// Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH : implementaion of SMESH idl descriptions // File : StdMeshers_RadialQuadrangle_1D2D.cxx // Module : SMESH // Created : Fri Oct 20 11:37:07 2006 // Author : Edward AGAPOV (eap) // #include "StdMeshers_RadialQuadrangle_1D2D.hxx" //#include "StdMeshers_ProjectionUtils.hxx" #include "StdMeshers_NumberOfLayers.hxx" #include "StdMeshers_LayerDistribution.hxx" //#include "StdMeshers_Prism_3D.hxx" #include "StdMeshers_Regular_1D.hxx" #include "SMDS_MeshNode.hxx" #include "SMESHDS_SubMesh.hxx" #include "SMESH_Gen.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_subMesh.hxx" #include "SMESH_subMeshEventListener.hxx" #include "utilities.h" #include #include //#include #include #include #include //#include //#include //#include //#include //#include #include #include #include #include #include #include using namespace std; #define RETURN_BAD_RESULT(msg) { MESSAGE(")-: Error: " << msg); return false; } #define gpXYZ(n) gp_XYZ(n->X(),n->Y(),n->Z()) //typedef StdMeshers_ProjectionUtils TAssocTool; //======================================================================= //function : StdMeshers_RadialQuadrangle_1D2D //purpose : //======================================================================= StdMeshers_RadialQuadrangle_1D2D::StdMeshers_RadialQuadrangle_1D2D(int hypId, int studyId, SMESH_Gen* gen) :SMESH_2D_Algo(hypId, studyId, gen) { _name = "RadialQuadrangle_1D2D"; _shapeType = (1 << TopAbs_FACE); // 1 bit per shape type _compatibleHypothesis.push_back("LayerDistribution2D"); _compatibleHypothesis.push_back("NumberOfLayers2D"); myNbLayerHypo = 0; myDistributionHypo = 0; _requireDescretBoundary = false; } //================================================================================ /*! * \brief Destructor */ //================================================================================ StdMeshers_RadialQuadrangle_1D2D::~StdMeshers_RadialQuadrangle_1D2D() {} //======================================================================= //function : CheckHypothesis //purpose : //======================================================================= bool StdMeshers_RadialQuadrangle_1D2D::CheckHypothesis (SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, SMESH_Hypothesis::Hypothesis_Status& aStatus) { // check aShape myNbLayerHypo = 0; myDistributionHypo = 0; list ::const_iterator itl; const list &hyps = GetUsedHypothesis(aMesh, aShape); if ( hyps.size() == 0 ) { aStatus = SMESH_Hypothesis::HYP_MISSING; return false; // can't work with no hypothesis } if ( hyps.size() > 1 ) { aStatus = SMESH_Hypothesis::HYP_ALREADY_EXIST; return false; } const SMESHDS_Hypothesis *theHyp = hyps.front(); string hypName = theHyp->GetName(); if (hypName == "NumberOfLayers2D") { myNbLayerHypo = static_cast(theHyp); aStatus = SMESH_Hypothesis::HYP_OK; return true; } if (hypName == "LayerDistribution2D") { myDistributionHypo = static_cast(theHyp); aStatus = SMESH_Hypothesis::HYP_OK; return true; } aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE; return true; } //======================================================================= //function : Compute //purpose : //======================================================================= bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape) { TopExp_Explorer exp; SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); myHelper = new SMESH_MesherHelper( aMesh ); myHelper->IsQuadraticSubMesh( aShape ); myLayerPositions.clear(); TopoDS_Edge E1,E2,E3; Handle(Geom_Curve) C1,C2,C3; double f1,l1,f2,l2,f3,l3; int nbe = 0; for ( exp.Init( aShape, TopAbs_EDGE ); exp.More(); exp.Next() ) { nbe++; TopoDS_Edge E = TopoDS::Edge( exp.Current() ); if(nbe==1) { E1 = E; C1 = BRep_Tool::Curve(E,f1,l1); } else if(nbe==2) { E2 = E; C2 = BRep_Tool::Curve(E,f2,l2); } else if(nbe==3) { E3 = E; C3 = BRep_Tool::Curve(E,f3,l3); } } if(nbe>3) return error(COMPERR_BAD_SHAPE); gp_Pnt P0,P1; // points for rotation TColgp_SequenceOfPnt Points; // angles for rotation TColStd_SequenceOfReal Angles; // Nodes1 and Nodes2 - nodes along radiuses // CNodes - nodes on circle edge std::vector< const SMDS_MeshNode* > Nodes1, Nodes2, CNodes; SMDS_MeshNode * NC; // parameters edge nodes on face TColgp_SequenceOfPnt2d Pnts2d1, Pnts2d2; gp_Pnt2d PC; int faceID = meshDS->ShapeToIndex(aShape); TopoDS_Face F = TopoDS::Face(aShape); Handle(Geom_Surface) S = BRep_Tool::Surface(F); // orientation bool IsForward = F.Orientation()==TopAbs_FORWARD; //cout<<"RadialQuadrangle_1D2D::Compute nbe = "<Compute( aMesh, CircEdge, false, MeshDim_1D ); if( !ok ) return false; std::map< double, const SMDS_MeshNode* > theNodes; GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes); CNodes.clear(); std::map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin(); const SMDS_MeshNode* NF = (*itn).second; CNodes.push_back( (*itn).second ); double fang = (*itn).first; itn++; for(; itn != theNodes.end(); itn++ ) { CNodes.push_back( (*itn).second ); double ang = (*itn).first - fang; if( ang>PI ) ang = ang - 2*PI; if( ang<-PI ) ang = ang + 2*PI; Angles.Append( ang ); } P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() ); P0 = aCirc->Location(); myLayerPositions.clear(); computeLayerPositions(P0,P1); exp.Init( CircEdge, TopAbs_VERTEX ); TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() ); gp_Pnt2d p2dV = BRep_Tool::Parameters( V1, TopoDS::Face(aShape) ); NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z()); GeomAPI_ProjectPointOnSurf PPS(P0,S); double U0,V0; PPS.Parameters(1,U0,V0); meshDS->SetNodeOnFace(NC, faceID, U0, V0); PC = gp_Pnt2d(U0,V0); gp_Vec aVec(P0,P1); gp_Vec2d aVec2d(PC,p2dV); Nodes1.resize( myLayerPositions.size()+1 ); Nodes2.resize( myLayerPositions.size()+1 ); int i = 0; for(; iAddNode(P.X(), P.Y(), P.Z()); Nodes1[i] = node; Nodes2[i] = node; double U = PC.X() + aVec2d.X()*myLayerPositions[i]; double V = PC.Y() + aVec2d.Y()*myLayerPositions[i]; meshDS->SetNodeOnFace( node, faceID, U, V ); Pnts2d1.Append(gp_Pnt2d(U,V)); Pnts2d2.Append(gp_Pnt2d(U,V)); } Nodes1[Nodes1.size()-1] = NF; Nodes2[Nodes1.size()-1] = NF; } else if(nbe==2) { // one curve must be a half of circle and other curve must be // a segment of line Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(C1); while( !tc.IsNull() ) { C1 = tc->BasisCurve(); tc = Handle(Geom_TrimmedCurve)::DownCast(C1); } tc = Handle(Geom_TrimmedCurve)::DownCast(C2); while( !tc.IsNull() ) { C2 = tc->BasisCurve(); tc = Handle(Geom_TrimmedCurve)::DownCast(C2); } Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1); Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast(C2); CircEdge = E1; LinEdge1 = E2; double fp = f1; double lp = l1; if( aCirc.IsNull() ) { aCirc = Handle(Geom_Circle)::DownCast(C2); CircEdge = E2; LinEdge1 = E1; fp = f2; lp = l2; aLine = Handle(Geom_Line)::DownCast(C3); } if( aCirc.IsNull() ) { // not circle return error(COMPERR_BAD_SHAPE); } if( fabs(fabs(lp-fp)-PI) > Precision::Confusion() ) { // not