShapeToIndex( V2 )); V1 = TopoDS::Vertex( assocMap( V2, /*is2nd=*/true )); vNode1 = SMESH_Algo::VertexNode( V1, meshDS1 ); vNode2 = SMESH_Algo::VertexNode( V2, meshDS2 ); if ( !vNode1 ) RETURN_BAD_RESULT("No node on vertex #" << meshDS1->ShapeToIndex( V1 )); if ( !vNode2 ) RETURN_BAD_RESULT("No node on vertex #" << meshDS2->ShapeToIndex( V2 )); node1To2Map.insert( make_pair( vNode1, vNode2 )); } // don't know why this condition is usually true :( // if ( node1To2Map.size() * quadFactor < SM1->NbNodes() ) // MESSAGE("FindMatchingNodes() found too few node pairs starting from nodes (" // << vNode1->GetID() << " - " << eNode1[0]->GetID() << ") (" // << vNode2->GetID() << " - " << eNode2[0]->GetID() << "):" // << node1To2Map.size() * quadFactor << " < " << SM1->NbNodes()); return true; } //================================================================================ /* * Return any sub-shape of a face belonging to the outer wire * \param face - the face * \param type - type of sub-shape to return * \retval TopoDS_Shape - the found sub-shape */ //================================================================================ TopoDS_Shape StdMeshers_ProjectionUtils::OuterShape( const TopoDS_Face& face, TopAbs_ShapeEnum type) { TopExp_Explorer exp( BRepTools::OuterWire( face ), type ); if ( exp.More() ) return exp.Current(); return TopoDS_Shape(); } //================================================================================ /* * Check that sub-mesh is computed and try to compute it if is not * \param sm - sub-mesh to compute * \param iterationNb - int used to stop infinite recursive call * \retval bool - true if computed */ //================================================================================ bool StdMeshers_ProjectionUtils::MakeComputed(SMESH_subMesh * sm, const int iterationNb) { if ( iterationNb > 10 ) RETURN_BAD_RESULT("Infinite recursive projection"); if ( !sm ) RETURN_BAD_RESULT("NULL submesh"); if ( sm->IsMeshComputed() ) return true; SMESH_Mesh* mesh = sm->GetFather(); SMESH_Gen* gen = mesh->GetGen(); SMESH_Algo* algo = sm->GetAlgo(); TopoDS_Shape shape = sm->GetSubShape(); if ( !algo ) { if ( shape.ShapeType() != TopAbs_COMPOUND ) { // No algo assigned to a non-compound sub-mesh. // Try to find an all-dimensional algo of an upper dimension int dim = gen->GetShapeDim( shape ); for ( ++dim; ( dim <= 3 && !algo ); ++dim ) { SMESH_HypoFilter hypoFilter( SMESH_HypoFilter::IsAlgo() ); hypoFilter.And( SMESH_HypoFilter::HasDim( dim )); list hyps; list< TopoDS_Shape > assignedTo; int nbAlgos = mesh->GetHypotheses( shape, hypoFilter, hyps, true, &assignedTo ); if ( nbAlgos > 1 ) // concurrent algos { vector smList; // where an algo is assigned list< TopoDS_Shape >::iterator shapeIt = assignedTo.begin(); for ( ; shapeIt != assignedTo.end(); ++shapeIt ) smList.push_back( mesh->GetSubMesh( *shapeIt )); mesh->SortByMeshOrder( smList ); algo = smList.front()->GetAlgo(); shape = smList.front()->GetSubShape(); } else if ( nbAlgos == 1 ) { algo = (SMESH_Algo*) hyps.front(); shape = assignedTo.front(); } } if ( !algo ) return false; } else { // group bool computed = true; for ( TopoDS_Iterator grMember( shape ); grMember.More(); grMember.Next()) if ( SMESH_subMesh* grSub = mesh->GetSubMesh( grMember.Value() )) if ( !MakeComputed( grSub, iterationNb + 1 )) computed = false; return computed; } } string algoType = algo->GetName(); if ( algoType.substr(0, 11) != "Projection_") return gen->Compute( *mesh, shape, SMESH_Gen::SHAPE_ONLY ); // try to compute source mesh const list & hyps = algo->GetUsedHypothesis( *mesh, shape ); TopoDS_Shape