// Copyright (C) 2007-2019 CEA/DEN, EDF R&D, OPEN CASCADE // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH : implementation of SMESH idl descriptions // File : StdMeshers_CompositeHexa_3D.cxx // Module : SMESH // Created : Tue Nov 25 11:04:59 2008 // Author : Edward AGAPOV (eap) #include "StdMeshers_CompositeHexa_3D.hxx" #include "SMDS_Mesh.hxx" #include "SMDS_MeshNode.hxx" #include "SMDS_SetIterator.hxx" #include "SMESHDS_Mesh.hxx" #include "SMESHDS_SubMesh.hxx" #include "SMESH_Block.hxx" #include "SMESH_Comment.hxx" #include "SMESH_ComputeError.hxx" #include "SMESH_HypoFilter.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_MeshAlgos.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_subMesh.hxx" #include "StdMeshers_ViscousLayers.hxx" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #ifdef _DEBUG_ // #define DEB_FACES // #define DEB_GRID // #define DUMP_VERT(msg,V) { TopoDS_Vertex v = V; gp_Pnt p = BRep_Tool::Pnt(v); cout << msg << "( "<< p.X()<<", "<& edges); _FaceSide* GetSide(const int i); const _FaceSide* GetSide(const int i) const; int size() const { return myChildren.size(); } int NbVertices() const; int NbCommonVertices( const TopTools_MapOfShape& VV ) const; TopoDS_Vertex FirstVertex() const; TopoDS_Vertex LastVertex() const; TopoDS_Vertex Vertex(int i) const; TopoDS_Edge Edge(int i) const; bool Contain( const _FaceSide& side, int* which=0 ) const; bool Contain( const TopoDS_Vertex& vertex ) const; void AppendSide( const _FaceSide& side ); void SetBottomSide( int i ); int GetNbSegments(SMESH_ProxyMesh& mesh, const SMESHDS_SubMesh* smToCheckEdges=0) const; bool StoreNodes(SMESH_ProxyMesh& mesh, vector& myGrid, bool reverse, bool isProxy, const SMESHDS_SubMesh* smToCheckEdges=0 ); void SetID(EQuadSides id) { myID = id; } static inline const TopoDS_TShape* ptr(const TopoDS_Shape& theShape) { return theShape.TShape().operator->(); } void Dump() const; private: TopoDS_Edge myEdge; list< _FaceSide > myChildren; int myNbChildren; TopTools_MapOfShape myVertices; EQuadSides myID; // debug }; //================================================================================ /*! * \brief Class corresponding to a meshed composite face of a box. * Provides simplified access to it's sub-mesh data. */ class _QuadFaceGrid { typedef list< _QuadFaceGrid > TChildren; public: _QuadFaceGrid(); public: //** Methods to find and orient faces of 6 sides of the box **// //!< initialization bool Init(const TopoDS_Face& f, SMESH_ProxyMesh& mesh ); //!< try to unite self with other face bool AddContinuousFace( const _QuadFaceGrid& f, const TopTools_MapOfShape& internalEdges ); //!< Try to set the side as bottom hirizontal side bool SetBottomSide(const _FaceSide& side, int* sideIndex=0); //!< Return face adjacent to zero-based i-th side of this face _QuadFaceGrid* FindAdjacentForSide(int i, list<_QuadFaceGrid>& faces, EBoxSides id) const; //!< Reverse edges in order to have the bottom edge going along axes of the unit box void ReverseEdges(); bool IsComplex() const { return !myChildren.empty(); } int NbChildren() const { return myChildren.size(); } typedef SMDS_SetIterator< const _QuadFaceGrid&, TChildren::const_iterator, SMDS::SimpleAccessor, SMDS::PassAllValueFilter<_QuadFaceGrid> > TChildIterator; TChildIterator GetChildren() const { return TChildIterator( myChildren.begin(), myChildren.end()); } public: //** Loading and access to mesh **// //!< Load nodes of a mesh bool LoadGrid( SMESH_ProxyMesh& mesh ); //!< Computes normalized parameters of nodes of myGrid void ComputeIJK( int i1, int i2, double v3 ); //!< Return number of segments on the hirizontal sides int GetNbHoriSegments(SMESH_ProxyMesh& mesh, bool withBrothers=false) const; //!< Return number of segments on the vertical sides int GetNbVertSegments(SMESH_ProxyMesh& mesh, bool withBrothers=false) const; //!< Return edge on the hirizontal bottom sides int GetHoriEdges(vector & edges) const; //!< Return a node by its position const SMDS_MeshNode* GetNode(int iHori, int iVert) const; //!< Return node coordinates by its position gp_XYZ GetXYZ(int iHori, int iVert) const; //!< Return normalized parameters of nodes within the unitary cube gp_XYZ& GetIJK(int iCol, int iRow) { return myIJK[ myIndexer( iCol, iRow )]; } public: //** Access to member fields **// //!< Return i-th face side (0IsOK() ); } bool loadCompositeGrid(SMESH_ProxyMesh& mesh); bool fillGrid(SMESH_ProxyMesh& theMesh, vector & theGrid, const _Indexer& theIndexer, int theX, int theY); bool locateChildren(); void setBrothers( set< _QuadFaceGrid* >& notLocatedBrothers ); TopoDS_Face myFace; _FaceSide mySides; bool myReverse; TChildren myChildren; _QuadFaceGrid* myLeftBottomChild; _QuadFaceGrid* myRightBrother; _QuadFaceGrid* myUpBrother; _Indexer myIndexer; vector myGrid; vector myIJK; // normalized parameters of nodes SMESH_ComputeErrorPtr myError; EBoxSides myID; // debug }; //================================================================================ /*! * \brief Constructor */ //================================================================================ StdMeshers_CompositeHexa_3D::StdMeshers_CompositeHexa_3D(int hypId, SMESH_Gen* gen) :SMESH_3D_Algo(hypId, gen) { _name = "CompositeHexa_3D"; _shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit /shape type } //================================================================================ /*! * \brief always return true */ //================================================================================ bool StdMeshers_CompositeHexa_3D::CheckHypothesis(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, Hypothesis_Status& aStatus) { aStatus = HYP_OK; return true; } namespace { //================================================================================ /*! * \brief Checks structure of a quadrangular mesh at the common VERTEX of two EDGEs. * Returns true if there are two quadrangles near the VERTEX. */ //================================================================================ bool isContinuousMesh(TopoDS_Edge E1, TopoDS_Edge E2, const TopoDS_Face& F, const SMESH_ProxyMesh& mesh) { if (E1.Orientation() > TopAbs_REVERSED) // INTERNAL E1.Orientation( TopAbs_FORWARD ); if (E2.Orientation() > TopAbs_REVERSED) // INTERNAL E2.Orientation( TopAbs_FORWARD ); TopoDS_Vertex V; if ( !TopExp::CommonVertex( E1, E2, V )) return false; const SMDS_MeshNode* n = SMESH_Algo::VertexNode( V, mesh.GetMeshDS() ); if ( !n ) return SMESH_Algo::IsContinuous( E1, E2 ); // meshed by "composite segment" n = mesh.GetProxyNode( n ); const SMESHDS_SubMesh* sm = mesh.GetSubMesh( F ); if ( !sm ) return false; int nbQuads = 0; SMDS_ElemIteratorPtr fIt = mesh.GetInverseElementIterator( n, SMDSAbs_Face ); if ( !fIt->more() ) return SMESH_Algo::IsContinuous( E1, E2 ); // meshed by "composite segment" while ( fIt->more() ) { const SMDS_MeshElement* f = fIt->next(); if ( !sm->Contains( f )) continue; if ( f->NbCornerNodes() == 4 ) ++nbQuads; else return false; } return nbQuads == 2; } //================================================================================ /*! * \brief Return true if a vertex holds a node and this node is used by some quadrangle */ //================================================================================ // bool isMeshedVertex( TopoDS_Vertex& V, // const SMESH_Mesh& mesh ) // { // const SMDS_MeshNode* n = SMESH_Algo::VertexNode( V, mesh.GetMeshDS() ); // if ( !n ) return false; // SMDS_ElemIteratorPtr fIt = n->GetInverseElementIterator(SMDSAbs_Face); // while ( fIt->more() ) // { // const SMDS_MeshElement* f = fIt->next(); // if ( f->NbCornerNodes() == 4 ) // return true; // } // return false; // } //================================================================================ /*! * \brief Finds VERTEXes located at block corners */ //================================================================================ void getBlockCorners( SMESH_ProxyMesh& mesh, const TopoDS_Shape& shape, TopTools_MapOfShape& cornerVV) { std::set faceIDs; // ids of FACEs in the shape TopExp_Explorer exp; for ( exp.Init( shape, TopAbs_FACE ); exp.More(); exp.Next() ) faceIDs.insert( mesh.GetMeshDS()->ShapeToIndex( exp.Current() )); TopTools_MapOfShape checkedVV; for ( exp.Init( shape, TopAbs_VERTEX ); exp.More(); exp.Next() ) { TopoDS_Vertex V = TopoDS::Vertex( exp.Current() ); if ( !checkedVV.Add( V )) continue; const SMDS_MeshNode* n = SMESH_Algo::VertexNode( V, mesh.GetMeshDS() ); if ( !n ) continue; const SMDS_MeshNode* nProxy = mesh.GetProxyNode( n ); bool isProxy = ( nProxy != n ); n = nProxy; int nbQuads = 0; SMDS_ElemIteratorPtr fIt = mesh.GetInverseElementIterator( n, SMDSAbs_Face ); while ( fIt->more() ) { const SMDS_MeshElement* f = fIt->next(); if ( !faceIDs.count( f->getshapeId() )) continue; if ( isProxy && !mesh.GetSubMesh( f->getshapeId() )->Contains( f )) continue; if ( f->NbCornerNodes() == 4 ) ++nbQuads; else nbQuads = 100; } if ( nbQuads == 3 ) cornerVV.Add( V ); } } //================================================================================ /*! * \brief Return EDGEs dividing one box side */ //================================================================================ bool getInternalEdges( SMESH_Mesh& mesh, const TopoDS_Shape& shape, const TopTools_MapOfShape& cornerVV, TopTools_MapOfShape& internEE) { TopTools_IndexedMapOfShape subEE; TopExp::MapShapes( shape, TopAbs_EDGE, subEE ); //TopExp::MapShapes( shape, TopAbs_FACE, subFF ); TopoDS_Vertex VV[2]; TopTools_MapOfShape subChecked, ridgeEE; TopTools_MapIteratorOfMapOfShape vIt( cornerVV ); for ( ; vIt.More(); vIt.Next() ) { TopoDS_Shape V0 = vIt.Key(); // walk from one corner VERTEX to another along ridge EDGEs PShapeIteratorPtr riIt = SMESH_MesherHelper::GetAncestors( V0, mesh, TopAbs_EDGE ); while ( const TopoDS_Shape* riE = riIt->next() ) { if ( !subEE.Contains( *riE ) || !subChecked.Add( *riE )) continue; TopoDS_Edge ridgeE = TopoDS::Edge( *riE ); while ( !ridgeE.IsNull() ) { if ( !ridgeEE.Add( ridgeE )) break; TopExp::Vertices( ridgeE, VV[0], VV[1] ); TopoDS_Shape V1 = VV[ V0.IsSame( VV[0] )]; if ( cornerVV.Contains( V1 ) ) break; // ridgeE reached a corner VERTEX // detect internal EDGEs among those sharing V1. There can be 2, 3 or 4 EDGEs and // number of internal EDGEs is N-2 TopoDS_Shape nextRidgeE; PShapeIteratorPtr eIt = SMESH_MesherHelper::GetAncestors( V1, mesh, TopAbs_EDGE ); while ( const TopoDS_Shape* E = eIt->next() ) { if ( E->IsSame( ridgeE ) || !subEE.Contains( *E ) || !subChecked.Add( *E )) continue; // look for FACEs sharing both E and ridgeE PShapeIteratorPtr fIt = SMESH_MesherHelper::GetAncestors( *E, mesh, TopAbs_FACE ); while ( const TopoDS_Shape* F = fIt->next() ) { if ( !SMESH_MesherHelper::IsSubShape( ridgeE, *F )) continue; if ( isContinuousMesh( ridgeE, TopoDS::Edge( *E ), TopoDS::Face( *F ), mesh )) { nextRidgeE = *E; } else { internEE.Add( *E ); } break; } } // look for the next ridge EDGE ending at V1 if ( nextRidgeE.IsNull() ) { eIt = SMESH_MesherHelper::GetAncestors( V1, mesh, TopAbs_EDGE ); while ( const TopoDS_Shape* E = eIt->next() ) if ( !ridgeE.IsSame( *E ) && !internEE.Contains( *E ) && subEE.Contains( *E )) { nextRidgeE = *E; break; } } ridgeE = TopoDS::Edge( nextRidgeE ); V0 = V1; if ( ridgeE.IsNull() ) return false; } // check EDGEs around the last VERTEX of ridgeE } // loop on ridge EDGEs around a corner VERTEX } // loop on on corner VERTEXes if ( subEE.Extent() > ridgeEE.Extent() + internEE.Extent() ) // PAL23269 for ( int i = 1; i < subEE.Extent(); ++i ) if ( !ridgeEE.Contains( subEE(i) )) internEE.Add( subEE(i) ); return true; } // getInternalEdges() //================================================================================ /*! * \brief Find a face including two given nodes */ //================================================================================ const SMDS_MeshElement* FindFaceByNodes( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, TIDSortedElemSet avoidSet, SMESH_ProxyMesh& mesh) { SMDS_ElemIteratorPtr faceIt = mesh.GetInverseElementIterator( n1, SMDSAbs_Face ); while ( faceIt->more() ) { const SMDS_MeshElement* f = faceIt->next(); if ( !avoidSet.count( f ) && f->GetNodeIndex( n2 ) >= 0 ) return f; } return 0; } //================================================================================ /*! * \brief Check that a segment bounds a face belonging to smOfFaces */ //================================================================================ bool IsSegmentOnSubMeshBoundary( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMESHDS_SubMesh* smOfFaces, SMESH_ProxyMesh& mesh) { TIDSortedElemSet avoidSet; bool faceFound = false; while ( const SMDS_MeshElement* f = FindFaceByNodes( n1, n2, avoidSet, mesh )) { if (( faceFound = smOfFaces->Contains( f ))) break; avoidSet.insert( f ); } return faceFound; } } // namespace //================================================================================ /*! * \brief Tries to find 6 sides of a box */ //================================================================================ bool StdMeshers_CompositeHexa_3D::findBoxFaces( const TopoDS_Shape& shape, list< _QuadFaceGrid >& boxFaces, SMESH_Mesh& mesh, SMESH_ProxyMesh& proxyMesh, _QuadFaceGrid * & fBottom, _QuadFaceGrid * & fTop, _QuadFaceGrid * & fFront, _QuadFaceGrid * & fBack, _QuadFaceGrid * & fLeft, _QuadFaceGrid * & fRight) { TopTools_MapOfShape cornerVertices; getBlockCorners( proxyMesh, shape, cornerVertices ); if ( cornerVertices.Extent() != 8 ) return error( COMPERR_BAD_INPUT_MESH, "Can't find 8 corners of a block by 2D mesh" ); TopTools_MapOfShape internalEdges; if ( !getInternalEdges( mesh, shape, cornerVertices, internalEdges )) return error( COMPERR_BAD_INPUT_MESH, "2D mesh is not suitable for i,j,k hexa meshing" ); list< _QuadFaceGrid >::iterator boxFace; TopExp_Explorer exp; int nbFaces = 0; for ( exp.Init( shape, TopAbs_FACE ); exp.More(); exp.Next(), ++nbFaces ) { _QuadFaceGrid f; if ( !f.Init( TopoDS::Face( exp.Current() ), proxyMesh )) return error (COMPERR_BAD_SHAPE); _QuadFaceGrid* prevContinuous = 0; for ( boxFace = boxFaces.begin(); boxFace != boxFaces.end(); ++boxFace ) { if ( prevContinuous ) { if ( prevContinuous->AddContinuousFace( *boxFace, internalEdges )) boxFace = --boxFaces.erase( boxFace ); } else if ( boxFace->AddContinuousFace( f, internalEdges )) { prevContinuous = & (*boxFace); } } if ( !prevContinuous ) boxFaces.push_back( f ); } // Check what we have if ( boxFaces.size() != 6 && nbFaces != 6) return error (COMPERR_BAD_SHAPE, SMESH_Comment("Can't find 6 sides of a box. Number of found sides - ")<Init( TopoDS::Face( exp.Current() ), proxyMesh ); } // ---------------------------------------- // Find out position of faces within a box // ---------------------------------------- // start from a bottom face fBottom = &boxFaces.front(); fBottom->SetID( B_BOTTOM ); // find vertical faces fFront = fBottom->FindAdjacentForSide( Q_BOTTOM, boxFaces, B_FRONT ); fLeft = fBottom->FindAdjacentForSide( Q_RIGHT, boxFaces, B_LEFT ); fBack = fBottom->FindAdjacentForSide( Q_TOP, boxFaces, B_BACK ); fRight = fBottom->FindAdjacentForSide( Q_LEFT, boxFaces, B_RIGHT ); // check the found if ( !fFront || !fBack || !fLeft || !fRight ) return error(COMPERR_BAD_SHAPE); // find a top face fTop = 0; for ( boxFace = ++boxFaces.begin(); boxFace != boxFaces.end() && !fTop; ++boxFace ) { fTop = & (*boxFace); fTop->SetID( B_TOP ); if ( fTop==fFront || fTop==fLeft || fTop==fBack || fTop==fRight ) fTop = 0; } // set bottom of the top side if ( !fTop->SetBottomSide( fFront->GetSide( Q_TOP ) )) { if ( !fFront->IsComplex() ) return error( ERR_LI("Error in StdMeshers_CompositeHexa_3D::Compute()")); else { _QuadFaceGrid::TChildIterator chIt = fFront->GetChildren(); while ( chIt.more() ) { const _QuadFaceGrid& frontChild = chIt.next(); if ( fTop->SetBottomSide( frontChild.GetSide( Q_TOP ))) break; } } } if ( !fTop ) return error(COMPERR_BAD_SHAPE); // orient bottom edge of faces along axes of the unit box fBottom->ReverseEdges(); fBack ->ReverseEdges(); fLeft ->ReverseEdges(); return true; } //================================================================================ /*! * \brief Computes hexahedral mesh on a box with composite sides * \param aMesh - mesh to compute * \param aShape - shape to mesh * \retval bool - success sign */ //================================================================================ bool StdMeshers_CompositeHexa_3D::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape) { SMESH_MesherHelper helper( theMesh ); _quadraticMesh = helper.IsQuadraticSubMesh( theShape ); helper.SetElementsOnShape( true ); // get Viscous Mesh SMESH_ProxyMesh::Ptr proxyMesh; SMESH_HypoFilter vlFilter( SMESH_HypoFilter::HasName( StdMeshers_ViscousLayers::GetHypType() )); const SMESH_Hypothesis * hyp = theMesh.GetHypothesis( theShape, vlFilter, true ); const StdMeshers_ViscousLayers* vlHyp = static_cast< const StdMeshers_ViscousLayers* >( hyp ); if ( vlHyp ) proxyMesh = vlHyp->Compute( theMesh, theShape, /*toMakeN2NMap=*/true ); else proxyMesh.reset( new SMESH_ProxyMesh( theMesh )); // ------------------------- // Try to find 6 side faces // ------------------------- list< _QuadFaceGrid > boxFaceContainer; _QuadFaceGrid *fBottom, *fTop, *fFront, *fBack, *fLeft, *fRight; if ( ! findBoxFaces( theShape, boxFaceContainer, theMesh, *proxyMesh, fBottom, fTop, fFront, fBack, fLeft, fRight)) return false; // ------------------------------------------ // Fill columns of nodes with existing nodes // ------------------------------------------ // let faces load their grids if ( !fBottom->LoadGrid( *proxyMesh )) return error( fBottom->GetError() ); if ( !fBack ->LoadGrid( *proxyMesh )) return error( fBack ->GetError() ); if ( !fLeft ->LoadGrid( *proxyMesh )) return error( fLeft ->GetError() ); if ( !fFront ->LoadGrid( *proxyMesh )) return error( fFront ->GetError() ); if ( !fRight ->LoadGrid( *proxyMesh )) return error( fRight ->GetError() ); if ( !fTop ->LoadGrid( *proxyMesh )) return error( fTop ->GetError() ); // compute normalized parameters of nodes on sides (PAL23189) fBottom->ComputeIJK( COO_X, COO_Y, /*z=*/0. ); fBack ->ComputeIJK( COO_X, COO_Z, /*y=*/1. ); fLeft ->ComputeIJK( COO_Y, COO_Z, /*x=*/0. ); fFront ->ComputeIJK( COO_X, COO_Z, /*y=*/0. ); fRight ->ComputeIJK( COO_Y, COO_Z, /*x=*/1. ); fTop ->ComputeIJK( COO_X, COO_Y, /*z=*/1. ); int x, xSize = fBottom->GetNbHoriSegments(*proxyMesh) + 1, X = xSize - 1; int y, ySize = fBottom->GetNbVertSegments(*proxyMesh) + 1, Y = ySize - 1; int z, zSize = fFront ->GetNbVertSegments(*proxyMesh) + 1, Z = zSize - 1; _Indexer colIndex( xSize, ySize ); vector< vector< const SMDS_MeshNode* > > columns( colIndex.size() ); // fill node columns by front and back box sides for ( x = 0; x < xSize; ++x ) { vector< const SMDS_MeshNode* >& column0 = columns[ colIndex( x, 0 )]; vector< const SMDS_MeshNode* >& column1 = columns[ colIndex( x, Y )]; column0.resize( zSize ); column1.resize( zSize ); for ( z = 0; z < zSize; ++z ) { column0[ z ] = fFront->GetNode( x, z ); column1[ z ] = fBack ->GetNode( x, z ); } } // fill node columns by left and right box sides for ( y = 1; y < ySize-1; ++y ) { vector< const SMDS_MeshNode* >& column0 = columns[ colIndex( 0, y )]; vector< const SMDS_MeshNode* >& column1 = columns[ colIndex( X, y )]; column0.resize( zSize ); column1.resize( zSize ); for ( z = 0; z < zSize; ++z ) { column0[ z ] = fLeft ->GetNode( y, z ); column1[ z ] = fRight->GetNode( y, z ); } } // get nodes from top and bottom box sides for ( x = 1; x < xSize-1; ++x ) { for ( y = 1; y < ySize-1; ++y ) { vector< const SMDS_MeshNode* >& column = columns[ colIndex( x, y )]; column.resize( zSize ); column.front() = fBottom->GetNode( x, y ); column.back() = fTop ->GetNode( x, y ); } } // ---------------------------- // Add internal nodes of a box // ---------------------------- // projection points of internal nodes on box sub-shapes by which // coordinates of internal nodes are computed vector pointsOnShapes( SMESH_Block::ID_Shell ); // projections on vertices are constant pointsOnShapes[ SMESH_Block::ID_V000 ] = fBottom->GetXYZ( 0, 0 ); pointsOnShapes[ SMESH_Block::ID_V100 ] = fBottom->GetXYZ( X, 0 ); pointsOnShapes[ SMESH_Block::ID_V010 ] = fBottom->GetXYZ( 0, Y ); pointsOnShapes[ SMESH_Block::ID_V110 ] = fBottom->GetXYZ( X, Y ); pointsOnShapes[ SMESH_Block::ID_V001 ] = fTop->GetXYZ( 0, 0 ); pointsOnShapes[ SMESH_Block::ID_V101 ] = fTop->GetXYZ( X, 0 ); pointsOnShapes[ SMESH_Block::ID_V011 ] = fTop->GetXYZ( 0, Y ); pointsOnShapes[ SMESH_Block::ID_V111 ] = fTop->GetXYZ( X, Y ); gp_XYZ params; // normalized parameters of an internal node within the unit box for ( x = 1; x < xSize-1; ++x ) { const double rX = x / double(X); for ( y = 1; y < ySize-1; ++y ) { const double rY = y / double(Y); // column to fill during z loop vector< const SMDS_MeshNode* >& column = columns[ colIndex( x, y )]; // points projections on horizontal edges pointsOnShapes[ SMESH_Block::ID_Ex00 ] = fBottom->GetXYZ( x, 0 ); pointsOnShapes[ SMESH_Block::ID_Ex10 ] = fBottom->GetXYZ( x, Y ); pointsOnShapes[ SMESH_Block::ID_E0y0 ] = fBottom->GetXYZ( 0, y ); pointsOnShapes[ SMESH_Block::ID_E1y0 ] = fBottom->GetXYZ( X, y ); pointsOnShapes[ SMESH_Block::ID_Ex01 ] = fTop->GetXYZ( x, 0 ); pointsOnShapes[ SMESH_Block::ID_Ex11 ] = fTop->GetXYZ( x, Y ); pointsOnShapes[ SMESH_Block::ID_E0y1 ] = fTop->GetXYZ( 0, y ); pointsOnShapes[ SMESH_Block::ID_E1y1 ] = fTop->GetXYZ( X, y ); // points projections on horizontal faces pointsOnShapes[ SMESH_Block::ID_Fxy0 ] = fBottom->GetXYZ( x, y ); pointsOnShapes[ SMESH_Block::ID_Fxy1 ] = fTop ->GetXYZ( x, y ); for ( z = 1; z < zSize-1; ++z ) // z loop { // compute normalized parameters of an internal node within the unit box const double rZ = z / double(Z); const gp_XYZ& pBo = fBottom->GetIJK( x, y ); const gp_XYZ& pTo = fTop ->GetIJK( x, y ); const gp_XYZ& pFr = fFront ->GetIJK( x, z ); const gp_XYZ& pBa = fBack ->GetIJK( x, z ); const gp_XYZ& pLe = fLeft ->GetIJK( y, z ); const gp_XYZ& pRi = fRight ->GetIJK( y, z ); params.SetCoord( 1, 0.5 * ( pBo.X() * ( 1. - rZ ) + pTo.X() * rZ + pFr.X() * ( 1. - rY ) + pBa.X() * rY )); params.SetCoord( 2, 0.5 * ( pBo.Y() * ( 1. - rZ ) + pTo.Y() * rZ + pLe.Y() * ( 1. - rX ) + pRi.Y() * rX )); params.SetCoord( 3, 0.5 * ( pFr.Z() * ( 1. - rY ) + pBa.Z() * rY + pLe.Z() * ( 1. - rX ) + pRi.Z() * rX )); // point projections on vertical edges pointsOnShapes[ SMESH_Block::ID_E00z ] = fFront->GetXYZ( 0, z ); pointsOnShapes[ SMESH_Block::ID_E10z ] = fFront->GetXYZ( X, z ); pointsOnShapes[ SMESH_Block::ID_E01z ] = fBack->GetXYZ( 0, z ); pointsOnShapes[ SMESH_Block::ID_E11z ] = fBack->GetXYZ( X, z ); // point projections on vertical faces pointsOnShapes[ SMESH_Block::ID_Fx0z ] = fFront->GetXYZ( x, z ); pointsOnShapes[ SMESH_Block::ID_Fx1z ] = fBack ->GetXYZ( x, z ); pointsOnShapes[ SMESH_Block::ID_F0yz ] = fLeft ->GetXYZ( y, z ); pointsOnShapes[ SMESH_Block::ID_F1yz ] = fRight->GetXYZ( y, z ); // compute internal node coordinates gp_XYZ coords; SMESH_Block::ShellPoint( params, pointsOnShapes, coords ); column[ z ] = helper.AddNode( coords.X(), coords.Y(), coords.Z() ); #ifdef DEB_GRID // debug //cout << "----------------------------------------------------------------------"<& col00 = columns[ colIndex( x, y )]; vector< const SMDS_MeshNode* >& col10 = columns[ colIndex( x+1, y )]; vector< const SMDS_MeshNode* >& col01 = columns[ colIndex( x, y+1 )]; vector< const SMDS_MeshNode* >& col11 = columns[ colIndex( x+1, y+1 )]; for ( z = 0; z < zSize-1; ++z ) { // bottom face normal of a hexa mush point outside the volume helper.AddVolume(col00[z], col01[z], col11[z], col10[z], col00[z+1], col01[z+1], col11[z+1], col10[z+1]); } } } return true; } //================================================================================ /*! * Evaluate */ //================================================================================ bool StdMeshers_CompositeHexa_3D::Evaluate(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape, MapShapeNbElems& aResMap) { SMESH_ProxyMesh::Ptr proxyMesh( new SMESH_ProxyMesh( theMesh )); // ------------------------- // Try to find 6 side faces // ------------------------- list< _QuadFaceGrid > boxFaceContainer; _QuadFaceGrid *fBottom, *fTop, *fFront, *fBack, *fLeft, *fRight; if ( ! findBoxFaces( theShape, boxFaceContainer, theMesh, *proxyMesh, fBottom, fTop, fFront, fBack, fLeft, fRight)) return false; // Find a less complex side _QuadFaceGrid * lessComplexSide = & boxFaceContainer.front(); list< _QuadFaceGrid >::iterator face = boxFaceContainer.begin(); for ( ++face; face != boxFaceContainer.end() && lessComplexSide->IsComplex(); ++face ) if ( face->NbChildren() < lessComplexSide->NbChildren() ) lessComplexSide = & *face; // Get an 1D size of lessComplexSide int nbSeg1 = 0; vector edges; if ( !lessComplexSide->GetHoriEdges(edges) ) return false; for ( size_t i = 0; i < edges.size(); ++i ) { const vector& nbElems = aResMap[ theMesh.GetSubMesh( edges[i] )]; if ( !nbElems.empty() ) nbSeg1 += Max( nbElems[ SMDSEntity_Edge ], nbElems[ SMDSEntity_Quad_Edge ]); } // Get an 1D size of a box side orthogonal to lessComplexSide int nbSeg2 = 0; _QuadFaceGrid* ortoSide = lessComplexSide->FindAdjacentForSide( Q_LEFT, boxFaceContainer, B_UNDEFINED ); edges.clear(); if ( !ortoSide || !ortoSide->GetHoriEdges(edges) ) return false; for ( size_t i = 0; i < edges.size(); ++i ) { const vector& nbElems = aResMap[ theMesh.GetSubMesh( edges[i] )]; if ( !nbElems.empty() ) nbSeg2 += Max( nbElems[ SMDSEntity_Edge ], nbElems[ SMDSEntity_Quad_Edge ]); } // Get an 2D size of a box side orthogonal to lessComplexSide int nbFaces = 0, nbQuadFace = 0; list< TopoDS_Face > sideFaces; if ( ortoSide->IsComplex() ) for ( _QuadFaceGrid::TChildIterator child = ortoSide->GetChildren(); child.more(); ) sideFaces.push_back( child.next().GetFace() ); else sideFaces.push_back( ortoSide->GetFace() ); // list< TopoDS_Face >::iterator f = sideFaces.begin(); for ( ; f != sideFaces.end(); ++f ) { const vector& nbElems = aResMap[ theMesh.GetSubMesh( *f )]; if ( !nbElems.empty() ) { nbFaces = nbElems[ SMDSEntity_Quadrangle ]; nbQuadFace = nbElems[ SMDSEntity_Quad_Quadrangle ]; } } // Fill nb of elements vector aResVec(SMDSEntity_Last,0); int nbSeg3 = ( nbFaces + nbQuadFace ) / nbSeg2; aResVec[SMDSEntity_Node] = (nbSeg1-1) * (nbSeg2-1) * (nbSeg3-1); aResVec[SMDSEntity_Hexa] = nbSeg1 * nbFaces; aResVec[SMDSEntity_Quad_Hexa] = nbSeg1 * nbQuadFace; aResMap.insert( make_pair( theMesh.GetSubMesh(theShape), aResVec )); return true; } //================================================================================ /*! * \brief constructor of non-initialized _QuadFaceGrid */ //================================================================================ _QuadFaceGrid::_QuadFaceGrid(): myReverse(false), myRightBrother(0), myUpBrother(0), myIndexer(0,0), myID(B_UNDEFINED) { } //================================================================================ /*! * \brief Initialization */ //================================================================================ bool _QuadFaceGrid::Init(const TopoDS_Face& f, SMESH_ProxyMesh& mesh) { myFace = f; mySides = _FaceSide(); myReverse = false; myLeftBottomChild = myRightBrother = myUpBrother = 0; myChildren.clear(); myGrid.clear(); //if ( myFace.Orientation() != TopAbs_FORWARD ) //myFace.Reverse(); list< TopoDS_Edge > edges; list< int > nbEdgesInWire; int nbWire = SMESH_Block::GetOrderedEdges (myFace, edges, nbEdgesInWire); if ( nbWire != 1 ) return false; list< TopoDS_Edge >::iterator edgeIt = edges.begin(); if ( nbEdgesInWire.front() == 4 ) // exactly 4 edges { for ( ; edgeIt != edges.end(); ++edgeIt ) mySides.AppendSide( _FaceSide( *edgeIt )); } else if ( nbEdgesInWire.front() > 4 ) { // more than 4 edges - try to unite some list< TopoDS_Edge > sideEdges; while ( !edges.empty()) { sideEdges.clear(); sideEdges.splice( sideEdges.end(), edges, edges.begin());// edges.front()->sideEdges.back() if ( SMESH_Algo::isDegenerated( sideEdges.back() )) continue; while ( !edges.empty() ) { if ( isContinuousMesh( sideEdges.back(), edges.front(), f, mesh )) { sideEdges.splice( sideEdges.end(), edges, edges.begin()); } else if ( isContinuousMesh( sideEdges.front(), edges.back(), f, mesh )) { sideEdges.splice( sideEdges.begin(), edges, --edges.end()); } else { break; } } mySides.AppendSide( _FaceSide( sideEdges )); } } if (mySides.size() != 4) return false; #ifdef _DEBUG_ mySides.GetSide( Q_BOTTOM )->SetID( Q_BOTTOM ); mySides.GetSide( Q_RIGHT )->SetID( Q_RIGHT ); mySides.GetSide( Q_TOP )->SetID( Q_TOP ); mySides.GetSide( Q_LEFT )->SetID( Q_LEFT ); #endif return true; } //================================================================================ /*! * \brief Try to unite self with other ordinary face */ //================================================================================ bool _QuadFaceGrid::AddContinuousFace( const _QuadFaceGrid& other, const TopTools_MapOfShape& internalEdges) { for ( int i = 0; i < 4; ++i ) { const _FaceSide& otherSide = other.GetSide( i ); int iMyCommon; if ( mySides.Contain( otherSide, &iMyCommon )) { if ( internalEdges.Contains( otherSide.Edge( 0 ))) { DUMP_VERT("Cont 1", mySides.GetSide(iMyCommon)->FirstVertex()); DUMP_VERT("Cont 2", mySides.GetSide(iMyCommon)->LastVertex()); DUMP_VERT("Cont 3", otherSide.FirstVertex()); DUMP_VERT("Cont 4", otherSide.LastVertex()); if ( myChildren.empty() ) { myChildren.push_back( *this ); myFace.Nullify(); } else // find iMyCommon in myChildren { for ( TChildIterator children = GetChildren(); children.more(); ) { const _QuadFaceGrid& child = children.next(); if ( child.mySides.Contain( otherSide, &iMyCommon )) break; } } // orient new children equally int otherBottomIndex = SMESH_MesherHelper::WrapIndex( i - iMyCommon + 2, 4 ); if ( other.IsComplex() ) for ( TChildIterator children = other.GetChildren(); children.more(); ) { myChildren.push_back( children.next() ); myChildren.back().SetBottomSide( myChildren.back().GetSide( otherBottomIndex )); } else { myChildren.push_back( other ); myChildren.back().SetBottomSide( myChildren.back().GetSide( otherBottomIndex )); } myLeftBottomChild = 0; // collect vertices in mySides if ( other.IsComplex() ) for ( TChildIterator children = other.GetChildren(); children.more(); ) { const _QuadFaceGrid& child = children.next(); for ( int i = 0; i < 4; ++i ) mySides.AppendSide( child.GetSide(i) ); } else for ( int i = 0; i < 4; ++i ) mySides.AppendSide( other.GetSide(i) ); return true; } } } return false; } //================================================================================ /*! * \brief Try to set the side as bottom hirizontal side */ //================================================================================ bool _QuadFaceGrid::SetBottomSide(const _FaceSide& bottom, int* sideIndex) { myLeftBottomChild = myRightBrother = myUpBrother = 0; int myBottomIndex; if ( myChildren.empty() ) { if ( mySides.Contain( bottom, &myBottomIndex )) { mySides.SetBottomSide( myBottomIndex ); if ( sideIndex ) *sideIndex = myBottomIndex; return true; } } else { TChildren::iterator childFace = myChildren.begin(), childEnd = myChildren.end(); for ( ; childFace != childEnd; ++childFace ) { if ( childFace->SetBottomSide( bottom, &myBottomIndex )) { TChildren::iterator orientedChild = childFace; for ( childFace = myChildren.begin(); childFace != childEnd; ++childFace ) { if ( childFace != orientedChild ) childFace->SetBottomSide( childFace->GetSide( myBottomIndex )); } if ( sideIndex ) *sideIndex = myBottomIndex; return true; } } } return false; } //================================================================================ /*! * \brief Return face adjacent to i-th side of this face, (0& faces, EBoxSides id) const { const _FaceSide & iSide = GetSide( i ); list< _QuadFaceGrid >::iterator boxFace = faces.begin(); for ( ; boxFace != faces.end(); ++boxFace ) { _QuadFaceGrid* f = & (*boxFace); if ( f != this && f->SetBottomSide( iSide )) return f->SetID( id ), f; } return (_QuadFaceGrid*) 0; } //================================================================================ /*! * \brief Return i-th side */ //================================================================================ const _FaceSide& _QuadFaceGrid::GetSide(int i) const { if ( myChildren.empty() ) return *mySides.GetSide(i); _QuadFaceGrid* me = const_cast<_QuadFaceGrid*>(this); if ( !me->locateChildren() || !myLeftBottomChild ) return *mySides.GetSide(i); const _QuadFaceGrid* child = myLeftBottomChild; switch ( i ){ case Q_BOTTOM: case Q_LEFT: break; case Q_RIGHT: while ( child->myRightBrother ) child = child->myRightBrother; break; case Q_TOP: while ( child->myUpBrother ) child = child->myUpBrother; break; default: ; } return child->GetSide( i ); } //================================================================================ /*! * \brief Reverse edges in order to have them oriented along axes of the unit box */ //================================================================================ void _QuadFaceGrid::ReverseEdges() { myReverse = !myReverse; // #ifdef DEB_FACES // if ( !myFace.IsNull() ) // TopAbs::Print(myFace.Orientation(), cout); // #endif if ( myChildren.empty() ) { DumpVertices(); } else { DumpVertices(); TChildren::iterator child = myChildren.begin(), childEnd = myChildren.end(); for ( ; child != childEnd; ++child ) child->ReverseEdges(); } } //================================================================================ /*! * \brief Load nodes of a mesh */ //================================================================================ bool _QuadFaceGrid::LoadGrid( SMESH_ProxyMesh& mesh ) { if ( !myChildren.empty() ) { // Let child faces load their grids TChildren::iterator child = myChildren.begin(), childEnd = myChildren.end(); for ( ; child != childEnd; ++child ) { child->SetID( myID ); if ( !child->LoadGrid( mesh ) ) return error( child->GetError() ); } // Fill myGrid with nodes of patches return loadCompositeGrid( mesh ); } // --------------------------------------- // Fill myGrid with nodes bound to myFace // --------------------------------------- if ( !myGrid.empty() ) return true; const SMESHDS_SubMesh* faceSubMesh = mesh.GetSubMesh( myFace ); // check that all faces are quadrangular SMDS_ElemIteratorPtr fIt = faceSubMesh->GetElements(); while ( fIt->more() ) if ( fIt->next()->NbNodes() % 4 > 0 ) return error("Non-quadrangular mesh faces are not allowed on sides of a composite block"); bool isProxy, isTmpElem; if ( faceSubMesh && faceSubMesh->NbElements() > 0 ) { isProxy = dynamic_cast< const SMESH_ProxyMesh::SubMesh* >( faceSubMesh ); isTmpElem = mesh.IsTemporary( faceSubMesh->GetElements()->next() ); } const SMESHDS_SubMesh* smToCheckEdges = ( isProxy && !isTmpElem ) ? faceSubMesh : 0; myIndexer._xSize = 1 + mySides.GetSide( Q_BOTTOM )->GetNbSegments( mesh, smToCheckEdges ); myIndexer._ySize = 1 + mySides.GetSide( Q_LEFT )->GetNbSegments( mesh, smToCheckEdges ); myGrid.resize( myIndexer.size() ); // store nodes bound to the bottom edge mySides.GetSide( Q_BOTTOM )->StoreNodes( mesh, myGrid, myReverse, isProxy, smToCheckEdges ); // store the rest nodes row by row TIDSortedElemSet avoidSet; const SMDS_MeshElement* firstQuad = 0; // most left face above the last row of found nodes size_t nbFoundNodes = myIndexer._xSize; while ( nbFoundNodes != myGrid.size() ) { // first and last nodes of the last filled row of nodes const SMDS_MeshNode* n1down = myGrid[ nbFoundNodes - myIndexer._xSize ]; const SMDS_MeshNode* n2down = myGrid[ nbFoundNodes - myIndexer._xSize + 1]; const SMDS_MeshNode* n1downLast = myGrid[ nbFoundNodes-1 ]; // find the first face above the row by the first two left nodes // // n1up n2up // o---o // | | // o---o o o o o //n1down n2down // firstQuad = FindFaceByNodes( n1down, n2down, avoidSet, mesh ); while ( firstQuad && !faceSubMesh->Contains( firstQuad )) { avoidSet.insert( firstQuad ); firstQuad = FindFaceByNodes( n1down, n2down, avoidSet, mesh); } if ( !firstQuad || !faceSubMesh->Contains( firstQuad )) return error(ERR_LI("Error in _QuadFaceGrid::LoadGrid()")); // find the node of quad bound to the left geom edge int i2down = firstQuad->GetNodeIndex( n2down ); const SMDS_MeshNode* n1up = firstQuad->GetNode(( i2down+2 ) % 4 ); myGrid[ nbFoundNodes++ ] = n1up; // the 4-the node of the first quad int i1down = firstQuad->GetNodeIndex( n1down ); const SMDS_MeshNode* n2up = firstQuad->GetNode(( i1down+2 ) % 4 ); myGrid[ nbFoundNodes++ ] = n2up; n1down = n2down; n1up = n2up; const SMDS_MeshElement* quad = firstQuad; // find the rest nodes by remaining faces above the row // // n1up // o---o--o // | | | -> // o---o--o o o o // n1downLast // while ( n1down != n1downLast ) { // next face avoidSet.clear(); avoidSet.insert( quad ); quad = FindFaceByNodes( n1down, n1up, avoidSet, mesh ); if ( !quad || quad->NbNodes() % 4 > 0) return error(ERR_LI("Error in _QuadFaceGrid::LoadGrid()")); // next node if ( quad->GetNode( i1down ) != n1down ) // check already found index i1down = quad->GetNodeIndex( n1down ); n2up = quad->GetNode(( i1down+2 ) % 4 ); myGrid[ nbFoundNodes++ ] = n2up; n1down = myGrid[ nbFoundNodes - myIndexer._xSize - 1 ]; n1up = n2up; } avoidSet.clear(); avoidSet.insert( firstQuad ); } DumpGrid(); // debug return true; } //================================================================================ /*! * \brief Fill myIJK with normalized parameters of nodes in