half of circle return error(COMPERR_BAD_SHAPE); } if( aLine.IsNull() ) { // other curve not line return error(COMPERR_BAD_SHAPE); } SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1); if( sm1 ) { SMESHDS_SubMesh* sdssm1 = sm1->GetSubMeshDS(); if( sdssm1 ) { if( sm1->GetSubMeshDS()->NbNodes()>0 ) { SMESH_subMesh* sm = aMesh.GetSubMesh(F); SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); smError.reset(new SMESH_ComputeError(COMPERR_ALGO_FAILED, "Invalid set of hypothesises",this)); return false; } } } bool ok = _gen->Compute( aMesh, CircEdge, false, MeshDim_1D ); if( !ok ) return false; std::map< double, const SMDS_MeshNode* > theNodes; GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes); CNodes.clear(); std::map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin(); const SMDS_MeshNode* NF = (*itn).second; CNodes.push_back( (*itn).second ); double fang = (*itn).first; itn++; const SMDS_MeshNode* NL; int nbn = 1; for(; itn != theNodes.end(); itn++ ) { nbn++; if( nbn == theNodes.size() ) NL = (*itn).second; CNodes.push_back( (*itn).second ); double ang = (*itn).first - fang; if( ang>PI ) ang = ang - 2*PI; if( ang<-PI ) ang = ang + 2*PI; Angles.Append( ang ); } P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() ); gp_Pnt P2( NL->X(), NL->Y(), NL->Z() ); P0 = aCirc->Location(); myLayerPositions.clear(); computeLayerPositions(P0,P1); gp_Vec aVec(P0,P1); int edgeID = meshDS->ShapeToIndex(LinEdge1); // check orientation Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge1,fp,lp); gp_Pnt Ptmp; Crv->D0(fp,Ptmp); bool ori = true; if( P1.Distance(Ptmp) > Precision::Confusion() ) ori = false; // get UV points for edge gp_Pnt2d PF,PL; BRep_Tool::UVPoints( LinEdge1, TopoDS::Face(aShape), PF, PL ); PC = gp_Pnt2d( (PF.X()+PL.X())/2, (PF.Y()+PL.Y())/2 ); gp_Vec2d V2d; if(ori) V2d = gp_Vec2d(PC,PF); else V2d = gp_Vec2d(PC,PL); // add nodes on edge double cp = (fp+lp)/2; double dp2 = (lp-fp)/2; NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z()); meshDS->SetNodeOnEdge(NC, edgeID, cp); Nodes1.resize( myLayerPositions.size()+1 ); Nodes2.resize( myLayerPositions.size()+1 ); int i = 0; for(; iAddNode(P.X(), P.Y(), P.Z()); Nodes1[i] = node; double param; if(ori) param = fp + dp2*(1-myLayerPositions[i]); else param = cp + dp2*myLayerPositions[i]; meshDS->SetNodeOnEdge(node, edgeID, param); P = gp_Pnt( P0.X() - aVec.X()*myLayerPositions[i], P0.Y() - aVec.Y()*myLayerPositions[i], P0.Z() - aVec.Z()*myLayerPositions[i] ); node = meshDS->AddNode(P.X(), P.Y(), P.Z()); Nodes2[i] = node; if(!ori) param = fp + dp2*(1-myLayerPositions[i]); else param = cp + dp2*myLayerPositions[i]; meshDS->SetNodeOnEdge(node, edgeID, param); // parameters on face gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i], PC.Y() + V2d.Y()*myLayerPositions[i] ); Pnts2d1.Append(P2d); P2d = gp_Pnt2d( PC.X() - V2d.X()*myLayerPositions[i], PC.Y() - V2d.Y()*myLayerPositions[i] ); Pnts2d2.Append(P2d); } Nodes1[ myLayerPositions.size() ] = NF; Nodes2[ myLayerPositions.size() ] = NL; // create 1D elements on edge std::vector< const SMDS_MeshNode* > tmpNodes; tmpNodes.resize(2*Nodes1.size()+1); for(i=0; iAddEdge( tmpNodes[i-1], tmpNodes[i] ); if(ME) meshDS->SetMeshElementOnShape(ME, edgeID); } } else { // nbe==3 // one curve must be a part of circle and other curves must be // segments of line Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(C1); while( !tc.IsNull() ) { C1 = tc->BasisCurve(); tc = Handle(Geom_TrimmedCurve)::DownCast(C1); } tc = Handle(Geom_TrimmedCurve)::DownCast(C2); while( !tc.IsNull() ) { C2 = tc->BasisCurve(); tc = Handle(Geom_TrimmedCurve)::DownCast(C2); } tc = Handle(Geom_TrimmedCurve)::DownCast(C3); while( !tc.IsNull() ) { C3 = tc->BasisCurve(); tc = Handle(Geom_TrimmedCurve)::DownCast(C3); } Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1); Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast(C2); Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast(C3); CircEdge = E1; LinEdge1 = E2; LinEdge2 = E3; double fp = f1; double lp = l1; if( aCirc.IsNull() ) { aCirc = Handle(Geom_Circle)::DownCast(C2); CircEdge = E2; LinEdge1 = E3; LinEdge2 = E1; fp = f2; lp = l2; aLine1 = Handle(Geom_Line)::DownCast(C3); aLine2 = Handle(Geom_Line)::DownCast(C1); if( aCirc.IsNull() ) { aCirc = Handle(Geom_Circle)::DownCast(C3); CircEdge = E3; LinEdge1 = E1; LinEdge2 = E2; fp = f3; lp = l3; aLine1 = Handle(Geom_Line)::DownCast(C1); aLine2 = Handle(Geom_Line)::DownCast(C2); } } if( aCirc.IsNull() ) { // not circle return error(COMPERR_BAD_SHAPE); } if( aLine1.IsNull() || aLine2.IsNull() ) { // other curve not line return error(COMPERR_BAD_SHAPE); } SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1); SMESH_subMesh* sm2 = aMesh.GetSubMesh(LinEdge2); if( sm1 && sm2 ) { SMESHDS_SubMesh* sdssm1 = sm1->GetSubMeshDS(); SMESHDS_SubMesh* sdssm2 = sm2->GetSubMeshDS(); if( sdssm1 && sdssm2 ) { if( sm1->GetSubMeshDS()->NbNodes()>0 || sm2->GetSubMeshDS()->NbNodes()>0 ) { SMESH_subMesh* sm = aMesh.GetSubMesh(F); SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); smError.reset(new SMESH_ComputeError(COMPERR_ALGO_FAILED, "Invalid set of hypothesises",this)); return false; } } } bool ok = _gen->Compute( aMesh, CircEdge, false, MeshDim_1D ); if( !ok ) return false; std::map< double, const SMDS_MeshNode* > theNodes; GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes); CNodes.clear(); std::map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin(); const SMDS_MeshNode* NF = (*itn).second; CNodes.push_back( (*itn).second ); double fang = (*itn).first; itn++; const SMDS_MeshNode* NL; int nbn = 1; for(; itn != theNodes.end(); itn++ ) { nbn++; if( nbn == theNodes.size() ) NL = (*itn).second; CNodes.push_back( (*itn).second ); double ang = (*itn).first - fang; if( ang>PI ) ang = ang - 2*PI; if( ang<-PI ) ang = ang + 2*PI; Angles.Append( ang ); } P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() ); gp_Pnt P2( NL->X(), NL->Y(), NL->Z() ); P0 = aCirc->Location(); myLayerPositions.clear(); computeLayerPositions(P0,P1); exp.Init( LinEdge1, TopAbs_VERTEX ); TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() ); exp.Next(); TopoDS_Vertex V2 = TopoDS::Vertex( exp.Current() ); gp_Pnt PE1 = BRep_Tool::Pnt(V1); gp_Pnt PE2 = BRep_Tool::Pnt(V2); if( ( P1.Distance(PE1) > Precision::Confusion() ) && ( P1.Distance(PE2) > Precision::Confusion() ) ) { TopoDS_Edge E = LinEdge1; LinEdge1 = LinEdge2; LinEdge2 = E; } TopoDS_Vertex VC; if( ( P1.Distance(PE1) > Precision::Confusion() ) && ( P2.Distance(PE1) > Precision::Confusion() ) ) { VC = V1; } else VC = V2; int vertID = meshDS->ShapeToIndex(VC); // LinEdge1 int edgeID = meshDS->ShapeToIndex(LinEdge1); gp_Vec aVec(P0,P1); // check orientation Handle(Geom_Curve) Crv = BRep_Tool::Curve(LinEdge1,fp,lp); gp_Pnt Ptmp; Crv->D0(fp,Ptmp); bool ori = false; if( P1.Distance(Ptmp) > Precision::Confusion() ) ori = true; // get UV points for edge gp_Pnt2d