// Copyright (C) 2007-2020 CEA/DEN, EDF R&D, OPEN CASCADE // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : StdMeshers_ViscousLayers.cxx // Created : Wed Dec 1 15:15:34 2010 // Author : Edward AGAPOV (eap) #include "StdMeshers_ViscousLayers.hxx" #include "ObjectPool.hxx" #include "SMDS_EdgePosition.hxx" #include "SMDS_FaceOfNodes.hxx" #include "SMDS_FacePosition.hxx" #include "SMDS_MeshNode.hxx" #include "SMDS_PolygonalFaceOfNodes.hxx" #include "SMDS_SetIterator.hxx" #include "SMESHDS_Group.hxx" #include "SMESHDS_Hypothesis.hxx" #include "SMESHDS_Mesh.hxx" #include "SMESH_Algo.hxx" #include "SMESH_Block.hxx" #include "SMESH_ComputeError.hxx" #include "SMESH_ControlsDef.hxx" #include "SMESH_Gen.hxx" #include "SMESH_Group.hxx" #include "SMESH_HypoFilter.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_MeshAlgos.hxx" #include "SMESH_MeshEditor.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_ProxyMesh.hxx" #include "SMESH_subMesh.hxx" #include "SMESH_subMeshEventListener.hxx" #include "StdMeshers_FaceSide.hxx" #include "StdMeshers_ProjectionUtils.hxx" #include "StdMeshers_ViscousLayers2D.hxx" #include #include #include #include //#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _DEBUG_ //#define __myDEBUG //#define __NOT_INVALIDATE_BAD_SMOOTH //#define __NODES_AT_POS #endif #define INCREMENTAL_SMOOTH // smooth only if min angle is too small #define BLOCK_INFLATION // of individual _LayerEdge's #define OLD_NEF_POLYGON using namespace std; //================================================================================ namespace VISCOUS_3D { typedef int TGeomID; enum UIndex { U_TGT = 1, U_SRC, LEN_TGT }; const double theMinSmoothCosin = 0.1; const double theSmoothThickToElemSizeRatio = 0.6; const double theMinSmoothTriaAngle = 30; const double theMinSmoothQuadAngle = 45; // what part of thickness is allowed till intersection // (defined by SALOME_TESTS/Grids/smesh/viscous_layers_00/A5) const double theThickToIntersection = 1.5; bool needSmoothing( double cosin, double tgtThick, double elemSize ) { return cosin * tgtThick > theSmoothThickToElemSizeRatio * elemSize; } double getSmoothingThickness( double cosin, double elemSize ) { return theSmoothThickToElemSizeRatio * elemSize / cosin; } /*! * \brief SMESH_ProxyMesh computed by _ViscousBuilder for a SOLID. * It is stored in a SMESH_subMesh of the SOLID as SMESH_subMeshEventListenerData */ struct _MeshOfSolid : public SMESH_ProxyMesh, public SMESH_subMeshEventListenerData { bool _n2nMapComputed; SMESH_ComputeErrorPtr _warning; _MeshOfSolid( SMESH_Mesh* mesh) :SMESH_subMeshEventListenerData( /*isDeletable=*/true),_n2nMapComputed(false) { SMESH_ProxyMesh::setMesh( *mesh ); } // returns submesh for a geom face SMESH_ProxyMesh::SubMesh* getFaceSubM(const TopoDS_Face& F, bool create=false) { TGeomID i = SMESH_ProxyMesh::shapeIndex(F); return create ? SMESH_ProxyMesh::getProxySubMesh(i) : findProxySubMesh(i); } void setNode2Node(const SMDS_MeshNode* srcNode, const SMDS_MeshNode* proxyNode, const SMESH_ProxyMesh::SubMesh* subMesh) { SMESH_ProxyMesh::setNode2Node( srcNode,proxyNode,subMesh); } }; //-------------------------------------------------------------------------------- /*! * \brief Listener of events of 3D sub-meshes computed with viscous layers. * It is used to clear an inferior dim sub-meshes modified by viscous layers */ class _ShrinkShapeListener : SMESH_subMeshEventListener { _ShrinkShapeListener() : SMESH_subMeshEventListener(/*isDeletable=*/false, "StdMeshers_ViscousLayers::_ShrinkShapeListener") {} public: static SMESH_subMeshEventListener* Get() { static _ShrinkShapeListener l; return &l; } virtual void ProcessEvent(const int event, const int eventType, SMESH_subMesh* solidSM, SMESH_subMeshEventListenerData* data, const SMESH_Hypothesis* hyp) { if ( SMESH_subMesh::COMPUTE_EVENT == eventType && solidSM->IsEmpty() && data ) { SMESH_subMeshEventListener::ProcessEvent(event,eventType,solidSM,data,hyp); } } }; //-------------------------------------------------------------------------------- /*! * \brief Listener of events of 3D sub-meshes computed with viscous layers. * It is used to store data computed by _ViscousBuilder for a sub-mesh and to * delete the data as soon as it has been used */ class _ViscousListener : SMESH_subMeshEventListener { _ViscousListener(): SMESH_subMeshEventListener(/*isDeletable=*/false, "StdMeshers_ViscousLayers::_ViscousListener") {} static SMESH_subMeshEventListener* Get() { static _ViscousListener l; return &l; } public: virtual void ProcessEvent(const int event, const int eventType, SMESH_subMesh* subMesh, SMESH_subMeshEventListenerData* data, const SMESH_Hypothesis* hyp) { if (( SMESH_subMesh::COMPUTE_EVENT == eventType ) && ( SMESH_subMesh::CHECK_COMPUTE_STATE != event && SMESH_subMesh::SUBMESH_COMPUTED != event )) { // delete SMESH_ProxyMesh containing temporary faces subMesh->DeleteEventListener( this ); } } // Finds or creates proxy mesh of the solid static _MeshOfSolid* GetSolidMesh(SMESH_Mesh* mesh, const TopoDS_Shape& solid, bool toCreate=false) { if ( !mesh ) return 0; SMESH_subMesh* sm = mesh->GetSubMesh(solid); _MeshOfSolid* data = (_MeshOfSolid*) sm->GetEventListenerData( Get() ); if ( !data && toCreate ) { data = new _MeshOfSolid(mesh); data->mySubMeshes.push_back( sm ); // to find SOLID by _MeshOfSolid sm->SetEventListener( Get(), data, sm ); } return data; } // Removes proxy mesh of the solid static void RemoveSolidMesh(SMESH_Mesh* mesh, const TopoDS_Shape& solid) { mesh->GetSubMesh(solid)->DeleteEventListener( _ViscousListener::Get() ); } }; //================================================================================ /*! * \brief sets a sub-mesh event listener to clear sub-meshes of sub-shapes of * the main shape when sub-mesh of the main shape is cleared, * for example to clear sub-meshes of FACEs when sub-mesh of a SOLID * is cleared */ //================================================================================ void ToClearSubWithMain( SMESH_subMesh* sub, const TopoDS_Shape& main) { SMESH_subMesh* mainSM = sub->GetFather()->GetSubMesh( main ); SMESH_subMeshEventListenerData* data = mainSM->GetEventListenerData( _ShrinkShapeListener::Get()); if ( data ) { if ( find( data->mySubMeshes.begin(), data->mySubMeshes.end(), sub ) == data->mySubMeshes.end()) data->mySubMeshes.push_back( sub ); } else { data = SMESH_subMeshEventListenerData::MakeData( /*dependent=*/sub ); sub->SetEventListener( _ShrinkShapeListener::Get(), data, /*whereToListenTo=*/mainSM ); } } struct _SolidData; //-------------------------------------------------------------------------------- /*! * \brief Simplex (triangle or tetrahedron) based on 1 (tria) or 2 (tet) nodes of * _LayerEdge and 2 nodes of the mesh surface beening smoothed. * The class is used to check validity of face or volumes around a smoothed node; * it stores only 2 nodes as the other nodes are stored by _LayerEdge. */ struct _Simplex { const SMDS_MeshNode *_nPrev, *_nNext; // nodes on a smoothed mesh surface const SMDS_MeshNode *_nOpp; // in 2D case, a node opposite to a smoothed node in QUAD _Simplex(const SMDS_MeshNode* nPrev=0, const SMDS_MeshNode* nNext=0, const SMDS_MeshNode* nOpp=0) : _nPrev(nPrev), _nNext(nNext), _nOpp(nOpp) {} bool IsForward(const gp_XYZ* pntSrc, const gp_XYZ* pntTgt, double& vol) const { const double M[3][3] = {{ _nNext->X() - pntSrc->X(), _nNext->Y() - pntSrc->Y(), _nNext->Z() - pntSrc->Z() }, { pntTgt->X() - pntSrc->X(), pntTgt->Y() - pntSrc->Y(), pntTgt->Z() - pntSrc->Z() }, { _nPrev->X() - pntSrc->X(), _nPrev->Y() - pntSrc->Y(), _nPrev->Z() - pntSrc->Z() }}; vol = ( + M[0][0] * M[1][1] * M[2][2] + M[0][1] * M[1][2] * M[2][0] + M[0][2] * M[1][0] * M[2][1] - M[0][0] * M[1][2] * M[2][1] - M[0][1] * M[1][0] * M[2][2] - M[0][2] * M[1][1] * M[2][0]); return vol > 1e-100; } bool IsForward(const SMDS_MeshNode* nSrc, const gp_XYZ& pTgt, double& vol) const { SMESH_TNodeXYZ pSrc( nSrc ); return IsForward( &pSrc, &pTgt, vol ); } bool IsForward(const gp_XY& tgtUV, const SMDS_MeshNode* smoothedNode, const TopoDS_Face& face, SMESH_MesherHelper& helper, const double refSign) const { gp_XY prevUV = helper.GetNodeUV( face, _nPrev, smoothedNode ); gp_XY nextUV = helper.GetNodeUV( face, _nNext, smoothedNode ); gp_Vec2d v1( tgtUV, prevUV ), v2( tgtUV, nextUV ); double d = v1 ^ v2; return d*refSign > 1e-100; } bool IsMinAngleOK( const gp_XYZ& pTgt, double& minAngle ) const { SMESH_TNodeXYZ pPrev( _nPrev ), pNext( _nNext ); if ( !_nOpp ) // triangle { gp_Vec tp( pPrev - pTgt ), pn( pNext - pPrev ), nt( pTgt - pNext ); double tp2 = tp.SquareMagnitude(); double pn2 = pn.SquareMagnitude(); double nt2 = nt.SquareMagnitude(); if ( tp2 < pn2 && tp2 < nt2 ) minAngle = ( nt * -pn ) * ( nt * -pn ) / nt2 / pn2; else if ( pn2 < nt2 ) minAngle = ( tp * -nt ) * ( tp * -nt ) / tp2 / nt2; else minAngle = ( pn * -tp ) * ( pn * -tp ) / pn2 / tp2; static double theMaxCos2 = ( Cos( theMinSmoothTriaAngle * M_PI / 180. ) * Cos( theMinSmoothTriaAngle * M_PI / 180. )); return minAngle < theMaxCos2; } else // quadrangle { SMESH_TNodeXYZ pOpp( _nOpp ); gp_Vec tp( pPrev - pTgt ), po( pOpp - pPrev ), on( pNext - pOpp), nt( pTgt - pNext ); double tp2 = tp.SquareMagnitude(); double po2 = po.SquareMagnitude(); double on2 = on.SquareMagnitude(); double nt2 = nt.SquareMagnitude(); minAngle = Max( Max((( tp * -nt ) * ( tp * -nt ) / tp2 / nt2 ), (( po * -tp ) * ( po * -tp ) / po2 / tp2 )), Max((( on * -po ) * ( on * -po ) / on2 / po2 ), (( nt * -on ) * ( nt * -on ) / nt2 / on2 ))); static double theMaxCos2 = ( Cos( theMinSmoothQuadAngle * M_PI / 180. ) * Cos( theMinSmoothQuadAngle * M_PI / 180. )); return minAngle < theMaxCos2; } } bool IsNeighbour(const _Simplex& other) const { return _nPrev == other._nNext || _nNext == other._nPrev; } bool Includes( const SMDS_MeshNode* node ) const { return _nPrev == node || _nNext == node; } static void GetSimplices( const SMDS_MeshNode* node, vector<_Simplex>& simplices, const set& ingnoreShapes, const _SolidData* dataToCheckOri = 0, const bool toSort = false); static void SortSimplices(vector<_Simplex>& simplices); }; //-------------------------------------------------------------------------------- /*! * Structure used to take into account surface curvature while smoothing */ struct _Curvature { double _r; // radius double _k; // factor to correct node smoothed position double _h2lenRatio; // avgNormProj / (2*avgDist) gp_Pnt2d _uv; // UV used in putOnOffsetSurface() public: static _Curvature* New( double avgNormProj, double avgDist ); double lenDelta(double len) const { return _k * ( _r + len ); } double lenDeltaByDist(double dist) const { return dist * _h2lenRatio; } }; //-------------------------------------------------------------------------------- struct _2NearEdges; struct _LayerEdge; struct _EdgesOnShape; struct _Smoother1D; typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge; //-------------------------------------------------------------------------------- /*! * \brief Edge normal to surface, connecting a node on solid surface (_nodes[0]) * and a node of the most internal layer (_nodes.back()) */ struct _LayerEdge { typedef gp_XYZ (_LayerEdge::*PSmooFun)(); vector< const SMDS_MeshNode*> _nodes; gp_XYZ _normal; // to boundary of solid vector _pos; // points computed during inflation double _len; // length achieved with the last inflation step double _maxLen; // maximal possible length double _cosin; // of angle (_normal ^ surface) double _minAngle; // of _simplices double _lenFactor; // to compute _len taking _cosin into account int _flags; // simplices connected to the source node (_nodes[0]); // used for smoothing and quality check of _LayerEdge's based on the FACE vector<_Simplex> _simplices; vector<_LayerEdge*> _neibors; // all surrounding _LayerEdge's PSmooFun _smooFunction; // smoothing function _Curvature* _curvature; // data for smoothing of _LayerEdge's based on the EDGE _2NearEdges* _2neibors; enum EFlags { TO_SMOOTH = 0x0000001, MOVED = 0x0000002, // set by _neibors[i]->SetNewLength() SMOOTHED = 0x0000004, // set by _LayerEdge::Smooth() DIFFICULT = 0x0000008, // near concave VERTEX ON_CONCAVE_FACE = 0x0000010, BLOCKED = 0x0000020, // not to inflate any more INTERSECTED = 0x0000040, // close intersection with a face found NORMAL_UPDATED = 0x0000080, UPD_NORMAL_CONV = 0x0000100, // to update normal on boundary of concave FACE MARKED = 0x0000200, // local usage MULTI_NORMAL = 0x0000400, // a normal is invisible by some of surrounding faces NEAR_BOUNDARY = 0x0000800, // is near FACE boundary forcing smooth SMOOTHED_C1 = 0x0001000, // is on _eosC1 DISTORTED = 0x0002000, // was bad before smoothing RISKY_SWOL = 0x0004000, // SWOL is parallel to a source FACE SHRUNK = 0x0008000, // target node reached a tgt position while shrink() UNUSED_FLAG = 0x0100000 // to add user flags after }; bool Is ( int flag ) const { return _flags & flag; } void Set ( int flag ) { _flags |= flag; } void Unset( int flag ) { _flags &= ~flag; } std::string DumpFlags() const; // debug void SetNewLength( double len, _EdgesOnShape& eos, SMESH_MesherHelper& helper ); bool SetNewLength2d( Handle(Geom_Surface)& surface, const TopoDS_Face& F, _EdgesOnShape& eos, SMESH_MesherHelper& helper ); void SetDataByNeighbors( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const _EdgesOnShape& eos, SMESH_MesherHelper& helper); void Block( _SolidData& data ); void InvalidateStep( size_t curStep, const _EdgesOnShape& eos, bool restoreLength=false ); void ChooseSmooFunction(const set< TGeomID >& concaveVertices, const TNode2Edge& n2eMap); void SmoothPos( const vector< double >& segLen, const double tol ); int GetSmoothedPos( const double tol ); int Smooth(const int step, const bool isConcaveFace, bool findBest); int Smooth(const int step, bool findBest, vector< _LayerEdge* >& toSmooth ); int CheckNeiborsOnBoundary(vector< _LayerEdge* >* badNeibors = 0, bool * needSmooth = 0 ); void SmoothWoCheck(); bool SmoothOnEdge(Handle(ShapeAnalysis_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper); void MoveNearConcaVer( const _EdgesOnShape* eov, const _EdgesOnShape* eos, const int step, vector< _LayerEdge* > & badSmooEdges); bool FindIntersection( SMESH_ElementSearcher& searcher, double & distance, const double& epsilon, _EdgesOnShape& eos, const SMDS_MeshElement** face = 0); bool SegTriaInter( const gp_Ax1& lastSegment, const gp_XYZ& p0, const gp_XYZ& p1, const gp_XYZ& p2, double& dist, const double& epsilon) const; bool SegTriaInter( const gp_Ax1& lastSegment, const SMDS_MeshNode* n0, const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, double& dist, const double& epsilon) const { return SegTriaInter( lastSegment, SMESH_TNodeXYZ( n0 ), SMESH_TNodeXYZ( n1 ), SMESH_TNodeXYZ( n2 ), dist, epsilon ); } const gp_XYZ& PrevPos() const { return _pos[ _pos.size() - 2 ]; } gp_XYZ PrevCheckPos( _EdgesOnShape* eos=0 ) const; gp_Ax1 LastSegment(double& segLen, _EdgesOnShape& eos) const; gp_XY LastUV( const TopoDS_Face& F, _EdgesOnShape& eos, int which=-1 ) const; bool IsOnEdge() const { return _2neibors; } bool IsOnFace() const { return ( _nodes[0]->GetPosition()->GetDim() == 2 ); } int BaseShapeDim() const { return _nodes[0]->GetPosition()->GetDim(); } gp_XYZ Copy( _LayerEdge& other, _EdgesOnShape& eos, SMESH_MesherHelper& helper ); void SetCosin( double cosin ); void SetNormal( const gp_XYZ& n ) { _normal = n; } void SetMaxLen( double l ) { _maxLen = l; } int NbSteps() const { return _pos.size() - 1; } // nb inlation steps bool IsNeiborOnEdge( const _LayerEdge* edge ) const; void SetSmooLen( double len ) { // set _len at which smoothing is needed _cosin = len; // as for _LayerEdge's on FACE _cosin is not used } double GetSmooLen() { return _cosin; } // for _LayerEdge's on FACE _cosin is not used gp_XYZ smoothLaplacian(); gp_XYZ smoothAngular(); gp_XYZ smoothLengthWeighted(); gp_XYZ smoothCentroidal(); gp_XYZ smoothNefPolygon(); enum { FUN_LAPLACIAN, FUN_LENWEIGHTED, FUN_CENTROIDAL, FUN_NEFPOLY, FUN_ANGULAR, FUN_NB }; static const int theNbSmooFuns = FUN_NB; static PSmooFun _funs[theNbSmooFuns]; static const char* _funNames[theNbSmooFuns+1]; int smooFunID( PSmooFun fun=0) const; }; _LayerEdge::PSmooFun _LayerEdge::_funs[theNbSmooFuns] = { &_LayerEdge::smoothLaplacian, &_LayerEdge::smoothLengthWeighted, &_LayerEdge::smoothCentroidal, &_LayerEdge::smoothNefPolygon, &_LayerEdge::smoothAngular }; const char* _LayerEdge::_funNames[theNbSmooFuns+1] = { "Laplacian", "LengthWeighted", "Centroidal", "NefPolygon", "Angular", "None"}; struct _LayerEdgeCmp { bool operator () (const _LayerEdge* e1, const _LayerEdge* e2) const { const bool cmpNodes = ( e1 && e2 && e1->_nodes.size() && e2->_nodes.size() ); return cmpNodes ? ( e1->_nodes[0]->GetID() < e2->_nodes[0]->GetID()) : ( e1 < e2 ); } }; //-------------------------------------------------------------------------------- /*! * A 2D half plane used by _LayerEdge::smoothNefPolygon() */ struct _halfPlane { gp_XY _pos, _dir, _inNorm; bool IsOut( const gp_XY p, const double tol ) const { return _inNorm * ( p - _pos ) < -tol; } bool FindIntersection( const _halfPlane& hp, gp_XY & intPnt ) { //const double eps = 1e-10; double D = _dir.Crossed( hp._dir ); if ( fabs(D) < std::numeric_limits::min()) return false; gp_XY vec21 = _pos - hp._pos; double u = hp._dir.Crossed( vec21 ) / D; intPnt = _pos + _dir * u; return true; } }; //-------------------------------------------------------------------------------- /*! * Structure used to smooth a _LayerEdge based on an EDGE. */ struct _2NearEdges { double _wgt [2]; // weights of _nodes _LayerEdge* _edges[2]; // normal to plane passing through _LayerEdge._normal and tangent of EDGE gp_XYZ* _plnNorm; _2NearEdges() { _edges[0]=_edges[1]=0; _plnNorm = 0; } ~_2NearEdges(){ delete _plnNorm; } const SMDS_MeshNode* tgtNode(bool is2nd) { return _edges[is2nd] ? _edges[is2nd]->_nodes.back() : 0; } const SMDS_MeshNode* srcNode(bool is2nd) { return _edges[is2nd] ? _edges[is2nd]->_nodes[0] : 0; } void reverse() { std::swap( _wgt [0], _wgt [1] ); std::swap( _edges[0], _edges[1] ); } void set( _LayerEdge* e1, _LayerEdge* e2, double w1, double w2 ) { _edges[0] = e1; _edges[1] = e2; _wgt[0] = w1; _wgt[1] = w2; } bool include( const _LayerEdge* e ) { return ( _edges[0] == e || _edges[1] == e ); } }; //-------------------------------------------------------------------------------- /*! * \brief Layers parameters got by averaging several hypotheses */ struct AverageHyp { AverageHyp( const StdMeshers_ViscousLayers* hyp = 0 ) :_nbLayers(0), _nbHyps(0), _method(0), _thickness(0), _stretchFactor(0) { Add( hyp ); } void Add( const StdMeshers_ViscousLayers* hyp ) { if ( hyp ) { _nbHyps++; _nbLayers = hyp->GetNumberLayers(); //_thickness += hyp->GetTotalThickness(); _thickness = Max( _thickness, hyp->GetTotalThickness() ); _stretchFactor += hyp->GetStretchFactor(); _method = hyp->GetMethod(); if ( _groupName.empty() ) _groupName = hyp->GetGroupName(); } } double GetTotalThickness() const { return _thickness; /*_nbHyps ? _thickness / _nbHyps : 0;*/ } double GetStretchFactor() const { return _nbHyps ? _stretchFactor / _nbHyps : 0; } int GetNumberLayers() const { return _nbLayers; } int GetMethod() const { return _method; } bool ToCreateGroup() const { return !_groupName.empty(); } const std::string& GetGroupName() const { return _groupName; } bool UseSurfaceNormal() const { return _method == StdMeshers_ViscousLayers::SURF_OFFSET_SMOOTH; } bool ToSmooth() const { return _method == StdMeshers_ViscousLayers::SURF_OFFSET_SMOOTH; } bool IsOffsetMethod() const { return _method == StdMeshers_ViscousLayers::FACE_OFFSET; } bool operator==( const AverageHyp& other ) const { return ( _nbLayers == other._nbLayers && _method == other._method && Equals( GetTotalThickness(), other.GetTotalThickness() ) && Equals( GetStretchFactor(), other.GetStretchFactor() )); } static bool Equals( double v1, double v2 ) { return Abs( v1 - v2 ) < 0.01 * ( v1 + v2 ); } private: int _nbLayers, _nbHyps, _method; double _thickness, _stretchFactor; std::string _groupName; }; //-------------------------------------------------------------------------------- /*! * \brief _LayerEdge's on a shape and other shape data */ struct _EdgesOnShape { vector< _LayerEdge* > _edges; TopoDS_Shape _shape; TGeomID _shapeID; SMESH_subMesh * _subMesh; // face or edge w/o layer along or near which _edges are inflated TopoDS_Shape _sWOL; bool _isRegularSWOL; // w/o singularities // averaged StdMeshers_ViscousLayers parameters AverageHyp _hyp; bool _toSmooth; _Smoother1D* _edgeSmoother; vector< _EdgesOnShape* > _eosConcaVer; // edges at concave VERTEXes of a FACE vector< _EdgesOnShape* > _eosC1; // to smooth together several C1 continues shapes typedef std::unordered_map< const SMDS_MeshElement*, gp_XYZ > TFace2NormMap; TFace2NormMap _faceNormals; // if _shape is FACE vector< _EdgesOnShape* > _faceEOS; // to get _faceNormals of adjacent FACEs Handle(ShapeAnalysis_Surface) _offsetSurf; _LayerEdge* _edgeForOffset; _SolidData* _data; // parent SOLID _LayerEdge* operator[](size_t i) const { return (_LayerEdge*) _edges[i]; } size_t size() const { return _edges.size(); } TopAbs_ShapeEnum ShapeType() const { return _shape.IsNull() ? TopAbs_SHAPE : _shape.ShapeType(); } TopAbs_ShapeEnum SWOLType() const { return _sWOL.IsNull() ? TopAbs_SHAPE : _sWOL.ShapeType(); } bool HasC1( const _EdgesOnShape* other ) const { return std::find( _eosC1.begin(), _eosC1.end(), other ) != _eosC1.end(); } bool GetNormal( const SMDS_MeshElement* face, gp_Vec& norm ); _SolidData& GetData() const { return *_data; } _EdgesOnShape(): _shapeID(-1), _subMesh(0), _toSmooth(false), _edgeSmoother(0) {} ~_EdgesOnShape(); }; //-------------------------------------------------------------------------------- /*! * \brief Convex FACE whose radius of curvature is less than the thickness of * layers. It is used to detect distortion of prisms based on a convex * FACE and to update normals to enable further increasing the thickness */ struct _ConvexFace { TopoDS_Face _face; // edges whose _simplices are used to detect prism distortion vector< _LayerEdge* > _simplexTestEdges; // map a sub-shape to _SolidData::_edgesOnShape map< TGeomID, _EdgesOnShape* > _subIdToEOS; bool _isTooCurved; bool _normalsFixed; bool _normalsFixedOnBorders; // used in putOnOffsetSurface() double GetMaxCurvature( _SolidData& data, _EdgesOnShape& eof, BRepLProp_SLProps& surfProp, SMESH_MesherHelper& helper); bool GetCenterOfCurvature( _LayerEdge* ledge, BRepLProp_SLProps& surfProp, SMESH_MesherHelper& helper, gp_Pnt & center ) const; bool CheckPrisms() const; }; //-------------------------------------------------------------------------------- /*! * \brief Structure holding _LayerEdge's based on EDGEs that will collide * at inflation up to the full thickness. A detected collision * is fixed in updateNormals() */ struct _CollisionEdges { _LayerEdge* _edge; vector< _LayerEdge* > _intEdges; // each pair forms an intersected quadrangle const SMDS_MeshNode* nSrc(int i) const { return _intEdges[i]->_nodes[0]; } const SMDS_MeshNode* nTgt(int i) const { return _intEdges[i]->_nodes.back(); } }; //-------------------------------------------------------------------------------- /*! * \brief Data of a SOLID */ struct _SolidData { typedef const StdMeshers_ViscousLayers* THyp; TopoDS_Shape _solid; TopTools_MapOfShape _before; // SOLIDs to be computed before _solid TGeomID _index; // SOLID id _MeshOfSolid* _proxyMesh; bool _done; list< THyp > _hyps; list< TopoDS_Shape > _hypShapes; map< TGeomID, THyp > _face2hyp; // filled if _hyps.size() > 1 set< TGeomID > _reversedFaceIds; set< TGeomID > _ignoreFaceIds; // WOL FACEs and FACEs of other SOLIDs double _stepSize, _stepSizeCoeff, _geomSize; const SMDS_MeshNode* _stepSizeNodes[2]; TNode2Edge _n2eMap; // nodes and _LayerEdge's based on them // map to find _n2eMap of another _SolidData by a shrink shape shared by two _SolidData's map< TGeomID, TNode2Edge* > _s2neMap; // _LayerEdge's with underlying shapes vector< _EdgesOnShape > _edgesOnShape; // key: an ID of shape (EDGE or VERTEX) shared by a FACE with // layers and a FACE w/o layers // value: the shape (FACE or EDGE) to shrink mesh on. // _LayerEdge's basing on nodes on key shape are inflated along the value shape map< TGeomID, TopoDS_Shape > _shrinkShape2Shape; // Convex FACEs whose radius of curvature is less than the thickness of layers map< TGeomID, _ConvexFace > _convexFaces; // shapes (EDGEs and VERTEXes) shrink from which is forbidden due to collisions with // the adjacent SOLID set< TGeomID > _noShrinkShapes; int _nbShapesToSmooth; vector< _CollisionEdges > _collisionEdges; set< TGeomID > _concaveFaces; double _maxThickness; // of all _hyps double _minThickness; // of all _hyps double _epsilon; // precision for SegTriaInter() SMESH_MesherHelper* _helper; _SolidData(const TopoDS_Shape& s=TopoDS_Shape(), _MeshOfSolid* m=0) :_solid(s), _proxyMesh(m), _done(false),_helper(0) {} ~_SolidData() { delete _helper; _helper = 0; } void SortOnEdge( const TopoDS_Edge& E, vector< _LayerEdge* >& edges); void Sort2NeiborsOnEdge( vector< _LayerEdge* >& edges ); _ConvexFace* GetConvexFace( const TGeomID faceID ) { map< TGeomID, _ConvexFace >::iterator id2face = _convexFaces.find( faceID ); return id2face == _convexFaces.end() ? 