// Copyright (C) 2007-2021 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : StdMeshers_Regular_1D.cxx // Moved here from SMESH_Regular_1D.cxx // Author : Paul RASCLE, EDF // Module : SMESH // #include "StdMeshers_Regular_1D.hxx" #include "SMDS_MeshElement.hxx" #include "SMDS_MeshNode.hxx" #include "SMESHDS_Mesh.hxx" #include "SMESH_Comment.hxx" #include "SMESH_Gen.hxx" #include "SMESH_HypoFilter.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_subMesh.hxx" #include "SMESH_subMeshEventListener.hxx" #include "StdMeshers_Adaptive1D.hxx" #include "StdMeshers_Arithmetic1D.hxx" #include "StdMeshers_AutomaticLength.hxx" #include "StdMeshers_Geometric1D.hxx" #include "StdMeshers_Deflection1D.hxx" #include "StdMeshers_Distribution.hxx" #include "StdMeshers_FixedPoints1D.hxx" #include "StdMeshers_LocalLength.hxx" #include "StdMeshers_MaxLength.hxx" #include "StdMeshers_NumberOfSegments.hxx" #include "StdMeshers_Propagation.hxx" #include "StdMeshers_SegmentLengthAroundVertex.hxx" #include "StdMeshers_StartEndLength.hxx" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace StdMeshers; //============================================================================= /*! * */ //============================================================================= StdMeshers_Regular_1D::StdMeshers_Regular_1D(int hypId, SMESH_Gen * gen) :SMESH_1D_Algo( hypId, gen ) { _name = "Regular_1D"; _shapeType = (1 << TopAbs_EDGE); _fpHyp = 0; _compatibleHypothesis.push_back("LocalLength"); _compatibleHypothesis.push_back("MaxLength"); _compatibleHypothesis.push_back("NumberOfSegments"); _compatibleHypothesis.push_back("StartEndLength"); _compatibleHypothesis.push_back("Deflection1D"); _compatibleHypothesis.push_back("Arithmetic1D"); _compatibleHypothesis.push_back("GeometricProgression"); _compatibleHypothesis.push_back("FixedPoints1D"); _compatibleHypothesis.push_back("AutomaticLength"); _compatibleHypothesis.push_back("Adaptive1D"); // auxiliary: _compatibleHypothesis.push_back("QuadraticMesh"); _compatibleHypothesis.push_back("Propagation"); _compatibleHypothesis.push_back("PropagOfDistribution"); } //============================================================================= /*! * */ //============================================================================= StdMeshers_Regular_1D::~StdMeshers_Regular_1D() { } //============================================================================= /*! * */ //============================================================================= bool StdMeshers_Regular_1D::CheckHypothesis( SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, Hypothesis_Status& aStatus ) { _hypType = NONE; _quadraticMesh = false; _onlyUnaryInput = true; // check propagation in a redefined GetUsedHypothesis() const list & hyps = GetUsedHypothesis(aMesh, aShape, /*ignoreAuxiliaryHyps=*/false); const SMESH_HypoFilter & propagFilter = StdMeshers_Propagation::GetFilter(); // find non-auxiliary hypothesis const SMESHDS_Hypothesis *theHyp = 0; set< string > propagTypes; list ::const_iterator h = hyps.begin(); for ( ; h != hyps.end(); ++h ) { if ( static_cast(*h)->IsAuxiliary() ) { if ( strcmp( "QuadraticMesh", (*h)->GetName() ) == 0 ) _quadraticMesh = true; if ( propagFilter.IsOk( static_cast< const SMESH_Hypothesis*>( *h ), aShape )) propagTypes.insert( (*h)->GetName() ); } else { if ( !theHyp ) theHyp = *h; // use only the first non-auxiliary hypothesis } } if ( !theHyp ) { aStatus = SMESH_Hypothesis::HYP_MISSING; return false; // can't work without a hypothesis } string hypName = theHyp->GetName(); if ( !_mainEdge.IsNull() && _hypType == DISTRIB_PROPAGATION ) { aStatus = SMESH_Hypothesis::HYP_OK; } else if ( hypName == "LocalLength" ) { const StdMeshers_LocalLength * hyp = dynamic_cast (theHyp); ASSERT(hyp); _value[ BEG_LENGTH_IND ] = hyp->GetLength(); _value[ PRECISION_IND ] = hyp->GetPrecision(); ASSERT( _value[ BEG_LENGTH_IND ] > 0 ); _hypType = LOCAL_LENGTH; aStatus = SMESH_Hypothesis::HYP_OK; } else if ( hypName == "MaxLength" ) { const StdMeshers_MaxLength * hyp = dynamic_cast (theHyp); ASSERT(hyp); _value[ BEG_LENGTH_IND ] = hyp->GetLength(); if ( hyp->GetUsePreestimatedLength() ) { if ( int nbSeg = aMesh.GetGen()->GetBoundaryBoxSegmentation() ) _value[ BEG_LENGTH_IND ] = aMesh.GetShapeDiagonalSize() / nbSeg; } ASSERT( _value[ BEG_LENGTH_IND ] > 0 ); _hypType = MAX_LENGTH; aStatus = SMESH_Hypothesis::HYP_OK; } else if ( hypName == "NumberOfSegments" ) { const StdMeshers_NumberOfSegments * hyp = dynamic_cast (theHyp); ASSERT(hyp); _ivalue[ NB_SEGMENTS_IND ] = hyp->GetNumberOfSegments(); ASSERT( _ivalue[ NB_SEGMENTS_IND ] > 0 ); _ivalue[ DISTR_TYPE_IND ] = (int) hyp->GetDistrType(); switch (_ivalue[ DISTR_TYPE_IND ]) { case StdMeshers_NumberOfSegments::DT_Scale: _value[ SCALE_FACTOR_IND ] = hyp->GetScaleFactor(); _revEdgesIDs = hyp->GetReversedEdges(); break; case StdMeshers_NumberOfSegments::DT_TabFunc: _vvalue[ TAB_FUNC_IND ] = hyp->GetTableFunction(); _revEdgesIDs = hyp->GetReversedEdges(); break; case StdMeshers_NumberOfSegments::DT_ExprFunc: _svalue[ EXPR_FUNC_IND ] = hyp->GetExpressionFunction(); _revEdgesIDs = hyp->GetReversedEdges(); break; case StdMeshers_NumberOfSegments::DT_Regular: break; default: ASSERT(0); break; } if (_ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_TabFunc || _ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_ExprFunc) _ivalue[ CONV_MODE_IND ] = hyp->ConversionMode(); _hypType = NB_SEGMENTS; aStatus = SMESH_Hypothesis::HYP_OK; } else if ( hypName == "Arithmetic1D" ) { const StdMeshers_Arithmetic1D * hyp = dynamic_cast (theHyp); ASSERT(hyp); _value[ BEG_LENGTH_IND ] = hyp->GetLength( true ); _value[ END_LENGTH_IND ] = hyp->GetLength( false ); ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 ); _hypType = ARITHMETIC_1D; _revEdgesIDs = hyp->GetReversedEdges(); aStatus = SMESH_Hypothesis::HYP_OK; } else if ( hypName == "GeometricProgression" ) { const StdMeshers_Geometric1D * hyp = dynamic_cast (theHyp); ASSERT(hyp); _value[ BEG_LENGTH_IND ] = hyp->GetStartLength(); _value[ END_LENGTH_IND ] = hyp->GetCommonRatio(); ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 ); _hypType = GEOMETRIC_1D; _revEdgesIDs = hyp->GetReversedEdges(); aStatus = SMESH_Hypothesis::HYP_OK; } else if ( hypName == "FixedPoints1D" ) { _fpHyp = dynamic_cast (theHyp); ASSERT(_fpHyp); _hypType = FIXED_POINTS_1D; _revEdgesIDs = _fpHyp->GetReversedEdges(); aStatus = SMESH_Hypothesis::HYP_OK; } else if ( hypName == "StartEndLength" ) { const StdMeshers_StartEndLength * hyp = dynamic_cast (theHyp); ASSERT(hyp); _value[ BEG_LENGTH_IND ] = hyp->GetLength( true ); _value[ END_LENGTH_IND ] = hyp->GetLength( false ); ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 ); _hypType = BEG_END_LENGTH; _revEdgesIDs = hyp->GetReversedEdges(); aStatus = SMESH_Hypothesis::HYP_OK; } else if ( hypName == "Deflection1D" ) { const StdMeshers_Deflection1D * hyp = dynamic_cast (theHyp); ASSERT(hyp); _value[ DEFLECTION_IND ] = hyp->GetDeflection(); ASSERT( _value[ DEFLECTION_IND ] > 0 ); _hypType = DEFLECTION; aStatus = SMESH_Hypothesis::HYP_OK; } else if ( hypName == "AutomaticLength" ) { StdMeshers_AutomaticLength * hyp = const_cast (dynamic_cast (theHyp)); ASSERT(hyp); _value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength( &aMesh, aShape ); ASSERT( _value[ BEG_LENGTH_IND ] > 0 ); _hypType = MAX_LENGTH; aStatus = SMESH_Hypothesis::HYP_OK; } else if ( hypName == "Adaptive1D" ) { _adaptiveHyp = dynamic_cast < const StdMeshers_Adaptive1D* >(theHyp); ASSERT(_adaptiveHyp); _hypType = ADAPTIVE; _onlyUnaryInput = false; aStatus = SMESH_Hypothesis::HYP_OK; } else { aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE; } if ( propagTypes.size() > 1 && aStatus == HYP_OK ) { // detect concurrent Propagation hyps _usedHypList.clear(); list< TopoDS_Shape > assignedTo; if ( aMesh.GetHypotheses( aShape, propagFilter, _usedHypList, true, &assignedTo ) > 1 ) { // find most simple shape and a hyp on it int simpleShape = TopAbs_COMPOUND; const SMESHDS_Hypothesis* localHyp = 0; list< TopoDS_Shape >::iterator shape = assignedTo.begin(); list< const SMESHDS_Hypothesis *>::iterator hyp = _usedHypList.begin(); for ( ; shape != assignedTo.end(); ++shape ) if ( shape->ShapeType() > simpleShape ) { simpleShape = shape->ShapeType(); localHyp = (*hyp); } // check if there a different hyp on simpleShape shape = assignedTo.begin(); hyp = _usedHypList.begin(); for ( ; hyp != _usedHypList.end(); ++hyp, ++shape ) if ( shape->ShapeType() == simpleShape && !localHyp->IsSameName( **hyp )) { aStatus = HYP_INCOMPAT_HYPS; return error( SMESH_Comment("Hypotheses of both \"") << StdMeshers_Propagation::GetName() << "\" and \"" << StdMeshers_PropagOfDistribution::GetName() << "\" types can't be applied to the same edge"); } } } return ( aStatus == SMESH_Hypothesis::HYP_OK ); } static bool computeParamByFunc(Adaptor3d_Curve& C3d, double first, double last, double length, bool theReverse, smIdType nbSeg, Function& func, list& theParams) { // never do this way //OSD::SetSignal( true ); if ( nbSeg <= 0 ) return false; smIdType nbPnt = 1 + nbSeg; vector x( nbPnt, 0. ); const double eps = Min( 1E-4, 0.01 / double( nbSeg )); if ( !buildDistribution( func, 0.0, 1.0, nbSeg, x, eps )) return false; // apply parameters in range [0,1] to the space of the curve double prevU = first; double sign = 1.; if ( theReverse ) { prevU = last; sign = -1.; } for ( smIdType i = 1; i < nbSeg; i++ ) { double curvLength = length * (x[i] - x[i-1]) * sign; double tol = Min( Precision::Confusion(), curvLength / 100. ); GCPnts_AbscissaPoint Discret( tol, C3d, curvLength, prevU ); if ( !Discret.IsDone() ) return false; double U = Discret.Parameter(); if ( U > first && U < last ) theParams.push_back( U ); else return false; prevU = U; } if ( theReverse ) theParams.reverse(); return true; } //================================================================================ /*! * \brief adjust internal node parameters so that the last segment length == an * \param a1 - the first segment length * \param an - the last segment length * \param U1 - the first edge parameter * \param Un - the last edge parameter * \param length - the edge length * \param C3d - the edge curve * \param theParams - internal node parameters to adjust * \param