srcShape; SMESH_Mesh* srcMesh = 0; list ::const_iterator hIt = hyps.begin(); for ( ; srcShape.IsNull() && hIt != hyps.end(); ++hIt ) { string hypName = (*hIt)->GetName(); if ( hypName == "ProjectionSource1D" ) { const StdMeshers_ProjectionSource1D * hyp = static_cast( *hIt ); srcShape = hyp->GetSourceEdge(); srcMesh = hyp->GetSourceMesh(); } else if ( hypName == "ProjectionSource2D" ) { const StdMeshers_ProjectionSource2D * hyp = static_cast( *hIt ); srcShape = hyp->GetSourceFace(); srcMesh = hyp->GetSourceMesh(); } else if ( hypName == "ProjectionSource3D" ) { const StdMeshers_ProjectionSource3D * hyp = static_cast( *hIt ); srcShape = hyp->GetSource3DShape(); srcMesh = hyp->GetSourceMesh(); } } if ( srcShape.IsNull() ) // no projection source defined return gen->Compute( *mesh, shape, /*shapeOnly=*/true ); if ( srcShape.IsSame( shape )) RETURN_BAD_RESULT("Projection from self"); if ( !srcMesh ) srcMesh = mesh; if ( MakeComputed( srcMesh->GetSubMesh( srcShape ), iterationNb + 1 ) && gen->Compute( *mesh, shape, SMESH_Gen::SHAPE_ONLY )) return sm->IsMeshComputed(); return false; } //================================================================================ /* * Returns an error message to show in case if MakeComputed( sm ) fails. */ //================================================================================ std::string StdMeshers_ProjectionUtils::SourceNotComputedError( SMESH_subMesh * sm, SMESH_Algo* projAlgo ) { const char usualMessage [] = "Source mesh not computed"; if ( !projAlgo ) return usualMessage; if ( !sm || sm->GetAlgoState() != SMESH_subMesh::NO_ALGO ) return usualMessage; // algo is OK, anything else is KO. // Try to find a type of all-dimensional algorithm that would compute the // given sub-mesh if it could be launched before projection const TopoDS_Shape shape = sm->GetSubShape(); const int shapeDim = SMESH_Gen::GetShapeDim( shape ); for ( int dimIncrement = 1; shapeDim + dimIncrement < 4; ++dimIncrement ) { SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() ); filter.And( filter.HasDim( shapeDim + dimIncrement )); SMESH_Algo* algo = (SMESH_Algo*) sm->GetFather()->GetHypothesis( shape, filter, true ); if ( algo && !algo->NeedDiscreteBoundary() ) return SMESH_Comment("\"") << algo->GetFeatures()._label << "\"" << " can't be used to compute the source mesh for \"" << projAlgo->GetFeatures()._label << "\" in this case"; } return usualMessage; } //================================================================================ /* * Return a boundary EDGE (or all boundary EDGEs) of edgeContainer */ //================================================================================ TopoDS_Edge StdMeshers_ProjectionUtils::GetBoundaryEdge(const TopoDS_Shape& edgeContainer, const SMESH_Mesh& mesh, std::list< TopoDS_Edge >* allBndEdges) { TopTools_IndexedMapOfShape facesOfEdgeContainer, facesNearEdge; TopExp::MapShapes( edgeContainer, TopAbs_FACE, facesOfEdgeContainer ); if ( !facesOfEdgeContainer.IsEmpty() ) for ( TopExp_Explorer exp(edgeContainer, TopAbs_EDGE); exp.More(); exp.Next() ) { const TopoDS_Edge& edge = TopoDS::Edge( exp.Current() ); facesNearEdge.Clear(); PShapeIteratorPtr faceIt = SMESH_MesherHelper::GetAncestors( edge, mesh, TopAbs_FACE ); while ( const TopoDS_Shape* face = faceIt->next() ) if ( facesOfEdgeContainer.Contains( *face )) if ( facesNearEdge.Add( *face ) && facesNearEdge.Extent() > 1 ) break; if ( facesNearEdge.Extent() == 1 ) { if ( allBndEdges ) allBndEdges->push_back( edge ); else return edge; } } return TopoDS_Edge(); } namespace { // Definition of event listeners