myGrid * \param [in] i1 - coordinate index along rows of myGrid * \param [in] i2 - coordinate index along columns of myGrid * \param [in] v3 - value of the constant parameter */ //================================================================================ void _QuadFaceGrid::ComputeIJK( int i1, int i2, double v3 ) { gp_XYZ ijk( v3, v3, v3 ); myIJK.resize( myIndexer.size(), ijk ); const size_t nbCol = myIndexer._xSize; const size_t nbRow = myIndexer._ySize; vector< double > len( nbRow ); len[0] = 0; for ( size_t i = 0; i < nbCol; ++i ) { gp_Pnt pPrev = GetXYZ( i, 0 ); for ( size_t j = 1; j < nbRow; ++j ) { gp_Pnt p = GetXYZ( i, j ); len[ j ] = len[ j-1 ] + p.Distance( pPrev ); pPrev = p; } for ( size_t j = 0; j < nbRow; ++j ) GetIJK( i, j ).SetCoord( i2, len[ j ]/len.back() ); } len.resize( nbCol ); for ( size_t j = 0; j < nbRow; ++j ) { gp_Pnt pPrev = GetXYZ( 0, j ); for ( size_t i = 1; i < nbCol; ++i ) { gp_Pnt p = GetXYZ( i, j ); len[ i ] = len[ i-1 ] + p.Distance( pPrev ); pPrev = p; } for ( size_t i = 0; i < nbCol; ++i ) GetIJK( i, j ).SetCoord( i1, len[ i ]/len.back() ); } } //================================================================================ /*! * \brief Find out mutual location of children: find their right and up brothers */ //================================================================================ bool _QuadFaceGrid::locateChildren() { if ( myLeftBottomChild ) return true; TChildren::iterator child = myChildren.begin(), childEnd = myChildren.end(); // find a child sharing it's first bottom vertex with no other brother myLeftBottomChild = 0; for ( ; !myLeftBottomChild && child != childEnd; ++child ) { TopoDS_Vertex leftVertex = child->GetSide( Q_BOTTOM ).FirstVertex(); bool sharedVertex = false; TChildren::iterator otherChild = myChildren.begin(); for ( ; otherChild != childEnd && !sharedVertex; ++otherChild ) if ( otherChild != child ) sharedVertex = otherChild->mySides.Contain( leftVertex ); if ( !sharedVertex ) { myLeftBottomChild = & (*child); DUMP_VERT("0 left bottom Vertex: ",leftVertex ); } } if (!myLeftBottomChild) return error(ERR_LI("Error in locateChildren()")); set< _QuadFaceGrid* > notLocatedChilren; for (child = myChildren.begin() ; child != childEnd; ++child ) notLocatedChilren.insert( & (*child)); // connect myLeftBottomChild to it's right and upper brothers notLocatedChilren.erase( myLeftBottomChild ); myLeftBottomChild->setBrothers( notLocatedChilren ); if ( !notLocatedChilren.empty() ) return error(ERR_LI("Error in locateChildren()")); return true; } //================================================================================ /*! * \brief Fill myGrid with nodes of patches */ //================================================================================ bool _QuadFaceGrid::loadCompositeGrid(SMESH_ProxyMesh& mesh) { // Find out mutual location of children: find their right and up brothers if ( !locateChildren() ) return false; // Load nodes according to mutual location of children // grid size myIndexer._xSize = 1 + myLeftBottomChild->GetNbHoriSegments( mesh, /*withBrothers=*/true ); myIndexer._ySize = 1 + myLeftBottomChild->GetNbVertSegments( mesh, /*withBrothers=*/true ); myGrid.resize( myIndexer.size() ); int fromX = myReverse ? myIndexer._xSize : 0; if ( !myLeftBottomChild->fillGrid( mesh, myGrid, myIndexer, fromX, 0 )) return error( myLeftBottomChild->GetError() ); DumpGrid(); return true; } //================================================================================ /*! * \brief Find right an upper brothers among notLocatedBrothers */ //================================================================================ void _QuadFaceGrid::setBrothers( set< _QuadFaceGrid* >& notLocatedBrothers ) { if ( !notLocatedBrothers.empty() ) { // find right brother TopoDS_Vertex rightVertex = GetSide( Q_BOTTOM ).LastVertex(); DUMP_VERT("1 right bottom Vertex: ",rightVertex ); set< _QuadFaceGrid* >::iterator brIt, brEnd = notLocatedBrothers.end(); for ( brIt = notLocatedBrothers.begin(); brIt != brEnd; ++brIt ) { _QuadFaceGrid* brother = *brIt; TopoDS_Vertex brotherLeftVertex = brother->GetSide( Q_BOTTOM ).FirstVertex(); DUMP_VERT( "brother left bottom: ", brotherLeftVertex ); if ( rightVertex.IsSame( brotherLeftVertex )) { myRightBrother = brother; notLocatedBrothers.erase( brIt ); break; } } // find upper brother TopoDS_Vertex upVertex = GetSide( Q_LEFT ).FirstVertex(); DUMP_VERT("1 left up Vertex: ",upVertex); brIt = notLocatedBrothers.begin(), brEnd = notLocatedBrothers.end(); for ( ; brIt != brEnd; ++brIt ) { _QuadFaceGrid* brother = *brIt; TopoDS_Vertex brotherLeftVertex = brother->GetSide( Q_BOTTOM ).FirstVertex(); DUMP_VERT("brother left bottom: ", brotherLeftVertex); if ( upVertex.IsSame( brotherLeftVertex )) { myUpBrother = brother; notLocatedBrothers.erase( myUpBrother ); break; } } // recursive call if ( myRightBrother ) myRightBrother->setBrothers( notLocatedBrothers ); if ( myUpBrother ) myUpBrother->setBrothers( notLocatedBrothers ); } } //================================================================================ /*! * \brief Store nodes of a simple face into grid starting from (x,y) position */ //================================================================================ bool _QuadFaceGrid::fillGrid(SMESH_ProxyMesh& theMesh, vector & theGrid, const _Indexer& theIndexer, int theX, int theY) { if ( myGrid.empty() && !LoadGrid( theMesh )) return false; // store my own grid in the global grid int fromX = myReverse ? theX - myIndexer._xSize: theX; for ( int i = 0, x = fromX; i < myIndexer._xSize; ++i, ++x ) for ( int j = 0, y = theY; j < myIndexer._ySize; ++j, ++y ) theGrid[ theIndexer( x, y )] = myGrid[ myIndexer( i, j )]; // store grids of my right and upper brothers if ( myRightBrother ) { if ( myReverse ) fromX += 1; else fromX += myIndexer._xSize - 1; if ( !myRightBrother->fillGrid( theMesh, theGrid, theIndexer, fromX, theY )) return error( myRightBrother->GetError() ); } if ( myUpBrother ) { if ( !myUpBrother->fillGrid( theMesh, theGrid, theIndexer, theX, theY + myIndexer._ySize - 1)) return error( myUpBrother->GetError() ); } return true; } //================================================================================ /*! * \brief Return number of segments on the hirizontal sides */ //================================================================================ int _QuadFaceGrid::GetNbHoriSegments(SMESH_ProxyMesh& mesh, bool withBrothers) const { int nbSegs = 0; if ( myLeftBottomChild ) { nbSegs += myLeftBottomChild->GetNbHoriSegments( mesh, true ); } else { nbSegs = mySides.GetSide( Q_BOTTOM )->GetNbSegments( mesh ); if ( withBrothers && myRightBrother ) nbSegs += myRightBrother->GetNbHoriSegments( mesh, withBrothers ); } return nbSegs; } //================================================================================ /*! * \brief Return number of segments on the vertical sides */ //================================================================================ int _QuadFaceGrid::GetNbVertSegments(SMESH_ProxyMesh& mesh, bool withBrothers) const { int nbSegs = 0; if ( myLeftBottomChild ) { nbSegs += myLeftBottomChild->GetNbVertSegments( mesh, true ); } else { nbSegs = mySides.GetSide( Q_LEFT )->GetNbSegments(mesh,0); if ( withBrothers && myUpBrother ) nbSegs += myUpBrother->GetNbVertSegments( mesh, withBrothers ); } return nbSegs; } //================================================================================ /*! * \brief Return edge on