adjustNeighbors2an - to adjust length of segments next to the last one * and not to remove parameters */ //================================================================================ static void compensateError(double a1, double an, double U1, double Un, double length, Adaptor3d_Curve& C3d, list & theParams, bool adjustNeighbors2an = false) { smIdType i, nPar = theParams.size(); if ( a1 + an <= length && nPar > 1 ) { bool reverse = ( U1 > Un ); double tol = Min( Precision::Confusion(), 0.01 * an ); GCPnts_AbscissaPoint Discret( tol, C3d, reverse ? an : -an, Un ); if ( !Discret.IsDone() ) return; double Utgt = Discret.Parameter(); // target value of the last parameter list::reverse_iterator itU = theParams.rbegin(); double Ul = *itU++; // real value of the last parameter double dUn = Utgt - Ul; // parametric error of double dU = Abs( Ul - *itU ); // parametric length of the last but one segment if ( Abs(dUn) <= 1e-3 * dU ) return; if ( adjustNeighbors2an || Abs(dUn) < 0.5 * dU ) { // last segment is a bit shorter than it should // move the last parameter to the edge beginning } else { // last segment is much shorter than it should -> remove the last param and theParams.pop_back(); nPar--; // move the rest points toward the edge end dUn = Utgt - theParams.back(); } if ( !adjustNeighbors2an ) { double q = dUn / ( Utgt - Un ); // (signed) factor of segment length change for ( itU = theParams.rbegin(), i = 1; i < nPar; i++ ) { double prevU = *itU; (*itU) += dUn; ++itU; dUn = q * (*itU - prevU) * (prevU-U1)/(Un-U1); } } else if ( nPar == 1 ) { theParams.back() += dUn; } else { double q = dUn / double( nPar - 1 ); theParams.back() += dUn; double sign = reverse ? -1 : 1; double prevU = theParams.back(); itU = theParams.rbegin(); for ( ++itU, i = 2; i < nPar; ++itU, i++ ) { double newU = *itU + dUn; if ( newU*sign < prevU*sign ) { prevU = *itU = newU; dUn -= q; } else { // set U between prevU and next valid param list::reverse_iterator itU2 = itU; ++itU2; int nb = 2; while ( (*itU2)*sign > prevU*sign ) { ++itU2; ++nb; } dU = ( *itU2 - prevU ) / nb; while ( itU != itU2 ) { *itU += dU; ++itU; } break; } } } } } //================================================================================ /*! * \brief Class used to clean mesh on edges when 0D hyp modified. * Common approach doesn't work when 0D algo is missing because the 0D hyp is * considered as not participating in computation whereas it is used by 1D algo. */ //================================================================================ // struct VertexEventListener : public SMESH_subMeshEventListener // { // VertexEventListener():SMESH_subMeshEventListener(0) // won't be deleted by submesh // {} // /*! // * \brief Clean mesh on edges // * \param event - algo_event or compute_event itself (of SMESH_subMesh) // * \param eventType - ALGO_EVENT or COMPUTE_EVENT (of SMESH_subMesh) // * \param subMesh - the submesh where the event occurs // */ // void ProcessEvent(const int event, const int eventType, SMESH_subMesh* subMesh, // EventListenerData*, const SMESH_Hypothesis*) // { // if ( eventType == SMESH_subMesh::ALGO_EVENT) // all algo events // { // subMesh->ComputeStateEngine( SMESH_subMesh::MODIF_ALGO_STATE ); // } // } // }; // struct VertexEventListener //============================================================================= /*! * \brief Sets event listener to vertex submeshes * \param subMesh - submesh where algo is set * * This method is called when a submesh gets HYP_OK algo_state. * After being set, event listener is notified on each event of a submesh. */ //============================================================================= void StdMeshers_Regular_1D::SetEventListener(SMESH_subMesh* subMesh) { StdMeshers_Propagation::SetPropagationMgr( subMesh ); } //============================================================================= /*! * \brief Do nothing * \param subMesh - restored submesh * * This method is called only if a submesh has HYP_OK algo_state. */ //============================================================================= void StdMeshers_Regular_1D::SubmeshRestored(SMESH_subMesh* /*subMesh*/) { } //============================================================================= /*! * \brief Return StdMeshers_SegmentLengthAroundVertex assigned to vertex */ //============================================================================= const StdMeshers_SegmentLengthAroundVertex* StdMeshers_Regular_1D::getVertexHyp(SMESH_Mesh & theMesh, const TopoDS_Vertex & theV) { static SMESH_HypoFilter filter( SMESH_HypoFilter::HasName("SegmentAroundVertex_0D")); if ( const SMESH_Hypothesis * h = theMesh.GetHypothesis( theV, filter, true )) { SMESH_Algo* algo = const_cast< SMESH_Algo* >( static_cast< const SMESH_Algo* > ( h )); const list & hypList = algo->GetUsedHypothesis( theMesh, theV, 0 ); if ( !hypList.empty() && string("SegmentLengthAroundVertex") == hypList.front()->GetName() ) return static_cast( hypList.front() ); } return 0; } //================================================================================ /*! * \brief Divide a curve into equal segments */ //================================================================================ bool StdMeshers_Regular_1D::divideIntoEqualSegments( SMESH_Mesh & theMesh, Adaptor3d_Curve & theC3d, smIdType theNbPoints, double theTol, double theLength, double theFirstU, double theLastU, std::list & theParameters ) { bool ok = false; if ( theNbPoints < IntegerLast() ) { int nbPnt = FromSmIdType( theNbPoints ); GCPnts_UniformAbscissa discret(theC3d, nbPnt, theFirstU, theLastU, theTol ); if ( !discret.IsDone() ) return error( "GCPnts_UniformAbscissa failed"); if ( discret.NbPoints() < nbPnt ) discret.Initialize(theC3d, nbPnt + 1, theFirstU, theLastU, theTol ); int nbPoints = Min( discret.NbPoints(), nbPnt ); for ( int i = 2; i < nbPoints; i++ ) // skip 1st and last points { double param = discret.Parameter(i); theParameters.push_back( param ); } ok = true; } else // huge nb segments { // use FIXED_POINTS_1D method StdMeshers_FixedPoints1D fixedPointsHyp( GetGen()->GetANewId(), GetGen() ); _fpHyp = &fixedPointsHyp; std::vector params = { 0., 1. }; std::vector nbSegs = { theNbPoints - 1 }; fixedPointsHyp.SetPoints( params ); fixedPointsHyp.SetNbSegments( nbSegs ); HypothesisType curType = _hypType; _hypType = FIXED_POINTS_1D; ok = computeInternalParameters( theMesh, theC3d, theLength, theFirstU, theLastU, theParameters, /*reverse=*/false ); _hypType = curType; _fpHyp = 0; } return ok; } //================================================================================ /*! * \brief Tune parameters to fit "SegmentLengthAroundVertex" hypothesis * \param theC3d - wire curve * \param theLength - curve length * \param theParameters - internal nodes parameters to modify * \param theVf - 1st vertex * \param theVl - 2nd vertex */ //================================================================================ void StdMeshers_Regular_1D::redistributeNearVertices (SMESH_Mesh & theMesh, Adaptor3d_Curve & theC3d, double theLength, std::list< double > & theParameters, const TopoDS_Vertex & theVf, const TopoDS_Vertex & theVl) { double f = theC3d.FirstParameter(), l = theC3d.LastParameter(); size_t nPar = theParameters.size(); for ( int isEnd1 = 0; isEnd1 < 2; ++isEnd1 ) { const TopoDS_Vertex & V = isEnd1 ? theVf : theVl; const StdMeshers_SegmentLengthAroundVertex* hyp = getVertexHyp (theMesh, V ); if ( hyp ) { double vertexLength = hyp->GetLength(); if ( vertexLength > theLength / 2.0 ) continue; if ( isEnd1 ) { // to have a segment of interest at end of theParameters theParameters.reverse(); std::swap( f, l ); } if ( _hypType == NB_SEGMENTS ) { compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true ); } else if ( nPar <= 3 ) { if ( !isEnd1 ) vertexLength = -vertexLength; double tol = Min( Precision::Confusion(), 0.01 * vertexLength ); GCPnts_AbscissaPoint Discret( tol, theC3d, vertexLength, l ); if ( Discret.IsDone() ) { if ( nPar == 0 ) theParameters.push_back( Discret.Parameter()); else { double L = GCPnts_AbscissaPoint::Length( theC3d, theParameters.back(), l); if ( vertexLength < L / 2.0 ) theParameters.push_back( Discret.Parameter()); else compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true ); } } } else { // recompute params between the last segment and a middle one. // find size of a middle segment smIdType nHalf = ( nPar-1 ) / 2; list< double >::reverse_iterator itU = theParameters.rbegin(); std::advance( itU, nHalf ); double Um = *itU++; double Lm = GCPnts_AbscissaPoint::Length( theC3d, Um, *itU); double L = GCPnts_AbscissaPoint::Length( theC3d, *itU, l); static StdMeshers_Regular_1D* auxAlgo = 0; if ( !auxAlgo ) { auxAlgo = new StdMeshers_Regular_1D( _gen->GetANewId(), _gen ); auxAlgo->_hypType = BEG_END_LENGTH; } auxAlgo->_value[ BEG_LENGTH_IND ] = Lm; auxAlgo->_value[ END_LENGTH_IND ] = vertexLength; double from = *itU, to = l; if ( isEnd1 ) { std::swap( from, to ); std::swap( auxAlgo->_value[ BEG_LENGTH_IND ], auxAlgo->_value[ END_LENGTH_IND ]); } list params; if ( auxAlgo->computeInternalParameters( theMesh, theC3d, L, from, to, params, false )) { if ( isEnd1 ) params.reverse(); while ( 1 + nHalf-- ) theParameters.pop_back(); theParameters.splice( theParameters.end(), params ); } else { compensateError(0, vertexLength, f, l, theLength, theC3d, theParameters, true ); } } if ( isEnd1 ) theParameters.reverse(); } } } //============================================================================= /*! * */ //============================================================================= bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh, Adaptor3d_Curve& theC3d, double theLength, double theFirstU, double theLastU, list & theParams, const bool theReverse, bool theConsiderPropagation) { theParams.clear(); double f = theFirstU, l = theLastU; // Propagation Of Distribution // if ( !