PF,PL; BRep_Tool::UVPoints( LinEdge1, TopoDS::Face(aShape), PF, PL ); gp_Vec2d V2d; if(ori) { V2d = gp_Vec2d(PF,PL); PC = PF; } else { V2d = gp_Vec2d(PL,PF); PC = PL; } NC = meshDS->AddNode(P0.X(), P0.Y(), P0.Z()); meshDS->SetNodeOnVertex(NC, vertID); double dp = lp-fp; Nodes1.resize( myLayerPositions.size()+1 ); int i = 0; for(; iAddNode(P.X(), P.Y(), P.Z()); Nodes1[i] = node; double param; if(!ori) param = fp + dp*(1-myLayerPositions[i]); else param = fp + dp*myLayerPositions[i]; meshDS->SetNodeOnEdge(node, edgeID, param); // parameters on face gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i], PC.Y() + V2d.Y()*myLayerPositions[i] ); Pnts2d1.Append(P2d); } Nodes1[ myLayerPositions.size() ] = NF; // create 1D elements on edge SMDS_MeshEdge* ME = myHelper->AddEdge( NC, Nodes1[0] ); if(ME) meshDS->SetMeshElementOnShape(ME, edgeID); for(i=1; iAddEdge( Nodes1[i-1], Nodes1[i] ); if(ME) meshDS->SetMeshElementOnShape(ME, edgeID); } // LinEdge2 edgeID = meshDS->ShapeToIndex(LinEdge2); aVec = gp_Vec(P0,P2); // check orientation Crv = BRep_Tool::Curve(LinEdge2,fp,lp); Crv->D0(fp,Ptmp); ori = false; if( P2.Distance(Ptmp) > Precision::Confusion() ) ori = true; // get UV points for edge BRep_Tool::UVPoints( LinEdge2, TopoDS::Face(aShape), PF, PL ); if(ori) { V2d = gp_Vec2d(PF,PL); PC = PF; } else { V2d = gp_Vec2d(PL,PF); PC = PL; } dp = lp-fp; Nodes2.resize( myLayerPositions.size()+1 ); for(i=0; iAddNode(P.X(), P.Y(), P.Z()); Nodes2[i] = node; double param; if(!ori) param = fp + dp*(1-myLayerPositions[i]); else param = fp + dp*myLayerPositions[i]; meshDS->SetNodeOnEdge(node, edgeID, param); // parameters on face gp_Pnt2d P2d( PC.X() + V2d.X()*myLayerPositions[i], PC.Y() + V2d.Y()*myLayerPositions[i] ); Pnts2d2.Append(P2d); } Nodes2[ myLayerPositions.size() ] = NL; // create 1D elements on edge ME = myHelper->AddEdge( NC, Nodes2[0] ); if(ME) meshDS->SetMeshElementOnShape(ME, edgeID); for(i=1; iAddEdge( Nodes2[i-1], Nodes2[i] ); if(ME) meshDS->SetMeshElementOnShape(ME, edgeID); } } // create nodes and mesh elements on face // find axis of rotation gp_Pnt P2 = gp_Pnt( CNodes[1]->X(), CNodes[1]->Y(), CNodes[1]->Z() ); gp_Vec Vec1(P0,P1); gp_Vec Vec2(P0,P2); gp_Vec Axis = Vec1.Crossed(Vec2); // create elements int i = 1; //cout<<"Angles.Length() = "<GetLayerDistribution() ) return error( "Invalid LayerDistribution hypothesis"); myUsedHyps.clear(); myUsedHyps.push_back( hyp->GetLayerDistribution() ); TopoDS_Edge edge = BRepBuilderAPI_MakeEdge( pIn, pOut ); SMESH_Hypothesis::Hypothesis_Status aStatus; if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, edge, aStatus )) return error( "StdMeshers_Regular_1D::CheckHypothesis() failed " "with LayerDistribution hypothesis"); BRepAdaptor_Curve C3D(edge); double f = C3D.FirstParameter(), l = C3D.LastParameter(); list< double > params; if ( !StdMeshers_Regular_1D::computeInternalParameters( aMesh, C3D, len, f, l, params, false )) return error("StdMeshers_Regular_1D failed to compute layers distribution"); positions.clear(); positions.reserve( params.size() ); for (list::iterator itU = params.begin(); itU != params.end(); itU++) positions.push_back( *itU / len ); return true; } protected: // ----------------------------------------------------------------------------- TNodeDistributor( int hypId, int studyId, SMESH_Gen* gen) : StdMeshers_Regular_1D( hypId, studyId, gen) { } // ----------------------------------------------------------------------------- virtual const list & GetUsedHypothesis(SMESH_Mesh &, const TopoDS_Shape &, const bool) { return myUsedHyps; } // ----------------------------------------------------------------------------- }; //================================================================================ /*! * \brief Compute positions of nodes between the internal and the external surfaces * \retval bool - is a success */ //================================================================================ bool StdMeshers_RadialQuadrangle_1D2D::computeLayerPositions(const gp_Pnt& pIn, const gp_Pnt& pOut) { if ( myNbLayerHypo ) { int nbSegments = myNbLayerHypo->GetNumberOfLayers(); myLayerPositions.resize( nbSegments - 1 ); for ( int z = 1; z < nbSegments; ++z ) myLayerPositions[ z - 1 ] = double( z )/ double( nbSegments ); return true; } if ( myDistributionHypo ) { SMESH_Mesh * mesh = myHelper->GetMesh(); if ( !TNodeDistributor::GetDistributor(*mesh)->Compute( myLayerPositions, pIn, pOut, *mesh, myDistributionHypo )) { error( TNodeDistributor::GetDistributor(*mesh)->GetComputeError() ); return false; } } RETURN_BAD_RESULT("Bad hypothesis"); } //======================================================================= //function : Evaluate //purpose : //======================================================================= bool StdMeshers_RadialQuadrangle_1D2D::Evaluate(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, MapShapeNbElems& aResMap) { if( aShape.ShapeType() != TopAbs_FACE ) { return false; } SMESH_subMesh * smf = aMesh.GetSubMesh(aShape); MapShapeNbElemsItr anIt = aResMap.find(smf); if( anIt != aResMap.end() ) { return false; } myLayerPositions.clear(); gp_Pnt P0(0,0,0); gp_Pnt P1(100,0,0); computeLayerPositions(P0,P1); TopoDS_Edge E1,E2,E3; Handle(Geom_Curve) C1,C2,C3; double f1,l1,f2,l2,f3,l3; int nbe = 0; TopExp_Explorer exp; for ( exp.Init( aShape, TopAbs_EDGE ); exp.More(); exp.Next() ) { nbe++; TopoDS_Edge E = TopoDS::Edge( exp.Current() ); if(nbe==1) { E1 = E; C1 = BRep_Tool::Curve(E,f1,l1); } else if(nbe==2) { E2 = E; C2 = BRep_Tool::Curve(E,f2,l2); } else if(nbe==3) { E3 = E; C3 = BRep_Tool::Curve(E,f3,l3); } } TopoDS_Edge CircEdge, LinEdge1, LinEdge2; int nb0d=0, nb2d_tria=0, nb2d_quad=0; bool isQuadratic = false; if(nbe==1) { // C1 must be a circle Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1); if( !aCirc.IsNull() ) { bool ok = _gen->Evaluate( aMesh, CircEdge, aResMap ); if(ok) { SMESH_subMesh * sm = aMesh.GetSubMesh(CircEdge); MapShapeNbElemsItr anIt = aResMap.find(sm); std::vector aVec = (*anIt).second; isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge]; if(isQuadratic) { // main nodes nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size(); // radial medium nodes nb0d += (aVec[SMDSEntity_Node]+1) * (myLayerPositions.size()+1); // other medium nodes nb0d += (aVec[SMDSEntity_Node]+1) * myLayerPositions.size(); } else { nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size(); } nb2d_tria = aVec[SMDSEntity_Node] + 1; nb2d_quad = nb0d; } } } else if(nbe==2) { // one curve must be a half of circle and other curve must be // a segment of line Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(C1); while( !tc.IsNull() ) { C1 = tc->BasisCurve(); tc = Handle(Geom_TrimmedCurve)::DownCast(C1); } tc = Handle(Geom_TrimmedCurve)::DownCast(C2); while( !tc.IsNull() ) { C2 = tc->BasisCurve(); tc = Handle(Geom_TrimmedCurve)::DownCast(C2); } Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1); Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast(C2); CircEdge = E1; LinEdge1 = E2; double fp = f1; double lp = l1; if( aCirc.IsNull() ) { aCirc = Handle(Geom_Circle)::DownCast(C2); CircEdge = E2; LinEdge1 = E1; fp = f2; lp = l2; aLine = Handle(Geom_Line)::DownCast(C3); } bool ok = !aCirc.IsNull() && !aLine.IsNull(); if( fabs(fabs(lp-fp)-PI) > Precision::Confusion() ) { // not half of circle ok = false; } SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1); MapShapeNbElemsItr anIt = aResMap.find(sm1); if( anIt!