0 : & id2face->second; } _EdgesOnShape* GetShapeEdges(const TGeomID shapeID ); _EdgesOnShape* GetShapeEdges(const TopoDS_Shape& shape ); _EdgesOnShape* GetShapeEdges(const _LayerEdge* edge ) { return GetShapeEdges( edge->_nodes[0]->getshapeId() ); } SMESH_MesherHelper& GetHelper() const { return *_helper; } void UnmarkEdges( int flag = _LayerEdge::MARKED ) { for ( size_t i = 0; i < _edgesOnShape.size(); ++i ) for ( size_t j = 0; j < _edgesOnShape[i]._edges.size(); ++j ) _edgesOnShape[i]._edges[j]->Unset( flag ); } void AddShapesToSmooth( const set< _EdgesOnShape* >& shape, const set< _EdgesOnShape* >* edgesNoAnaSmooth=0 ); void PrepareEdgesToSmoothOnFace( _EdgesOnShape* eof, bool substituteSrcNodes ); }; //-------------------------------------------------------------------------------- /*! * \brief Offset plane used in getNormalByOffset() */ struct _OffsetPlane { gp_Pln _plane; int _faceIndex; int _faceIndexNext[2]; gp_Lin _lines[2]; // line of intersection with neighbor _OffsetPlane's bool _isLineOK[2]; _OffsetPlane() { _isLineOK[0] = _isLineOK[1] = false; _faceIndexNext[0] = _faceIndexNext[1] = -1; } void ComputeIntersectionLine( _OffsetPlane& pln, const TopoDS_Edge& E, const TopoDS_Vertex& V ); gp_XYZ GetCommonPoint(bool& isFound, const TopoDS_Vertex& V) const; int NbLines() const { return _isLineOK[0] + _isLineOK[1]; } }; //-------------------------------------------------------------------------------- /*! * \brief Container of centers of curvature at nodes on an EDGE bounding _ConvexFace */ struct _CentralCurveOnEdge { bool _isDegenerated; vector< gp_Pnt > _curvaCenters; vector< _LayerEdge* > _ledges; vector< gp_XYZ > _normals; // new normal for each of _ledges vector< double > _segLength2; TopoDS_Edge _edge; TopoDS_Face _adjFace; bool _adjFaceToSmooth; void Append( const gp_Pnt& center, _LayerEdge* ledge ) { if ( ledge->Is( _LayerEdge::MULTI_NORMAL )) return; if ( _curvaCenters.size() > 0 ) _segLength2.push_back( center.SquareDistance( _curvaCenters.back() )); _curvaCenters.push_back( center ); _ledges.push_back( ledge ); _normals.push_back( ledge->_normal ); } bool FindNewNormal( const gp_Pnt& center, gp_XYZ& newNormal ); void SetShapes( const TopoDS_Edge& edge, const _ConvexFace& convFace, _SolidData& data, SMESH_MesherHelper& helper); }; //-------------------------------------------------------------------------------- /*! * \brief Data of node on a shrinked FACE */ struct _SmoothNode { const SMDS_MeshNode* _node; vector<_Simplex> _simplices; // for quality check enum SmoothType { LAPLACIAN, CENTROIDAL, ANGULAR, TFI }; bool Smooth(int& badNb, Handle(Geom_Surface)& surface, SMESH_MesherHelper& helper, const double refSign, SmoothType how, bool set3D); gp_XY computeAngularPos(vector& uv, const gp_XY& uvToFix, const double refSign ); }; struct PyDump; struct Periodicity; //-------------------------------------------------------------------------------- /*! * \brief Builder of viscous layers */ class _ViscousBuilder { public: _ViscousBuilder(); // does it's job SMESH_ComputeErrorPtr Compute(SMESH_Mesh& mesh, const TopoDS_Shape& shape); // check validity of hypotheses SMESH_ComputeErrorPtr CheckHypotheses( SMESH_Mesh& mesh, const TopoDS_Shape& shape ); // restore event listeners used to clear an inferior dim sub-mesh modified by viscous layers void RestoreListeners(); // computes SMESH_ProxyMesh::SubMesh::_n2n; bool MakeN2NMap( _MeshOfSolid* pm ); private: bool findSolidsWithLayers(const bool checkFaceMesh=true); bool setBefore( _SolidData& solidBefore, _SolidData& solidAfter ); bool findFacesWithLayers(const bool onlyWith=false); void findPeriodicFaces(); void getIgnoreFaces(const TopoDS_Shape& solid, const StdMeshers_ViscousLayers* hyp, const TopoDS_Shape& hypShape, set& ignoreFaces); void makeEdgesOnShape(); bool makeLayer(_SolidData& data); void setShapeData( _EdgesOnShape& eos, SMESH_subMesh* sm, _SolidData& data ); bool setEdgeData( _LayerEdge& edge, _EdgesOnShape& eos, SMESH_MesherHelper& helper, _SolidData& data); gp_XYZ getFaceNormal(const SMDS_MeshNode* n, const TopoDS_Face& face, SMESH_MesherHelper& helper, bool& isOK, bool shiftInside=false); bool getFaceNormalAtSingularity(const gp_XY& uv, const TopoDS_Face& face, SMESH_MesherHelper& helper, gp_Dir& normal ); gp_XYZ getWeigthedNormal( const _LayerEdge* edge ); gp_XYZ getNormalByOffset( _LayerEdge* edge, std::pair< TopoDS_Face, gp_XYZ > fId2Normal[], int nbFaces, bool lastNoOffset = false); bool findNeiborsOnEdge(const _LayerEdge* edge, const SMDS_MeshNode*& n1, const SMDS_MeshNode*& n2, _EdgesOnShape& eos, _SolidData& data); void findSimplexTestEdges( _SolidData& data, vector< vector<_LayerEdge*> >& edgesByGeom); void computeGeomSize( _SolidData& data ); bool findShapesToSmooth( _SolidData& data); void limitStepSizeByCurvature( _SolidData& data ); void limitStepSize( _SolidData& data, const SMDS_MeshElement* face, const _LayerEdge* maxCosinEdge ); void limitStepSize( _SolidData& data, const double minSize); bool inflate(_SolidData& data); bool smoothAndCheck(_SolidData& data, const int nbSteps, double & distToIntersection); int invalidateBadSmooth( _SolidData& data, SMESH_MesherHelper& helper, vector< _LayerEdge* >& badSmooEdges, vector< _EdgesOnShape* >& eosC1, const int infStep ); void makeOffsetSurface( _EdgesOnShape& eos, SMESH_MesherHelper& ); void putOnOffsetSurface( _EdgesOnShape& eos, int infStep, vector< _EdgesOnShape* >& eosC1, int smooStep=0, int moveAll=false ); void findCollisionEdges( _SolidData& data, SMESH_MesherHelper& helper ); void findEdgesToUpdateNormalNearConvexFace( _ConvexFace & convFace, _SolidData& data, SMESH_MesherHelper& helper ); void limitMaxLenByCurvature( _SolidData& data, SMESH_MesherHelper& helper ); void limitMaxLenByCurvature( _LayerEdge* e1, _LayerEdge* e2, _EdgesOnShape& eos1, _EdgesOnShape& eos2, const bool isSmoothable ); bool updateNormals( _SolidData& data, SMESH_MesherHelper& helper, int stepNb, double stepSize ); bool updateNormalsOfConvexFaces( _SolidData& data, SMESH_MesherHelper& helper, int stepNb ); void updateNormalsOfC1Vertices( _SolidData& data ); bool updateNormalsOfSmoothed( _SolidData& data, SMESH_MesherHelper& helper, const int nbSteps, const double stepSize ); bool isNewNormalOk( _SolidData& data, _LayerEdge& edge, const gp_XYZ& newNormal); bool refine(_SolidData& data); bool shrink(_SolidData& data); bool prepareEdgeToShrink( _LayerEdge& edge, _EdgesOnShape& eos, SMESH_MesherHelper& helper, const SMESHDS_SubMesh* faceSubMesh ); void restoreNoShrink( _LayerEdge& edge ) const; void fixBadFaces(const TopoDS_Face& F, SMESH_MesherHelper& helper, const bool is2D, const int step, set * involvedNodes=NULL); bool addBoundaryElements(_SolidData& data); bool error( const string& text, int solidID=-1 ); SMESHDS_Mesh* getMeshDS() const { return _mesh->GetMeshDS(); } // debug void makeGroupOfLE(); SMESH_Mesh* _mesh; SMESH_ComputeErrorPtr _error; vector< _SolidData > _sdVec; TopTools_IndexedMapOfShape _solids; // to find _SolidData by a solid TopTools_MapOfShape _shrunkFaces; std::unique_ptr _periodicity; int _tmpFaceID; PyDump* _pyDump; }; //-------------------------------------------------------------------------------- /*! * \brief Shrinker of nodes on the EDGE */ class _Shrinker1D { TopoDS_Edge _geomEdge; vector _initU; vector _normPar; vector _nodes; const _LayerEdge* _edges[2]; bool _done; public: void AddEdge( const _LayerEdge* e, _EdgesOnShape& eos, SMESH_MesherHelper& helper ); void Compute(bool set3D, SMESH_MesherHelper& helper); void RestoreParams(); void SwapSrcTgtNodes(SMESHDS_Mesh* mesh); const TopoDS_Edge& GeomEdge() const { return _geomEdge; } const SMDS_MeshNode* TgtNode( bool is2nd ) const { return _edges[is2nd] ? _edges[is2nd]->_nodes.back() : 0; } const SMDS_MeshNode* SrcNode( bool is2nd ) const { return _edges[is2nd] ? _edges[is2nd]->_nodes[0] : 0; } }; //-------------------------------------------------------------------------------- /*! * \brief Smoother of _LayerEdge's on EDGE. */ struct _Smoother1D { struct OffPnt // point of the offsetted EDGE { gp_XYZ _xyz; // coord of a point inflated from EDGE w/o smooth double _len; // length reached at previous inflation step double _param; // on EDGE _2NearEdges _2edges; // 2 neighbor _LayerEdge's gp_XYZ _edgeDir;// EDGE tangent at _param double Distance( const OffPnt& p ) const { return ( _xyz - p._xyz ).Modulus(); } }; vector< OffPnt > _offPoints; vector< double > _leParams; // normalized param of _eos._edges on EDGE Handle(Geom_Curve) _anaCurve; // for analytic smooth _LayerEdge _leOnV[2]; // _LayerEdge's holding normal to the EDGE at VERTEXes gp_XYZ _edgeDir[2]; // tangent at VERTEXes size_t _iSeg[2]; // index of segment where extreme tgt node is projected _EdgesOnShape& _eos; double _curveLen; // length of the EDGE std::pair _eToSmooth[2]; // indices of _LayerEdge's in _eos static Handle(Geom_Curve) CurveForSmooth( const TopoDS_Edge& E, _EdgesOnShape& eos, SMESH_MesherHelper& helper); _Smoother1D( Handle(Geom_Curve) curveForSmooth, _EdgesOnShape& eos ) : _anaCurve( curveForSmooth ), _eos( eos ) { } bool Perform(_SolidData& data, Handle(ShapeAnalysis_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper ); void prepare(_SolidData& data ); void findEdgesToSmooth(); bool isToSmooth( int iE ); bool smoothAnalyticEdge( _SolidData& data, Handle(ShapeAnalysis_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper); bool smoothComplexEdge( _SolidData& data, Handle(ShapeAnalysis_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper); gp_XYZ getNormalNormal( const gp_XYZ & normal, const gp_XYZ& edgeDir); _LayerEdge* getLEdgeOnV( bool is2nd ) { return _eos._edges[ is2nd ? _eos._edges.size()-1 : 0 ]->_2neibors->_edges[ is2nd ]; } bool isAnalytic() const { return !_anaCurve.IsNull(); } void offPointsToPython() const; // debug }; //-------------------------------------------------------------------------------- /*! * \brief Class of temporary mesh face. * We can't use SMDS_FaceOfNodes since it's impossible to set it's ID which is * needed because SMESH_ElementSearcher internally uses set of elements sorted by ID */ struct _TmpMeshFace : public SMDS_PolygonalFaceOfNodes { const SMDS_MeshElement* _srcFace; _TmpMeshFace( const vector& nodes, int ID, int faceID=-1, const SMDS_MeshElement* srcFace=0 ): SMDS_PolygonalFaceOfNodes(nodes), _srcFace( srcFace ) { setID( ID ); setShapeID( faceID ); } virtual SMDSAbs_EntityType GetEntityType() const { return _srcFace ? _srcFace->GetEntityType() : SMDSEntity_Quadrangle; } virtual SMDSAbs_GeometryType GetGeomType() const { return _srcFace ? _srcFace->GetGeomType() : SMDSGeom_QUADRANGLE; } }; //-------------------------------------------------------------------------------- /*! * \brief Class of temporary mesh quadrangle face storing _LayerEdge it's based on */ struct _TmpMeshFaceOnEdge : public _TmpMeshFace { _LayerEdge *_le1, *_le2; _TmpMeshFaceOnEdge( _LayerEdge* le1, _LayerEdge* le2, int ID ): _TmpMeshFace( vector(4), ID ), _le1(le1), _le2(le2) { myNodes[0]=_le1->_nodes[0]; myNodes[1]=_le1->_nodes.back(); myNodes[2]=_le2->_nodes.back(); myNodes[3]=_le2->_nodes[0]; } const SMDS_MeshNode* n( size_t i ) const { return myNodes[ i ]; } gp_XYZ GetDir() const // return average direction of _LayerEdge's, normal to EDGE { SMESH_TNodeXYZ p0s( myNodes[0] ); SMESH_TNodeXYZ p0t( myNodes[1] ); SMESH_TNodeXYZ p1t( myNodes[2] ); SMESH_TNodeXYZ p1s( myNodes[3] ); gp_XYZ v0 = p0t - p0s; gp_XYZ v1 = p1t - p1s; gp_XYZ v01 = p1s - p0s; gp_XYZ n = ( v0 ^ v01 ) + ( v1 ^ v01 ); gp_XYZ d = v01 ^ n; d.Normalize(); return d; } gp_XYZ GetDir(_LayerEdge* le1, _LayerEdge* le2) // return average direction of _LayerEdge's { myNodes[0]=le1->_nodes[0]; myNodes[1]=le1->_nodes.back(); myNodes[2]=le2->_nodes.back(); myNodes[3]=le2->_nodes[0]; return GetDir(); } }; //-------------------------------------------------------------------------------- /*! * \brief Retriever of node coordinates either directly or from a surface by node UV. * \warning Location of a surface is ignored */ struct _NodeCoordHelper { SMESH_MesherHelper& _helper; const TopoDS_Face& _face; Handle(Geom_Surface) _surface; gp_XYZ (_NodeCoordHelper::* _fun)(const SMDS_MeshNode* n) const; _NodeCoordHelper(const TopoDS_Face& F, SMESH_MesherHelper& helper, bool is2D) : _helper( helper ), _face( F ) { if ( is2D ) { TopLoc_Location loc; _surface = BRep_Tool::Surface( _face, loc ); } if ( _surface.IsNull() ) _fun = & _NodeCoordHelper::direct; else _fun = & _NodeCoordHelper::byUV; } gp_XYZ operator()(const SMDS_MeshNode* n) const { return (this->*_fun)( n ); } private: gp_XYZ direct(const SMDS_MeshNode* n) const { return SMESH_TNodeXYZ( n ); } gp_XYZ byUV (const SMDS_MeshNode* n) const { gp_XY uv = _helper.GetNodeUV( _face, n ); return _surface->Value( uv.X(), uv.Y() ).XYZ(); } }; //================================================================================ /*! * \brief Check angle between vectors */ //================================================================================ inline bool isLessAngle( const gp_Vec& v1, const gp_Vec& v2, const double cos ) { double dot = v1 * v2; // cos * |v1| * |v2| double l1 = v1.SquareMagnitude(); double l2 = v2.SquareMagnitude(); return (( dot * cos >= 0 ) && ( dot * dot ) / l1 / l2 >= ( cos * cos )); } class _Factory { ObjectPool< _LayerEdge > _edgePool; ObjectPool< _Curvature > _curvaturePool; ObjectPool< _2NearEdges > _nearEdgesPool; static _Factory* & me() { static _Factory* theFactory = 0; return theFactory; } public: _Factory() { me() = this; } ~_Factory() { me() = 0; } static _LayerEdge* NewLayerEdge() { return me()->_edgePool.getNew(); } static _Curvature * NewCurvature() { return me()->_curvaturePool.getNew(); } static _2NearEdges* NewNearEdges() { return me()->_nearEdgesPool.getNew(); } }; } // namespace VISCOUS_3D //================================================================================ // StdMeshers_ViscousLayers hypothesis // StdMeshers_ViscousLayers::StdMeshers_ViscousLayers(int hypId, SMESH_Gen* gen) :SMESH_Hypothesis(hypId, gen), _isToIgnoreShapes(1), _nbLayers(1), _thickness(1), _stretchFactor(1), _method( SURF_OFFSET_SMOOTH ), _groupName("") { _name = StdMeshers_ViscousLayers::GetHypType(); _param_algo_dim = -3; // auxiliary hyp used by 3D algos } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetBndShapes(const std::vector& faceIds, bool toIgnore) { if ( faceIds != _shapeIds ) _shapeIds = faceIds, NotifySubMeshesHypothesisModification(); if ( _isToIgnoreShapes != toIgnore ) _isToIgnoreShapes = toIgnore, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetTotalThickness(double thickness) { if ( thickness != _thickness ) _thickness = thickness, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetNumberLayers(int nb) { if ( _nbLayers != nb ) _nbLayers = nb, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetStretchFactor(double factor) { if ( _stretchFactor != factor ) _stretchFactor = factor, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetMethod( ExtrusionMethod method ) { if ( _method != method ) _method = method, NotifySubMeshesHypothesisModification(); } // -------------------------------------------------------------------------------- void StdMeshers_ViscousLayers::SetGroupName(const std::string& name) { if ( _groupName != name ) { _groupName = name; if ( !_groupName.empty() ) NotifySubMeshesHypothesisModification(); } } // -------------------------------------------------------------------------------- SMESH_ProxyMesh::Ptr StdMeshers_ViscousLayers::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape, const bool toMakeN2NMap) const { using namespace VISCOUS_3D; _ViscousBuilder builder; SMESH_ComputeErrorPtr err = builder.Compute( theMesh, theShape ); if ( err && !err->IsOK() ) return SMESH_ProxyMesh::Ptr(); vector components; TopExp_Explorer exp( theShape, TopAbs_SOLID ); for ( ; exp.More(); exp.Next() ) { if ( _MeshOfSolid* pm = _ViscousListener::GetSolidMesh( &theMesh, exp.Current(), /*toCreate=*/false)) { if ( toMakeN2NMap && !pm->_n2nMapComputed ) if ( !builder.MakeN2NMap( pm )) return SMESH_ProxyMesh::Ptr(); components.push_back( SMESH_ProxyMesh::Ptr( pm )); pm->myIsDeletable = false; // it will de deleted by boost::shared_ptr if ( pm->_warning && !pm->_warning->IsOK() ) { SMESH_subMesh* sm = theMesh.GetSubMesh( exp.Current() ); SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); if ( !smError || smError->IsOK() ) smError = pm->_warning; } } _ViscousListener::RemoveSolidMesh ( &theMesh, exp.Current() ); } switch ( components.size() ) { case 0: break; case 1: return components[0]; default: return SMESH_ProxyMesh::Ptr( new SMESH_ProxyMesh( components )); } return SMESH_ProxyMesh::Ptr(); } // -------------------------------------------------------------------------------- std::ostream & StdMeshers_ViscousLayers::SaveTo(std::ostream & save) { save << " " << _nbLayers << " " << _thickness << " " << _stretchFactor << " " << _shapeIds.size(); for ( size_t i = 0; i < _shapeIds.size(); ++i ) save << " " << _shapeIds[i]; save << " " << !_isToIgnoreShapes; // negate to keep the behavior in old studies. save << " " << _method; save << " " << _groupName.size(); if ( !