SMESH_subMeshEventListener* getSrcSubMeshListener(); //================================================================================ /*! * \brief Listener that resets an event listener on source submesh when * "ProjectionSource*D" hypothesis is modified */ //================================================================================ struct HypModifWaiter: SMESH_subMeshEventListener { HypModifWaiter():SMESH_subMeshEventListener(false,// won't be deleted by submesh "StdMeshers_ProjectionUtils::HypModifWaiter") {} void ProcessEvent(const int event, const int eventType, SMESH_subMesh* subMesh, EventListenerData*, const SMESH_Hypothesis*) { if ( event == SMESH_subMesh::MODIF_HYP && eventType == SMESH_subMesh::ALGO_EVENT) { // delete current source listener subMesh->DeleteEventListener( getSrcSubMeshListener() ); // let algo set a new one if ( SMESH_Algo* algo = subMesh->GetAlgo() ) algo->SetEventListener( subMesh ); } } }; //================================================================================ /*! * \brief return static HypModifWaiter */ //================================================================================ SMESH_subMeshEventListener* getHypModifWaiter() { static HypModifWaiter aHypModifWaiter; return &aHypModifWaiter; } //================================================================================ /*! * \brief return static listener for source shape submeshes */ //================================================================================ SMESH_subMeshEventListener* getSrcSubMeshListener() { static SMESH_subMeshEventListener srcListener(false, // won't be deleted by submesh "StdMeshers_ProjectionUtils::SrcSubMeshListener"); return &srcListener; } } //================================================================================ /* * Set event listeners to submesh with projection algo * \param subMesh - submesh with projection algo * \param srcShape - source shape * \param srcMesh - source mesh */ //================================================================================ void StdMeshers_ProjectionUtils::SetEventListener(SMESH_subMesh* subMesh, TopoDS_Shape srcShape, SMESH_Mesh* srcMesh) { // Set the listener that resets an event listener on source submesh when // "ProjectionSource*D" hypothesis is modified since source shape can be changed subMesh->SetEventListener( getHypModifWaiter(),0,subMesh); // Set an event listener to submesh of the source shape if ( !srcShape.IsNull() ) { if ( !srcMesh ) srcMesh = subMesh->GetFather(); SMESH_subMesh* srcShapeSM = srcMesh->GetSubMesh( srcShape ); if ( srcShapeSM != subMesh ) { if ( srcShapeSM->GetSubMeshDS() && srcShapeSM->GetSubMeshDS()->IsComplexSubmesh() ) { // source shape is a group TopExp_Explorer it(srcShapeSM->GetSubShape(), // explore the group into sub-shapes... subMesh->GetSubShape().ShapeType()); // ...of target shape type for (; it.More(); it.Next()) { SMESH_subMesh* srcSM = srcMesh->GetSubMesh( it.Current() ); if ( srcSM != subMesh ) { SMESH_subMeshEventListenerData* data = srcSM->GetEventListenerData(getSrcSubMeshListener()); if ( data ) data->mySubMeshes.push_back( subMesh ); else data = SMESH_subMeshEventListenerData::MakeData( subMesh ); subMesh->SetEventListener ( getSrcSubMeshListener(), data, srcSM ); } } } else { if ( SMESH_subMeshEventListenerData* data = srcShapeSM->GetEventListenerData( getSrcSubMeshListener() )) { bool alreadyIn = (std::find( data->mySubMeshes.begin(), data->mySubMeshes.end(), subMesh ) != data->mySubMeshes.end() ); if ( !alreadyIn ) data->mySubMeshes.push_back( subMesh ); } else { subMesh->SetEventListener( getSrcSubMeshListener(), SMESH_subMeshEventListenerData::MakeData( subMesh ), srcShapeSM ); } } } } } namespace StdMeshers_ProjectionUtils { //================================================================================ /*! * \brief Computes transformation between two sets of 2D points using * a least square approximation * * See "Surface Mesh Projection For Hexahedral Mesh Generation By Sweeping" * by X.Roca, J.Sarrate, A.Huerta. (2.2) */ //================================================================================ bool TrsfFinder2D::Solve( const vector< gp_XY >& srcPnts, const vector< gp_XY >& tgtPnts ) { // find gravity centers gp_XY srcGC( 0,0 ), tgtGC( 0,0 ); for ( size_t i = 0; i < srcPnts.size(); ++i ) { srcGC += srcPnts[i]; tgtGC += tgtPnts[i]; } srcGC /= srcPnts.size(); tgtGC /= tgtPnts.size(); // find trsf math_Matrix mat (1,4,1,4, 0.); math_Vector vec (1,4, 0.); // cout << "m1 = smesh.Mesh('src')" << endl // << "m2 = smesh.Mesh('tgt')" << endl; double xx = 0, xy = 0, yy = 0; for ( size_t i = 0; i < srcPnts.size(); ++i ) { gp_XY srcUV = srcPnts[i] - srcGC; gp_XY tgtUV = tgtPnts[i] - tgtGC; xx += srcUV.X() * srcUV.X(); yy += srcUV.Y() * srcUV.Y(); xy += srcUV.X() * srcUV.Y(); vec( 1 ) += srcUV.X() * tgtUV.X(); vec( 2 ) += srcUV.Y() * tgtUV.X(); vec( 3 ) += srcUV.X() * tgtUV.Y(); vec( 4 ) += srcUV.Y() * tgtUV.Y(); // cout << "m1.AddNode( " << srcUV.X() << ", " << srcUV.Y() << ", 0 )" << endl // << "m2.AddNode( " << tgtUV.X() << ", " << tgtUV.Y() << ", 0 )" << endl; } mat( 1,1 ) = mat( 3,3 ) = xx; mat( 2,2 ) = mat( 4,4 ) = yy; mat( 1,2 ) = mat( 2,1 ) = mat( 3,4 ) = mat( 4,3 ) = xy; math_Gauss solver( mat ); if ( !solver.IsDone() ) return false; solver.Solve( vec ); if ( vec.Norm2() < gp::Resolution() ) return false; // cout << vec( 1 ) << "\t " << vec( 2 ) << endl // << vec( 3 ) << "\t " << vec( 4 ) << endl; _trsf.SetTranslationPart( tgtGC ); _srcOrig = srcGC; gp_Mat2d& M = const_cast< gp_Mat2d& >( _trsf.VectorialPart()); M( 1,1 ) = vec( 1 ); M( 2,1 ) = vec( 2 ); // | 1 3 | -- is it correct ???????? M( 1,2 ) = vec( 3 ); // | 2 4 | M( 2,2 ) = vec( 4 ); return true; } //================================================================================ /*! * \brief Transforms a 2D points using a found transformation */ //================================================================================ gp_XY TrsfFinder2D::Transform( const gp_Pnt2d& srcUV ) const { gp_XY uv = srcUV.XY() - _srcOrig ; _trsf.Transforms( uv ); return uv; } //================================================================================ /*! * \brief Computes transformation between two sets of 3D points using * a least square approximation * * See "Surface Mesh Projection For Hexahedral Mesh Generation By Sweeping" * by X.Roca, J.Sarrate, A.Huerta. (2.4) */ //================================================================================ bool TrsfFinder3D::Solve( const vector< gp_XYZ > & srcPnts, const vector< gp_XYZ > & tgtPnts ) { // find gravity center gp_XYZ srcGC( 0,0,0 ), tgtGC( 0,0,0 ); for ( size_t i = 0; i < srcPnts.size(); ++i ) { srcGC += srcPnts[i]; tgtGC += tgtPnts[i]; } srcGC /= srcPnts.size(); tgtGC /= tgtPnts.size(); gp_XYZ srcOrig = 2 * srcGC - tgtGC; gp_XYZ tgtOrig = srcGC; // find trsf math_Matrix mat (1,9,1,9, 0.); math_Vector vec (1,9, 0.); double xx = 0, yy = 0, zz = 0; double xy = 0, xz = 0, yz = 0; for ( size_t i = 0; i < srcPnts.size(); ++i ) { gp_XYZ src = srcPnts[i] - srcOrig; gp_XYZ tgt = tgtPnts[i] - tgtOrig; xx += src.X() * src.X(); yy += src.Y() * src.Y(); zz += src.Z() * src.Z(); xy += src.X() * src.Y(); xz += src.X() * src.Z(); yz += src.Y() * src.Z(); vec( 1 ) += src.X() * tgt.X(); vec( 