_mainEdge.IsNull() && _hypType == DISTRIB_PROPAGATION ) { TopoDS_Edge mainEdge = TopoDS::Edge( _mainEdge ); // should not be a reference! _gen->Compute( theMesh, mainEdge, SMESH_Gen::SHAPE_ONLY_UPWARD ); SMESHDS_SubMesh* smDS = theMesh.GetMeshDS()->MeshElements( mainEdge ); if ( !smDS ) return error("No mesh on the source edge of Propagation Of Distribution"); if ( smDS->NbNodes() < 1 ) return true; // 1 segment map< double, const SMDS_MeshNode* > mainEdgeParamsOfNodes; if ( ! SMESH_Algo::GetSortedNodesOnEdge( theMesh.GetMeshDS(), mainEdge, _quadraticMesh, mainEdgeParamsOfNodes, SMDSAbs_Edge )) return error("Bad node parameters on the source edge of Propagation Of Distribution"); vector< double > segLen( mainEdgeParamsOfNodes.size() - 1 ); double totalLen = 0; BRepAdaptor_Curve mainEdgeCurve( mainEdge ); map< double, const SMDS_MeshNode* >::iterator u_n2 = mainEdgeParamsOfNodes.begin(), u_n1 = u_n2++; for ( size_t i = 1; i < mainEdgeParamsOfNodes.size(); ++i, ++u_n1, ++u_n2 ) { segLen[ i-1 ] = GCPnts_AbscissaPoint::Length( mainEdgeCurve, u_n1->first, u_n2->first); totalLen += segLen[ i-1 ]; } for ( size_t i = 0; i < segLen.size(); ++i ) segLen[ i ] *= theLength / totalLen; size_t iSeg = theReverse ? segLen.size()-1 : 0; size_t dSeg = theReverse ? -1 : +1; double param = theFirstU; size_t nbParams = 0; for ( size_t i = 1; i < segLen.size(); ++i, iSeg += dSeg ) { double tol = Min( Precision::Confusion(), 0.01 * segLen[ iSeg ]); GCPnts_AbscissaPoint Discret( tol, theC3d, segLen[ iSeg ], param ); if ( !Discret.IsDone() ) break; param = Discret.Parameter(); theParams.push_back( param ); ++nbParams; } if ( nbParams != segLen.size()-1 ) return error( SMESH_Comment("Can't divide into ") << segLen.size() << " segments"); compensateError( segLen[ theReverse ? segLen.size()-1 : 0 ], segLen[ theReverse ? 0 : segLen.size()-1 ], f, l, theLength, theC3d, theParams, true ); return true; } switch( _hypType ) { case LOCAL_LENGTH: case MAX_LENGTH: case NB_SEGMENTS: { double eltSize = 1; smIdType nbSegments; if ( _hypType == MAX_LENGTH ) { double nbseg = ceil(theLength / _value[ BEG_LENGTH_IND ]); // integer sup if (nbseg <= 0) nbseg = 1; // degenerated edge eltSize = theLength / nbseg * ( 1. - 1e-9 ); nbSegments = ToSmIdType( nbseg ); } else if ( _hypType == LOCAL_LENGTH ) { // Local Length hypothesis double nbseg = ceil(theLength / _value[ BEG_LENGTH_IND ]); // integer sup // NPAL17873: bool isFound = false; if (theConsiderPropagation && !_mainEdge.IsNull()) // propagated from some other edge { // Advanced processing to assure equal number of segments in case of Propagation SMESH_subMesh* sm = theMesh.GetSubMeshContaining(_mainEdge); if (sm) { bool computed = sm->IsMeshComputed(); if (!computed) { if (sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE) { _gen->Compute( theMesh, _mainEdge, /*anUpward=*/true); computed = sm->IsMeshComputed(); } } if (computed) { SMESHDS_SubMesh* smds = sm->GetSubMeshDS(); smIdType nb_segments = smds->NbElements(); if (nbseg - 1 <= nb_segments && nb_segments <= nbseg + 1) { isFound = true; nbseg = FromSmIdType( nb_segments ); } } } } if (!isFound) // not found by meshed edge in the propagation chain, use precision { double aPrecision = _value[ PRECISION_IND ]; double nbseg_prec = ceil((theLength / _value[ BEG_LENGTH_IND ]) - aPrecision); if (nbseg_prec == (nbseg - 1)) nbseg--; } if (nbseg <= 0) nbseg = 1; // degenerated edge eltSize = theLength / nbseg; nbSegments = ToSmIdType( nbseg ); } else { // Number Of Segments hypothesis nbSegments = _ivalue[ NB_SEGMENTS_IND ]; if ( nbSegments < 1 ) return false; if ( nbSegments == 1 ) return true; switch (_ivalue[ DISTR_TYPE_IND ]) { case StdMeshers_NumberOfSegments::DT_Scale: { double scale = _value[ SCALE_FACTOR_IND ]; if (fabs(scale - 1.0) < Precision::Confusion()) { // special case to avoid division by zero for ( smIdType i = 1; i < nbSegments; i++) { double param = f + (l - f) * double( i ) / double( nbSegments ); theParams.push_back( param ); } } else { // general case of scale distribution if ( theReverse ) scale = 1.0 / scale; double alpha = pow(scale, 1.0 / double( nbSegments - 1 )); double factor = (l - f) / (1.0 - pow(alpha, nbSegments)); for ( smIdType i = 1; i < nbSegments; i++) { double param = f + factor * (1.0 - pow(alpha, i)); theParams.push_back( param ); } } const double lenFactor = theLength/(l-f); const double minSegLen = Min( theParams.front() - f, l - theParams.back() ); const double tol = Min( Precision::Confusion(), 0.01 * minSegLen ); list::iterator u = theParams.begin(), uEnd = theParams.end(); for ( ; u != uEnd; ++u ) { GCPnts_AbscissaPoint Discret( tol, theC3d, ((*u)-f) * lenFactor, f ); if ( Discret.IsDone() ) *u = Discret.Parameter(); } return true; } break; case StdMeshers_NumberOfSegments::DT_TabFunc: { FunctionTable func(_vvalue[ TAB_FUNC_IND ], FromSmIdType( _ivalue[ CONV_MODE_IND ])); return computeParamByFunc(theC3d, f, l, theLength, theReverse, _ivalue[ NB_SEGMENTS_IND ], func, theParams); } break; case StdMeshers_NumberOfSegments::DT_ExprFunc: { FunctionExpr func(_svalue[ EXPR_FUNC_IND ].c_str(), FromSmIdType( _ivalue[ CONV_MODE_IND ])); return computeParamByFunc(theC3d, f, l, theLength, theReverse, _ivalue[ NB_SEGMENTS_IND ], func, theParams); } break; case StdMeshers_NumberOfSegments::DT_Regular: eltSize = theLength / double( nbSegments ); break; default: return false; } } double tol = Min( Precision::Confusion(), 0.01 * eltSize ); divideIntoEqualSegments( theMesh, theC3d, nbSegments + 