_groupName.empty() ) save << " " << _groupName; return save; } // -------------------------------------------------------------------------------- std::istream & StdMeshers_ViscousLayers::LoadFrom(std::istream & load) { int nbFaces, faceID, shapeToTreat, method; load >> _nbLayers >> _thickness >> _stretchFactor >> nbFaces; while ( (int) _shapeIds.size() < nbFaces && load >> faceID ) _shapeIds.push_back( faceID ); if ( load >> shapeToTreat ) { _isToIgnoreShapes = !shapeToTreat; if ( load >> method ) _method = (ExtrusionMethod) method; int nameSize = 0; if ( load >> nameSize && nameSize > 0 ) { _groupName.resize( nameSize ); load.get( _groupName[0] ); // remove a white-space load.getline( &_groupName[0], nameSize + 1 ); } } else { _isToIgnoreShapes = true; // old behavior } return load; } // -------------------------------------------------------------------------------- bool StdMeshers_ViscousLayers::SetParametersByMesh(const SMESH_Mesh* theMesh, const TopoDS_Shape& theShape) { // TODO return false; } // -------------------------------------------------------------------------------- SMESH_ComputeErrorPtr StdMeshers_ViscousLayers::CheckHypothesis(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape, SMESH_Hypothesis::Hypothesis_Status& theStatus) { VISCOUS_3D::_ViscousBuilder builder; SMESH_ComputeErrorPtr err = builder.CheckHypotheses( theMesh, theShape ); if ( err && !err->IsOK() ) theStatus = SMESH_Hypothesis::HYP_INCOMPAT_HYPS; else theStatus = SMESH_Hypothesis::HYP_OK; return err; } // -------------------------------------------------------------------------------- bool StdMeshers_ViscousLayers::IsShapeWithLayers(int shapeIndex) const { bool isIn = ( std::find( _shapeIds.begin(), _shapeIds.end(), shapeIndex ) != _shapeIds.end() ); return IsToIgnoreShapes() ? !isIn : isIn; } // -------------------------------------------------------------------------------- SMDS_MeshGroup* StdMeshers_ViscousLayers::CreateGroup( const std::string& theName, SMESH_Mesh& theMesh, SMDSAbs_ElementType theType) { SMESH_Group* group = 0; SMDS_MeshGroup* groupDS = 0; if ( theName.empty() ) return groupDS; if ( SMESH_Mesh::GroupIteratorPtr grIt = theMesh.GetGroups() ) while( grIt->more() && !group ) { group = grIt->next(); if ( !group || group->GetGroupDS()->GetType() != theType || group->GetName() != theName || !dynamic_cast< SMESHDS_Group* >( group->GetGroupDS() )) group = 0; } if ( !group ) group = theMesh.AddGroup( theType, theName.c_str() ); groupDS = & dynamic_cast< SMESHDS_Group* >( group->GetGroupDS() )->SMDSGroup(); return groupDS; } // END StdMeshers_ViscousLayers hypothesis //================================================================================ namespace VISCOUS_3D { gp_XYZ getEdgeDir( const TopoDS_Edge& E, const TopoDS_Vertex& fromV ) { gp_Vec dir; double f,l; Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l ); if ( c.IsNull() ) return gp_XYZ( Precision::Infinite(), 1e100, 1e100 ); gp_Pnt p = BRep_Tool::Pnt( fromV ); double distF = p.SquareDistance( c->Value( f )); double distL = p.SquareDistance( c->Value( l )); c->D1(( distF < distL ? f : l), p, dir ); if ( distL < distF ) dir.Reverse(); return dir.XYZ(); } //-------------------------------------------------------------------------------- gp_XYZ getEdgeDir( const TopoDS_Edge& E, const SMDS_MeshNode* atNode, SMESH_MesherHelper& helper) { gp_Vec dir; double f,l; gp_Pnt p; Handle(Geom_Curve) c = BRep_Tool::Curve( E, f, l ); if ( c.IsNull() ) return gp_XYZ( Precision::Infinite(), 1e100, 1e100 ); double u = helper.GetNodeU( E, atNode ); c->D1( u, p, dir ); return dir.XYZ(); } //-------------------------------------------------------------------------------- gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Vertex& fromV, const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok, double* cosin=0); //-------------------------------------------------------------------------------- gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Edge& fromE, const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok) { double f,l; Handle(Geom_Curve) c = BRep_Tool::Curve( fromE, f, l ); if ( c.IsNull() ) { TopoDS_Vertex v = helper.IthVertex( 0, fromE ); return getFaceDir( F, v, node, helper, ok ); } gp_XY uv = helper.GetNodeUV( F, node, 0, &ok ); Handle(Geom_Surface) surface = BRep_Tool::Surface( F ); gp_Pnt p; gp_Vec du, dv, norm; surface->D1( uv.X(),uv.Y(), p, du,dv ); norm = du ^ dv; double u = helper.GetNodeU( fromE, node, 0, &ok ); c->D1( u, p, du ); TopAbs_Orientation o = helper.GetSubShapeOri( F.Oriented(TopAbs_FORWARD), fromE); if ( o == TopAbs_REVERSED ) du.Reverse(); gp_Vec dir = norm ^ du; if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX && helper.IsClosedEdge( fromE )) { if ( fabs(u-f) < fabs(u-l)) c->D1( l, p, dv ); else c->D1( f, p, dv ); if ( o == TopAbs_REVERSED ) dv.Reverse(); gp_Vec dir2 = norm ^ dv; dir = dir.Normalized() + dir2.Normalized(); } return dir.XYZ(); } //-------------------------------------------------------------------------------- gp_XYZ getFaceDir( const TopoDS_Face& F, const TopoDS_Vertex& fromV, const SMDS_MeshNode* node, SMESH_MesherHelper& helper, bool& ok, double* cosin) { TopoDS_Face faceFrw = F; faceFrw.Orientation( TopAbs_FORWARD ); //double f,l; TopLoc_Location loc; TopoDS_Edge edges[2]; // sharing a vertex size_t nbEdges = 0; { TopoDS_Vertex VV[2]; TopExp_Explorer exp( faceFrw, TopAbs_EDGE ); for ( ; exp.More() && nbEdges < 2; exp.Next() ) { const TopoDS_Edge& e = TopoDS::Edge( exp.Current() ); if ( SMESH_Algo::isDegenerated( e )) continue; TopExp::Vertices( e, VV[0], VV[1], /*CumOri=*/true ); if ( VV[1].IsSame( fromV )) { nbEdges += edges[ 0 ].IsNull(); edges[ 0 ] = e; } else if ( VV[0].IsSame( fromV )) { nbEdges += edges[ 1 ].IsNull(); edges[ 1 ] = e; } } } gp_XYZ dir(0,0,0), edgeDir[2]; if ( nbEdges == 2 ) { // get dirs of edges going fromV ok = true; for ( size_t i = 0; i < nbEdges && ok; ++i ) { edgeDir[i] = getEdgeDir( edges[i], fromV ); double size2 = edgeDir[i].SquareModulus(); if (( ok = size2 > numeric_limits::min() )) edgeDir[i] /= sqrt( size2 ); } if ( !ok ) return dir; // get angle between the 2 edges gp_Vec faceNormal; double angle = helper.GetAngle( edges[0], edges[1], faceFrw, fromV, &faceNormal ); if ( Abs( angle ) < 5 * M_PI/180 ) { dir = ( faceNormal.XYZ() ^ edgeDir[0].Reversed()) + ( faceNormal.XYZ() ^ edgeDir[1] ); } else { dir = edgeDir[0] + edgeDir[1]; if ( angle < 0 ) dir.Reverse(); } if ( cosin ) { double angle = gp_Vec( edgeDir[0] ).Angle( dir ); *cosin = Cos( angle ); } } else if ( nbEdges == 1 ) { dir = getFaceDir( faceFrw, edges[ edges[0].IsNull() ], node, helper, ok ); if ( cosin ) *cosin = 1.; } else { ok = false; } return dir; } //================================================================================ /*! * \brief Finds concave VERTEXes of a FACE */ //================================================================================ bool getConcaveVertices( const TopoDS_Face& F, SMESH_MesherHelper& helper, set< TGeomID >* vertices = 0) { // check angles at VERTEXes TError error; TSideVector wires = StdMeshers_FaceSide::GetFaceWires( F, *helper.GetMesh(), 0, error ); for ( size_t iW = 0; iW < wires.size(); ++iW ) { const int nbEdges = wires[iW]->NbEdges(); if ( nbEdges < 2 && SMESH_Algo::isDegenerated( wires[iW]->Edge(0))) continue; for ( int iE1 = 0; iE1 < nbEdges; ++iE1 ) { if ( SMESH_Algo::isDegenerated( wires[iW]->Edge( iE1 ))) continue; int iE2 = ( iE1 + 1 ) % nbEdges; while ( SMESH_Algo::isDegenerated( wires[iW]->Edge( iE2 ))) iE2 = ( iE2 + 1 ) % nbEdges; TopoDS_Vertex V = wires[iW]->FirstVertex( iE2 ); double angle = helper.GetAngle( wires[iW]->Edge( iE1 ), wires[iW]->Edge( iE2 ), F, V ); if ( angle < -5. * M_PI / 180. ) { if ( !vertices ) return true; vertices->insert( helper.GetMeshDS()->ShapeToIndex( V )); } } } return vertices ? !vertices->empty() : false; } //================================================================================ /*! * \brief Returns true if a FACE is bound by a concave EDGE */ //================================================================================ bool isConcave( const TopoDS_Face& F, SMESH_MesherHelper& helper, set< TGeomID >* vertices = 0 ) { bool isConcv = false; // if ( helper.Count( F, TopAbs_WIRE, /*useMap=*/false) > 1 ) // return true; gp_Vec2d drv1, drv2; gp_Pnt2d p; TopExp_Explorer eExp( F.Oriented( TopAbs_FORWARD ), TopAbs_EDGE ); for ( ; eExp.More(); eExp.Next() ) { const TopoDS_Edge& E = TopoDS::Edge( eExp.Current() ); if ( SMESH_Algo::isDegenerated( E )) continue; // check if 2D curve is concave BRepAdaptor_Curve2d curve( E, F ); const int nbIntervals = curve.NbIntervals( GeomAbs_C2 ); TColStd_Array1OfReal intervals(1, nbIntervals + 1 ); curve.Intervals( intervals, GeomAbs_C2 ); bool isConvex = true; for ( int i = 1; i <= nbIntervals && isConvex; ++i ) { double u1 = intervals( i ); double u2 = intervals( i+1 ); curve.D2( 0.5*( u1+u2 ), p, drv1, drv2 ); double cross = drv1 ^ drv2; if ( E.Orientation() == TopAbs_REVERSED ) cross = -cross; isConvex = ( cross > -1e-9 ); // 0.1 ); } if ( !isConvex ) { //cout << "Concave FACE " << helper.GetMeshDS()->ShapeToIndex( F ) << endl; isConcv = true; if ( vertices ) break; else return true; } } // check angles at VERTEXes if ( getConcaveVertices( F, helper, vertices )) isConcv = true; return isConcv; } //================================================================================ /*! * \brief Computes minimal distance of face in-FACE nodes from an EDGE * \param [in] face - the mesh face to treat * \param [in] nodeOnEdge - a node on the EDGE * \param [out] faceSize - the computed distance * \return bool - true if faceSize computed */ //================================================================================ bool getDistFromEdge( const SMDS_MeshElement* face, const SMDS_MeshNode* nodeOnEdge, double & faceSize ) { faceSize = Precision::Infinite(); bool done = false; int nbN = face->NbCornerNodes(); int iOnE = face->GetNodeIndex( nodeOnEdge ); int iNext[2] = { SMESH_MesherHelper::WrapIndex( iOnE+1, nbN ), SMESH_MesherHelper::WrapIndex( iOnE-1, nbN ) }; const SMDS_MeshNode* nNext[2] = { face->GetNode( iNext[0] ), face->GetNode( iNext[1] ) }; gp_XYZ segVec, segEnd = SMESH_TNodeXYZ( nodeOnEdge ); // segment on EDGE double segLen = -1.; // look for two neighbor not in-FACE nodes of face for ( int i = 0; i < 2; ++i ) { if (( nNext[i]->GetPosition()->GetDim() != 2 ) && ( nodeOnEdge->GetPosition()->GetDim() == 0 || nNext[i]->GetID() < nodeOnEdge->GetID() )) { // look for an in-FACE node for ( int iN = 0; iN < nbN; ++iN ) { if ( iN == iOnE || iN == iNext[i] ) continue; SMESH_TNodeXYZ pInFace = face->GetNode( iN ); gp_XYZ v = pInFace - segEnd; if ( segLen < 0 ) { segVec = SMESH_TNodeXYZ( nNext[i] ) - segEnd; segLen = segVec.Modulus(); } double distToSeg = v.Crossed( segVec ).Modulus() / segLen; faceSize = Min( faceSize, distToSeg ); done = true; } segLen = -1; } } return done; } //================================================================================ /*! * \brief Return direction of axis or revolution of a surface */ //================================================================================ bool getRovolutionAxis( const Adaptor3d_Surface& surface, gp_Dir & axis ) { switch ( surface.GetType() ) { case GeomAbs_Cone: { gp_Cone cone = surface.Cone(); axis = cone.Axis().Direction(); break; } case GeomAbs_Sphere: { gp_Sphere sphere = surface.Sphere(); axis = sphere.Position().Direction(); break; } case GeomAbs_SurfaceOfRevolution: { axis = surface.AxeOfRevolution().Direction(); break; } //case GeomAbs_SurfaceOfExtrusion: case GeomAbs_OffsetSurface: { Handle(Adaptor3d_HSurface) base = surface.BasisSurface(); return getRovolutionAxis( base->Surface(), axis ); } default: return false; } return true; } //-------------------------------------------------------------------------------- // DEBUG. Dump intermediate node positions into a python script // HOWTO use: run python commands written in a console to see // construction steps of viscous layers #ifdef __myDEBUG ostream* py; int theNbPyFunc; struct PyDump { PyDump(SMESH_Mesh& m) { int tag = 3 + m.GetId(); const char* fname = "/tmp/viscous.py"; cout << "exec(open('"< ostream & operator<<( const T &anything ) { return *this ; } }; void Pause() { py = &_mystream; } void Resume() { py = _pyStream; } MyStream _mystream; ostream* _pyStream; }; #define dumpFunction(f) { _dumpFunction(f, __LINE__);} #define dumpMove(n) { _dumpMove(n, __LINE__);} #define dumpMoveComm(n,txt) { _dumpMove(n, __LINE__, txt);} #define dumpCmd(txt) { _dumpCmd(txt, __LINE__);} void _dumpFunction(const string& fun, int ln) { if (py) *py<< "def "<GetID()<< ", "<< n->X() << ", "<Y()<<", "<< n->Z()<< ")\t\t # "<< ln <<" "<< txt << endl; } void _dumpCmd(const string& txt, int ln) { if (py) *py<< " "<GetID()<<", ["; for ( int i=1; i < f->NbNodes(); ++i ) *py << f->GetNode(i-1)->GetID()<<", "; *py << f->GetNode( f->NbNodes()-1 )->GetID() << " ])"<< endl; }} #define debugMsg( txt ) { cout << "# "<< txt << " (line: " << __LINE__ << ")" << endl; } #else struct PyDump { PyDump(SMESH_Mesh&) {} void Finish() {} void Pause() {} void Resume() {} }; #define dumpFunction(f) f #define dumpMove(n) #define dumpMoveComm(n,txt) #define dumpCmd(txt) #define dumpFunctionEnd() #define dumpChangeNodes(f) { if(f) {} } // prevent "unused variable 'f'" warning #define debugMsg( txt ) {} #endif } using namespace VISCOUS_3D; //================================================================================ /*! * \brief Constructor of _ViscousBuilder */ //================================================================================ _ViscousBuilder::_ViscousBuilder() { _error = SMESH_ComputeError::New(COMPERR_OK); _tmpFaceID = 0; } //================================================================================ /*! * \brief Stores error description and returns false */ //================================================================================ bool _ViscousBuilder::error(const string& text, int solidId ) { const string prefix = string("Viscous layers builder: "); _error->myName = COMPERR_ALGO_FAILED; _error->myComment = prefix + text; if ( _mesh ) { SMESH_subMesh* sm = _mesh->GetSubMeshContaining( solidId ); if ( !sm && !_sdVec.empty() ) sm = _mesh->GetSubMeshContaining( solidId = _sdVec[0]._index ); if ( sm && sm->GetSubShape().ShapeType() == TopAbs_SOLID ) { SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); if ( smError && smError->myAlgo ) _error->myAlgo = smError->myAlgo; smError = _error; sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); } // set KO to all solids for ( size_t i = 0; i < _sdVec.size(); ++i ) { if ( _sdVec[i]._index == solidId ) continue; sm = _mesh->GetSubMesh( _sdVec[i]._solid ); if ( !sm->IsEmpty() ) continue; SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); if ( !smError || smError->IsOK() ) { smError = SMESH_ComputeError::New( COMPERR_ALGO_FAILED, prefix + "failed"); sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); } } } makeGroupOfLE(); // debug return false; } //================================================================================ /*! * \brief At study restoration, restore event listeners used to clear an inferior * dim sub-mesh modified by viscous layers */ //================================================================================ void _ViscousBuilder::RestoreListeners() { // TODO } //================================================================================ /*! * \brief computes SMESH_ProxyMesh::SubMesh::_n2n */ //================================================================================ bool _ViscousBuilder::MakeN2NMap( _MeshOfSolid* pm ) { SMESH_subMesh* solidSM = pm->mySubMeshes.front(); TopExp_Explorer fExp( solidSM->GetSubShape(), TopAbs_FACE ); for ( ; fExp.More(); fExp.Next() ) { SMESHDS_SubMesh* srcSmDS = pm->GetMeshDS()->MeshElements( fExp.Current() ); const SMESH_ProxyMesh::SubMesh* prxSmDS = pm->GetProxySubMesh( fExp.Current() ); if ( !srcSmDS || !prxSmDS || !srcSmDS->NbElements() || !prxSmDS->NbElements() ) continue; if ( srcSmDS->GetElements()->next() == prxSmDS->GetElements()->next()) continue; if ( srcSmDS->NbElements() != prxSmDS->NbElements() ) return error( "Different nb elements in a source and a proxy sub-mesh", solidSM->GetId()); SMDS_ElemIteratorPtr srcIt = srcSmDS->GetElements(); SMDS_ElemIteratorPtr prxIt = prxSmDS->GetElements(); while( prxIt->more() ) { const SMDS_MeshElement* fSrc = srcIt->next(); const SMDS_MeshElement* fPrx = prxIt->next(); if ( fSrc->NbNodes() != fPrx->NbNodes()) return error( "Different elements in a source and a proxy sub-mesh", solidSM->GetId()); for ( int i = 0 ; i < fPrx->NbNodes(); ++i ) pm->setNode2Node( fSrc->GetNode(i), fPrx->GetNode(i), prxSmDS ); } } pm->_n2nMapComputed = true; return true; } //================================================================================ /*! * \brief Does its job */ //================================================================================ SMESH_ComputeErrorPtr _ViscousBuilder::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape) { _mesh = & theMesh; _Factory factory; // check if proxy mesh already computed TopExp_Explorer exp( theShape, TopAbs_SOLID ); if ( !exp.More() ) return error("No SOLID's in theShape"), _error; if ( _ViscousListener::GetSolidMesh( _mesh, exp.Current(), /*toCreate=*/false)) return SMESH_ComputeErrorPtr(); // everything already computed PyDump debugDump( theMesh ); _pyDump = &debugDump; // TODO: ignore already computed SOLIDs if ( !findSolidsWithLayers()) return _error; if ( !findFacesWithLayers() ) return _error; // for ( size_t i = 0; i < _sdVec.size(); ++i ) // { // if ( ! makeLayer( _sdVec[ i ])) // create _LayerEdge's // return _error; // } makeEdgesOnShape(); findPeriodicFaces(); for ( size_t i = 0; i < _sdVec.size(); ++i ) { size_t iSD = 0; for ( iSD = 0; iSD < _sdVec.size(); ++iSD ) // find next SOLID to compute if ( _sdVec[iSD]._before.IsEmpty() && !_sdVec[iSD]._solid.IsNull() && !_sdVec[iSD]._done ) break; if ( ! makeLayer(_sdVec[iSD]) ) // create _LayerEdge's return _error; if ( _sdVec[iSD]._n2eMap.size() == 0 ) // no layers in a SOLID { _sdVec[iSD]._solid.Nullify(); continue; } if ( ! inflate(_sdVec[iSD]) ) // increase length of _LayerEdge's return _error; if ( ! refine(_sdVec[iSD]) ) // create nodes and prisms return _error; if ( ! shrink(_sdVec[iSD]) ) // shrink 2D mesh on FACEs w/o layer return _error; addBoundaryElements(_sdVec[iSD]); // create quadrangles on prism bare sides _sdVec[iSD]._done = true; const TopoDS_Shape& solid = _sdVec[iSD]._solid; for ( iSD = 0; iSD < _sdVec.size(); ++iSD ) _sdVec[iSD]._before.Remove( solid ); } makeGroupOfLE(); // debug debugDump.Finish(); return _error; } //================================================================================ /*! * \brief Check validity of hypotheses */ //================================================================================ SMESH_ComputeErrorPtr _ViscousBuilder::CheckHypotheses( SMESH_Mesh& mesh, const TopoDS_Shape& shape ) { _mesh = & mesh; if ( _ViscousListener::GetSolidMesh( _mesh, shape, /*toCreate=*/false)) return SMESH_ComputeErrorPtr(); // everything already computed findSolidsWithLayers( /*checkFaceMesh=*/false ); bool ok = findFacesWithLayers( true ); // remove _MeshOfSolid's of _SolidData's for ( size_t i = 0; i < _sdVec.size(); ++i ) _ViscousListener::RemoveSolidMesh( _mesh, _sdVec[i]._solid ); if ( !ok ) return _error; return SMESH_ComputeErrorPtr(); } //================================================================================ /*! * \brief Finds SOLIDs to compute using viscous layers. Fills _sdVec */ //================================================================================ bool _ViscousBuilder::findSolidsWithLayers(const bool checkFaceMesh) { // get all solids TopTools_IndexedMapOfShape allSolids; TopExp::MapShapes( _mesh->GetShapeToMesh(), TopAbs_SOLID, allSolids ); _sdVec.reserve( allSolids.Extent()); SMESH_HypoFilter filter; for ( int i = 1; i <= allSolids.Extent(); ++i ) { SMESH_subMesh* sm = _mesh->GetSubMesh( allSolids(i) ); if ( sm->GetSubMeshDS() && sm->GetSubMeshDS()->NbElements() > 0 ) continue; // solid is already meshed // TODO: check if algo is hidden SMESH_Algo* algo = sm->GetAlgo(); if ( !algo ) continue; // check if all FACEs are meshed, which can be false if Compute() a sub-shape if ( checkFaceMesh ) { bool facesMeshed = true; SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(false,true); while ( smIt->more() && facesMeshed ) { SMESH_subMesh * faceSM = smIt->next(); if ( faceSM->GetSubShape().ShapeType() != TopAbs_FACE ) break; facesMeshed = faceSM->IsMeshComputed(); } if ( !facesMeshed ) continue; } // find StdMeshers_ViscousLayers hyp assigned to the i-th solid const list & allHyps = algo->GetUsedHypothesis(*_mesh, allSolids(i), /*ignoreAuxiliary=*/false); _SolidData* soData = 0; list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin(); const StdMeshers_ViscousLayers* viscHyp = 0; for ( ; hyp != allHyps.end(); ++hyp ) if (( viscHyp = dynamic_cast( *hyp ))) { TopoDS_Shape hypShape; filter.Init( filter.Is( viscHyp )); _mesh->GetHypothesis( allSolids(i), filter, true, &hypShape ); if ( !soData ) { _MeshOfSolid* proxyMesh = _ViscousListener::GetSolidMesh( _mesh, allSolids(i), /*toCreate=*/true); _sdVec.push_back( _SolidData( allSolids(i), proxyMesh )); soData = & _sdVec.back(); soData->_index = getMeshDS()->ShapeToIndex( allSolids(i)); soData->_helper = new SMESH_MesherHelper( *_mesh ); soData->_helper->SetSubShape( allSolids(i) ); _solids.Add( allSolids(i) ); } soData->_hyps.push_back( viscHyp ); soData->_hypShapes.push_back( hypShape ); } } if ( _sdVec.empty() ) return error ( SMESH_Comment(StdMeshers_ViscousLayers::GetHypType()) << " hypothesis not found",0); return true; } //================================================================================ /*! * \brief Set a _SolidData to be computed before another */ //================================================================================ bool _ViscousBuilder::setBefore( _SolidData& solidBefore, _SolidData& solidAfter ) { // check possibility to set this order; get all solids before solidBefore TopTools_IndexedMapOfShape allSolidsBefore; allSolidsBefore.Add( solidBefore._solid ); for ( int i = 1; i <= allSolidsBefore.Extent(); ++i ) { int iSD = _solids.FindIndex( allSolidsBefore(i) ); if ( iSD ) { TopTools_MapIteratorOfMapOfShape soIt( _sdVec[ iSD-1 ]._before ); for ( ; soIt.More(); soIt.Next() ) allSolidsBefore.Add( soIt.Value() ); } } if ( allSolidsBefore.Contains( solidAfter._solid )) return false; for ( int i = 1; i <= allSolidsBefore.Extent(); ++i ) solidAfter._before.Add( allSolidsBefore(i) ); return true; } //================================================================================ /*! * \brief */ //================================================================================ bool _ViscousBuilder::findFacesWithLayers(const bool onlyWith) { SMESH_MesherHelper helper( *_mesh ); TopExp_Explorer exp; // collect all faces-to-ignore defined by hyp for ( size_t i = 0; i < _sdVec.size(); ++i ) { // get faces-to-ignore defined by each hyp typedef const StdMeshers_ViscousLayers* THyp; typedef std::pair< set, THyp > TFacesOfHyp; list< TFacesOfHyp > ignoreFacesOfHyps; list< THyp >::iterator hyp = _sdVec[i]._hyps.begin(); list< TopoDS_Shape >::iterator hypShape = _sdVec[i]._hypShapes.begin(); for ( ; hyp != _sdVec[i]._hyps.end(); ++hyp, ++hypShape ) { ignoreFacesOfHyps.push_back( TFacesOfHyp( set(), *hyp )); getIgnoreFaces( _sdVec[i]._solid, *hyp, *hypShape, ignoreFacesOfHyps.back().first ); } // fill _SolidData::_face2hyp and check compatibility of hypotheses const int nbHyps = _sdVec[i]._hyps.size(); if ( nbHyps > 1 ) { // check if two hypotheses define different parameters for the same FACE list< TFacesOfHyp >::iterator igFacesOfHyp; for ( exp.Init( _sdVec[i]._solid, TopAbs_FACE ); exp.More(); exp.Next() ) { const TGeomID faceID = getMeshDS()->ShapeToIndex( exp.Current() ); THyp hyp = 0; igFacesOfHyp = ignoreFacesOfHyps.begin(); for ( ; igFacesOfHyp != ignoreFacesOfHyps.end(); ++igFacesOfHyp ) if ( ! igFacesOfHyp->first.count( faceID )) { if ( hyp ) return error(SMESH_Comment("Several hypotheses define " "Viscous Layers on the face #") << faceID ); hyp = igFacesOfHyp->second; } if ( hyp ) _sdVec[i]._face2hyp.insert( make_pair( faceID, hyp )); else _sdVec[i]._ignoreFaceIds.insert( faceID ); } // check if two hypotheses define different number of viscous layers for // adjacent faces of a solid set< int > nbLayersSet; igFacesOfHyp = ignoreFacesOfHyps.begin(); for ( ; igFacesOfHyp != ignoreFacesOfHyps.end(); ++igFacesOfHyp ) { nbLayersSet.insert( igFacesOfHyp->second->GetNumberLayers() ); } if ( nbLayersSet.size() > 1 ) { for ( exp.Init( _sdVec[i]._solid, TopAbs_EDGE ); exp.More(); exp.Next() ) { PShapeIteratorPtr fIt = helper.GetAncestors( exp.Current(), *_mesh, TopAbs_FACE ); THyp hyp1 = 0, hyp2 = 0; while( const TopoDS_Shape* face = fIt->next() ) { const TGeomID faceID = getMeshDS()->ShapeToIndex( *face ); map< TGeomID, THyp >::iterator f2h = _sdVec[i]._face2hyp.find( faceID ); if ( f2h != _sdVec[i]._face2hyp.end() ) { ( hyp1 ? hyp2 : hyp1 ) = f2h->second; } } if ( hyp1 && hyp2 && hyp1->GetNumberLayers() != hyp2->GetNumberLayers() ) { return error("Two hypotheses define different number of " "viscous layers on adjacent faces"); } } } } // if ( nbHyps > 1 ) else { _sdVec[i]._ignoreFaceIds.swap( ignoreFacesOfHyps.back().first ); } } // loop on _sdVec if ( onlyWith ) // is called to check hypotheses compatibility only return true; // fill _SolidData::_reversedFaceIds for ( size_t i = 0; i < _sdVec.size(); ++i ) { exp.Init( _sdVec[i]._solid.Oriented( TopAbs_FORWARD ), TopAbs_FACE ); for ( ; exp.More(); exp.Next() ) { const TopoDS_Face& face = TopoDS::Face( exp.Current() ); const TGeomID faceID = getMeshDS()->ShapeToIndex( face ); if ( //!sdVec[i]._ignoreFaceIds.count( faceID ) && helper.NbAncestors( face, *_mesh, TopAbs_SOLID ) > 1 && helper.IsReversedSubMesh( face )) { _sdVec[i]._reversedFaceIds.insert( faceID ); } } } // Find FACEs to shrink mesh on (solution 2 in issue 0020832): fill in _shrinkShape2Shape TopTools_IndexedMapOfShape shapes; std::string structAlgoName = "Hexa_3D"; for ( size_t i = 0; i < _sdVec.size(); ++i ) { shapes.Clear(); TopExp::MapShapes(_sdVec[i]._solid, TopAbs_EDGE, shapes); for ( int iE = 1; iE <= shapes.Extent(); ++iE ) { const TopoDS_Shape& edge = shapes(iE); // find 2 FACEs sharing an EDGE TopoDS_Shape FF[2]; PShapeIteratorPtr fIt = helper.GetAncestors(edge, *_mesh, TopAbs_FACE, &_sdVec[i]._solid); while ( fIt->more()) { const TopoDS_Shape* f = fIt->next(); FF[ int( !FF[0].IsNull()) ] = *f; } if( FF[1].IsNull() ) continue; // seam edge can be shared by 1 FACE only // check presence of layers on them int ignore[2]; for ( int j = 0; j < 2; ++j ) ignore[j] = _sdVec[i]._ignoreFaceIds.count( getMeshDS()->ShapeToIndex( FF[j] )); if ( ignore[0] == ignore[1] ) continue; // nothing interesting TopoDS_Shape fWOL = FF[ ignore[0] ? 