2 ) += src.Y() * tgt.X(); vec( 3 ) += src.Z() * tgt.X(); vec( 4 ) += src.X() * tgt.Y(); vec( 5 ) += src.Y() * tgt.Y(); vec( 6 ) += src.Z() * tgt.Y(); vec( 7 ) += src.X() * tgt.Z(); vec( 8 ) += src.Y() * tgt.Z(); vec( 9 ) += src.Z() * tgt.Z(); } mat( 1,1 ) = mat( 4,4 ) = mat( 7,7 ) = xx; mat( 2,2 ) = mat( 5,5 ) = mat( 8,8 ) = yy; mat( 3,3 ) = mat( 6,6 ) = mat( 9,9 ) = zz; mat( 1,2 ) = mat( 2,1 ) = mat( 4,5 ) = mat( 5,4 ) = mat( 7,8 ) = mat( 8,7 ) = xy; mat( 1,3 ) = mat( 3,1 ) = mat( 4,6 ) = mat( 6,4 ) = mat( 7,9 ) = mat( 9,7 ) = xz; mat( 2,3 ) = mat( 3,2 ) = mat( 5,6 ) = mat( 6,5 ) = mat( 8,9 ) = mat( 9,8 ) = yz; math_Gauss solver( mat ); if ( !solver.IsDone() ) return false; solver.Solve( vec ); if ( vec.Norm2() < gp::Resolution() ) return false; // cout << endl // << vec( 1 ) << "\t " << vec( 2 ) << "\t " << vec( 3 ) << endl // << vec( 4 ) << "\t " << vec( 5 ) << "\t " << vec( 6 ) << endl // << vec( 7 ) << "\t " << vec( 8 ) << "\t " << vec( 9 ) << endl; _srcOrig = srcOrig; _trsf.SetTranslationPart( tgtOrig ); gp_Mat& M = const_cast< gp_Mat& >( _trsf.VectorialPart() ); M.SetRows( gp_XYZ( vec( 1 ), vec( 2 ), vec( 3 )), gp_XYZ( vec( 4 ), vec( 5 ), vec( 6 )), gp_XYZ( vec( 7 ), vec( 8 ), vec( 9 ))); return true; } //================================================================================ /*! * \brief Transforms a 3D point using a found transformation */ //================================================================================ gp_XYZ TrsfFinder3D::Transform( const gp_Pnt& srcP ) const { gp_XYZ p = srcP.XYZ() - _srcOrig; _trsf.Transforms( p ); return p; } //================================================================================ /*! * \brief Transforms a 3D vector using a found transformation */ //================================================================================ gp_XYZ TrsfFinder3D::TransformVec( const gp_Vec& v ) const { return v.XYZ().Multiplied( _trsf.VectorialPart() ); } //================================================================================ /*! * \brief Inversion */ //================================================================================ bool TrsfFinder3D::Invert() { if (( _trsf.Form() == gp_Translation ) && ( _srcOrig.X() != 0 || _srcOrig.Y() != 0 || _srcOrig.Z() != 0 )) { // seems to be defined via Solve() gp_XYZ newSrcOrig = _trsf.TranslationPart(); gp_Mat& M = const_cast< gp_Mat& >( _trsf.VectorialPart() ); const double D = M.Determinant(); if ( D < 1e-3 * ( newSrcOrig - _srcOrig ).Modulus() ) { #ifdef _DEBUG_ cerr << "TrsfFinder3D::Invert()" << "D " << M.Determinant() << " IsSingular " << M.IsSingular() << endl; #endif return false; } gp_Mat Minv = M.Inverted(); _trsf.SetTranslationPart( _srcOrig ); _srcOrig = newSrcOrig; M = Minv; } else { _trsf.Invert(); } return true; } //================================================================================ /*! * \brief triangulate the srcFace in 2D * \param [in] srcWires - boundary of the src FACE */ //================================================================================ Morph::Morph(const TSideVector& srcWires): _delaunay( srcWires, /*checkUV=*/true ) { _srcSubMesh = srcWires[0]->GetMesh()->GetSubMesh( srcWires[0]->Face() ); } //================================================================================ /*! * \brief Move non-marked target nodes * \param [in,out] tgtHelper - helper * \param [in] tgtWires - boundary nodes of the target FACE; must be in the * same order as the nodes in srcWires given in the constructor * \param [in] src2tgtNodes - map of src -> tgt nodes * \param [in] moveAll - to move all