// Copyright (C) 2017-2020 CEA/DEN, EDF R&D // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : FrontTrack_NodesOnGeom.hxx // Created : Tue Apr 25 19:12:25 2017 // Author : Edward AGAPOV (eap) #ifndef __FrontTrack_NodesOnGeom_HXX__ #define __FrontTrack_NodesOnGeom_HXX__ #include "FrontTrack_Projector.hxx" #include #include #include #include #include #include namespace FT_Utils { struct XaoGroups; } namespace MEDCoupling { class DataArrayDouble; } namespace XAO { class BrepGeometry; } //-------------------------------------------------------------------------------------------- /*! * \brief Node group and geometry to project onto */ class FT_NodesOnGeom { public: // read node IDs form a file and try to find a boundary sub-shape by name void read( const std::string& nodesFile, const FT_Utils::XaoGroups& xaoGroups, MEDCoupling::DataArrayDouble* nodeCoords, std::vector< FT_Projector > * allProjectorsByDim); // chose boundary shapes by evaluating distance between nodes and shapes //void choseShape( const std::vector< FT_Utils::ShapeAndBndBox >& shapeAndBoxList ); // project nodes to the shapes and move them to new positions void projectAndMove(); // return true if all nodes were successfully relocated bool isOK() const { return _OK; } // return dimension of boundary shapes int getShapeDim() const { return _shapeDim; } // return nb of nodes to move int nbNodes() const { return _nodes.size(); } private: // put nodes in the order for optimal projection void putNodesInOrder(); // get node coordinates gp_Pnt getPoint( const int nodeID ); // change node coordinates void moveNode( const int nodeID, const gp_Pnt& xyz ); // Ids of a node to move and its 2 or 4 neighbors struct FT_NodeToMove { int _nodeToMove; std::vector< int > _neighborNodes; double _params[2]; // parameters on shape (U or UV) found by projection double *_nearParams; // _params of a neighbor already projected node FT_NodeToMove(): _nearParams(0) {} }; std::vector< std::string > _groupNames; int _shapeDim; // dimension of boundary shapes std::vector< FT_NodeToMove > _nodes; // ids of nodes to move and their neighbors std::vector< FT_Projector > _projectors; // FT_Projector's initialized with boundary shapes std::vector< FT_Projector > * _allProjectors; // FT_Projector's for all shapes of _shapeDim MEDCoupling::DataArrayDouble* _nodeCoords; bool _OK; // projecting is successful // map of { FT_NodeToMove::_neighborNodes[i] } to { FT_NodeToMove* } // this map is used to find neighbor nodes typedef NCollection_DataMap< int, std::vector< FT_NodeToMove* > > TNodeIDToLinksMap; TNodeIDToLinksMap _neigborsMap; std::vector _nodesOrder; }; #endif