0 : 1 ]; // FACE w/o layers // add EDGE to maps if ( !fWOL.IsNull()) { TGeomID edgeInd = getMeshDS()->ShapeToIndex( edge ); _sdVec[i]._shrinkShape2Shape.insert( make_pair( edgeInd, fWOL )); } } } // Find the SHAPE along which to inflate _LayerEdge based on VERTEX for ( size_t i = 0; i < _sdVec.size(); ++i ) { shapes.Clear(); TopExp::MapShapes(_sdVec[i]._solid, TopAbs_VERTEX, shapes); for ( int iV = 1; iV <= shapes.Extent(); ++iV ) { const TopoDS_Shape& vertex = shapes(iV); // find faces WOL sharing the vertex vector< TopoDS_Shape > facesWOL; size_t totalNbFaces = 0; PShapeIteratorPtr fIt = helper.GetAncestors(vertex, *_mesh, TopAbs_FACE, &_sdVec[i]._solid ); while ( fIt->more()) { const TopoDS_Shape* f = fIt->next(); totalNbFaces++; const int fID = getMeshDS()->ShapeToIndex( *f ); if ( _sdVec[i]._ignoreFaceIds.count ( fID ) /*&& !_sdVec[i]._noShrinkShapes.count( fID )*/) facesWOL.push_back( *f ); } if ( facesWOL.size() == totalNbFaces || facesWOL.empty() ) continue; // no layers at this vertex or no WOL TGeomID vInd = getMeshDS()->ShapeToIndex( vertex ); switch ( facesWOL.size() ) { case 1: { helper.SetSubShape( facesWOL[0] ); if ( helper.IsRealSeam( vInd )) // inflate along a seam edge? { TopoDS_Shape seamEdge; PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE); while ( eIt->more() && seamEdge.IsNull() ) { const TopoDS_Shape* e = eIt->next(); if ( helper.IsRealSeam( *e ) ) seamEdge = *e; } if ( !seamEdge.IsNull() ) { _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, seamEdge )); break; } } _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, facesWOL[0] )); break; } case 2: { // find an edge shared by 2 faces PShapeIteratorPtr eIt = helper.GetAncestors(vertex, *_mesh, TopAbs_EDGE); while ( eIt->more()) { const TopoDS_Shape* e = eIt->next(); if ( helper.IsSubShape( *e, facesWOL[0]) && helper.IsSubShape( *e, facesWOL[1])) { _sdVec[i]._shrinkShape2Shape.insert( make_pair( vInd, *e )); break; } } break; } default: return error("Not yet supported case", _sdVec[i]._index); } } } // Add to _noShrinkShapes sub-shapes of FACE's that can't be shrunk since // the algo of the SOLID sharing the FACE does not support it or for other reasons set< string > notSupportAlgos; notSupportAlgos.insert( structAlgoName ); for ( size_t i = 0; i < _sdVec.size(); ++i ) { map< TGeomID, TopoDS_Shape >::iterator e2f = _sdVec[i]._shrinkShape2Shape.begin(); for ( ; e2f != _sdVec[i]._shrinkShape2Shape.end(); ++e2f ) { const TopoDS_Shape& fWOL = e2f->second; const TGeomID edgeID = e2f->first; TGeomID faceID = getMeshDS()->ShapeToIndex( fWOL ); TopoDS_Shape edge = getMeshDS()->IndexToShape( edgeID ); if ( edge.ShapeType() != TopAbs_EDGE ) continue; // shrink shape is VERTEX TopoDS_Shape solid; PShapeIteratorPtr soIt = helper.GetAncestors(fWOL, *_mesh, TopAbs_SOLID); while ( soIt->more() && solid.IsNull() ) { const TopoDS_Shape* so = soIt->next(); if ( !so->IsSame( _sdVec[i]._solid )) solid = *so; } if ( solid.IsNull() ) continue; bool noShrinkE = false; SMESH_Algo* algo = _mesh->GetSubMesh( solid )->GetAlgo(); bool isStructured = ( algo && algo->GetName() == structAlgoName ); size_t iSolid = _solids.FindIndex( solid ) - 1; if ( iSolid < _sdVec.size() && _sdVec[ iSolid ]._ignoreFaceIds.count( faceID )) { // the adjacent SOLID has NO layers on fWOL; // shrink allowed if // - there are layers on the EDGE in the adjacent SOLID // - there are NO layers in the adjacent SOLID && algo is unstructured and computed later bool hasWLAdj = (_sdVec[iSolid]._shrinkShape2Shape.count( edgeID )); bool shrinkAllowed = (( hasWLAdj ) || ( !isStructured && setBefore( _sdVec[ i ], _sdVec[ iSolid ] ))); noShrinkE = !shrinkAllowed; } else if ( iSolid < _sdVec.size() ) { // the adjacent SOLID has layers on fWOL; // check if SOLID's mesh is unstructured and then try to set it // to be computed after the i-th solid if ( isStructured || !setBefore( _sdVec[ i ], _sdVec[ iSolid ] )) noShrinkE = true; // don't shrink fWOL } else { // the adjacent SOLID has NO layers at all noShrinkE = isStructured; } if ( noShrinkE ) { _sdVec[i]._noShrinkShapes.insert( edgeID ); // check if there is a collision with to-shrink-from EDGEs in iSolid // if ( iSolid < _sdVec.size() ) // { // shapes.Clear(); // TopExp::MapShapes( fWOL, TopAbs_EDGE, shapes); // for ( int iE = 1; iE <= shapes.Extent(); ++iE ) // { // const TopoDS_Edge& E = TopoDS::Edge( shapes( iE )); // const TGeomID eID = getMeshDS()->ShapeToIndex( E ); // if ( eID == edgeID || // !_sdVec[iSolid]._shrinkShape2Shape.count( eID ) || // _sdVec[i]._noShrinkShapes.count( eID )) // continue; // for ( int is1st = 0; is1st < 2; ++is1st ) // { // TopoDS_Vertex V = helper.IthVertex( is1st, E ); // if ( _sdVec[i]._noShrinkShapes.count( getMeshDS()->ShapeToIndex( V ) )) // { // return error("No way to make a conformal mesh with " // "the given set of faces with layers", _sdVec[i]._index); // } // } // } // } } // add VERTEXes of the edge in _noShrinkShapes, which is necessary if // _shrinkShape2Shape is different in the adjacent SOLID for ( TopoDS_Iterator vIt( edge ); vIt.More(); vIt.Next() ) { TGeomID vID = getMeshDS()->ShapeToIndex( vIt.Value() ); bool noShrinkV = false, noShrinkIfAdjMeshed = false; if ( iSolid < _sdVec.size() ) { if ( _sdVec[ iSolid ]._ignoreFaceIds.count( faceID )) { map< TGeomID, TopoDS_Shape >::iterator i2S, i2SAdj; i2S = _sdVec[i ]._shrinkShape2Shape.find( vID ); i2SAdj = _sdVec[iSolid]._shrinkShape2Shape.find( vID ); if ( i2SAdj == _sdVec[iSolid]._shrinkShape2Shape.end() ) noShrinkV = (( isStructured ) || ( noShrinkIfAdjMeshed = i2S->second.ShapeType() == TopAbs_EDGE )); else noShrinkV = ( ! i2S->second.IsSame( i2SAdj->second )); } else { noShrinkV = noShrinkE; } } else { // the adjacent SOLID has NO layers at all if ( isStructured ) { noShrinkV = true; } else { noShrinkV = noShrinkIfAdjMeshed = ( _sdVec[i]._shrinkShape2Shape[ vID ].ShapeType() == TopAbs_EDGE ); } } if ( noShrinkV && noShrinkIfAdjMeshed ) { // noShrinkV if FACEs in the adjacent SOLID are meshed PShapeIteratorPtr fIt = helper.GetAncestors( _sdVec[i]._shrinkShape2Shape[ vID ], *_mesh, TopAbs_FACE, &solid ); while ( fIt->more() ) { const TopoDS_Shape* f = fIt->next(); if ( !f->IsSame( fWOL )) { noShrinkV = ! _mesh->GetSubMesh( *f )->IsEmpty(); break; } } } if ( noShrinkV ) _sdVec[i]._noShrinkShapes.insert( vID ); } } // loop on _sdVec[i]._shrinkShape2Shape } // loop on _sdVec to fill in _SolidData::_noShrinkShapes // add FACEs of other SOLIDs to _ignoreFaceIds for ( size_t i = 0; i < _sdVec.size(); ++i ) { shapes.Clear(); TopExp::MapShapes(_sdVec[i]._solid, TopAbs_FACE, shapes); for ( exp.Init( _mesh->GetShapeToMesh(), TopAbs_FACE ); exp.More(); exp.Next() ) { if ( !shapes.Contains( exp.Current() )) _sdVec[i]._ignoreFaceIds.insert( getMeshDS()->ShapeToIndex( exp.Current() )); } } return true; } //================================================================================ /*! * \brief Finds FACEs w/o layers for a given SOLID by an hypothesis */ //================================================================================ void _ViscousBuilder::getIgnoreFaces(const TopoDS_Shape& solid, const StdMeshers_ViscousLayers* hyp, const TopoDS_Shape& hypShape, set& ignoreFaceIds) { TopExp_Explorer exp; vector ids = hyp->GetBndShapes(); if ( hyp->IsToIgnoreShapes() ) // FACEs to ignore are given { for ( size_t ii = 0; ii < ids.size(); ++ii ) { const TopoDS_Shape& s = getMeshDS()->IndexToShape( ids[ii] ); if ( !s.IsNull() && s.ShapeType() == TopAbs_FACE ) ignoreFaceIds.insert( ids[ii] ); } } else // FACEs with layers are given { exp.Init( solid, TopAbs_FACE ); for ( ; exp.More(); exp.Next() ) { TGeomID faceInd = getMeshDS()->ShapeToIndex( exp.Current() ); if ( find( ids.begin(), ids.end(), faceInd ) == ids.end() ) ignoreFaceIds.insert( faceInd ); } } // ignore internal FACEs if inlets and outlets are specified if ( hyp->IsToIgnoreShapes() ) { TopTools_IndexedDataMapOfShapeListOfShape solidsOfFace; TopExp::MapShapesAndAncestors( hypShape, TopAbs_FACE, TopAbs_SOLID, solidsOfFace); for ( exp.Init( solid, TopAbs_FACE ); exp.More(); exp.Next() ) { const TopoDS_Face& face = TopoDS::Face( exp.Current() ); if ( SMESH_MesherHelper::NbAncestors( face, *_mesh, TopAbs_SOLID ) < 2 ) continue; int nbSolids = solidsOfFace.FindFromKey( face ).Extent(); if ( nbSolids > 1 ) ignoreFaceIds.insert( getMeshDS()->ShapeToIndex( face )); } } } //================================================================================ /*! * \brief Create the inner surface of the viscous layer and prepare data for infation */ //================================================================================ bool _ViscousBuilder::makeLayer(_SolidData& data) { // make a map to find new nodes on sub-shapes shared with other SOLID map< TGeomID, TNode2Edge* >::iterator s2ne; map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin(); for (; s2s != data._shrinkShape2Shape.end(); ++s2s ) { TGeomID shapeInd = s2s->first; for ( size_t i = 0; i < _sdVec.size(); ++i ) { if ( _sdVec[i]._index == data._index ) continue; map< TGeomID, TopoDS_Shape >::iterator s2s2 = _sdVec[i]._shrinkShape2Shape.find( shapeInd ); if ( s2s2 != _sdVec[i]._shrinkShape2Shape.end() && *s2s == *s2s2 && !_sdVec[i]._n2eMap.empty() ) { data._s2neMap.insert( make_pair( shapeInd, &_sdVec[i]._n2eMap )); break; } } } // Create temporary faces and _LayerEdge's dumpFunction(SMESH_Comment("makeLayers_")<& edgesByGeom = data._edgesOnShape; data._stepSize = Precision::Infinite(); data._stepSizeNodes[0] = 0; SMESH_MesherHelper helper( *_mesh ); helper.SetSubShape( data._solid ); helper.SetElementsOnShape( true ); vector< const SMDS_MeshNode*> newNodes; // of a mesh face TNode2Edge::iterator n2e2; // make _LayerEdge's for ( TopExp_Explorer exp( data._solid, TopAbs_FACE ); exp.More(); exp.Next() ) { const TopoDS_Face& F = TopoDS::Face( exp.Current() ); SMESH_subMesh* sm = _mesh->GetSubMesh( F ); const TGeomID id = sm->GetId(); if ( edgesByGeom[ id ]._shape.IsNull() ) continue; // no layers SMESH_ProxyMesh::SubMesh* proxySub = data._proxyMesh->getFaceSubM( F, /*create=*/true); SMESHDS_SubMesh* smDS = sm->GetSubMeshDS(); if ( !smDS ) return error(SMESH_Comment("Not meshed face ") << id, data._index ); SMDS_ElemIteratorPtr eIt = smDS->GetElements(); while ( eIt->more() ) { const SMDS_MeshElement* face = eIt->next(); double faceMaxCosin = -1; _LayerEdge* maxCosinEdge = 0; int nbDegenNodes = 0; newNodes.resize( face->NbCornerNodes() ); for ( size_t i = 0 ; i < newNodes.size(); ++i ) { const SMDS_MeshNode* n = face->GetNode( i ); const int shapeID = n->getshapeId(); const bool onDegenShap = helper.IsDegenShape( shapeID ); const bool onDegenEdge = ( onDegenShap && n->GetPosition()->GetDim() == 1 ); if ( onDegenShap ) { if ( onDegenEdge ) { // substitute n on a degenerated EDGE with a node on a corresponding VERTEX const TopoDS_Shape& E = getMeshDS()->IndexToShape( shapeID ); TopoDS_Vertex V = helper.IthVertex( 0, TopoDS::Edge( E )); if ( const SMDS_MeshNode* vN = SMESH_Algo::VertexNode( V, getMeshDS() )) { n = vN; nbDegenNodes++; } } else { nbDegenNodes++; } } TNode2Edge::iterator n2e = data._n2eMap.insert( make_pair( n, (_LayerEdge*)0 )).first; if ( !(*n2e).second ) { // add a _LayerEdge _LayerEdge* edge = _Factory::NewLayerEdge(); edge->_nodes.push_back( n ); n2e->second = edge; edgesByGeom[ shapeID ]._edges.push_back( edge ); const bool noShrink = data._noShrinkShapes.count( shapeID ); SMESH_TNodeXYZ xyz( n ); // set edge data or find already refined _LayerEdge and get data from it if (( !noShrink ) && ( n->GetPosition()->GetTypeOfPosition() != SMDS_TOP_FACE ) && (( s2ne = data._s2neMap.find( shapeID )) != data._s2neMap.end() ) && (( n2e2 = (*s2ne).second->find( n )) != s2ne->second->end() )) { _LayerEdge* foundEdge = (*n2e2).second; gp_XYZ lastPos = edge->Copy( *foundEdge, edgesByGeom[ shapeID ], helper ); foundEdge->_pos.push_back( lastPos ); // location of the last node is modified and we restore it by foundEdge->_pos.back() const_cast< SMDS_MeshNode* > ( edge->_nodes.back() )->setXYZ( xyz.X(), xyz.Y(), xyz.Z() ); } else { if ( !noShrink ) { edge->_nodes.push_back( helper.AddNode( xyz.X(), xyz.Y(), xyz.Z() )); } if ( !setEdgeData( *edge, edgesByGeom[ shapeID ], helper, data )) return false; if ( edge->_nodes.size() < 2 ) edge->Block( data ); //data._noShrinkShapes.insert( shapeID ); } dumpMove(edge->_nodes.back()); if ( edge->_cosin > faceMaxCosin ) { faceMaxCosin = edge->_cosin; maxCosinEdge = edge; } } newNodes[ i ] = n2e->second->_nodes.back(); if ( onDegenEdge ) data._n2eMap.insert( make_pair( face->GetNode( i ), n2e->second )); } if ( newNodes.size() - nbDegenNodes < 2 ) continue; // create a temporary face const SMDS_MeshElement* newFace = new _TmpMeshFace( newNodes, --_tmpFaceID, face->GetShapeID(), face ); proxySub->AddElement( newFace ); // compute inflation step size by min size of element on a convex surface if ( faceMaxCosin > theMinSmoothCosin ) limitStepSize( data, face, maxCosinEdge ); } // loop on 2D elements on a FACE } // loop on FACEs of a SOLID to create _LayerEdge's // Set _LayerEdge::_neibors TNode2Edge::iterator n2e; for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[iS]; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* edge = eos._edges[i]; TIDSortedNodeSet nearNodes; SMDS_ElemIteratorPtr fIt = edge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) { const SMDS_MeshElement* f = fIt->next(); if ( !data._ignoreFaceIds.count( f->getshapeId() )) nearNodes.insert( f->begin_nodes(), f->end_nodes() ); } nearNodes.erase( edge->_nodes[0] ); edge->_neibors.reserve( nearNodes.size() ); TIDSortedNodeSet::iterator node = nearNodes.begin(); for ( ; node != nearNodes.end(); ++node ) if (( n2e = data._n2eMap.find( *node )) != data._n2eMap.end() ) edge->_neibors.push_back( n2e->second ); } } data._epsilon = 1e-7; if ( data._stepSize < 1. ) data._epsilon *= data._stepSize; if ( !findShapesToSmooth( data )) // _LayerEdge::_maxLen is computed here return false; // limit data._stepSize depending on surface curvature and fill data._convexFaces limitStepSizeByCurvature( data ); // !!! it must be before node substitution in _Simplex // Set target nodes into _Simplex and _LayerEdge's to _2NearEdges const SMDS_MeshNode* nn[2]; for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[iS]; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* edge = eos._edges[i]; if ( edge->IsOnEdge() ) { // get neighbor nodes bool hasData = ( edge->_2neibors->_edges[0] ); if ( hasData ) // _LayerEdge is a copy of another one { nn[0] = edge->_2neibors->srcNode(0); nn[1] = edge->_2neibors->srcNode(1); } else if ( !findNeiborsOnEdge( edge, nn[0],nn[1], eos, data )) { return false; } // set neighbor _LayerEdge's for ( int j = 0; j < 2; ++j ) { if (( n2e = data._n2eMap.find( nn[j] )) == data._n2eMap.end() ) return error("_LayerEdge not found by src node", data._index); edge->_2neibors->_edges[j] = n2e->second; } if ( !hasData ) edge->SetDataByNeighbors( nn[0], nn[1], eos, helper ); } for ( size_t j = 0; j < edge->_simplices.size(); ++j ) { _Simplex& s = edge->_simplices[j]; s._nNext = data._n2eMap[ s._nNext ]->_nodes.back(); s._nPrev = data._n2eMap[ s._nPrev ]->_nodes.back(); } // For an _LayerEdge on a degenerated EDGE, copy some data from // a corresponding _LayerEdge on a VERTEX // (issue 52453, pb on a downloaded SampleCase2-Tet-netgen-mephisto.hdf) if ( helper.IsDegenShape( edge->_nodes[0]->getshapeId() )) { // Generally we should not get here if ( eos.ShapeType() != TopAbs_EDGE ) continue; TopoDS_Vertex V = helper.IthVertex( 0, TopoDS::Edge( eos._shape )); const SMDS_MeshNode* vN = SMESH_Algo::VertexNode( V, getMeshDS() ); if (( n2e = data._n2eMap.find( vN )) == data._n2eMap.end() ) continue; const _LayerEdge* vEdge = n2e->second; edge->_normal = vEdge->_normal; edge->_lenFactor = vEdge->_lenFactor; edge->_cosin = vEdge->_cosin; } } // loop on data._edgesOnShape._edges } // loop on data._edgesOnShape // fix _LayerEdge::_2neibors on EDGEs to smooth // map< TGeomID,Handle(Geom_Curve)>::iterator e2c = data._edge2curve.begin(); // for ( ; e2c != data._edge2curve.end(); ++e2c ) // if ( !e2c->second.IsNull() ) // { // if ( _EdgesOnShape* eos = data.GetShapeEdges( e2c->first )) // data.Sort2NeiborsOnEdge( eos->_edges ); // } dumpFunctionEnd(); return true; } //================================================================================ /*! * \brief Compute inflation step size by min size of element on a convex surface */ //================================================================================ void _ViscousBuilder::limitStepSize( _SolidData& data, const SMDS_MeshElement* face, const _LayerEdge* maxCosinEdge ) { int iN = 0; double minSize = 10 * data._stepSize; const int nbNodes = face->NbCornerNodes(); for ( int i = 0; i < nbNodes; ++i ) { const SMDS_MeshNode* nextN = face->GetNode( SMESH_MesherHelper::WrapIndex( i+1, nbNodes )); const SMDS_MeshNode* curN = face->GetNode( i ); if ( nextN->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE || curN-> GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) { double dist = SMESH_TNodeXYZ( curN ).Distance( nextN ); if ( dist < minSize ) minSize = dist, iN = i; } } double newStep = 0.8 * minSize / maxCosinEdge->_lenFactor; if ( newStep < data._stepSize ) { data._stepSize = newStep; data._stepSizeCoeff = 0.8 / maxCosinEdge->_lenFactor; data._stepSizeNodes[0] = face->GetNode( iN ); data._stepSizeNodes[1] = face->GetNode( SMESH_MesherHelper::WrapIndex( iN+1, nbNodes )); } } //================================================================================ /*! * \brief Compute inflation step size by min size of element on a convex surface */ //================================================================================ void _ViscousBuilder::limitStepSize( _SolidData& data, const double minSize ) { if ( minSize < data._stepSize ) { data._stepSize = minSize; if ( data._stepSizeNodes[0] ) { double dist = SMESH_TNodeXYZ(data._stepSizeNodes[0]).Distance(data._stepSizeNodes[1]); data._stepSizeCoeff = data._stepSize / dist; } } } //================================================================================ /*! * \brief Limit data._stepSize by evaluating curvature of shapes and fill data._convexFaces */ //================================================================================ void _ViscousBuilder::limitStepSizeByCurvature( _SolidData& data ) { SMESH_MesherHelper helper( *_mesh ); BRepLProp_SLProps surfProp( 2, 1e-6 ); data._convexFaces.clear(); for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eof = data._edgesOnShape[iS]; if ( eof.ShapeType() != TopAbs_FACE || data._ignoreFaceIds.count( eof._shapeID )) continue; TopoDS_Face F = TopoDS::Face( eof._shape ); const TGeomID faceID = eof._shapeID; BRepAdaptor_Surface surface( F, false ); surfProp.SetSurface( surface ); _ConvexFace cnvFace; cnvFace._face = F; cnvFace._normalsFixed = false; cnvFace._isTooCurved = false; double maxCurvature = cnvFace.GetMaxCurvature( data, eof, surfProp, helper ); if ( maxCurvature > 0 ) { limitStepSize( data, 0.9 / maxCurvature ); findEdgesToUpdateNormalNearConvexFace( cnvFace, data, helper ); } if ( !cnvFace._isTooCurved ) continue; _ConvexFace & convFace = data._convexFaces.insert( make_pair( faceID, cnvFace )).first->second; // skip a closed surface (data._convexFaces is useful anyway) bool isClosedF = false; helper.SetSubShape( F ); if ( helper.HasRealSeam() ) { // in the closed surface there must be a closed EDGE for ( TopExp_Explorer eIt( F, TopAbs_EDGE ); eIt.More() && !isClosedF; eIt.Next() ) isClosedF = helper.IsClosedEdge( TopoDS::Edge( eIt.Current() )); } if ( isClosedF ) { // limit _LayerEdge::_maxLen on the FACE const double oriFactor = ( F.Orientation() == TopAbs_REVERSED ? +1. : -1. ); const double minCurvature = 1. / ( eof._hyp.GetTotalThickness() * ( 1 + theThickToIntersection )); map< TGeomID, _EdgesOnShape* >::iterator id2eos = cnvFace._subIdToEOS.find( faceID ); if ( id2eos != cnvFace._subIdToEOS.end() ) { _EdgesOnShape& eos = * id2eos->second; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* ledge = eos._edges[ i ]; gp_XY uv = helper.GetNodeUV( F, ledge->_nodes[0] ); surfProp.SetParameters( uv.X(), uv.Y() ); if ( surfProp.IsCurvatureDefined() ) { double curvature = Max( surfProp.MaxCurvature() * oriFactor, surfProp.MinCurvature() * oriFactor ); if ( curvature > minCurvature ) ledge->SetMaxLen( Min( ledge->_maxLen, 1. / curvature )); } } } continue; } // Fill _ConvexFace::_simplexTestEdges. These _LayerEdge's are used to detect // prism distortion. map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.find( faceID ); if ( id2eos != convFace._subIdToEOS.end() && !id2eos->second->_edges.empty() ) { // there are _LayerEdge's on the FACE it-self; // select _LayerEdge's near EDGEs _EdgesOnShape& eos = * id2eos->second; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* ledge = eos._edges[ i ]; for ( size_t j = 0; j < ledge->_simplices.size(); ++j ) if ( ledge->_simplices[j]._nNext->GetPosition()->GetDim() < 2 ) { // do not select _LayerEdge's neighboring sharp EDGEs bool sharpNbr = false; for ( size_t iN = 0; iN < ledge->_neibors.size() && !sharpNbr; ++iN ) sharpNbr = ( ledge->_neibors[iN]->_cosin > theMinSmoothCosin ); if ( !sharpNbr ) convFace._simplexTestEdges.push_back( ledge ); break; } } } else { // where there are no _LayerEdge's on a _ConvexFace, // as e.g. on a fillet surface with no internal nodes - issue 22580, // so that collision of viscous internal faces is not detected by check of // intersection of _LayerEdge's with the