nodes; if \c false, move only non-marked nodes * \return bool - Ok or not */ //================================================================================ bool Morph::Perform(SMESH_MesherHelper& tgtHelper, const TSideVector& tgtWires, Handle(ShapeAnalysis_Surface) tgtSurface, const TNodeNodeMap& src2tgtNodes, const bool moveAll) { // get tgt boundary points corresponding to src boundary nodes size_t nbP = 0; for ( size_t iW = 0; iW < tgtWires.size(); ++iW ) nbP += tgtWires[iW]->NbPoints() - 1; // 1st and last points coincide if ( nbP != _delaunay.GetBndNodes().size() ) return false; std::vector< gp_XY > tgtUV( nbP ); for ( size_t iW = 0, iP = 0; iW < tgtWires.size(); ++iW ) { const UVPtStructVec& tgtPnt = tgtWires[iW]->GetUVPtStruct(); for ( int i = 0, nb = tgtPnt.size() - 1; i < nb; ++i, ++iP ) { tgtUV[ iP ] = tgtPnt[i].UV(); } } SMESHDS_Mesh* tgtMesh = tgtHelper.GetMeshDS(); const SMDS_MeshNode *srcNode, *tgtNode; // un-mark internal src nodes in order iterate them using _delaunay int nbSrcNodes = 0; SMDS_NodeIteratorPtr nIt = _srcSubMesh->GetSubMeshDS()->GetNodes(); if ( !nIt || !nIt->more() ) return true; if ( moveAll ) { nbSrcNodes = _srcSubMesh->GetSubMeshDS()->NbNodes(); while ( nIt->more() ) nIt->next()->setIsMarked( false ); } else { while ( nIt->more() ) nbSrcNodes += int( !nIt->next()->isMarked() ); } // Move tgt nodes double bc[3]; // barycentric coordinates int nodeIDs[3]; // nodes of a delaunay triangle const SMDS_FacePosition* pos; _delaunay.InitTraversal( nbSrcNodes ); while (( srcNode = _delaunay.NextNode( bc, nodeIDs ))) { // compute new coordinates for a corresponding tgt node gp_XY uvNew( 0., 0. ), nodeUV; for ( int i = 0; i < 3; ++i ) uvNew += bc[i] * tgtUV[ nodeIDs[i]]; gp_Pnt xyz = tgtSurface->Value( uvNew ); // find and move tgt node TNodeNodeMap::const_iterator n2n = src2tgtNodes.find( srcNode ); if ( n2n == src2tgtNodes.end() ) continue; tgtNode = n2n->second; tgtMesh->MoveNode( tgtNode, xyz.X(), xyz.Y(), xyz.Z() ); if (( pos = dynamic_cast< const SMDS_FacePosition* >( tgtNode->GetPosition() ))) const_cast( pos )->SetParameters( uvNew.X(), uvNew.Y() ); --nbSrcNodes; } return nbSrcNodes == 0; } // Morph::Perform //======================================================================= //function : Delaunay //purpose : construct from face sides //======================================================================= Delaunay::Delaunay( const TSideVector& wires, bool checkUV ): SMESH_Delaunay( SideVector2UVPtStructVec( wires ), TopoDS::Face( wires[0]->FaceHelper()->GetSubShape() ), wires[0]->FaceHelper()->GetSubShapeID() ) { _wire = wires[0]; // keep a wire to assure _helper to keep alive _helper = _wire->FaceHelper(); _checkUVPtr = checkUV ? & _checkUV : 0; } //======================================================================= //function : Delaunay //purpose : construct from UVPtStructVec's //======================================================================= Delaunay::Delaunay( const std::vector< const UVPtStructVec* > & boundaryNodes, SMESH_MesherHelper& faceHelper, bool checkUV): SMESH_Delaunay( boundaryNodes, TopoDS::Face( faceHelper.GetSubShape() ), faceHelper.GetSubShapeID() ) { _helper = & faceHelper; _checkUVPtr = checkUV ? & _checkUV : 0; } //======================================================================= //function : getNodeUV //purpose : //======================================================================= gp_XY Delaunay::getNodeUV( const TopoDS_Face& face, const SMDS_MeshNode* node ) const { return _helper->GetNodeUV( face, node, 0, _checkUVPtr ); } } // namespace StdMeshers_ProjectionUtils