1, tol, theLength, theFirstU, theLastU, theParams ); compensateError( eltSize, eltSize, f, l, theLength, theC3d, theParams, true ); // for PAL9899 return true; } case BEG_END_LENGTH: { // geometric progression: SUM(n) = ( a1 - an * q ) / ( 1 - q ) = theLength double a1 = _value[ BEG_LENGTH_IND ]; double an = _value[ END_LENGTH_IND ]; double q = ( theLength - a1 ) / ( theLength - an ); if ( q < theLength/1e6 || 1.01*theLength < a1 + an) return error ( SMESH_Comment("Invalid segment lengths (")< at the distance // from the point of parameter . GCPnts_AbscissaPoint Discret( tol, theC3d, eltSize, param ); if ( !Discret.IsDone() ) break; param = Discret.Parameter(); if ( f < param && param < l ) theParams.push_back( param ); else break; eltSize *= q; } compensateError( a1, an, U1, Un, theLength, theC3d, theParams ); if (theReverse) theParams.reverse(); // NPAL18025 return true; } case ARITHMETIC_1D: { // arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = theLength double a1 = _value[ BEG_LENGTH_IND ]; double an = _value[ END_LENGTH_IND ]; if ( 1.01*theLength < a1 + an ) return error ( SMESH_Comment("Invalid segment lengths (")< numeric_limits::min() ? ( 1+( an-a1 )/q ) : ( 1+theLength/a1 )); double U1 = theReverse ? l : f; double Un = theReverse ? f : l; double param = U1; double eltSize = a1; double tol = Min( Precision::Confusion(), 0.01 * Min( a1, an )); if ( theReverse ) { eltSize = -eltSize; q = -q; } while ( n-- > 0 && eltSize * ( Un - U1 ) > 0 ) { // computes a point on a curve at the distance // from the point of parameter . GCPnts_AbscissaPoint Discret( tol, theC3d, eltSize, param ); if ( !Discret.IsDone() ) break; param = Discret.Parameter(); if ( param > f && param < l ) theParams.push_back( param ); else break; eltSize += q; } compensateError( a1, an, U1, Un, theLength, theC3d, theParams ); if ( theReverse ) theParams.reverse(); // NPAL18025 return true; } case GEOMETRIC_1D: { double a1 = _value[ BEG_LENGTH_IND ], an = 0; double q = _value[ END_LENGTH_IND ]; double U1 = theReverse ? l : f; double Un = theReverse ? f : l; double param = U1; double eltSize = a1; if ( theReverse ) eltSize = -eltSize; int nbParams = 0; while ( true ) { // computes a point on a curve at the distance // from the point of parameter . double tol = Min( Precision::Confusion(), 0.01 * eltSize ); GCPnts_AbscissaPoint Discret( tol, theC3d, eltSize, param ); if ( !Discret.IsDone() ) break; param = Discret.Parameter(); if ( f < param && param < l ) theParams.push_back( param ); else break; an = eltSize; eltSize *= q; ++nbParams; if ( q < 1. && eltSize < 1e-100 ) return error("Too small common ratio causes too many segments"); } if ( nbParams > 1 ) { if ( Abs( param - Un ) < 0.2 * Abs( param - theParams.back() )) { compensateError( a1, Abs(eltSize), U1, Un, theLength, theC3d, theParams ); } else if ( Abs( Un - theParams.back() ) < 0.2 * Abs( theParams.back() - *(++theParams.rbegin()))) { theParams.pop_back(); compensateError( a1, Abs(an), U1, Un, theLength, theC3d, theParams ); } } if (theReverse) theParams.reverse(); // NPAL18025 return true; } case FIXED_POINTS_1D: { const std::vector& aPnts = _fpHyp->GetPoints(); std::vector nbsegs = _fpHyp->GetNbSegments(); // sort normalized params, taking into account theReverse TColStd_SequenceOfReal Params; double tol = 1e-7; for ( size_t i = 0; i < aPnts.size(); i++ ) { if( aPnts[i] < tol || aPnts[i] > 1 - tol ) continue; double u = theReverse ? ( 1 - aPnts[i] ) : aPnts[i]; int j = 1; bool IsExist = false; for ( ; j <= Params.Length() && !IsExist; j++ ) { IsExist = ( Abs( u - Params.Value(j) ) < tol ); if ( u < Params.Value(j) ) break; } if ( !IsExist ) Params.InsertBefore( j, u ); } Params.InsertBefore( 1, 0.0 ); Params.Append( 1.0 ); if ( theReverse ) { if ((int) nbsegs.size() > Params.Length() - 1 ) nbsegs.resize( Params.Length() - 1 ); std::reverse( nbsegs.begin(), nbsegs.end() ); } if ( nbsegs.empty() ) { nbsegs.push_back( 1 ); } if ((int) nbsegs.size() < Params.Length() - 1 ) nbsegs.resize( Params.Length() - 1, nbsegs[0] ); // care of huge nbsegs - additionally divide diapasons for ( int i = 2; i <= Params.Length(); i++ ) { smIdType nbTot = nbsegs[ i-2 ]; if ( nbTot <= IntegerLast() ) continue; smIdType nbDiapason = nbTot / IntegerLast() + 1; smIdType nbSegPerDiap = nbTot / nbDiapason; double par0 = Params( i - 1 ), par1 = Params( i ); for ( smIdType iDiap = 0; iDiap < nbDiapason - 1; ++iDiap ) { double r = double( nbSegPerDiap * ( iDiap + 1 )) / double( nbTot ); double parI = par0 + ( par1 - par0 ) * r; Params.InsertBefore( i, parI ); auto it = nbsegs.begin(); smIdType incr_it = i - 2 + iDiap; nbsegs.insert( it + incr_it, nbSegPerDiap ); } nbsegs[ i-2 + nbDiapason - 1 ] = nbSegPerDiap + nbTot % nbDiapason; } // transform normalized Params into real ones std::vector< double > uVec( Params.Length() ); uVec[ 0 ] = theFirstU; double abscissa; for ( int i = 2; i < Params.Length(); i++ ) { abscissa = Params( i ) * theLength; tol = Min( Precision::Confusion(), 0.01 * abscissa ); GCPnts_AbscissaPoint APnt( tol, theC3d, abscissa, theFirstU ); if ( !APnt.IsDone() ) return error( "GCPnts_AbscissaPoint failed"); uVec[ i-1 ] = APnt.Parameter(); } uVec.back() = theLastU; // divide segments double eltSize, segmentSize, par1, par2; for ( int i = 0; i < (int)uVec.size()-1; i++ ) { par1 = uVec[ i ]; par2 = uVec[ i+1 ]; smIdType nbseg = ( i < (int) nbsegs.size() ) ? nbsegs[i] : nbsegs[0]; if ( nbseg > 1 ) { segmentSize = ( Params( i+2 ) - Params( i+1 )) * theLength; eltSize = segmentSize / double( nbseg ); tol = Min( Precision::Confusion(), 0.01 * eltSize ); if ( !divideIntoEqualSegments( theMesh, theC3d, nbseg + 1, tol, segmentSize, par1, par2, theParams )) return false; } theParams.push_back( par2 ); } theParams.pop_back(); return true; } case DEFLECTION: { GCPnts_UniformDeflection Discret( theC3d, _value[ DEFLECTION_IND ], f, l, true ); if ( !Discret.IsDone() ) return false; int NbPoints = Discret.NbPoints(); for ( int i = 2; i < NbPoints; i++ ) { double param = Discret.Parameter(i); theParams.push_back( param ); } return true; } default:; } return false; } //============================================================================= /*! * */ //============================================================================= bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & theMesh, const TopoDS_Shape & theShape) { if ( _hypType == NONE ) return false; if ( _hypType == ADAPTIVE ) { _adaptiveHyp->GetAlgo()->InitComputeError(); _adaptiveHyp->GetAlgo()->Compute( theMesh, theShape ); return error( _adaptiveHyp->GetAlgo()->GetComputeError() ); } SMESHDS_Mesh * meshDS = theMesh.GetMeshDS(); const TopoDS_Edge & EE = TopoDS::Edge(theShape); TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD)); int shapeID = meshDS->ShapeToIndex( E ); double f, l; Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l); TopoDS_Vertex VFirst, VLast; TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l ASSERT(!VFirst.IsNull()); ASSERT(!VLast.IsNull()); const SMDS_MeshNode * nFirst = SMESH_Algo::VertexNode( VFirst, meshDS ); const SMDS_MeshNode * nLast = SMESH_Algo::VertexNode( VLast, meshDS ); if ( !nFirst || !nLast ) return error( COMPERR_BAD_INPUT_MESH, "No node on vertex"); // remove elements created by e.g. pattern mapping (PAL21999) // CLEAN event is incorrectly ptopagated seemingly due to Propagation hyp // so TEMPORARY solution is to clean the submesh manually if (SMESHDS_SubMesh * subMeshDS = meshDS->MeshElements(theShape)) { SMDS_ElemIteratorPtr ite = subMeshDS->GetElements(); while (ite->more()) meshDS->RemoveFreeElement(ite->next(), subMeshDS); SMDS_NodeIteratorPtr itn = subMeshDS->GetNodes(); while (itn->more()) { const SMDS_MeshNode * node = itn->next(); if ( node->NbInverseElements() == 0 ) meshDS->RemoveFreeNode(node, subMeshDS); else meshDS->RemoveNode(node); } } double length = EdgeLength( E ); if ( !Curve.IsNull() && length > 0 ) { list< double > params; bool reversed = false; if ( theMesh.GetShapeToMesh().ShapeType() >= TopAbs_WIRE && _revEdgesIDs.empty() ) { // if the shape to mesh is WIRE or EDGE reversed = ( EE.Orientation() == TopAbs_REVERSED ); } if ( !_mainEdge.IsNull() ) { // take into account reversing the edge the hypothesis is propagated from // (_mainEdge.Orientation() marks mutual orientation of EDGEs in propagation chain) reversed = ( _mainEdge.Orientation() == TopAbs_REVERSED ); if ( _hypType != DISTRIB_PROPAGATION ) { int mainID = meshDS->ShapeToIndex(_mainEdge); if ( std::find( _revEdgesIDs.begin(), _revEdgesIDs.end(), mainID) != _revEdgesIDs.end()) reversed = !reversed; } } // take into account this edge reversing if ( std::find( _revEdgesIDs.begin(), _revEdgesIDs.end(), shapeID) != _revEdgesIDs.end()) reversed = !reversed; BRepAdaptor_Curve C3d( E ); if ( ! computeInternalParameters( theMesh, C3d, length, f, l, params, reversed, true )) { return false; } redistributeNearVertices( theMesh, C3d, length, params, VFirst, VLast ); // edge extrema (indexes : 1 & NbPoints) already in SMDS (TopoDS_Vertex) // only internal nodes receive an edge position with param on curve const SMDS_MeshNode * nPrev = nFirst; double parPrev = f; double parLast = l; for (list::iterator itU = params.begin(); itU != params.end(); itU++) { double param = *itU; gp_Pnt P = Curve->Value(param); //Add the Node in the DataStructure SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z()); meshDS->SetNodeOnEdge(node, shapeID, param); if(_quadraticMesh) { // create medium node double prm = ( parPrev + param )/2; gp_Pnt PM = Curve->Value(prm); SMDS_MeshNode * NM = meshDS->AddNode(PM.X(), PM.Y(), PM.Z()); meshDS->SetNodeOnEdge(NM, shapeID, prm); SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, node, NM); meshDS->SetMeshElementOnShape(edge, shapeID); } else { SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, node); meshDS->SetMeshElementOnShape(edge, shapeID); } nPrev = node; parPrev = param; } if(_quadraticMesh) { double prm = ( parPrev + parLast )/2; gp_Pnt PM = Curve->Value(prm); SMDS_MeshNode * NM = meshDS->AddNode(PM.X(), PM.Y(), PM.Z()); meshDS->SetNodeOnEdge(NM, shapeID, prm); SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, nLast, NM); meshDS->SetMeshElementOnShape(edge, shapeID); } else { SMDS_MeshEdge* edge = meshDS->AddEdge(nPrev, nLast); meshDS->SetMeshElementOnShape(edge, shapeID); } } else { // Edge is a degenerated Edge : We put n = 5 points on the edge. const int NbPoints = 5; BRep_Tool::Range( E, f, l ); // PAL15185 double du = (l - f) / (NbPoints - 1); gp_Pnt P = BRep_Tool::Pnt(VFirst); const SMDS_MeshNode * nPrev = nFirst; for (int i = 2; i < NbPoints; i++) { double param = f + (i - 1) * du; SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z()); if(_quadraticMesh) { // create medium node double prm = param - du/2.; SMDS_MeshNode * NM = meshDS->AddNode(P.X(), P.Y(), P.Z()); meshDS->SetNodeOnEdge(NM, shapeID, prm); SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, node, NM); meshDS->SetMeshElementOnShape(edge, shapeID); } else { SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, node); meshDS->SetMeshElementOnShape(edge, shapeID); } meshDS->SetNodeOnEdge(node, shapeID, param); nPrev = node; } if(_quadraticMesh) { // create medium node double prm = l - du/2.; SMDS_MeshNode * NM = meshDS->AddNode(P.X(), P.Y(), P.Z()); meshDS->SetNodeOnEdge(NM, shapeID, prm); SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, nLast, NM); meshDS->SetMeshElementOnShape(edge, shapeID); } else { SMDS_MeshEdge * edge = meshDS->AddEdge(nPrev, nLast); meshDS->SetMeshElementOnShape(edge, shapeID); } } return true; } //============================================================================= /*! * */ //============================================================================= bool StdMeshers_Regular_1D::Evaluate(SMESH_Mesh & theMesh, const TopoDS_Shape & theShape, MapShapeNbElems& theResMap) { if ( _hypType == NONE ) return false; if ( _hypType == ADAPTIVE ) { _adaptiveHyp->GetAlgo()->InitComputeError(); _adaptiveHyp->GetAlgo()->Evaluate( theMesh, theShape, theResMap ); return error( _adaptiveHyp->GetAlgo()->GetComputeError() ); } const TopoDS_Edge & EE = TopoDS::Edge(theShape); TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD)); double f, l; Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l); TopoDS_Vertex VFirst, VLast; TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l ASSERT(!VFirst.IsNull()); ASSERT(!VLast.IsNull()); std::vector aVec(SMDSEntity_Last,0); double length = EdgeLength( E ); if ( !Curve.IsNull() && length > 0 ) { list< double > params; BRepAdaptor_Curve C3d( E ); if ( ! computeInternalParameters( theMesh, C3d, length, f, l, params, false, true )) { SMESH_subMesh * sm = theMesh.GetSubMesh(theShape); theResMap.insert(std::make_pair(sm,aVec)); SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this)); return false; } redistributeNearVertices( theMesh, C3d, length, params, VFirst, VLast ); if(_quadraticMesh) { aVec[SMDSEntity_Node ] = 2*params.size() + 1; aVec[SMDSEntity_Quad_Edge] = params.size() + 1; } else { aVec[SMDSEntity_Node] = params.size(); aVec[SMDSEntity_Edge] = params.size() + 1; } } else { // Edge is a degenerated Edge : We put n = 5 points on the edge. if ( _quadraticMesh ) { aVec[SMDSEntity_Node ] = 11; aVec[SMDSEntity_Quad_Edge] = 6; } else { aVec[SMDSEntity_Node] = 5; aVec[SMDSEntity_Edge] = 6; } } SMESH_subMesh * sm = theMesh.GetSubMesh( theShape ); theResMap.insert( std::make_pair( sm, aVec )); return true; } //============================================================================= /*! * See comments in SMESH_Algo.cxx */ //============================================================================= const list & StdMeshers_Regular_1D::GetUsedHypothesis(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, const bool ignoreAuxiliary) { _usedHypList.clear(); _mainEdge.Nullify(); SMESH_HypoFilter auxiliaryFilter( SMESH_HypoFilter::IsAuxiliary() ); const SMESH_HypoFilter* compatibleFilter = GetCompatibleHypoFilter(/*ignoreAux=*/true ); // get non-auxiliary assigned directly to aShape int nbHyp = aMesh.GetHypotheses( aShape, *compatibleFilter, _usedHypList, false ); if (nbHyp == 0 && aShape.ShapeType() == TopAbs_EDGE) { // Check, if propagated from some other edge bool isPropagOfDistribution = false; _mainEdge = StdMeshers_Propagation::GetPropagationSource( aMesh, aShape, isPropagOfDistribution ); if ( !_mainEdge.IsNull() ) { if ( isPropagOfDistribution ) _hypType = DISTRIB_PROPAGATION; // Propagation of 1D hypothesis from on this edge; // get non-auxiliary assigned to _mainEdge nbHyp = aMesh.GetHypotheses( _mainEdge, *compatibleFilter, _usedHypList, true ); } } if (nbHyp == 0) // nothing propagated nor assigned to aShape { SMESH_Algo::GetUsedHypothesis( aMesh, aShape, ignoreAuxiliary ); nbHyp = (int)_usedHypList.size(); } else { // get auxiliary hyps from aShape aMesh.GetHypotheses( aShape, auxiliaryFilter, _usedHypList, true ); } if ( nbHyp > 1 && ignoreAuxiliary ) _usedHypList.clear(); //only one compatible non-auxiliary hypothesis allowed return _usedHypList; } //================================================================================ /*! * \brief Pass CancelCompute() to a child algorithm */ //================================================================================ void StdMeshers_Regular_1D::CancelCompute() { SMESH_Algo::CancelCompute(); if ( _hypType == ADAPTIVE ) _adaptiveHyp->GetAlgo()->CancelCompute(); }