viscous internal faces. set< const SMDS_MeshNode* > usedNodes; // look for _LayerEdge's with null _sWOL id2eos = convFace._subIdToEOS.begin(); for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos ) { _EdgesOnShape& eos = * id2eos->second; if ( !eos._sWOL.IsNull() ) continue; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* ledge = eos._edges[ i ]; const SMDS_MeshNode* srcNode = ledge->_nodes[0]; if ( !usedNodes.insert( srcNode ).second ) continue; for ( size_t i = 0; i < ledge->_simplices.size(); ++i ) { usedNodes.insert( ledge->_simplices[i]._nPrev ); usedNodes.insert( ledge->_simplices[i]._nNext ); } convFace._simplexTestEdges.push_back( ledge ); } } } } // loop on FACEs of data._solid } //================================================================================ /*! * \brief Detect shapes (and _LayerEdge's on them) to smooth */ //================================================================================ bool _ViscousBuilder::findShapesToSmooth( _SolidData& data ) { // define allowed thickness computeGeomSize( data ); // compute data._geomSize and _LayerEdge::_maxLen // Find shapes needing smoothing; such a shape has _LayerEdge._normal on it's // boundary inclined to the shape at a sharp angle TopTools_MapOfShape edgesOfSmooFaces; SMESH_MesherHelper helper( *_mesh ); bool ok = true; vector< _EdgesOnShape >& edgesByGeom = data._edgesOnShape; data._nbShapesToSmooth = 0; for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check FACEs { _EdgesOnShape& eos = edgesByGeom[iS]; eos._toSmooth = false; if ( eos._edges.empty() || eos.ShapeType() != TopAbs_FACE ) continue; double tgtThick = eos._hyp.GetTotalThickness(); SMESH_subMeshIteratorPtr subIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false ); while ( subIt->more() && !eos._toSmooth ) { TGeomID iSub = subIt->next()->GetId(); const vector<_LayerEdge*>& eSub = edgesByGeom[ iSub ]._edges; if ( eSub.empty() ) continue; double faceSize; for ( size_t i = 0; i < eSub.size() && !eos._toSmooth; ++i ) if ( eSub[i]->_cosin > theMinSmoothCosin ) { SMDS_ElemIteratorPtr fIt = eSub[i]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() && !eos._toSmooth ) { const SMDS_MeshElement* face = fIt->next(); if ( face->getshapeId() == eos._shapeID && getDistFromEdge( face, eSub[i]->_nodes[0], faceSize )) { eos._toSmooth = needSmoothing( eSub[i]->_cosin, tgtThick * eSub[i]->_lenFactor, faceSize); } } } } if ( eos._toSmooth ) { for ( TopExp_Explorer eExp( edgesByGeom[iS]._shape, TopAbs_EDGE ); eExp.More(); eExp.Next() ) edgesOfSmooFaces.Add( eExp.Current() ); data.PrepareEdgesToSmoothOnFace( &edgesByGeom[iS], /*substituteSrcNodes=*/false ); } data._nbShapesToSmooth += eos._toSmooth; } // check FACEs for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check EDGEs { _EdgesOnShape& eos = edgesByGeom[iS]; eos._edgeSmoother = NULL; if ( eos._edges.empty() || eos.ShapeType() != TopAbs_EDGE ) continue; if ( !eos._hyp.ToSmooth() ) continue; const TopoDS_Edge& E = TopoDS::Edge( edgesByGeom[iS]._shape ); if ( SMESH_Algo::isDegenerated( E ) || !edgesOfSmooFaces.Contains( E )) continue; double tgtThick = eos._hyp.GetTotalThickness(); for ( TopoDS_Iterator vIt( E ); vIt.More() && !eos._toSmooth; vIt.Next() ) { TGeomID iV = getMeshDS()->ShapeToIndex( vIt.Value() ); vector<_LayerEdge*>& eV = edgesByGeom[ iV ]._edges; if ( eV.empty() || eV[0]->Is( _LayerEdge::MULTI_NORMAL )) continue; gp_Vec eDir = getEdgeDir( E, TopoDS::Vertex( vIt.Value() )); double angle = eDir.Angle( eV[0]->_normal ); double cosin = Cos( angle ); double cosinAbs = Abs( cosin ); if ( cosinAbs > theMinSmoothCosin ) { // always smooth analytic EDGEs Handle(Geom_Curve) curve = _Smoother1D::CurveForSmooth( E, eos, helper ); eos._toSmooth = ! curve.IsNull(); // compare tgtThick with the length of an end segment SMDS_ElemIteratorPtr eIt = eV[0]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Edge); while ( eIt->more() && !eos._toSmooth ) { const SMDS_MeshElement* endSeg = eIt->next(); if ( endSeg->getshapeId() == (int) iS ) { double segLen = SMESH_TNodeXYZ( endSeg->GetNode( 0 )).Distance( endSeg->GetNode( 1 )); eos._toSmooth = needSmoothing( cosinAbs, tgtThick * eV[0]->_lenFactor, segLen ); } } if ( eos._toSmooth ) { eos._edgeSmoother = new _Smoother1D( curve, eos ); // for ( size_t i = 0; i < eos._edges.size(); ++i ) // eos._edges[i]->Set( _LayerEdge::TO_SMOOTH ); } } } data._nbShapesToSmooth += eos._toSmooth; } // check EDGEs // Reset _cosin if no smooth is allowed by the user for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) { _EdgesOnShape& eos = edgesByGeom[iS]; if ( eos._edges.empty() ) continue; if ( !eos._hyp.ToSmooth() ) for ( size_t i = 0; i < eos._edges.size(); ++i ) //eos._edges[i]->SetCosin( 0 ); // keep _cosin to use in limitMaxLenByCurvature() eos._edges[i]->_lenFactor = 1; } // Fill _eosC1 to make that C1 FACEs and EDGEs between them to be smoothed as a whole TopTools_MapOfShape c1VV; for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check FACEs { _EdgesOnShape& eos = edgesByGeom[iS]; if ( eos._edges.empty() || eos.ShapeType() != TopAbs_FACE || !eos._toSmooth ) continue; // check EDGEs of a FACE TopTools_MapOfShape checkedEE, allVV; list< SMESH_subMesh* > smQueue( 1, eos._subMesh ); // sm of FACEs while ( !smQueue.empty() ) { SMESH_subMesh* sm = smQueue.front(); smQueue.pop_front(); SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/false); while ( smIt->more() ) { sm = smIt->next(); if ( sm->GetSubShape().ShapeType() == TopAbs_VERTEX ) allVV.Add( sm->GetSubShape() ); if ( sm->GetSubShape().ShapeType() != TopAbs_EDGE || !checkedEE.Add( sm->GetSubShape() )) continue; _EdgesOnShape* eoe = data.GetShapeEdges( sm->GetId() ); vector<_LayerEdge*>& eE = eoe->_edges; if ( eE.empty() || !eoe->_sWOL.IsNull() ) continue; bool isC1 = true; // check continuity along an EDGE for ( size_t i = 0; i < eE.size() && isC1; ++i ) isC1 = ( Abs( eE[i]->_cosin ) < theMinSmoothCosin ); if ( !isC1 ) continue; // check that mesh faces are C1 as well { gp_XYZ norm1, norm2; const SMDS_MeshNode* n = eE[ eE.size() / 2 ]->_nodes[0]; SMDS_ElemIteratorPtr fIt = n->GetInverseElementIterator(SMDSAbs_Face); if ( !SMESH_MeshAlgos::FaceNormal( fIt->next(), norm1, /*normalized=*/true )) continue; while ( fIt->more() && isC1 ) isC1 = ( SMESH_MeshAlgos::FaceNormal( fIt->next(), norm2, /*normalized=*/true ) && Abs( norm1 * norm2 ) >= ( 1. - theMinSmoothCosin )); if ( !isC1 ) continue; } // add the EDGE and an adjacent FACE to _eosC1 PShapeIteratorPtr fIt = helper.GetAncestors( sm->GetSubShape(), *_mesh, TopAbs_FACE ); while ( const TopoDS_Shape* face = fIt->next() ) { _EdgesOnShape* eof = data.GetShapeEdges( *face ); if ( !eof ) continue; // other solid if ( eos._shapeID == eof->_shapeID ) continue; if ( !eos.HasC1( eof )) { // check the FACEs eos._eosC1.push_back( eof ); eof->_toSmooth = false; data.PrepareEdgesToSmoothOnFace( eof, /*substituteSrcNodes=*/false ); smQueue.push_back( eof->_subMesh ); } if ( !eos.HasC1( eoe )) { eos._eosC1.push_back( eoe ); eoe->_toSmooth = false; data.PrepareEdgesToSmoothOnFace( eoe, /*substituteSrcNodes=*/false ); } } } } if ( eos._eosC1.empty() ) continue; // check VERTEXes of C1 FACEs TopTools_MapIteratorOfMapOfShape vIt( allVV ); for ( ; vIt.More(); vIt.Next() ) { _EdgesOnShape* eov = data.GetShapeEdges( vIt.Key() ); if ( !eov || eov->_edges.empty() || !eov->_sWOL.IsNull() ) continue; bool isC1 = true; // check if all adjacent FACEs are in eos._eosC1 PShapeIteratorPtr fIt = helper.GetAncestors( vIt.Key(), *_mesh, TopAbs_FACE ); while ( const TopoDS_Shape* face = fIt->next() ) { _EdgesOnShape* eof = data.GetShapeEdges( *face ); if ( !eof ) continue; // other solid isC1 = ( face->IsSame( eos._shape ) || eos.HasC1( eof )); if ( !isC1 ) break; } if ( isC1 ) { eos._eosC1.push_back( eov ); data.PrepareEdgesToSmoothOnFace( eov, /*substituteSrcNodes=*/false ); c1VV.Add( eov->_shape ); } } } // fill _eosC1 of FACEs // Find C1 EDGEs vector< pair< _EdgesOnShape*, gp_XYZ > > dirOfEdges; for ( size_t iS = 0; iS < edgesByGeom.size(); ++iS ) // check VERTEXes { _EdgesOnShape& eov = edgesByGeom[iS]; if ( eov._edges.empty() || eov.ShapeType() != TopAbs_VERTEX || c1VV.Contains( eov._shape )) continue; const TopoDS_Vertex& V = TopoDS::Vertex( eov._shape ); // get directions of surrounding EDGEs dirOfEdges.clear(); PShapeIteratorPtr fIt = helper.GetAncestors( eov._shape, *_mesh, TopAbs_EDGE ); while ( const TopoDS_Shape* e = fIt->next() ) { _EdgesOnShape* eoe = data.GetShapeEdges( *e ); if ( !eoe ) continue; // other solid gp_XYZ eDir = getEdgeDir( TopoDS::Edge( *e ), V ); if ( !Precision::IsInfinite( eDir.X() )) dirOfEdges.push_back( make_pair( eoe, eDir.Normalized() )); } // find EDGEs with C1 directions for ( size_t i = 0; i < dirOfEdges.size(); ++i ) for ( size_t j = i+1; j < dirOfEdges.size(); ++j ) if ( dirOfEdges[i].first && dirOfEdges[j].first ) { double dot = dirOfEdges[i].second * dirOfEdges[j].second; bool isC1 = ( dot < - ( 1. - theMinSmoothCosin )); if ( isC1 ) { double maxEdgeLen = 3 * Min( eov._edges[0]->_maxLen, eov._hyp.GetTotalThickness() ); for ( int isJ = 0; isJ < 2; ++isJ ) // loop on [i,j] { size_t k = isJ ? j : i; const TopoDS_Edge& e = TopoDS::Edge( dirOfEdges[k].first->_shape ); double eLen = SMESH_Algo::EdgeLength( e ); if ( eLen < maxEdgeLen ) { TopoDS_Shape oppV = SMESH_MesherHelper::IthVertex( 0, e ); if ( oppV.IsSame( V )) oppV = SMESH_MesherHelper::IthVertex( 1, e ); _EdgesOnShape* eovOpp = data.GetShapeEdges( oppV ); if ( dirOfEdges[k].second * eovOpp->_edges[0]->_normal < 0 ) eov._eosC1.push_back( dirOfEdges[k].first ); } dirOfEdges[k].first = 0; } } } } // fill _eosC1 of VERTEXes return ok; } //================================================================================ /*! * \brief Set up _SolidData::_edgesOnShape */ //================================================================================ void _ViscousBuilder::makeEdgesOnShape() { const int nbShapes = getMeshDS()->MaxShapeIndex(); for ( size_t i = 0; i < _sdVec.size(); ++i ) { _SolidData& data = _sdVec[ i ]; vector< _EdgesOnShape >& edgesByGeom = data._edgesOnShape; edgesByGeom.resize( nbShapes+1 ); // set data of _EdgesOnShape's if ( SMESH_subMesh* sm = _mesh->GetSubMesh( data._solid )) { SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/false); while ( smIt->more() ) { sm = smIt->next(); if ( sm->GetSubShape().ShapeType() == TopAbs_FACE && data._ignoreFaceIds.count( sm->GetId() )) continue; setShapeData( edgesByGeom[ sm->GetId() ], sm, data ); } } } } //================================================================================ /*! * \brief initialize data of _EdgesOnShape */ //================================================================================ void _ViscousBuilder::setShapeData( _EdgesOnShape& eos, SMESH_subMesh* sm, _SolidData& data ) { if ( !eos._shape.IsNull() || sm->GetSubShape().ShapeType() == TopAbs_WIRE ) return; SMESH_MesherHelper helper( *_mesh ); eos._subMesh = sm; eos._shapeID = sm->GetId(); eos._shape = sm->GetSubShape(); if ( eos.ShapeType() == TopAbs_FACE ) eos._shape.Orientation( helper.GetSubShapeOri( data._solid, eos._shape )); eos._toSmooth = false; eos._data = &data; // set _SWOL map< TGeomID, TopoDS_Shape >::const_iterator s2s = data._shrinkShape2Shape.find( eos._shapeID ); if ( s2s != data._shrinkShape2Shape.end() ) eos._sWOL = s2s->second; eos._isRegularSWOL = true; if ( eos.SWOLType() == TopAbs_FACE ) { const TopoDS_Face& F = TopoDS::Face( eos._sWOL ); Handle(ShapeAnalysis_Surface) surface = helper.GetSurface( F ); eos._isRegularSWOL = ( ! surface->HasSingularities( 1e-7 )); } // set _hyp if ( data._hyps.size() == 1 ) { eos._hyp = data._hyps.back(); } else { // compute average StdMeshers_ViscousLayers parameters map< TGeomID, const StdMeshers_ViscousLayers* >::iterator f2hyp; if ( eos.ShapeType() == TopAbs_FACE ) { if (( f2hyp = data._face2hyp.find( eos._shapeID )) != data._face2hyp.end() ) eos._hyp = f2hyp->second; } else { PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE ); while ( const TopoDS_Shape* face = fIt->next() ) { TGeomID faceID = getMeshDS()->ShapeToIndex( *face ); if (( f2hyp = data._face2hyp.find( faceID )) != data._face2hyp.end() ) eos._hyp.Add( f2hyp->second ); } } } // set _faceNormals if ( ! eos._hyp.UseSurfaceNormal() ) { if ( eos.ShapeType() == TopAbs_FACE ) // get normals to elements on a FACE { SMESHDS_SubMesh* smDS = sm->GetSubMeshDS(); if ( !smDS ) return; eos._faceNormals.reserve( smDS->NbElements() ); double oriFactor = helper.IsReversedSubMesh( TopoDS::Face( eos._shape )) ? 1.: -1.; SMDS_ElemIteratorPtr eIt = smDS->GetElements(); for ( ; eIt->more(); ) { const SMDS_MeshElement* face = eIt->next(); gp_XYZ& norm = eos._faceNormals[face]; if ( !SMESH_MeshAlgos::FaceNormal( face, norm, /*normalized=*/true )) norm.SetCoord( 0,0,0 ); norm *= oriFactor; } } else // find EOS of adjacent FACEs { PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE ); while ( const TopoDS_Shape* face = fIt->next() ) { TGeomID faceID = getMeshDS()->ShapeToIndex( *face ); eos._faceEOS.push_back( & data._edgesOnShape[ faceID ]); if ( eos._faceEOS.back()->_shape.IsNull() ) // avoid using uninitialised _shapeID in GetNormal() eos._faceEOS.back()->_shapeID = faceID; } } } } //================================================================================ /*! * \brief Returns normal of a face */ //================================================================================ bool _EdgesOnShape::GetNormal( const SMDS_MeshElement* face, gp_Vec& norm ) { bool ok = false; _EdgesOnShape* eos = 0; if ( face->getshapeId() == _shapeID ) { eos = this; } else { for ( size_t iF = 0; iF < _faceEOS.size() && !eos; ++iF ) if ( face->getshapeId() == _faceEOS[ iF ]->_shapeID ) eos = _faceEOS[ iF ]; } if (( eos ) && ( ok = ( eos->_faceNormals.count( face ) ))) { norm = eos->_faceNormals[ face ]; } else if ( !eos ) { debugMsg( "_EdgesOnShape::Normal() failed for face "<GetID() << " on _shape #" << _shapeID ); } return ok; } //================================================================================ /*! * \brief EdgesOnShape destructor */ //================================================================================ _EdgesOnShape::~_EdgesOnShape() { delete _edgeSmoother; } //================================================================================ /*! * \brief Set data of _LayerEdge needed for smoothing */ //================================================================================ bool _ViscousBuilder::setEdgeData(_LayerEdge& edge, _EdgesOnShape& eos, SMESH_MesherHelper& helper, _SolidData& data) { const SMDS_MeshNode* node = edge._nodes[0]; // source node edge._len = 0; edge._maxLen = Precision::Infinite(); edge._minAngle = 0; edge._2neibors = 0; edge._curvature = 0; edge._flags = 0; edge._smooFunction = 0; // -------------------------- // Compute _normal and _cosin // -------------------------- edge._cosin = 0; edge._lenFactor = 1.; edge._normal.SetCoord(0,0,0); _Simplex::GetSimplices( node, edge._simplices, data._ignoreFaceIds, &data ); int totalNbFaces = 0; TopoDS_Face F; std::pair< TopoDS_Face, gp_XYZ > face2Norm[20]; gp_Vec geomNorm; bool normOK = true; const bool onShrinkShape = !eos._sWOL.IsNull(); const bool useGeometry = (( eos._hyp.UseSurfaceNormal() ) || ( eos.ShapeType() != TopAbs_FACE /*&& !onShrinkShape*/ )); // get geom FACEs the node lies on //if ( useGeometry ) { set faceIds; if ( eos.ShapeType() == TopAbs_FACE ) { faceIds.insert( eos._shapeID ); } else { SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) faceIds.insert( fIt->next()->getshapeId() ); } set::iterator id = faceIds.begin(); for ( ; id != faceIds.end(); ++id ) { const TopoDS_Shape& s = getMeshDS()->IndexToShape( *id ); if ( s.IsNull() || s.ShapeType() != TopAbs_FACE || data._ignoreFaceIds.count( *id )) continue; F = TopoDS::Face( s ); face2Norm[ totalNbFaces ].first = F; totalNbFaces++; } } // find _normal bool fromVonF = false; if ( useGeometry ) { fromVonF = ( eos.ShapeType() == TopAbs_VERTEX && eos.SWOLType() == TopAbs_FACE && totalNbFaces > 1 ); if ( onShrinkShape && !fromVonF ) // one of faces the node is on has no layers { if ( eos.SWOLType() == TopAbs_EDGE ) { // inflate from VERTEX along EDGE edge._normal = getEdgeDir( TopoDS::Edge( eos._sWOL ), TopoDS::Vertex( eos._shape )); } else if ( eos.ShapeType() == TopAbs_VERTEX ) { // inflate from VERTEX along FACE edge._normal = getFaceDir( TopoDS::Face( eos._sWOL ), TopoDS::Vertex( eos._shape ), node, helper, normOK, &edge._cosin); } else { // inflate from EDGE along FACE edge._normal = getFaceDir( TopoDS::Face( eos._sWOL ), TopoDS::Edge( eos._shape ), node, helper, normOK); } } else // layers are on all FACEs of SOLID the node is on (or fromVonF) { if ( fromVonF ) face2Norm[ totalNbFaces++ ].first = TopoDS::Face( eos._sWOL ); int nbOkNorms = 0; for ( int iF = totalNbFaces - 1; iF >= 0; --iF ) { F = face2Norm[ iF ].first; geomNorm = getFaceNormal( node, F, helper, normOK ); if ( !normOK ) continue; nbOkNorms++; if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED ) geomNorm.Reverse(); face2Norm[ iF ].second = geomNorm.XYZ(); edge._normal += geomNorm.XYZ(); } if ( nbOkNorms == 0 ) return error(SMESH_Comment("Can't get normal to node ") << node->GetID(), data._index); if ( totalNbFaces >= 3 ) { edge._normal = getNormalByOffset( &edge, face2Norm, totalNbFaces, fromVonF ); } if ( edge._normal.Modulus() < 1e-3 && nbOkNorms > 1 ) { // opposite normals, re-get normals at shifted positions (IPAL 52426) edge._normal.SetCoord( 0,0,0 ); for ( int iF = 0; iF < totalNbFaces - fromVonF; ++iF ) { const TopoDS_Face& F = face2Norm[iF].first; geomNorm = getFaceNormal( node, F, helper, normOK, /*shiftInside=*/true ); if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED ) geomNorm.Reverse(); if ( normOK ) face2Norm[ iF ].second = geomNorm.XYZ(); edge._normal += face2Norm[ iF ].second; } } } } else // !useGeometry - get _normal using surrounding mesh faces { edge._normal = getWeigthedNormal( &edge ); // set faceIds; // // SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face); // while ( fIt->more() ) // { // const SMDS_MeshElement* face = fIt->next(); // if ( eos.GetNormal( face, geomNorm )) // { // if ( onShrinkShape && !faceIds.insert( face->getshapeId() ).second ) // continue; // use only one mesh face on FACE // edge._normal += geomNorm.XYZ(); // totalNbFaces++; // } // } } // compute _cosin //if ( eos._hyp.UseSurfaceNormal() ) { switch ( eos.ShapeType() ) { case TopAbs_FACE: { edge._cosin = 0; break; } case TopAbs_EDGE: { TopoDS_Edge E = TopoDS::Edge( eos._shape ); gp_Vec inFaceDir = getFaceDir( F, E, node, helper, normOK ); double angle = inFaceDir.Angle( edge._normal ); // [0,PI] edge._cosin = Cos( angle ); break; } case TopAbs_VERTEX: { if ( fromVonF ) { getFaceDir( TopoDS::Face( eos._sWOL ), TopoDS::Vertex( eos._shape ), node, helper, normOK, &edge._cosin ); } else if ( eos.SWOLType() != TopAbs_FACE ) // else _cosin is set by getFaceDir() { TopoDS_Vertex V = TopoDS::Vertex( eos._shape ); gp_Vec inFaceDir = getFaceDir( F, V, node, helper, normOK ); double angle = inFaceDir.Angle( edge._normal ); // [0,PI] edge._cosin = Cos( angle ); if ( totalNbFaces > 2 || helper.IsSeamShape( node->getshapeId() )) for ( int iF = 1; iF < totalNbFaces; ++iF ) { F = face2Norm[ iF ].first; inFaceDir = getFaceDir( F, V, node, helper, normOK=true ); if ( normOK ) { double angle = inFaceDir.Angle( edge._normal ); double cosin = Cos( angle ); if ( Abs( cosin ) > Abs( edge._cosin )) edge._cosin = cosin; } } } break; } default: return error(SMESH_Comment("Invalid shape position of node ")<::min() ) return error(SMESH_Comment("Bad normal at node ")<< node->GetID(), data._index ); edge._normal /= sqrt( normSize ); if ( edge.Is( _LayerEdge::MULTI_NORMAL ) && edge._nodes.size() == 2 ) { getMeshDS()->RemoveFreeNode( edge._nodes.back(), 0, /*fromGroups=*/false ); edge._nodes.resize( 1 ); edge._normal.SetCoord( 0,0,0 ); edge.SetMaxLen( 0 ); } // Set the rest data // -------------------- edge.SetCosin( edge._cosin ); // to update edge._lenFactor if ( onShrinkShape ) { const SMDS_MeshNode* tgtNode = edge._nodes.back(); if ( SMESHDS_SubMesh* sm = getMeshDS()->MeshElements( data._solid )) sm->RemoveNode( tgtNode ); // set initial position which is parameters on _sWOL in this case if ( eos.SWOLType() == TopAbs_EDGE ) { double u = helper.GetNodeU( TopoDS::Edge( eos._sWOL ), node, 0, &normOK ); edge._pos.push_back( gp_XYZ( u, 0, 0 )); if ( edge._nodes.size() > 1 ) getMeshDS()->SetNodeOnEdge( tgtNode, TopoDS::Edge( eos._sWOL ), u ); } else // eos.SWOLType() == TopAbs_FACE { gp_XY uv = helper.GetNodeUV( TopoDS::Face( eos._sWOL ), node, 0, &normOK ); edge._pos.push_back( gp_XYZ( uv.X(), uv.Y(), 0)); if ( edge._nodes.size() > 1 ) getMeshDS()->SetNodeOnFace( tgtNode, TopoDS::Face( eos._sWOL ), uv.X(), uv.Y() ); } if ( edge._nodes.size() > 1 ) { // check if an angle between a FACE with layers and SWOL is sharp, // else the edge should not inflate F.Nullify(); for ( int iF = 0; iF < totalNbFaces && F.IsNull(); ++iF ) // find a FACE with VL if ( ! helper.IsSubShape( eos._sWOL, face2Norm[iF].first )) F = face2Norm[iF].first; if ( !F.IsNull()) { geomNorm = getFaceNormal( node, F, helper, normOK ); if ( helper.GetSubShapeOri( data._solid, F ) != TopAbs_REVERSED ) geomNorm.Reverse(); // inside the SOLID if ( geomNorm * edge._normal < -0.001 ) { getMeshDS()->RemoveFreeNode( tgtNode, 0, /*fromGroups=*/false ); edge._nodes.resize( 1 ); } else if ( edge._lenFactor > 3 ) { edge._lenFactor = 2; edge.Set( _LayerEdge::RISKY_SWOL ); } } } } else { edge._pos.push_back( SMESH_TNodeXYZ( node )); if ( eos.ShapeType() == TopAbs_FACE ) { double angle; for ( size_t i = 0; i < edge._simplices.size(); ++i ) { edge._simplices[i].IsMinAngleOK( edge._pos.back(), angle ); edge._minAngle = Max( edge._minAngle, angle ); // "angle" is actually cosine } } } // Set neighbor nodes for a _LayerEdge based on EDGE if ( eos.ShapeType() == TopAbs_EDGE /*|| ( onShrinkShape && posType == SMDS_TOP_VERTEX && fabs( edge._cosin ) < 1e-10 )*/) { edge._2neibors = _Factory::NewNearEdges(); // target nodes instead of source ones will be set later } return true; } //================================================================================ /*! * \brief Return normal to a FACE at a node * \param [in] n - node * \param [in] face - FACE * \param [in] helper - helper * \param [out] isOK - true or false * \param [in] shiftInside - to find normal at a position shifted inside the face * \return gp_XYZ - normal */ //================================================================================ gp_XYZ _ViscousBuilder::getFaceNormal(const SMDS_MeshNode* node, const TopoDS_Face& face, SMESH_MesherHelper& helper, bool& isOK, bool shiftInside) { gp_XY uv; if ( shiftInside ) { // get a shifted position gp_Pnt p = SMESH_TNodeXYZ( node ); gp_XYZ shift( 0,0,0 ); TopoDS_Shape S = helper.GetSubShapeByNode( node, helper.GetMeshDS() ); switch ( S.ShapeType() ) { case TopAbs_VERTEX: { shift = getFaceDir( face, TopoDS::Vertex( S ), node, helper, isOK ); break; } case TopAbs_EDGE: { shift = getFaceDir( face, TopoDS::Edge( S ), node, helper, isOK ); break; } default: isOK = false; } if ( isOK ) shift.Normalize(); p.Translate( shift * 1e-5 ); TopLoc_Location loc; GeomAPI_ProjectPointOnSurf& projector = helper.GetProjector( face, loc, 1e-7 ); if ( !loc.IsIdentity() ) p.Transform( loc.Transformation().Inverted() ); projector.Perform( p ); if ( !projector.IsDone() || projector.NbPoints() < 1 ) { isOK = false; return p.XYZ(); } Standard_Real U,V; projector.LowerDistanceParameters(U,V); uv.SetCoord( U,V ); } else { uv = helper.GetNodeUV( face, node, 0, &isOK ); } gp_Dir normal; isOK = false; Handle(Geom_Surface) surface = BRep_Tool::Surface( face ); if ( !shiftInside && helper.IsDegenShape( node->getshapeId() ) && getFaceNormalAtSingularity( uv, face, helper, normal )) { isOK = true; return normal.XYZ(); } int pointKind = GeomLib::NormEstim( surface, uv, 1e-5, normal ); enum { REGULAR = 0, QUASYSINGULAR, CONICAL, IMPOSSIBLE }; if ( pointKind == IMPOSSIBLE && node->GetPosition()->GetDim() == 2 ) // node inside the FACE { // probably NormEstim() failed due to a too high tolerance pointKind = GeomLib::NormEstim( surface, uv, 1e-20, normal ); isOK = ( pointKind < IMPOSSIBLE ); } if ( pointKind < IMPOSSIBLE ) { if ( pointKind != REGULAR && !shiftInside && node->GetPosition()->GetDim() < 2 ) // FACE boundary { gp_XYZ normShift = getFaceNormal( node, face, helper, isOK, /*shiftInside=*/true ); if ( normShift * normal.XYZ() < 0. ) normal = normShift; } isOK = true; } if ( !isOK ) // hard singularity, to call with shiftInside=true ? { const TGeomID faceID = helper.GetMeshDS()->ShapeToIndex( face ); SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) { const SMDS_MeshElement* f = fIt->next(); if ( f->getshapeId() == faceID ) { isOK = SMESH_MeshAlgos::FaceNormal( f, (gp_XYZ&) normal.XYZ(), /*normalized=*/true ); if ( isOK ) { TopoDS_Face ff = face; ff.Orientation( TopAbs_FORWARD ); if ( helper.IsReversedSubMesh( ff )) normal.Reverse(); break; } } } } return normal.XYZ(); } //================================================================================ /*! * \brief Try to get normal at a singularity of a surface basing on it's nature */ //================================================================================ bool _ViscousBuilder::getFaceNormalAtSingularity( const gp_XY& uv, const TopoDS_Face& face, SMESH_MesherHelper& helper, gp_Dir& normal ) { BRepAdaptor_Surface surface( face ); gp_Dir axis; if ( !getRovolutionAxis( surface, axis )) return false; double f,l, d, du, dv; f = surface.FirstUParameter(); l = surface.LastUParameter(); d = ( uv.X() - f ) / ( l - f ); du = ( d < 0.5 ? +1. : -1 ) * 1e-5 * ( l - f ); f = surface.FirstVParameter(); l = surface.LastVParameter(); d = ( uv.Y() - f ) / ( l - f ); dv = ( d < 0.5 ? +1. : -1 ) * 1e-5 * ( l - f ); gp_Dir refDir; gp_Pnt2d testUV = uv; enum { REGULAR = 0, QUASYSINGULAR, CONICAL, IMPOSSIBLE }; double tol = 1e-5; Handle(Geom_Surface) geomsurf = surface.Surface().Surface(); for ( int iLoop = 0; true ; ++iLoop ) { testUV.SetCoord( testUV.X() + du, testUV.Y() + dv ); if ( GeomLib::NormEstim( geomsurf, testUV, tol, refDir ) == REGULAR ) break; if ( iLoop > 20 ) return false; tol /= 10.; } if ( axis * refDir < 0. ) axis.Reverse(); normal = axis; return true; } //================================================================================ /*! * \brief Return a normal at a node weighted with angles taken by faces */ //================================================================================ gp_XYZ _ViscousBuilder::getWeigthedNormal( const _LayerEdge* edge ) { const SMDS_MeshNode* n = edge->_nodes[0]; gp_XYZ resNorm(0,0,0); SMESH_TNodeXYZ p0( n ), pP, pN; for ( size_t i = 0; i < edge->_simplices.size(); ++i ) { pP.Set( edge->_simplices[i]._nPrev ); pN.Set( edge->_simplices[i]._nNext ); gp_Vec v0P( p0, pP ), v0N( p0, pN ), vPN( pP, pN ), norm = v0P ^ v0N; double l0P = v0P.SquareMagnitude(); double l0N = v0N.SquareMagnitude(); double lPN = vPN.SquareMagnitude(); if ( l0P < std::numeric_limits::min() || l0N < std::numeric_limits::min() || lPN < std::numeric_limits::min() ) continue; double lNorm = norm.SquareMagnitude(); double sin2 = lNorm / l0P / l0N; double angle = ACos(( v0P * v0N ) / Sqrt( l0P ) / Sqrt( l0N )); double weight = sin2 * angle / lPN; resNorm += weight * norm.XYZ() / Sqrt( lNorm ); } return resNorm; } //================================================================================ /*! * \brief Return a normal at a node by getting a common point of offset planes * defined by the FACE normals */ //================================================================================ gp_XYZ _ViscousBuilder::getNormalByOffset( _LayerEdge* edge, std::pair< TopoDS_Face, gp_XYZ > f2Normal[], int nbFaces, bool lastNoOffset) { SMESH_TNodeXYZ p0 = edge->_nodes[0]; gp_XYZ resNorm(0,0,0); TopoDS_Shape V = SMESH_MesherHelper::GetSubShapeByNode( p0._node, getMeshDS() ); if ( V.ShapeType() != TopAbs_VERTEX || nbFaces < 3 ) { for ( int i = 0; i < nbFaces; ++i ) resNorm += f2Normal[i].second; return resNorm; } // prepare _OffsetPlane's vector< _OffsetPlane > pln( nbFaces ); for ( int i = 0; i < nbFaces - lastNoOffset; ++i ) { pln[i]._faceIndex = i; pln[i]._plane = gp_Pln( p0 + f2Normal[i].second, f2Normal[i].second ); } if ( lastNoOffset ) { pln[ nbFaces - 1 ]._faceIndex = nbFaces - 1; pln[ nbFaces - 1 ]._plane = gp_Pln( p0, f2Normal[ nbFaces - 1 ].second ); } // intersect neighboring OffsetPlane's PShapeIteratorPtr edgeIt = SMESH_MesherHelper::GetAncestors( V, *_mesh, TopAbs_EDGE ); while ( const TopoDS_Shape* edge = edgeIt->next() ) { int f1 = -1, f2 = -1; for ( int i = 0; i < nbFaces && f2 < 0; ++i ) if ( SMESH_MesherHelper::IsSubShape( *edge, f2Normal[i].first )) (( f1 < 0 ) ? f1 : f2 ) = i; if ( f2 >= 0 ) pln[ f1 ].ComputeIntersectionLine( pln[ f2 ], TopoDS::Edge( *edge ), TopoDS::Vertex( V )); } // get a common point gp_XYZ commonPnt( 0, 0, 0 ); int nbPoints = 0; bool isPointFound; for ( int i = 0; i < nbFaces; ++i ) { commonPnt += pln[ i ].GetCommonPoint( isPointFound, TopoDS::Vertex( V )); nbPoints += isPointFound; } gp_XYZ wgtNorm = getWeigthedNormal( edge ); if ( nbPoints == 0 ) return wgtNorm; commonPnt /= nbPoints; resNorm = commonPnt - p0; if ( lastNoOffset ) return resNorm; // choose the best among resNorm and wgtNorm resNorm.Normalize(); wgtNorm.Normalize(); double resMinDot = std::numeric_limits::max(); double wgtMinDot = std::numeric_limits::max(); for ( int i = 0; i < nbFaces - lastNoOffset; ++i ) { resMinDot = Min( resMinDot, resNorm * f2Normal[i].second ); wgtMinDot = Min( wgtMinDot, wgtNorm * f2Normal[i].second ); } if ( Max( resMinDot, wgtMinDot ) < theMinSmoothCosin ) { edge->Set( _LayerEdge::MULTI_NORMAL ); } return ( resMinDot > wgtMinDot ) ? resNorm : wgtNorm; } //================================================================================ /*! * \brief Compute line of intersection of 2 planes */ //================================================================================ void _OffsetPlane::ComputeIntersectionLine( _OffsetPlane& pln, const TopoDS_Edge& E, const TopoDS_Vertex& V ) { int iNext = bool( _faceIndexNext[0] >= 0 ); _faceIndexNext[ iNext ] = pln._faceIndex; gp_XYZ n1 = _plane.Axis().Direction().XYZ(); gp_XYZ n2 = pln._plane.Axis().Direction().XYZ(); gp_XYZ lineDir = n1 ^ n2; double x = Abs( lineDir.X() ); double y = Abs( lineDir.Y() ); double z = Abs( lineDir.Z() ); int cooMax; // max coordinate if (x > y) { if (x > z) cooMax = 1; else cooMax = 3; } else { if (y > z) cooMax = 2; else cooMax = 3; } gp_Pnt linePos; if ( Abs( lineDir.Coord( cooMax )) < 0.05 ) { // parallel planes - intersection is an offset of the common EDGE gp_Pnt p = BRep_Tool::Pnt( V ); linePos = 0.5 * (( p.XYZ() + n1 ) + ( p.XYZ() + n2 )); lineDir = getEdgeDir( E, V ); } else { // the constants in the 2 plane equations double d1 = - ( _plane.Axis().Direction().XYZ() * _plane.Location().XYZ() ); double d2 = - ( pln._plane.Axis().Direction().XYZ() * pln._plane.Location().XYZ() ); switch ( cooMax ) { case 1: linePos.SetX( 0 ); linePos.SetY(( d2*n1.Z() - d1*n2.Z()) / lineDir.X() ); linePos.SetZ(( d1*n2.Y() - d2*n1.Y()) / lineDir.X() ); break; case 2: linePos.SetX(( d1*n2.Z() - d2*n1.Z()) / lineDir.Y() ); linePos.SetY( 0 ); linePos.SetZ(( d2*n1.X() - d1*n2.X()) / lineDir.Y() ); break; case 3: linePos.SetX(( d2*n1.Y() - d1*n2.Y()) / lineDir.Z() ); linePos.SetY(( d1*n2.X() - d2*n1.X()) / lineDir.Z() ); linePos.SetZ( 0 ); } } gp_Lin& line = _lines[ iNext ]; line.SetDirection( lineDir ); line.SetLocation ( linePos ); _isLineOK[ iNext ] = true; iNext = bool( pln._faceIndexNext[0] >= 0 ); pln._lines [ iNext ] = line; pln._faceIndexNext[ iNext ] = this->_faceIndex; pln._isLineOK [ iNext ] = true; } //================================================================================ /*! * \brief Computes intersection point of two _lines */ //================================================================================ gp_XYZ _OffsetPlane::GetCommonPoint(bool& isFound, const TopoDS_Vertex & V) const { gp_XYZ p( 0,0,0 ); isFound = false; if ( NbLines() == 2 ) { gp_Vec lPerp0 = _lines[0].Direction().XYZ() ^ _plane.Axis().Direction().XYZ(); double dot01 = lPerp0 * _lines[1].Direction().XYZ(); if ( Abs( dot01 ) > 0.05 ) { gp_Vec l0l1 = _lines[1].Location().XYZ() - _lines[0].Location().XYZ(); double u1 = - ( lPerp0 * l0l1 ) / dot01; p = ( _lines[1].Location().XYZ() + _lines[1].Direction().XYZ() * u1 ); isFound = true; } else { gp_Pnt pV ( BRep_Tool::Pnt( V )); gp_Vec lv0( _lines[0].Location(), pV ), lv1(_lines[1].Location(), pV ); double dot0( lv0 * _lines[0].Direction() ), dot1( lv1 * _lines[1].Direction() ); p += 0.5 * ( _lines[0].Location().XYZ() + _lines[0].Direction().XYZ() * dot0 ); p += 0.5 * ( _lines[1].Location().XYZ() + _lines[1].Direction().XYZ() * dot1 ); isFound = true; } } return p; } //================================================================================ /*! * \brief Find 2 neighbor nodes of a node on EDGE */ //================================================================================ bool _ViscousBuilder::findNeiborsOnEdge(const _LayerEdge* edge, const SMDS_MeshNode*& n1, const SMDS_MeshNode*& n2, _EdgesOnShape& eos, _SolidData& data) { const SMDS_MeshNode* node = edge->_nodes[0]; const int shapeInd = eos._shapeID; SMESHDS_SubMesh* edgeSM = 0; if ( eos.ShapeType() == TopAbs_EDGE ) { edgeSM = eos._subMesh->GetSubMeshDS(); if ( !edgeSM || edgeSM->NbElements() == 0 ) return error(SMESH_Comment("Not meshed EDGE ") << shapeInd, data._index); } int iN = 0; n2 = 0; SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(SMDSAbs_Edge); while ( eIt->more() && !n2 ) { const SMDS_MeshElement* e = eIt->next(); const SMDS_MeshNode* nNeibor = e->GetNode( 0 ); if ( nNeibor == node ) nNeibor = e->GetNode( 1 ); if ( edgeSM ) { if (!edgeSM->Contains(e)) continue; } else { TopoDS_Shape s = SMESH_MesherHelper::GetSubShapeByNode( nNeibor, getMeshDS() ); if ( !SMESH_MesherHelper::IsSubShape( s, eos._sWOL )) continue; } ( iN++ ? n2 : n1 ) = nNeibor; } if ( !n2 ) return error(SMESH_Comment("Wrongly meshed EDGE ") << shapeInd, data._index); return true; } //================================================================================ /*! * \brief Create _Curvature */ //================================================================================ _Curvature* _Curvature::New( double avgNormProj, double avgDist ) { // double _r; // radius // double _k; // factor to correct node smoothed position // double _h2lenRatio; // avgNormProj / (2*avgDist) // gp_Pnt2d _uv; // UV used in putOnOffsetSurface() _Curvature* c = 0; if ( fabs( avgNormProj / avgDist ) > 1./200 ) { c = _Factory::NewCurvature(); c->_r = avgDist * avgDist / avgNormProj; c->_k = avgDist * avgDist / c->_r / c->_r; //c->_k = avgNormProj / c->_r; c->_k *= ( c->_r < 0 ? 1/1.1 : 1.1 ); // not to be too restrictive c->_h2lenRatio = avgNormProj / ( avgDist + avgDist ); c->_uv.SetCoord( 0., 0. ); } return c; } //================================================================================ /*! * \brief Set _curvature and _2neibors->_plnNorm by 2 neighbor nodes residing the same EDGE */ //================================================================================ void _LayerEdge::SetDataByNeighbors( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const _EdgesOnShape& eos, SMESH_MesherHelper& helper) { if ( eos.ShapeType() != TopAbs_EDGE ) return; if ( _curvature && Is( SMOOTHED_C1 )) return; gp_XYZ pos = SMESH_TNodeXYZ( _nodes[0] ); gp_XYZ vec1 = pos - SMESH_TNodeXYZ( n1 ); gp_XYZ vec2 = pos - SMESH_TNodeXYZ( n2 ); // Set _curvature double sumLen = vec1.Modulus() + vec2.Modulus(); _2neibors->_wgt[0] = 1 - vec1.Modulus() / sumLen; _2neibors->_wgt[1] = 1 - vec2.Modulus() / sumLen; double avgNormProj = 0.5 * ( _normal * vec1 + _normal * vec2 ); double avgLen = 0.5 * ( vec1.Modulus() + vec2.Modulus() ); _curvature = _Curvature::New( avgNormProj, avgLen ); // if ( _curvature ) // debugMsg( _nodes[0]->GetID() // << " CURV r,k: " << _curvature->_r<<","<<_curvature->_k // << " proj = "<second; // for ( size_t iN = 1; iN < le->_nodes.size(); ++iN ) // dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <_nodes[iN-1]->GetID() // << ", " << le->_nodes[iN]->GetID() <<"])"); if ( le ) { dumpCmd(SMESH_Comment("mesh.AddEdge([ ") <_nodes[0]->GetID() << ", " << le->_nodes.back()->GetID() <<"]) # " << le->_flags ); } } dumpFunctionEnd(); dumpFunction( SMESH_Comment("makeNormals") << i ); for ( n2e = _sdVec[i]._n2eMap.begin(); n2e != _sdVec[i]._n2eMap.end(); ++n2e ) { _LayerEdge* edge = n2e->second; SMESH_TNodeXYZ nXYZ( edge->_nodes[0] ); nXYZ += edge->_normal * _sdVec[i]._stepSize; dumpCmd(SMESH_Comment("mesh.AddEdge([ ") << edge->_nodes[0]->GetID() << ", mesh.AddNode( "<< nXYZ.X()<<","<< nXYZ.Y()<<","<< nXYZ.Z()<<")])"); } dumpFunctionEnd(); dumpFunction( SMESH_Comment("makeTmpFaces_") << i ); dumpCmd( "faceId1 = mesh.NbElements()" ); TopExp_Explorer fExp( _sdVec[i]._solid, TopAbs_FACE ); for ( ; fExp.More(); fExp.Next() ) { if ( const SMESHDS_SubMesh* sm = _sdVec[i]._proxyMesh->GetProxySubMesh( fExp.Current() )) { if ( sm->NbElements() == 0 ) continue; SMDS_ElemIteratorPtr fIt = sm->GetElements(); while ( fIt->more()) { const SMDS_MeshElement* e = fIt->next(); SMESH_Comment cmd("mesh.AddFace(["); for ( int j = 0; j < e->NbCornerNodes(); ++j ) cmd << e->GetNode(j)->GetID() << (j+1 < e->NbCornerNodes() ? ",": "])"); dumpCmd( cmd ); } } } dumpCmd( "faceId2 = mesh.NbElements()" ); dumpCmd( SMESH_Comment( "mesh.MakeGroup( 'tmpFaces_" ) << i << "'," << "SMESH.FACE, SMESH.FT_RangeOfIds,'='," << "'%s-%s' % (faceId1+1, faceId2))"); dumpFunctionEnd(); } #endif } //================================================================================ /*! * \brief Find maximal _LayerEdge length (layer thickness) limited by geometry */ //================================================================================ void _ViscousBuilder::computeGeomSize( _SolidData& data ) { data._geomSize = Precision::Infinite(); double intersecDist; const SMDS_MeshElement* face; SMESH_MesherHelper helper( *_mesh ); SMESHUtils::Deleter searcher ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), data._proxyMesh->GetFaces( data._solid ))); for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[ iS ]; if ( eos._edges.empty() ) continue; // get neighbor faces, intersection with which should not be considered since // collisions are avoided by means of smoothing set< TGeomID > neighborFaces; if ( eos._hyp.ToSmooth() ) { SMESH_subMeshIteratorPtr subIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/eos.ShapeType() != TopAbs_FACE ); while ( subIt->more() ) { SMESH_subMesh* sm = subIt->next(); PShapeIteratorPtr fIt = helper.GetAncestors( sm->GetSubShape(), *_mesh, TopAbs_FACE ); while ( const TopoDS_Shape* face = fIt->next() ) neighborFaces.insert( getMeshDS()->ShapeToIndex( *face )); } } // find intersections double thinkness = eos._hyp.GetTotalThickness(); for ( size_t i = 0; i < eos._edges.size(); ++i ) { if ( eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue; eos._edges[i]->SetMaxLen( thinkness ); eos._edges[i]->FindIntersection( *searcher, intersecDist, data._epsilon, eos, &face ); if ( intersecDist > 0 && face ) { data._geomSize = Min( data._geomSize, intersecDist ); if ( !neighborFaces.count( face->getshapeId() )) eos[i]->SetMaxLen( Min( thinkness, intersecDist / ( face->GetID() < 0 ? 3. : 2. ))); } } } data._maxThickness = 0; data._minThickness = 1e100; list< const StdMeshers_ViscousLayers* >::iterator hyp = data._hyps.begin(); for ( ; hyp != data._hyps.end(); ++hyp ) { data._maxThickness = Max( data._maxThickness, (*hyp)->GetTotalThickness() ); data._minThickness = Min( data._minThickness, (*hyp)->GetTotalThickness() ); } // Limit inflation step size by geometry size found by intersecting // normals of _LayerEdge's with mesh faces if ( data._stepSize > 0.3 * data._geomSize ) limitStepSize( data, 0.3 * data._geomSize ); if ( data._stepSize > data._minThickness ) limitStepSize( data, data._minThickness ); // ------------------------------------------------------------------------- // Detect _LayerEdge which can't intersect with opposite or neighbor layer, // so no need in detecting intersection at each inflation step // ------------------------------------------------------------------------- int nbSteps = data._maxThickness / data._stepSize; if ( nbSteps < 3 || nbSteps * data._n2eMap.size() < 100000 ) return; vector< const SMDS_MeshElement* > closeFaces; int nbDetected = 0; for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[ iS ]; if ( eos._edges.empty() || eos.ShapeType() != TopAbs_FACE ) continue; for ( size_t i = 0; i < eos.size(); ++i ) { SMESH_NodeXYZ p( eos[i]->_nodes[0] ); double radius = data._maxThickness + 2 * eos[i]->_maxLen; closeFaces.clear(); searcher->GetElementsInSphere( p, radius, SMDSAbs_Face, closeFaces ); bool toIgnore = true; for ( size_t iF = 0; iF < closeFaces.size() && toIgnore; ++iF ) if ( !( toIgnore = ( closeFaces[ iF ]->getshapeId() == eos._shapeID || data._ignoreFaceIds.count( closeFaces[ iF ]->getshapeId() )))) { // check if a _LayerEdge will inflate in a direction opposite to a direction // toward a close face bool allBehind = true; for ( int iN = 0; iN < closeFaces[ iF ]->NbCornerNodes() && allBehind; ++iN ) { SMESH_NodeXYZ pi( closeFaces[ iF ]->GetNode( iN )); allBehind = (( pi - p ) * eos[i]->_normal < 0.1 * data._stepSize ); } toIgnore = allBehind; } if ( toIgnore ) // no need to detect intersection { eos[i]->Set( _LayerEdge::INTERSECTED ); ++nbDetected; } } } debugMsg( "Nb LE to intersect " << data._n2eMap.size()-nbDetected << ", ignore " << nbDetected ); return; } //================================================================================ /*! * \brief Increase length of _LayerEdge's to reach the required thickness of layers */ //================================================================================ bool _ViscousBuilder::inflate(_SolidData& data) { SMESH_MesherHelper helper( *_mesh ); const double tgtThick = data._maxThickness; if ( data._stepSize < 1. ) data._epsilon = data._stepSize * 1e-7; debugMsg( "-- geomSize = " << data._geomSize << ", stepSize = " << data._stepSize ); _pyDump->Pause(); findCollisionEdges( data, helper ); limitMaxLenByCurvature( data, helper ); _pyDump->Resume(); // limit length of _LayerEdge's around MULTI_NORMAL _LayerEdge's for ( size_t i = 0; i < data._edgesOnShape.size(); ++i ) if ( data._edgesOnShape[i].ShapeType() == TopAbs_VERTEX && data._edgesOnShape[i]._edges.size() > 0 && data._edgesOnShape[i]._edges[0]->Is( _LayerEdge::MULTI_NORMAL )) { data._edgesOnShape[i]._edges[0]->Unset( _LayerEdge::BLOCKED ); data._edgesOnShape[i]._edges[0]->Block( data ); } const double safeFactor = ( 2*data._maxThickness < data._geomSize ) ? 1 : theThickToIntersection; double avgThick = 0, curThick = 0, distToIntersection = Precision::Infinite(); int nbSteps = 0, nbRepeats = 0; while ( avgThick < 0.99 ) { // new target length double prevThick = curThick; curThick += data._stepSize; if ( curThick > tgtThick ) { curThick = tgtThick + tgtThick*( 1.