=aResMap.end() ) { ok = false; } if(ok) { ok = _gen->Evaluate( aMesh, CircEdge, aResMap ); } if(ok) { SMESH_subMesh * sm = aMesh.GetSubMesh(CircEdge); MapShapeNbElemsItr anIt = aResMap.find(sm); std::vector aVec = (*anIt).second; isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge]; if(isQuadratic) { // main nodes nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size(); // radial medium nodes nb0d += aVec[SMDSEntity_Node] * (myLayerPositions.size()+1); // other medium nodes nb0d += (aVec[SMDSEntity_Node]+1) * myLayerPositions.size(); } else { nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size(); } nb2d_tria = aVec[SMDSEntity_Node] + 1; nb2d_quad = nb2d_tria * myLayerPositions.size(); // add evaluation for edges std::vector aResVec(SMDSEntity_Last); for(int i=SMDSEntity_Node; iBasisCurve(); tc = Handle(Geom_TrimmedCurve)::DownCast(C1); } tc = Handle(Geom_TrimmedCurve)::DownCast(C2); while( !tc.IsNull() ) { C2 = tc->BasisCurve(); tc = Handle(Geom_TrimmedCurve)::DownCast(C2); } tc = Handle(Geom_TrimmedCurve)::DownCast(C3); while( !tc.IsNull() ) { C3 = tc->BasisCurve(); tc = Handle(Geom_TrimmedCurve)::DownCast(C3); } Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1); Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast(C2); Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast(C3); CircEdge = E1; LinEdge1 = E2; LinEdge2 = E3; double fp = f1; double lp = l1; if( aCirc.IsNull() ) { aCirc = Handle(Geom_Circle)::DownCast(C2); CircEdge = E2; LinEdge1 = E3; LinEdge2 = E1; fp = f2; lp = l2; aLine1 = Handle(Geom_Line)::DownCast(C3); aLine2 = Handle(Geom_Line)::DownCast(C1); if( aCirc.IsNull() ) { aCirc = Handle(Geom_Circle)::DownCast(C3); CircEdge = E3; LinEdge1 = E1; LinEdge2 = E2; fp = f3; lp = l3; aLine1 = Handle(Geom_Line)::DownCast(C1); aLine2 = Handle(Geom_Line)::DownCast(C2); } } bool ok = !aCirc.IsNull() && !aLine1.IsNull() && !aLine1.IsNull(); SMESH_subMesh* sm = aMesh.GetSubMesh(LinEdge1); MapShapeNbElemsItr anIt = aResMap.find(sm); if( anIt!=aResMap.end() ) { ok = false; } sm = aMesh.GetSubMesh(LinEdge2); anIt = aResMap.find(sm); if( anIt!=aResMap.end() ) { ok = false; } if(ok) { ok = _gen->Evaluate( aMesh, CircEdge, aResMap ); } if(ok) { SMESH_subMesh * sm = aMesh.GetSubMesh(CircEdge); MapShapeNbElemsItr anIt = aResMap.find(sm); std::vector aVec = (*anIt).second; isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge]; if(isQuadratic) { // main nodes nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size(); // radial medium nodes nb0d += aVec[SMDSEntity_Node] * (myLayerPositions.size()+1); // other medium nodes nb0d += (aVec[SMDSEntity_Node]+1) * myLayerPositions.size(); } else { nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size(); } nb2d_tria = aVec[SMDSEntity_Node] + 1; nb2d_quad = nb2d_tria * myLayerPositions.size(); // add evaluation for edges std::vector aResVec(SMDSEntity_Last); for(int i=SMDSEntity_Node; i aResVec(SMDSEntity_Last); for(int i=SMDSEntity_Node; i