the hirizontal bottom sides */ //================================================================================ int _QuadFaceGrid::GetHoriEdges(vector & edges) const { if ( myLeftBottomChild ) { return myLeftBottomChild->GetHoriEdges( edges ); } else { const _FaceSide* bottom = mySides.GetSide( Q_BOTTOM ); int i = 0; while ( true ) { TopoDS_Edge e = bottom->Edge( i++ ); if ( e.IsNull() ) break; else edges.push_back( e ); } if ( myRightBrother ) myRightBrother->GetHoriEdges( edges ); } return edges.size(); } //================================================================================ /*! * \brief Return a node by its position */ //================================================================================ const SMDS_MeshNode* _QuadFaceGrid::GetNode(int iHori, int iVert) const { return myGrid[ myIndexer( iHori, iVert )]; } //================================================================================ /*! * \brief Return node coordinates by its position */ //================================================================================ gp_XYZ _QuadFaceGrid::GetXYZ(int iHori, int iVert) const { SMESH_TNodeXYZ xyz = myGrid[ myIndexer( iHori, iVert )]; return xyz; } //================================================================================ /*! * \brief Return normal to the face at vertex v */ //================================================================================ bool _QuadFaceGrid::GetNormal( const TopoDS_Vertex& v, gp_Vec& n ) const { if ( myChildren.empty() ) { if ( mySides.Contain( v )) { try { gp_Pnt2d uv = BRep_Tool::Parameters( v, myFace ); BRepAdaptor_Surface surface( myFace ); gp_Pnt p; gp_Vec d1u, d1v; surface.D1( uv.X(), uv.Y(), p, d1u, d1v ); n = d1u.Crossed( d1v ); return true; } catch (Standard_Failure) { return false; } } } else { TChildren::const_iterator child = myChildren.begin(), childEnd = myChildren.end(); for ( ; child != childEnd; ++child ) if ( child->GetNormal( v, n )) return true; } return false; } //================================================================================ /*! * \brief Dumps coordinates of grid nodes */ //================================================================================ void _QuadFaceGrid::DumpGrid() const { #ifdef DEB_GRID const char* names[] = { "B_BOTTOM", "B_RIGHT", "B_TOP", "B_LEFT", "B_FRONT", "B_BACK" }; cout << "****** Face " << names[ myID ] << endl; if ( myChildren.empty() || !myGrid.empty() ) { cout << "x size: " << myIndexer._xSize << "; y size: " << myIndexer._ySize << endl; for ( int y = 0; y < myIndexer._ySize; ++y ) { cout << "-- row " << y << endl; for ( int x = 0; x < myIndexer._xSize; ++x ) { const SMDS_MeshNode* n = myGrid[ myIndexer( x, y ) ]; cout << x << " ( " << n->X() << ", " << n->Y() << ", " << n->Z() << " )" << endl; } } } else { cout << "Nb children: " << myChildren.size() << endl; TChildren::const_iterator child = myChildren.begin(), childEnd = myChildren.end(); for ( int i=0; child != childEnd; ++child, ++i ) { cout << " *** SUBFACE " << i+1 << endl; ((_QuadFaceGrid&)(*child)).SetID( myID ); child->DumpGrid(); } } #endif } //================================================================================ /*! * \brief Dump vertices */ //================================================================================ void _QuadFaceGrid::DumpVertices() const { #ifdef DEB_FACES cout << "****** Face "; const char* names[] = { "B_BOTTOM", "B_RIGHT", "B_TOP", "B_LEFT", "B_FRONT", "B_BACK" }; if ( myID >= B_BOTTOM && myID < B_BACK ) cout << names[ myID ] << endl; else cout << "UNDEFINED" << endl; if ( myChildren.empty() ) { for ( int i = 0; i < 4; ++i ) { cout << " Side "; mySides.GetSide( i )->Dump(); } } else { cout << "-- Nb children: " << myChildren.size() << endl; TChildren::const_iterator child = myChildren.begin(), childEnd = myChildren.end(); for ( int i=0; child != childEnd; ++child, ++i ) { cout << " *** SUBFACE " << i+1 << endl; ((_QuadFaceGrid&)(*child)).SetID( myID ); child->DumpVertices(); } } #endif } //======================================================================= //function : _FaceSide //purpose : copy constructor //======================================================================= _FaceSide::_FaceSide(const _FaceSide& other) { myEdge = other.myEdge; myChildren = other.myChildren; myNbChildren = other.myNbChildren; myVertices.Assign( other.myVertices ); myID = other.myID; } //================================================================================ /*! * \brief Construct a face side of one edge */ //================================================================================ _FaceSide::_FaceSide(const TopoDS_Edge& edge): myEdge( edge ), myNbChildren(0) { if ( !edge.IsNull() ) for ( TopExp_Explorer exp( edge, TopAbs_VERTEX ); exp.More(); exp.Next() ) //myVertices.insert( ptr ( exp.Current() )); myVertices.Add( exp.Current() ); } //================================================================================ /*! * \brief Construct a face side of several edges */ //================================================================================ _FaceSide::_FaceSide(const list& edges): myNbChildren(0) { list::const_iterator edge = edges.begin(), eEnd = edges.end(); for ( ; edge != eEnd; ++edge ) { myChildren.push_back( _FaceSide( *edge )); myNbChildren++; myVertices.Add( myChildren.back().FirstVertex() ); myVertices.Add( myChildren.back().LastVertex() ); myChildren.back().SetID( Q_CHILD ); // not to splice them } } //======================================================================= //function : GetSide //purpose : //======================================================================= _FaceSide* _FaceSide::GetSide(const int i) { if ( i >= myNbChildren ) return 0; list< _FaceSide >::iterator side = myChildren.begin(); if ( i ) std::advance( side, i ); return & (*side); } //======================================================================= //function : GetSide //purpose : //======================================================================= const _FaceSide* _FaceSide::GetSide(const int i) const { return const_cast< _FaceSide* >(this)->GetSide(i); } //======================================================================= //function : NbVertices //purpose : return nb of vertices in the side //======================================================================= int _FaceSide::NbVertices() const { if ( myChildren.empty() ) return myVertices.Extent(); return myNbChildren + 1; } //======================================================================= //function : NbCommonVertices //purpose : Returns number of my vertices common with the given ones //======================================================================= int _FaceSide::NbCommonVertices( const TopTools_MapOfShape& VV ) const { int nbCommon = 0; TopTools_MapIteratorOfMapOfShape vIt ( myVertices ); for ( ; vIt.More(); vIt.Next() ) nbCommon += ( VV.Contains( vIt.Key() )); return nbCommon; } //======================================================================= //function : FirstVertex //purpose : //======================================================================= TopoDS_Vertex _FaceSide::FirstVertex() const { if ( myChildren.empty() ) return TopExp::FirstVertex( myEdge, Standard_True ); return myChildren.front().FirstVertex(); } //======================================================================= //function : LastVertex //purpose : //======================================================================= TopoDS_Vertex _FaceSide::LastVertex() const { if ( myChildren.empty() ) return TopExp::LastVertex( myEdge, Standard_True ); return myChildren.back().LastVertex(); } //======================================================================= //function : Vertex //purpose : //======================================================================= TopoDS_Vertex _FaceSide::Vertex(int i) const { if ( myChildren.empty() ) return i ? LastVertex() : FirstVertex(); if ( i >= myNbChildren ) return myChildren.back().LastVertex(); return GetSide(i)->FirstVertex(); } //================================================================================ /*! * \brief Return i-the zero-based edge of the side */ //================================================================================ TopoDS_Edge _FaceSide::Edge(int i) const { if ( i == 0 && !myEdge.IsNull() ) return myEdge; if ( const _FaceSide* iSide = GetSide( i )) return iSide->myEdge; return TopoDS_Edge(); } //======================================================================= //function : Contain //purpose : //======================================================================= bool _FaceSide::Contain( const _FaceSide& side, int* which ) const { if ( !which || myChildren.empty() ) { if ( which ) *which = 0; int nbCommon = 0; TopTools_MapIteratorOfMapOfShape vIt ( side.myVertices ); for ( ; vIt.More(); vIt.Next() ) nbCommon += ( myVertices.Contains( vIt.Key() )); return (nbCommon > 1); } list< _FaceSide >::const_iterator mySide = myChildren.begin(), sideEnd = myChildren.end(); for ( int i = 0; mySide != sideEnd; ++mySide, ++i ) { if ( mySide->Contain( side )) { *which = i; return true; } } return false; } //======================================================================= //function : Contain //purpose : //======================================================================= bool _FaceSide::Contain( const TopoDS_Vertex& vertex ) const { return myVertices.Contains( vertex ); } //======================================================================= //function : AppendSide //purpose : //======================================================================= void _FaceSide::AppendSide( const _FaceSide& side ) { if ( !myEdge.IsNull() ) { myChildren.push_back( *this ); myNbChildren = 1; myEdge.Nullify(); } myChildren.push_back( side ); myNbChildren++; TopTools_MapIteratorOfMapOfShape vIt ( side.myVertices ); for ( ; vIt.More(); vIt.Next() ) myVertices.Add( vIt.Key() ); myID = Q_PARENT; myChildren.back().SetID( EQuadSides( myNbChildren-1 )); } //======================================================================= //function : SetBottomSide //purpose : //======================================================================= void _FaceSide::SetBottomSide( int i ) { if ( i > 0 && myID == Q_PARENT ) { list< _FaceSide >::iterator sideEnd, side = myChildren.begin(); std::advance( side, i ); myChildren.splice( myChildren.begin(), myChildren, side, myChildren.end() ); side = myChildren.begin(), sideEnd = myChildren.end(); for ( int i = 0; side != sideEnd; ++side, ++i ) { side->SetID( EQuadSides(i) ); side->SetBottomSide(i); } } } //======================================================================= //function : GetNbSegments //purpose : //======================================================================= int _FaceSide::GetNbSegments(SMESH_ProxyMesh& mesh, const SMESHDS_SubMesh* smToCheckEdges) const { int nb = 0; if ( myChildren.empty() ) { nb = mesh.GetSubMesh(myEdge)->NbElements(); if ( smToCheckEdges ) { // check that segments bound faces belonging to smToCheckEdges SMDS_ElemIteratorPtr segIt = mesh.GetSubMesh(myEdge)->GetElements(); while ( segIt->more() ) { const SMDS_MeshElement* seg = segIt->next(); if ( !IsSegmentOnSubMeshBoundary( mesh.GetProxyNode( seg->GetNode(0) ), mesh.GetProxyNode( seg->GetNode(1) ), smToCheckEdges, mesh )) --nb; } } } else { list< _FaceSide >::const_iterator side = myChildren.begin(), sideEnd = myChildren.end(); for ( ; side != sideEnd; ++side ) nb += side->GetNbSegments( mesh, smToCheckEdges ); } return nb; } //======================================================================= //function : StoreNodes //purpose : //======================================================================= bool _FaceSide::StoreNodes(SMESH_ProxyMesh& mesh, vector& myGrid, bool reverse, bool isProxy, const SMESHDS_SubMesh* smToCheckEdges) { list< TopoDS_Edge > edges; if ( myChildren.empty() ) { edges.push_back( myEdge ); } else { list< _FaceSide >::const_iterator side = myChildren.begin(), sideEnd = myChildren.end(); for ( ; side != sideEnd; ++side ) if ( reverse ) edges.push_front( side->myEdge ); else edges.push_back ( side->myEdge ); } int nbNodes = 0; list< TopoDS_Edge >::iterator edge = edges.begin(), eEnd = edges.end(); for ( ; edge != eEnd; ++edge ) { typedef map< double, const SMDS_MeshNode* > TParamNodeMap; TParamNodeMap nodes; bool ok = SMESH_Algo::GetSortedNodesOnEdge( mesh.GetMeshDS(), *edge, /*ignoreMediumNodes=*/true, nodes); if ( !ok ) return false; // skip nodes on VERTEXes not included in faces if ( !nodes.begin()->second->GetInverseElementIterator(SMDSAbs_Face)->more() ) nodes.erase( nodes.begin() ); if ( !nodes.empty() && !nodes.rbegin()->second->GetInverseElementIterator(SMDSAbs_Face)->more() ) nodes.erase( --nodes.end() ); if ( isProxy ) { TParamNodeMap::iterator u_node, nEnd = nodes.end(); for ( u_node = nodes.begin(); u_node != nEnd; ++u_node ) u_node->second = mesh.GetProxyNode( u_node->second ); } if ( smToCheckEdges ) // erase nodes of segments not bounding faces of smToCheckEdges { { TParamNodeMap::iterator u_node1, u_node2 = nodes.begin(), nEnd = nodes.end(); for ( u_node1 = u_node2++; u_node2 != nEnd; u_node1 = u_node2++ ) if ( IsSegmentOnSubMeshBoundary( u_node1->second, u_node2->second, smToCheckEdges, mesh )) break; else nodes.erase( u_node1 ); } { TParamNodeMap::reverse_iterator u_node1, u_node2 = nodes.rbegin(), nEnd = nodes.rend(); for ( u_node1 = u_node2++; u_node2 != nEnd; u_node1 = u_node2++ ) if ( IsSegmentOnSubMeshBoundary( u_node1->second, u_node2->second, smToCheckEdges, mesh )) break; else nodes.erase( --( u_node1.base() )); } } bool forward = ( edge->Orientation() == TopAbs_FORWARD ); if ( reverse ) forward = !forward; if ( forward ) { TParamNodeMap::iterator u_node, nEnd = nodes.end(); for ( u_node = nodes.begin(); u_node != nEnd; ++u_node ) myGrid[ nbNodes++ ] = u_node->second; } else { TParamNodeMap::reverse_iterator u_node, nEnd = nodes.rend(); for ( u_node = nodes.rbegin(); u_node != nEnd; ++u_node ) myGrid[ nbNodes++ ] = u_node->second; } nbNodes--; // node on vertex present in two adjacent edges } return nbNodes > 0; } //======================================================================= //function : Dump //purpose : dump end vertices //======================================================================= void _FaceSide::Dump() const { if ( myChildren.empty() ) { const char* sideNames[] = { "Q_BOTTOM", "Q_RIGHT", "Q_TOP", "Q_LEFT", "Q_CHILD", "Q_PARENT" }; if ( myID >= Q_BOTTOM && myID < Q_PARENT ) cout << sideNames[ myID ] << endl; else cout << "" << endl; TopoDS_Vertex f = FirstVertex(); TopoDS_Vertex l = LastVertex(); gp_Pnt pf = BRep_Tool::Pnt(f); gp_Pnt pl = BRep_Tool::Pnt(l); cout << "\t ( "<< ptr( f ) << " - " << ptr( l )<< " )" << "\t ( "<< pf.X()<<", "<::const_iterator side = myChildren.begin(), sideEnd = myChildren.end(); for ( ; side != sideEnd; ++side ) { side->Dump(); cout << "\t"; } } }