-avgThick ) * nbRepeats; nbRepeats++; } double stepSize = curThick - prevThick; updateNormalsOfSmoothed( data, helper, nbSteps, stepSize ); // to ease smoothing // Elongate _LayerEdge's dumpFunction(SMESH_Comment("inflate")<SetNewLength( shapeCurThick, eos, helper ); } } dumpFunctionEnd(); if ( !updateNormals( data, helper, nbSteps, stepSize )) // to avoid collisions return false; // Improve and check quality if ( !smoothAndCheck( data, nbSteps, distToIntersection )) { if ( nbSteps > 0 ) { #ifdef __NOT_INVALIDATE_BAD_SMOOTH debugMsg("NOT INVALIDATED STEP!"); return error("Smoothing failed", data._index); #endif dumpFunction(SMESH_Comment("invalidate")<InvalidateStep( nbSteps+1, eos ); } dumpFunctionEnd(); } break; // no more inflating possible } nbSteps++; // Evaluate achieved thickness avgThick = 0; int nbActiveEdges = 0; for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[iS]; if ( eos._edges.empty() ) continue; const double shapeTgtThick = eos._hyp.GetTotalThickness(); for ( size_t i = 0; i < eos._edges.size(); ++i ) { if ( eos._edges[i]->_nodes.size() > 1 ) avgThick += Min( 1., eos._edges[i]->_len / shapeTgtThick ); else avgThick += shapeTgtThick; nbActiveEdges += ( ! eos._edges[i]->Is( _LayerEdge::BLOCKED )); } } avgThick /= data._n2eMap.size(); debugMsg( "-- Thickness " << curThick << " ("<< avgThick*100 << "%) reached" ); #ifdef BLOCK_INFLATION if ( nbActiveEdges == 0 ) { debugMsg( "-- Stop inflation since all _LayerEdge's BLOCKED " ); break; } #else if ( distToIntersection < tgtThick * avgThick * safeFactor && avgThick < 0.9 ) { debugMsg( "-- Stop inflation since " << " distToIntersection( "<_warning || data._proxyMesh->_warning->IsOK() ) { data._proxyMesh->_warning.reset ( new SMESH_ComputeError (COMPERR_WARNING, SMESH_Comment("Thickness ") << tgtThick << " of viscous layers not reached," " average reached thickness is " << avgThick*tgtThick)); } } // Restore position of src nodes moved by inflation on _noShrinkShapes dumpFunction(SMESH_Comment("restoNoShrink_So")<_nodes.size() == 1 ) for ( size_t i = 0; i < eos._edges.size(); ++i ) { restoreNoShrink( *eos._edges[ i ] ); } } dumpFunctionEnd(); return safeFactor > 0; // == true (avoid warning: unused variable 'safeFactor') } //================================================================================ /*! * \brief Improve quality of layer inner surface and check intersection */ //================================================================================ bool _ViscousBuilder::smoothAndCheck(_SolidData& data, const int infStep, double & distToIntersection) { if ( data._nbShapesToSmooth == 0 ) return true; // no shapes needing smoothing bool moved, improved; double vol; vector< _LayerEdge* > movedEdges, badEdges; vector< _EdgesOnShape* > eosC1; // C1 continues shapes vector< bool > isConcaveFace; SMESH_MesherHelper helper(*_mesh); Handle(ShapeAnalysis_Surface) surface; TopoDS_Face F; for ( int isFace = 0; isFace < 2; ++isFace ) // smooth on [ EDGEs, FACEs ] { const TopAbs_ShapeEnum shapeType = isFace ? TopAbs_FACE : TopAbs_EDGE; for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[ iS ]; if ( !eos._toSmooth || eos.ShapeType() != shapeType || eos._edges.empty() ) continue; // already smoothed? // bool toSmooth = ( eos._edges[ 0 ]->NbSteps() >= infStep+1 ); // if ( !toSmooth ) continue; if ( !eos._hyp.ToSmooth() ) { // smooth disabled by the user; check validy only if ( !isFace ) continue; badEdges.clear(); for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* edge = eos._edges[i]; for ( size_t iF = 0; iF < edge->_simplices.size(); ++iF ) if ( !edge->_simplices[iF].IsForward( edge->_nodes[0], edge->_pos.back(), vol )) { // debugMsg( "-- Stop inflation. Bad simplex (" // << " "<< edge->_nodes[0]->GetID() // << " "<< edge->_nodes.back()->GetID() // << " "<< edge->_simplices[iF]._nPrev->GetID() // << " "<< edge->_simplices[iF]._nNext->GetID() << " ) "); // return false; badEdges.push_back( edge ); } } if ( !badEdges.empty() ) { eosC1.resize(1); eosC1[0] = &eos; int nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep ); if ( nbBad > 0 ) return false; } continue; // goto the next EDGE or FACE } // prepare data if ( eos.SWOLType() == TopAbs_FACE ) { if ( !F.IsSame( eos._sWOL )) { F = TopoDS::Face( eos._sWOL ); helper.SetSubShape( F ); surface = helper.GetSurface( F ); } } else { F.Nullify(); surface.Nullify(); } const TGeomID sInd = eos._shapeID; // perform smoothing if ( eos.ShapeType() == TopAbs_EDGE ) { dumpFunction(SMESH_Comment("smooth")<Perform( data, surface, F, helper )) { // smooth on EDGE's (normally we should not get here) int step = 0; do { moved = false; for ( size_t i = 0; i < eos._edges.size(); ++i ) { moved |= eos._edges[i]->SmoothOnEdge( surface, F, helper ); } dumpCmd( SMESH_Comment("# end step ")<_shapeID ); vector< _LayerEdge* > & edges = eosC1[ iEOS ]->_edges; for ( size_t i = 0; i < edges.size(); ++i ) if ( edges[i]->Is( _LayerEdge::MOVED ) || edges[i]->Is( _LayerEdge::NEAR_BOUNDARY )) movedEdges.push_back( edges[i] ); makeOffsetSurface( *eosC1[ iEOS ], helper ); } int step = 0, stepLimit = 5, nbBad = 0; while (( ++step <= stepLimit ) || improved ) { dumpFunction(SMESH_Comment("smooth")<Unset( _LayerEdge::SMOOTHED ); if ( movedEdges[i]->Smooth( step, findBest, movedEdges ) > 0 ) badEdges.push_back( movedEdges[i] ); } #else bool findBest = ( step == stepLimit || isConcaveFace[ iEOS ]); for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS ) { vector< _LayerEdge* > & edges = eosC1[ iEOS ]->_edges; for ( size_t i = 0; i < edges.size(); ++i ) { edges[i]->Unset( _LayerEdge::SMOOTHED ); if ( edges[i]->Smooth( step, findBest, false ) > 0 ) badEdges.push_back( eos._edges[i] ); } } #endif nbBad = badEdges.size(); if ( nbBad > 0 ) debugMsg(SMESH_Comment("nbBad = ") << nbBad ); if ( !badEdges.empty() && step >= stepLimit / 2 ) { if ( badEdges[0]->Is( _LayerEdge::ON_CONCAVE_FACE )) stepLimit = 9; // resolve hard smoothing situation around concave VERTEXes for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS ) { vector< _EdgesOnShape* > & eosCoVe = eosC1[ iEOS ]->_eosConcaVer; for ( size_t i = 0; i < eosCoVe.size(); ++i ) eosCoVe[i]->_edges[0]->MoveNearConcaVer( eosCoVe[i], eosC1[ iEOS ], step, badEdges ); } // look for the best smooth of _LayerEdge's neighboring badEdges nbBad = 0; for ( size_t i = 0; i < badEdges.size(); ++i ) { _LayerEdge* ledge = badEdges[i]; for ( size_t iN = 0; iN < ledge->_neibors.size(); ++iN ) { ledge->_neibors[iN]->Unset( _LayerEdge::SMOOTHED ); nbBad += ledge->_neibors[iN]->Smooth( step, true, /*findBest=*/true ); } ledge->Unset( _LayerEdge::SMOOTHED ); nbBad += ledge->Smooth( step, true, /*findBest=*/true ); } debugMsg(SMESH_Comment("nbBad = ") << nbBad ); } if ( nbBad == oldBadNb && nbBad > 0 && step < stepLimit ) // smooth w/o check of validity { dumpFunctionEnd(); dumpFunction(SMESH_Comment("smoothWoCheck")<SmoothWoCheck(); } if ( stepLimit < 9 ) stepLimit++; } improved = ( nbBad < oldBadNb ); dumpFunctionEnd(); if (( step % 3 == 1 ) || ( nbBad > 0 && step >= stepLimit / 2 )) for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS ) { putOnOffsetSurface( *eosC1[ iEOS ], infStep, eosC1, step, /*moveAll=*/step == 1 ); } } // smoothing steps // project -- to prevent intersections or fix bad simplices for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS ) { if ( ! eosC1[ iEOS ]->_eosConcaVer.empty() || nbBad > 0 ) putOnOffsetSurface( *eosC1[ iEOS ], infStep, eosC1 ); } //if ( !badEdges.empty() ) { badEdges.clear(); for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS ) { for ( size_t i = 0; i < eosC1[ iEOS ]->_edges.size(); ++i ) { if ( !eosC1[ iEOS ]->_sWOL.IsNull() ) continue; _LayerEdge* edge = eosC1[ iEOS ]->_edges[i]; edge->CheckNeiborsOnBoundary( & badEdges ); if (( nbBad > 0 ) || ( edge->Is( _LayerEdge::BLOCKED ) && edge->Is( _LayerEdge::NEAR_BOUNDARY ))) { SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back(); gp_XYZ prevXYZ = edge->PrevCheckPos(); for ( size_t j = 0; j < edge->_simplices.size(); ++j ) if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol )) { debugMsg("Bad simplex ( " << edge->_nodes[0]->GetID() << " "<< tgtXYZ._node->GetID() << " "<< edge->_simplices[j]._nPrev->GetID() << " "<< edge->_simplices[j]._nNext->GetID() << " )" ); badEdges.push_back( edge ); break; } } } } // try to fix bad simplices by removing the last inflation step of some _LayerEdge's nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep ); if ( nbBad > 0 ) return false; } } // // smooth on FACE's } // loop on shapes } // smooth on [ EDGEs, FACEs ] // Check orientation of simplices of _LayerEdge's on EDGEs and VERTEXes eosC1.resize(1); for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[ iS ]; if ( eos.ShapeType() == TopAbs_FACE || eos._edges.empty() || !eos._sWOL.IsNull() ) continue; badEdges.clear(); for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* edge = eos._edges[i]; if ( edge->_nodes.size() < 2 ) continue; SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back(); //SMESH_TNodeXYZ prevXYZ = edge->_nodes[0]; gp_XYZ prevXYZ = edge->PrevCheckPos( &eos ); //const gp_XYZ& prevXYZ = edge->PrevPos(); for ( size_t j = 0; j < edge->_simplices.size(); ++j ) if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol )) { debugMsg("Bad simplex on bnd ( " << edge->_nodes[0]->GetID() << " "<< tgtXYZ._node->GetID() << " "<< edge->_simplices[j]._nPrev->GetID() << " "<< edge->_simplices[j]._nNext->GetID() << " )" ); badEdges.push_back( edge ); break; } } // try to fix bad simplices by removing the last inflation step of some _LayerEdge's eosC1[0] = &eos; int nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep ); if ( nbBad > 0 ) return false; } // Check if the last segments of _LayerEdge intersects 2D elements; // checked elements are either temporary faces or faces on surfaces w/o the layers SMESHUtils::Deleter searcher ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), data._proxyMesh->GetFaces( data._solid )) ); #ifdef BLOCK_INFLATION const bool toBlockInfaltion = true; #else const bool toBlockInfaltion = false; #endif distToIntersection = Precision::Infinite(); double dist; const SMDS_MeshElement* intFace = 0; const SMDS_MeshElement* closestFace = 0; _LayerEdge* le = 0; bool is1stBlocked = true; // dbg for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[ iS ]; if ( eos._edges.empty() || !eos._sWOL.IsNull() ) continue; for ( size_t i = 0; i < eos._edges.size(); ++i ) { if ( eos._edges[i]->Is( _LayerEdge::INTERSECTED ) || eos._edges[i]->Is( _LayerEdge::MULTI_NORMAL )) continue; if ( eos._edges[i]->FindIntersection( *searcher, dist, data._epsilon, eos, &intFace )) { return false; // commented due to "Illegal hash-positionPosition" error in NETGEN // on Debian60 on viscous_layers_01/B2 case // Collision; try to deflate _LayerEdge's causing it // badEdges.clear(); // badEdges.push_back( eos._edges[i] ); // eosC1[0] = & eos; // int nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep ); // if ( nbBad > 0 ) // return false; // badEdges.clear(); // if ( _EdgesOnShape* eof = data.GetShapeEdges( intFace->getshapeId() )) // { // if ( const _TmpMeshFace* f = dynamic_cast< const _TmpMeshFace*>( intFace )) // { // const SMDS_MeshElement* srcFace = // eof->_subMesh->GetSubMeshDS()->GetElement( f->getIdInShape() ); // SMDS_ElemIteratorPtr nIt = srcFace->nodesIterator(); // while ( nIt->more() ) // { // const SMDS_MeshNode* srcNode = static_cast( nIt->next() ); // TNode2Edge::iterator n2e = data._n2eMap.find( srcNode ); // if ( n2e != data._n2eMap.end() ) // badEdges.push_back( n2e->second ); // } // eosC1[0] = eof; // nbBad = invalidateBadSmooth( data, helper, badEdges, eosC1, infStep ); // if ( nbBad > 0 ) // return false; // } // } // if ( eos._edges[i]->FindIntersection( *searcher, dist, data._epsilon, eos, &intFace )) // return false; // else // continue; } if ( !intFace ) { SMESH_Comment msg("Invalid? normal at node "); msg << eos._edges[i]->_nodes[0]->GetID(); debugMsg( msg ); continue; } const bool isShorterDist = ( distToIntersection > dist ); if ( toBlockInfaltion || isShorterDist ) { // ignore intersection of a _LayerEdge based on a _ConvexFace with a face // lying on this _ConvexFace if ( _ConvexFace* convFace = data.GetConvexFace( intFace->getshapeId() )) if ( convFace->_isTooCurved && convFace->_subIdToEOS.count ( eos._shapeID )) continue; // ignore intersection of a _LayerEdge based on a FACE with an element on this FACE // ( avoid limiting the thickness on the case of issue 22576) if ( intFace->getshapeId() == eos._shapeID ) continue; // ignore intersection with intFace of an adjacent FACE if ( dist > 0.1 * eos._edges[i]->_len ) { bool toIgnore = false; if ( eos._toSmooth ) { const TopoDS_Shape& S = getMeshDS()->IndexToShape( intFace->getshapeId() ); if ( !S.IsNull() && S.ShapeType() == TopAbs_FACE ) { TopExp_Explorer sub( eos._shape, eos.ShapeType() == TopAbs_FACE ? TopAbs_EDGE : TopAbs_VERTEX ); for ( ; !toIgnore && sub.More(); sub.Next() ) // is adjacent - has a common EDGE or VERTEX toIgnore = ( helper.IsSubShape( sub.Current(), S )); if ( toIgnore ) // check angle between normals { gp_XYZ normal; if ( SMESH_MeshAlgos::FaceNormal( intFace, normal, /*normalized=*/true )) toIgnore = ( normal * eos._edges[i]->_normal > -0.5 ); } } } if ( !toIgnore ) // check if the edge is a neighbor of intFace { for ( size_t iN = 0; !toIgnore && iN < eos._edges[i]->_neibors.size(); ++iN ) { int nInd = intFace->GetNodeIndex( eos._edges[i]->_neibors[ iN ]->_nodes.back() ); toIgnore = ( nInd >= 0 ); } } if ( toIgnore ) continue; } // intersection not ignored if ( toBlockInfaltion && dist < ( eos._edges[i]->_len * theThickToIntersection )) { if ( is1stBlocked ) { is1stBlocked = false; // debug dumpFunction(SMESH_Comment("blockIntersected") <Set( _LayerEdge::INTERSECTED ); // not to intersect eos._edges[i]->Block( data ); // not to inflate //if ( _EdgesOnShape* eof = data.GetShapeEdges( intFace->getshapeId() )) { // block _LayerEdge's, on top of which intFace is if ( const _TmpMeshFace* f = dynamic_cast< const _TmpMeshFace*>( intFace )) { const SMDS_MeshElement* srcFace = f->_srcFace; SMDS_ElemIteratorPtr nIt = srcFace->nodesIterator(); while ( nIt->more() ) { const SMDS_MeshNode* srcNode = static_cast( nIt->next() ); TNode2Edge::iterator n2e = data._n2eMap.find( srcNode ); if ( n2e != data._n2eMap.end() ) n2e->second->Block( data ); } } } } if ( isShorterDist ) { distToIntersection = dist; le = eos._edges[i]; closestFace = intFace; } } // if ( toBlockInfaltion || isShorterDist ) } // loop on eos._edges } // loop on data._edgesOnShape if ( !is1stBlocked ) dumpFunctionEnd(); if ( closestFace && le ) { #ifdef __myDEBUG SMDS_MeshElement::iterator nIt = closestFace->begin_nodes(); cout << "#Shortest distance: _LayerEdge nodes: tgt " << le->_nodes.back()->GetID() << " src " << le->_nodes[0]->GetID()<< ", intersection with face (" << (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID() << ") distance = " << distToIntersection<< endl; #endif } return true; } //================================================================================ /*! * \brief try to fix bad simplices by removing the last inflation step of some _LayerEdge's * \param [in,out] badSmooEdges - _LayerEdge's to fix * \return int - resulting nb of bad _LayerEdge's */ //================================================================================ int _ViscousBuilder::invalidateBadSmooth( _SolidData& data, SMESH_MesherHelper& helper, vector< _LayerEdge* >& badSmooEdges, vector< _EdgesOnShape* >& eosC1, const int infStep ) { if ( badSmooEdges.empty() || infStep == 0 ) return 0; dumpFunction(SMESH_Comment("invalidateBadSmooth")<<"_S"<_shapeID<<"_InfStep"<Set( ADDED ); bool invalidated = false; if ( edge->Is( TO_INVALIDATE ) && edge->NbSteps() > 1 ) { edge->InvalidateStep( edge->NbSteps(), *eos, /*restoreLength=*/true ); edge->Block( data ); edge->Set( INVALIDATED ); edge->Unset( TO_INVALIDATE ); invalidated = true; haveInvalidated = true; } // look for _LayerEdge's of bad _simplices int nbBad = 0; SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back(); gp_XYZ prevXYZ1 = edge->PrevCheckPos( eos ); //const gp_XYZ& prevXYZ2 = edge->PrevPos(); for ( size_t j = 0; j < edge->_simplices.size(); ++j ) { if (( edge->_simplices[j].IsForward( &prevXYZ1, &tgtXYZ, vol ))/* && ( &prevXYZ1 == &prevXYZ2 || edge->_simplices[j].IsForward( &prevXYZ2, &tgtXYZ, vol ))*/) continue; bool isBad = true; _LayerEdge* ee[2] = { 0,0 }; for ( size_t iN = 0; iN < edge->_neibors.size() && !ee[1] ; ++iN ) if ( edge->_simplices[j].Includes( edge->_neibors[iN]->_nodes.back() )) ee[ ee[0] != 0 ] = edge->_neibors[iN]; int maxNbSteps = Max( ee[0]->NbSteps(), ee[1]->NbSteps() ); while ( maxNbSteps > edge->NbSteps() && isBad ) { --maxNbSteps; for ( int iE = 0; iE < 2; ++iE ) { if ( ee[ iE ]->NbSteps() > maxNbSteps && ee[ iE ]->NbSteps() > 1 ) { _EdgesOnShape* eos = data.GetShapeEdges( ee[ iE ] ); ee[ iE ]->InvalidateStep( ee[ iE ]->NbSteps(), *eos, /*restoreLength=*/true ); ee[ iE ]->Block( data ); ee[ iE ]->Set( INVALIDATED ); haveInvalidated = true; } } if (( edge->_simplices[j].IsForward( &prevXYZ1, &tgtXYZ, vol )) /*&& ( &prevXYZ1 == &prevXYZ2 || edge->_simplices[j].IsForward( &prevXYZ2, &tgtXYZ, vol ))*/) isBad = false; } nbBad += isBad; if ( !ee[0]->Is( ADDED )) badSmooEdges.push_back( ee[0] ); if ( !ee[1]->Is( ADDED )) badSmooEdges.push_back( ee[1] ); ee[0]->Set( ADDED ); ee[1]->Set( ADDED ); if ( isBad ) { ee[0]->Set( TO_INVALIDATE ); ee[1]->Set( TO_INVALIDATE ); } } if ( !invalidated && nbBad > 0 && edge->NbSteps() > 1 ) { _EdgesOnShape* eos = data.GetShapeEdges( edge ); edge->InvalidateStep( edge->NbSteps(), *eos, /*restoreLength=*/true ); edge->Block( data ); edge->Set( INVALIDATED ); edge->Unset( TO_INVALIDATE ); haveInvalidated = true; } } // loop on badSmooEdges } // while ( haveInvalidated ) // re-smooth on analytical EDGEs for ( size_t i = 0; i < badSmooEdges.size(); ++i ) { _LayerEdge* edge = badSmooEdges[i]; if ( !edge->Is( INVALIDATED )) continue; _EdgesOnShape* eos = data.GetShapeEdges( edge ); if ( eos->ShapeType() == TopAbs_VERTEX ) { PShapeIteratorPtr eIt = helper.GetAncestors( eos->_shape, *_mesh, TopAbs_EDGE ); while ( const TopoDS_Shape* e = eIt->next() ) if ( _EdgesOnShape* eoe = data.GetShapeEdges( *e )) if ( eoe->_edgeSmoother && eoe->_edgeSmoother->isAnalytic() ) { // TopoDS_Face F; Handle(ShapeAnalysis_Surface) surface; // if ( eoe->SWOLType() == TopAbs_FACE ) { // F = TopoDS::Face( eoe->_sWOL ); // surface = helper.GetSurface( F ); // } // eoe->_edgeSmoother->Perform( data, surface, F, helper ); eoe->_edgeSmoother->_anaCurve.Nullify(); } } } // check result of invalidation int nbBad = 0; for ( size_t iEOS = 0; iEOS < eosC1.size(); ++iEOS ) { for ( size_t i = 0; i < eosC1[ iEOS ]->_edges.size(); ++i ) { if ( !eosC1[ iEOS ]->_sWOL.IsNull() ) continue; _LayerEdge* edge = eosC1[ iEOS ]->_edges[i]; SMESH_TNodeXYZ tgtXYZ = edge->_nodes.back(); gp_XYZ prevXYZ = edge->PrevCheckPos( eosC1[ iEOS ]); for ( size_t j = 0; j < edge->_simplices.size(); ++j ) if ( !edge->_simplices[j].IsForward( &prevXYZ, &tgtXYZ, vol )) { ++nbBad; debugMsg("Bad simplex remains ( " << edge->_nodes[0]->GetID() << " "<< tgtXYZ._node->GetID() << " "<< edge->_simplices[j]._nPrev->GetID() << " "<< edge->_simplices[j]._nNext->GetID() << " )" ); } } } dumpFunctionEnd(); return nbBad; } //================================================================================ /*! * \brief Create an offset surface */ //================================================================================ void _ViscousBuilder::makeOffsetSurface( _EdgesOnShape& eos, SMESH_MesherHelper& helper ) { if ( eos._offsetSurf.IsNull() || eos._edgeForOffset == 0 || eos._edgeForOffset->Is( _LayerEdge::BLOCKED )) return; Handle(ShapeAnalysis_Surface) baseSurface = helper.GetSurface( TopoDS::Face( eos._shape )); // find offset gp_Pnt tgtP = SMESH_TNodeXYZ( eos._edgeForOffset->_nodes.back() ); /*gp_Pnt2d uv=*/baseSurface->ValueOfUV( tgtP, Precision::Confusion() ); double offset = baseSurface->Gap(); eos._offsetSurf.Nullify(); try { BRepOffsetAPI_MakeOffsetShape offsetMaker; offsetMaker.PerformByJoin( eos._shape, -offset, Precision::Confusion() ); if ( !offsetMaker.IsDone() ) return; TopExp_Explorer fExp( offsetMaker.Shape(), TopAbs_FACE ); if ( !fExp.More() ) return; TopoDS_Face F = TopoDS::Face( fExp.Current() ); Handle(Geom_Surface) surf = BRep_Tool::Surface( F ); if ( surf.IsNull() ) return; eos._offsetSurf = new ShapeAnalysis_Surface( surf ); } catch ( Standard_Failure ) { } } //================================================================================ /*! * \brief Put nodes of a curved FACE to its offset surface */ //================================================================================ void _ViscousBuilder::putOnOffsetSurface( _EdgesOnShape& eos, int infStep, vector< _EdgesOnShape* >& eosC1, int smooStep, int moveAll ) { _EdgesOnShape * eof = & eos; if ( eos.ShapeType() != TopAbs_FACE ) // eos is a boundary of C1 FACE, look for the FACE eos { eof = 0; for ( size_t i = 0; i < eosC1.size() && !eof; ++i ) { if ( eosC1[i]->_offsetSurf.IsNull() || eosC1[i]->ShapeType() != TopAbs_FACE || eosC1[i]->_edgeForOffset == 0 || eosC1[i]->_edgeForOffset->Is( _LayerEdge::BLOCKED )) continue; if ( SMESH_MesherHelper::IsSubShape( eos._shape, eosC1[i]->_shape )) eof = eosC1[i]; } } if ( !eof || eof->_offsetSurf.IsNull() || eof->ShapeType() != TopAbs_FACE || eof->_edgeForOffset == 0 || eof->_edgeForOffset->Is( _LayerEdge::BLOCKED )) return; double preci = BRep_Tool::Tolerance( TopoDS::Face( eof->_shape )), vol; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* edge = eos._edges[i]; edge->Unset( _LayerEdge::MARKED ); if ( edge->Is( _LayerEdge::BLOCKED ) || !edge->_curvature ) continue; if ( moveAll == _LayerEdge::UPD_NORMAL_CONV ) { if ( !edge->Is( _LayerEdge::UPD_NORMAL_CONV )) continue; } else if ( !moveAll && !edge->Is( _LayerEdge::MOVED )) continue; int nbBlockedAround = 0; for ( size_t iN = 0; iN < edge->_neibors.size(); ++iN ) nbBlockedAround += edge->_neibors[iN]->Is( _LayerEdge::BLOCKED ); if ( nbBlockedAround > 1 ) continue; gp_Pnt tgtP = SMESH_TNodeXYZ( edge->_nodes.back() ); gp_Pnt2d uv = eof->_offsetSurf->NextValueOfUV( edge->_curvature->_uv, tgtP, preci ); if ( eof->_offsetSurf->Gap() > edge->_len ) continue; // NextValueOfUV() bug edge->_curvature->_uv = uv; if ( eof->_offsetSurf->Gap() < 10 * preci ) continue; // same pos gp_XYZ newP = eof->_offsetSurf->Value( uv ).XYZ(); gp_XYZ prevP = edge->PrevCheckPos(); bool ok = true; if ( !moveAll ) for ( size_t iS = 0; iS < edge->_simplices.size() && ok; ++iS ) { ok = edge->_simplices[iS].IsForward( &prevP, &newP, vol ); } if ( ok ) { SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( edge->_nodes.back() ); n->setXYZ( newP.X(), newP.Y(), newP.Z()); edge->_pos.back() = newP; edge->Set( _LayerEdge::MARKED ); if ( moveAll == _LayerEdge::UPD_NORMAL_CONV ) { edge->_normal = ( newP - prevP ).Normalized(); } } } #ifdef _DEBUG_ // dumpMove() for debug size_t i = 0; for ( ; i < eos._edges.size(); ++i ) if ( eos._edges[i]->Is( _LayerEdge::MARKED )) break; if ( i < eos._edges.size() ) { dumpFunction(SMESH_Comment("putOnOffsetSurface_S") << eos._shapeID << "_InfStep" << infStep << "_" << smooStep ); for ( ; i < eos._edges.size(); ++i ) { if ( eos._edges[i]->Is( _LayerEdge::MARKED )) dumpMove( eos._edges[i]->_nodes.back() ); } dumpFunctionEnd(); } #endif _ConvexFace* cnvFace; if ( moveAll != _LayerEdge::UPD_NORMAL_CONV && eos.ShapeType() == TopAbs_FACE && (cnvFace = eos.GetData().GetConvexFace( eos._shapeID )) && !cnvFace->_normalsFixedOnBorders ) { // put on the surface nodes built on FACE boundaries SMESH_subMeshIteratorPtr smIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false); while ( smIt->more() ) { SMESH_subMesh* sm = smIt->next(); _EdgesOnShape* subEOS = eos.GetData().GetShapeEdges( sm->GetId() ); if ( !subEOS->_sWOL.IsNull() ) continue; if ( std::find( eosC1.begin(), eosC1.end(), subEOS ) != eosC1.end() ) continue; putOnOffsetSurface( *subEOS, infStep, eosC1, smooStep, _LayerEdge::UPD_NORMAL_CONV ); } cnvFace->_normalsFixedOnBorders = true; } } //================================================================================ /*! * \brief Return a curve of the EDGE to be used for smoothing and arrange * _LayerEdge's to be in a consequent order */ //================================================================================ Handle(Geom_Curve) _Smoother1D::CurveForSmooth( const TopoDS_Edge& E, _EdgesOnShape& eos, SMESH_MesherHelper& helper) { SMESHDS_SubMesh* smDS = eos._subMesh->GetSubMeshDS(); TopLoc_Location loc; double f,l; Handle(Geom_Line) line; Handle(Geom_Circle) circle; bool isLine, isCirc; if ( eos._sWOL.IsNull() ) /////////////////////////////////////////// 3D case { // check if the EDGE is a line Handle(Geom_Curve) curve = BRep_Tool::Curve( E, f, l); if ( curve->IsKind( STANDARD_TYPE( Geom_TrimmedCurve ))) curve = Handle(Geom_TrimmedCurve)::DownCast( curve )->BasisCurve(); line = Handle(Geom_Line)::DownCast( curve ); circle = Handle(Geom_Circle)::DownCast( curve ); isLine = (!line.IsNull()); isCirc = (!circle.IsNull()); if ( !isLine && !isCirc ) // Check if the EDGE is close to a line { isLine = SMESH_Algo::IsStraight( E ); if ( isLine ) line = new Geom_Line( gp::OX() ); // only type does matter } if ( !isLine && !isCirc && eos._edges.size() > 2) // Check if the EDGE is close to a circle { // TODO } } else //////////////////////////////////////////////////////////////////////// 2D case { if ( !eos._isRegularSWOL ) // 23190 return NULL; const TopoDS_Face& F = TopoDS::Face( eos._sWOL ); // check if the EDGE is a line Handle(Geom2d_Curve) curve = BRep_Tool::CurveOnSurface( E, F, f, l ); if ( curve->IsKind( STANDARD_TYPE( Geom2d_TrimmedCurve ))) curve = Handle(Geom2d_TrimmedCurve)::DownCast( curve )->BasisCurve(); Handle(Geom2d_Line) line2d = Handle(Geom2d_Line)::DownCast( curve ); Handle(Geom2d_Circle) circle2d = Handle(Geom2d_Circle)::DownCast( curve ); isLine = (!line2d.IsNull()); isCirc = (!circle2d.IsNull()); if ( !isLine && !isCirc ) // Check if the EDGE is close to a line { Bnd_B2d bndBox; SMDS_NodeIteratorPtr nIt = smDS->GetNodes(); while ( nIt->more() ) bndBox.Add( helper.GetNodeUV( F, nIt->next() )); gp_XY size = bndBox.CornerMax() - bndBox.CornerMin(); const double lineTol = 1e-2 * sqrt( bndBox.SquareExtent() ); for ( int i = 0; i < 2 && !isLine; ++i ) isLine = ( size.Coord( i+1 ) <= lineTol ); } if ( !isLine && !isCirc && eos._edges.size() > 2 ) // Check if the EDGE is close to a circle { // TODO } if ( isLine ) { line = new Geom_Line( gp::OX() ); // only type does matter } else if ( isCirc ) { gp_Pnt2d p = circle2d->Location(); gp_Ax2 ax( gp_Pnt( p.X(), p.Y(), 0), gp::DX()); circle = new Geom_Circle( ax, 1.); // only center position does matter } } if ( isLine ) return line; if ( isCirc ) return circle; return Handle(Geom_Curve)(); } //================================================================================ /*! * \brief Smooth edges on EDGE */ //================================================================================ bool _Smoother1D::Perform(_SolidData& data, Handle(ShapeAnalysis_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper ) { if ( _leParams.empty() || ( !isAnalytic() && _offPoints.empty() )) prepare( data ); findEdgesToSmooth(); if ( isAnalytic() ) return smoothAnalyticEdge( data, surface, F, helper ); else return smoothComplexEdge ( data, surface, F, helper ); } //================================================================================ /*! * \brief Find edges to smooth */ //================================================================================ void _Smoother1D::findEdgesToSmooth() { _LayerEdge* leOnV[2] = { getLEdgeOnV(0), getLEdgeOnV(1) }; for ( int iEnd = 0; iEnd < 2; ++iEnd ) if ( leOnV[iEnd]->Is( _LayerEdge::NORMAL_UPDATED )) _leOnV[iEnd]._cosin = Abs( _edgeDir[iEnd].Normalized() * leOnV[iEnd]->_normal ); _eToSmooth[0].first = _eToSmooth[0].second = 0; for ( size_t i = 0; i < _eos.size(); ++i ) { if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) { if ( needSmoothing( _leOnV[0]._cosin, _eos[i]->_len * leOnV[0]->_lenFactor, _curveLen * _leParams[i] ) || isToSmooth( i ) ) _eos[i]->Set( _LayerEdge::TO_SMOOTH ); else break; } _eToSmooth[0].second = i+1; } _eToSmooth[1].first = _eToSmooth[1].second = _eos.size(); for ( int i = _eos.size() - 1; i >= _eToSmooth[0].second; --i ) { if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) { if ( needSmoothing( _leOnV[1]._cosin, _eos[i]->_len * leOnV[1]->_lenFactor, _curveLen * ( 1.-_leParams[i] )) || isToSmooth( i )) _eos[i]->Set( _LayerEdge::TO_SMOOTH ); else break; } _eToSmooth[1].first = i; } } //================================================================================ /*! * \brief Check if iE-th _LayerEdge needs smoothing */ //================================================================================ bool _Smoother1D::isToSmooth( int iE ) { SMESH_NodeXYZ pi( _eos[iE]->_nodes[0] ); SMESH_NodeXYZ p0( _eos[iE]->_2neibors->srcNode(0) ); SMESH_NodeXYZ p1( _eos[iE]->_2neibors->srcNode(1) ); gp_XYZ seg0 = pi - p0; gp_XYZ seg1 = p1 - pi; gp_XYZ tangent = seg0 + seg1; double tangentLen = tangent.Modulus(); double segMinLen = Min( seg0.Modulus(), seg1.Modulus() ); if ( tangentLen < std::numeric_limits::min() ) return false; tangent /= tangentLen; for ( size_t i = 0; i < _eos[iE]->_neibors.size(); ++i ) { _LayerEdge* ne = _eos[iE]->_neibors[i]; if ( !ne->Is( _LayerEdge::TO_SMOOTH ) || ne->_nodes.size() < 2 || ne->_nodes[0]->GetPosition()->GetDim() != 2 ) continue; gp_XYZ edgeVec = SMESH_NodeXYZ( ne->_nodes.back() ) - SMESH_NodeXYZ( ne->_nodes[0] ); double proj = edgeVec * tangent; if ( needSmoothing( 1., proj, segMinLen )) return true; } return false; } //================================================================================ /*! * \brief smooth _LayerEdge's on a staight EDGE or circular EDGE */ //================================================================================ bool _Smoother1D::smoothAnalyticEdge( _SolidData& data, Handle(ShapeAnalysis_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper) { if ( !isAnalytic() ) return false; size_t iFrom = 0, iTo = _eos._edges.size(); if ( _anaCurve->IsKind( STANDARD_TYPE( Geom_Line ))) { if ( F.IsNull() ) // 3D { SMESH_TNodeXYZ pSrc0( _eos._edges[iFrom]->_2neibors->srcNode(0) ); SMESH_TNodeXYZ pSrc1( _eos._edges[iTo-1]->_2neibors->srcNode(1) ); //const gp_XYZ lineDir = pSrc1 - pSrc0; //_LayerEdge* vLE0 = getLEdgeOnV( 0 ); //_LayerEdge* vLE1 = getLEdgeOnV( 1 ); // bool shiftOnly = ( vLE0->Is( _LayerEdge::NORMAL_UPDATED ) || // vLE0->Is( _LayerEdge::BLOCKED ) || // vLE1->Is( _LayerEdge::NORMAL_UPDATED ) || // vLE1->Is( _LayerEdge::BLOCKED )); for ( int iEnd = 0; iEnd < 2; ++iEnd ) { iFrom = _eToSmooth[ iEnd ].first, iTo = _eToSmooth[ iEnd ].second; if ( iFrom >= iTo ) continue; SMESH_TNodeXYZ p0( _eos[iFrom]->_2neibors->tgtNode(0) ); SMESH_TNodeXYZ p1( _eos[iTo-1]->_2neibors->tgtNode(1) ); double param0 = ( iFrom == 0 ) ? 0. : _leParams[ iFrom-1 ]; double param1 = _leParams[ iTo ]; for ( size_t i = iFrom; i < iTo; ++i ) { _LayerEdge* edge = _eos[i]; SMDS_MeshNode* tgtNode = const_cast( edge->_nodes.back() ); double param = ( _leParams[i] - param0 ) / ( param1 - param0 ); gp_XYZ newPos = p0 * ( 1. - param ) + p1 * param; // if ( shiftOnly || edge->Is( _LayerEdge::NORMAL_UPDATED )) // { // gp_XYZ curPos = SMESH_TNodeXYZ ( tgtNode ); // double shift = ( lineDir * ( newPos - pSrc0 ) - // lineDir * ( curPos - pSrc0 )); // newPos = curPos + lineDir * shift / lineDir.SquareModulus(); // } if ( edge->Is( _LayerEdge::BLOCKED )) { SMESH_TNodeXYZ pSrc( edge->_nodes[0] ); double curThick = pSrc.SquareDistance( tgtNode ); double newThink = ( pSrc - newPos ).SquareModulus(); if ( newThink > curThick ) continue; } edge->_pos.back() = newPos; tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); dumpMove( tgtNode ); } } } else // 2D { _LayerEdge* eV0 = getLEdgeOnV( 0 ); _LayerEdge* eV1 = getLEdgeOnV( 1 ); gp_XY uvV0 = eV0->LastUV( F, *data.GetShapeEdges( eV0 )); gp_XY uvV1 = eV1->LastUV( F, *data.GetShapeEdges( eV1 )); if ( eV0->_nodes.back() == eV1->_nodes.back() ) // closed edge { int iPeriodic = helper.GetPeriodicIndex(); if ( iPeriodic == 1 || iPeriodic == 2 ) { uvV1.SetCoord( iPeriodic, helper.GetOtherParam( uvV1.Coord( iPeriodic ))); if ( uvV0.Coord( iPeriodic ) > uvV1.Coord( iPeriodic )) std::swap( uvV0, uvV1 ); } } for ( int iEnd = 0; iEnd < 2; ++iEnd ) { iFrom = _eToSmooth[ iEnd ].first, iTo = _eToSmooth[ iEnd ].second; if ( iFrom >= iTo ) continue; _LayerEdge* e0 = _eos[iFrom]->_2neibors->_edges[0]; _LayerEdge* e1 = _eos[iTo-1]->_2neibors->_edges[1]; gp_XY uv0 = ( e0 == eV0 ) ? uvV0 : e0->LastUV( F, _eos ); gp_XY uv1 = ( e1 == eV1 ) ? uvV1 : e1->LastUV( F, _eos ); double param0 = ( iFrom == 0 ) ? 0. : _leParams[ iFrom-1 ]; double param1 = _leParams[ iTo ]; gp_XY rangeUV = uv1 - uv0; for ( size_t i = iFrom; i < iTo; ++i ) { if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue; double param = ( _leParams[i] - param0 ) / ( param1 - param0 ); gp_XY newUV = uv0 + param * rangeUV; gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() ); SMDS_MeshNode* tgtNode = const_cast( _eos[i]->_nodes.back() ); tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); dumpMove( tgtNode ); SMDS_FacePositionPtr pos = tgtNode->GetPosition(); pos->SetUParameter( newUV.X() ); pos->SetVParameter( newUV.Y() ); gp_XYZ newUV0( newUV.X(), newUV.Y(), 0 ); if ( !_eos[i]->Is( _LayerEdge::SMOOTHED )) { _eos[i]->Set( _LayerEdge::SMOOTHED ); // to check in refine() (IPAL54237) if ( _eos[i]->_pos.size() > 2 ) { // modify previous positions to make _LayerEdge less sharply bent vector& uvVec = _eos[i]->_pos; const gp_XYZ uvShift = newUV0 - uvVec.back(); const double len2 = ( uvVec.back() - uvVec[ 0 ] ).SquareModulus(); int iPrev = uvVec.size() - 2; while ( iPrev > 0 ) { double r = ( uvVec[ iPrev ] - uvVec[0] ).SquareModulus() / len2; uvVec[ iPrev ] += uvShift * r; --iPrev; } } } _eos[i]->_pos.back() = newUV0; } } } return true; } if ( _anaCurve->IsKind( STANDARD_TYPE( Geom_Circle ))) { Handle(Geom_Circle) circle = Handle(Geom_Circle)::DownCast( _anaCurve ); gp_Pnt center3D = circle->Location(); if ( F.IsNull() ) // 3D { if ( getLEdgeOnV( 0 )->_nodes.back() == getLEdgeOnV( 1 )->_nodes.back() ) return true; // closed EDGE - nothing to do // circle is a real curve of EDGE gp_Circ circ = circle->Circ(); // new center is shifted along its axis const gp_Dir& axis = circ.Axis().Direction(); _LayerEdge* e0 = getLEdgeOnV(0); _LayerEdge* e1 = getLEdgeOnV(1); SMESH_TNodeXYZ p0 = e0->_nodes.back(); SMESH_TNodeXYZ p1 = e1->_nodes.back(); double shift1 = axis.XYZ() * ( p0 - center3D.XYZ() ); double shift2 = axis.XYZ() * ( p1 - center3D.XYZ() ); gp_Pnt newCenter = center3D.XYZ() + axis.XYZ() * 0.5 * ( shift1 + shift2 ); double newRadius = 0.5 * ( newCenter.Distance( p0 ) + newCenter.Distance( p1 )); gp_Ax2 newAxis( newCenter, axis, gp_Vec( newCenter, p0 )); gp_Circ newCirc( newAxis, newRadius ); gp_Vec vecC1 ( newCenter, p1 ); double uLast = newAxis.XDirection().AngleWithRef( vecC1, newAxis.Direction() ); // -PI - +PI if ( uLast < 0 ) uLast += 2 * M_PI; for ( size_t i = 0; i < _eos.size(); ++i ) { if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue; //if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) continue; double u = uLast * _leParams[i]; gp_Pnt p = ElCLib::Value( u, newCirc ); _eos._edges[i]->_pos.back() = p.XYZ(); SMDS_MeshNode* tgtNode = const_cast( _eos._edges[i]->_nodes.back() ); tgtNode->setXYZ( p.X(), p.Y(), p.Z() ); dumpMove( tgtNode ); } return true; } else // 2D { const gp_XY center( center3D.X(), center3D.Y() ); _LayerEdge* e0 = getLEdgeOnV(0); _LayerEdge* eM = _eos._edges[ 0 ]; _LayerEdge* e1 = getLEdgeOnV(1); gp_XY uv0 = e0->LastUV( F, *data.GetShapeEdges( e0 ) ); gp_XY uvM = eM->LastUV( F, *data.GetShapeEdges( eM ) ); gp_XY uv1 = e1->LastUV( F, *data.GetShapeEdges( e1 ) ); gp_Vec2d vec0( center, uv0 ); gp_Vec2d vecM( center, uvM ); gp_Vec2d vec1( center, uv1 ); double uLast = vec0.Angle( vec1 ); // -PI - +PI double uMidl = vec0.Angle( vecM ); if ( uLast * uMidl <= 0. ) uLast += ( uMidl > 0 ? +2. : -2. ) * M_PI; const double radius = 0.5 * ( vec0.Magnitude() + vec1.Magnitude() ); gp_Ax2d axis( center, vec0 ); gp_Circ2d circ( axis, radius ); for ( size_t i = 0; i < _eos.size(); ++i ) { if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue; //if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) continue; double newU = uLast * _leParams[i]; gp_Pnt2d newUV = ElCLib::Value( newU, circ ); _eos._edges[i]->_pos.back().SetCoord( newUV.X(), newUV.Y(), 0 ); gp_Pnt newPos = surface->Value( newUV.X(), newUV.Y() ); SMDS_MeshNode* tgtNode = const_cast( _eos._edges[i]->_nodes.back() ); tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); dumpMove( tgtNode ); SMDS_FacePositionPtr pos = tgtNode->GetPosition(); pos->SetUParameter( newUV.X() ); pos->SetVParameter( newUV.Y() ); _eos[i]->Set( _LayerEdge::SMOOTHED ); // to check in refine() (IPAL54237) } } return true; } return false; } //================================================================================ /*! * \brief smooth _LayerEdge's on a an EDGE */ //================================================================================ bool _Smoother1D::smoothComplexEdge( _SolidData& data, Handle(ShapeAnalysis_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper) { if ( _offPoints.empty() ) return false; // ---------------------------------------------- // move _offPoints along normals of _LayerEdge's // ---------------------------------------------- _LayerEdge* e[2] = { getLEdgeOnV(0), getLEdgeOnV(1) }; if ( e[0]->Is( _LayerEdge::NORMAL_UPDATED )) _leOnV[0]._normal = getNormalNormal( e[0]->_normal, _edgeDir[0] ); if ( e[1]->Is( _LayerEdge::NORMAL_UPDATED )) _leOnV[1]._normal = getNormalNormal( e[1]->_normal, _edgeDir[1] ); _leOnV[0]._len = e[0]->_len; _leOnV[1]._len = e[1]->_len; for ( size_t i = 0; i < _offPoints.size(); i++ ) { _LayerEdge* e0 = _offPoints[i]._2edges._edges[0]; _LayerEdge* e1 = _offPoints[i]._2edges._edges[1]; const double w0 = _offPoints[i]._2edges._wgt[0]; const double w1 = _offPoints[i]._2edges._wgt[1]; gp_XYZ avgNorm = ( e0->_normal * w0 + e1->_normal * w1 ).Normalized(); double avgLen = ( e0->_len * w0 + e1->_len * w1 ); double avgFact = ( e0->_lenFactor * w0 + e1->_lenFactor * w1 ); if ( e0->Is( _LayerEdge::NORMAL_UPDATED ) || e1->Is( _LayerEdge::NORMAL_UPDATED )) avgNorm = getNormalNormal( avgNorm, _offPoints[i]._edgeDir ); _offPoints[i]._xyz += avgNorm * ( avgLen - _offPoints[i]._len ) * avgFact; _offPoints[i]._len = avgLen; } double fTol = 0; if ( !surface.IsNull() ) // project _offPoints to the FACE { fTol = 100 * BRep_Tool::Tolerance( F ); //const double segLen = _offPoints[0].Distance( _offPoints[1] ); gp_Pnt2d uv = surface->ValueOfUV( _offPoints[0]._xyz, fTol ); //if ( surface->Gap() < 0.5 * segLen ) _offPoints[0]._xyz = surface->Value( uv ).XYZ(); for ( size_t i = 1; i < _offPoints.size(); ++i ) { uv = surface->NextValueOfUV( uv, _offPoints[i]._xyz, fTol ); //if ( surface->Gap() < 0.5 * segLen ) _offPoints[i]._xyz = surface->Value( uv ).XYZ(); } } // ----------------------------------------------------------------- // project tgt nodes of extreme _LayerEdge's to the offset segments // ----------------------------------------------------------------- const int updatedOrBlocked = _LayerEdge::NORMAL_UPDATED | _LayerEdge::BLOCKED; if ( e[0]->Is( updatedOrBlocked )) _iSeg[0] = 0; if ( e[1]->Is( updatedOrBlocked )) _iSeg[1] = _offPoints.size()-2; gp_Pnt pExtreme[2], pProj[2]; bool isProjected[2]; for ( int is2nd = 0; is2nd < 2; ++is2nd ) { pExtreme[ is2nd ] = SMESH_TNodeXYZ( e[is2nd]->_nodes.back() ); int i = _iSeg[ is2nd ]; int di = is2nd ? -1 : +1; bool & projected = isProjected[ is2nd ]; projected = false; double uOnSeg, distMin = Precision::Infinite(), dist, distPrev = 0; int nbWorse = 0; do { gp_Vec v0p( _offPoints[i]._xyz, pExtreme[ is2nd ] ); gp_Vec v01( _offPoints[i]._xyz, _offPoints[i+1]._xyz ); uOnSeg = ( v0p * v01 ) / v01.SquareMagnitude(); // param [0,1] along v01 projected = ( Abs( uOnSeg - 0.5 ) <= 0.5 ); dist = pExtreme[ is2nd ].SquareDistance( _offPoints[ i + ( uOnSeg > 0.5 )]._xyz ); if ( dist < distMin || projected ) { _iSeg[ is2nd ] = i; pProj[ is2nd ] = _offPoints[i]._xyz + ( v01 * uOnSeg ).XYZ(); distMin = dist; } else if ( dist > distPrev ) { if ( ++nbWorse > 3 ) // avoid projection to the middle of a closed EDGE break; } distPrev = dist; i += di; } while ( !projected && i >= 0 && i+1 < (int)_offPoints.size() ); if ( !projected ) { if (( is2nd && _iSeg[1] != _offPoints.size()-2 ) || ( !is2nd && _iSeg[0] != 0 )) { _iSeg[0] = 0; _iSeg[1] = _offPoints.size()-2; debugMsg( "smoothComplexEdge() failed to project nodes of extreme _LayerEdge's" ); return false; } } } if ( _iSeg[0] > _iSeg[1] ) { debugMsg( "smoothComplexEdge() incorrectly projected nodes of extreme _LayerEdge's" ); return false; } // adjust length of extreme LE (test viscous_layers_01/B7) gp_Vec vDiv0( pExtreme[0], pProj[0] ); gp_Vec vDiv1( pExtreme[1], pProj[1] ); double d0 = vDiv0.Magnitude(); double d1 = isProjected[1] ? vDiv1.Magnitude() : 0; if ( e[0]->Is( _LayerEdge::BLOCKED )) { if ( e[0]->_normal * vDiv0.XYZ() < 0 ) e[0]->_len += d0; else e[0]->_len -= d0; } if ( e[1]->Is( _LayerEdge::BLOCKED )) { if ( e[1]->_normal * vDiv1.XYZ() < 0 ) e[1]->_len += d1; else e[1]->_len -= d1; } // --------------------------------------------------------------------------------- // compute normalized length of the offset segments located between the projections // --------------------------------------------------------------------------------- // temporary replace extreme _offPoints by pExtreme gp_XYZ opXYZ[2] = { _offPoints[ _iSeg[0] ]._xyz, _offPoints[ _iSeg[1]+1 ]._xyz }; _offPoints[ _iSeg[0] ]._xyz = pExtreme[0].XYZ(); _offPoints[ _iSeg[1]+ 1]._xyz = pExtreme[1].XYZ(); size_t iSeg = 0, nbSeg = _iSeg[1] - _iSeg[0] + 1; vector< double > len( nbSeg + 1 ); len[ iSeg++ ] = 0; len[ iSeg++ ] = pProj[ 0 ].Distance( _offPoints[ _iSeg[0]+1 ]._xyz ); for ( size_t i = _iSeg[0]+1; i <= _iSeg[1]; ++i, ++iSeg ) { len[ iSeg ] = len[ iSeg-1 ] + _offPoints[i].Distance( _offPoints[i+1] ); } // if ( isProjected[ 1 ]) // len[ nbSeg ] -= pProj[ 1 ].Distance( _offPoints[ _iSeg[1]+1 ]._xyz ); // else // len[ nbSeg ] += pExtreme[ 1 ].Distance( _offPoints[ _iSeg[1]+1 ]._xyz ); double fullLen = len.back() - d0 - d1; for ( iSeg = 0; iSeg < len.size(); ++iSeg ) len[iSeg] = ( len[iSeg] - d0 ) / fullLen; // ------------------------------------------------------------- // distribute tgt nodes of _LayerEdge's between the projections // ------------------------------------------------------------- iSeg = 0; for ( size_t i = 0; i < _eos.size(); ++i ) { if ( _eos[i]->Is( _LayerEdge::BLOCKED )) continue; //if ( !_eos[i]->Is( _LayerEdge::TO_SMOOTH )) continue; while ( iSeg+2 < len.size() && _leParams[i] > len[ iSeg+1 ] ) iSeg++; double r = ( _leParams[i] - len[ iSeg ]) / ( len[ iSeg+1 ] - len[ iSeg ]); gp_XYZ p = ( _offPoints[ iSeg + _iSeg[0] ]._xyz * ( 1 - r ) + _offPoints[ iSeg + _iSeg[0] + 1 ]._xyz * r ); if ( surface.IsNull() ) { _eos[i]->_pos.back() = p; } else // project a new node position to a FACE { gp_Pnt2d uv ( _eos[i]->_pos.back().X(), _eos[i]->_pos.back().Y() ); gp_Pnt2d uv2( surface->NextValueOfUV( uv, p, fTol )); p = surface->Value( uv2 ).XYZ(); _eos[i]->_pos.back().SetCoord( uv2.X(), uv2.Y(), 0 ); } SMDS_MeshNode* tgtNode = const_cast( _eos[i]->_nodes.back() ); tgtNode->setXYZ( p.X(), p.Y(), p.Z() ); dumpMove( tgtNode ); } _offPoints[ _iSeg[0] ]._xyz = opXYZ[0]; _offPoints[ _iSeg[1]+1 ]._xyz = opXYZ[1]; return true; } //================================================================================ /*! * \brief Prepare for smoothing */ //================================================================================ void _Smoother1D::prepare(_SolidData& data) { const TopoDS_Edge& E = TopoDS::Edge( _eos._shape ); _curveLen = SMESH_Algo::EdgeLength( E ); // sort _LayerEdge's by position on the EDGE data.SortOnEdge( E, _eos._edges ); // compute normalized param of _eos._edges on EDGE _leParams.resize( _eos._edges.size() + 1 ); { double curLen; gp_Pnt pPrev = SMESH_TNodeXYZ( getLEdgeOnV( 0 )->_nodes[0] ); _leParams[0] = 0; for ( size_t i = 0; i < _eos._edges.size(); ++i ) { gp_Pnt p = SMESH_TNodeXYZ( _eos._edges[i]->_nodes[0] ); curLen = p.Distance( pPrev ); _leParams[i+1] = _leParams[i] + curLen; pPrev = p; } double fullLen = _leParams.back() + pPrev.Distance( SMESH_TNodeXYZ( getLEdgeOnV(1)->_nodes[0])); for ( size_t i = 0; i < _leParams.size()-1; ++i ) _leParams[i] = _leParams[i+1] / fullLen; _leParams.back() = 1.; } _LayerEdge* leOnV[2] = { getLEdgeOnV(0), getLEdgeOnV(1) }; // get cosin to use in findEdgesToSmooth() _edgeDir[0] = getEdgeDir( E, leOnV[0]->_nodes[0], data.GetHelper() ); _edgeDir[1] = getEdgeDir( E, leOnV[1]->_nodes[0], data.GetHelper() ); _leOnV[0]._cosin = Abs( leOnV[0]->_cosin ); _leOnV[1]._cosin = Abs( leOnV[1]->_cosin ); if ( _eos._sWOL.IsNull() ) // 3D for ( int iEnd = 0; iEnd < 2; ++iEnd ) _leOnV[iEnd]._cosin = Abs( _edgeDir[iEnd].Normalized() * leOnV[iEnd]->_normal ); if ( isAnalytic() ) return; // divide E to have offset segments with low deflection BRepAdaptor_Curve c3dAdaptor( E ); const double curDeflect = 0.1; //0.01; // Curvature deflection == |p1p2]*sin(p1p2,p1pM) const double angDeflect = 0.1; //0.09; // Angular deflection == sin(p1pM,pMp2) GCPnts_TangentialDeflection discret(c3dAdaptor, angDeflect, curDeflect); if ( discret.NbPoints() <= 2 ) { _anaCurve = new Geom_Line( gp::OX() ); // only type does matter return; } const double u0 = c3dAdaptor.FirstParameter(); gp_Pnt p; gp_Vec tangent; if ( discret.NbPoints() >= (int) _eos.size() + 2 ) { _offPoints.resize( discret.NbPoints() ); for ( size_t i = 0; i < _offPoints.size(); i++ ) { double u = discret.Parameter( i+1 ); c3dAdaptor.D1( u, p, tangent ); _offPoints[i]._xyz = p.XYZ(); _offPoints[i]._edgeDir = tangent.XYZ(); _offPoints[i]._param = GCPnts_AbscissaPoint::Length( c3dAdaptor, u0, u ) / _curveLen; } } else { std::vector< double > params( _eos.size() + 2 ); params[0] = data.GetHelper().GetNodeU( E, leOnV[0]->_nodes[0] ); params.back() = data.GetHelper().GetNodeU( E, leOnV[1]->_nodes[0] ); for ( size_t i = 0; i < _eos.size(); i++ ) params[i+1] = data.GetHelper().GetNodeU( E, _eos[i]->_nodes[0] ); if ( params[1] > params[ _eos.size() ] ) std::reverse( params.begin() + 1, params.end() - 1 ); _offPoints.resize( _eos.size() + 2 ); for ( size_t i = 0; i < _offPoints.size(); i++ ) { const double u = params[i]; c3dAdaptor.D1( u, p, tangent ); _offPoints[i]._xyz = p.XYZ(); _offPoints[i]._edgeDir = tangent.XYZ(); _offPoints[i]._param = GCPnts_AbscissaPoint::Length( c3dAdaptor, u0, u ) / _curveLen; } } // set _2edges _offPoints [0]._2edges.set( &_leOnV[0], &_leOnV[0], 0.5, 0.5 ); _offPoints.back()._2edges.set( &_leOnV[1], &_leOnV[1], 0.5, 0.5 ); _2NearEdges tmp2edges; tmp2edges._edges[1] = _eos._edges[0]; _leOnV[0]._2neibors = & tmp2edges; _leOnV[0]._nodes = leOnV[0]->_nodes; _leOnV[1]._nodes = leOnV[1]->_nodes; _LayerEdge* eNext, *ePrev = & _leOnV[0]; for ( size_t iLE = 0, i = 1; i < _offPoints.size()-1; i++ ) { // find _LayerEdge's located before and after an offset point // (_eos._edges[ iLE ] is next after ePrev) while ( iLE < _eos._edges.size() && _offPoints[i]._param > _leParams[ iLE ] ) ePrev = _eos._edges[ iLE++ ]; eNext = ePrev->_2neibors->_edges[1]; gp_Pnt p0 = SMESH_TNodeXYZ( ePrev->_nodes[0] ); gp_Pnt p1 = SMESH_TNodeXYZ( eNext->_nodes[0] ); double r = p0.Distance( _offPoints[i]._xyz ) / p0.Distance( p1 ); _offPoints[i]._2edges.set( ePrev, eNext, 1-r, r ); } // replace _LayerEdge's on VERTEX by _leOnV in _offPoints._2edges for ( size_t i = 0; i < _offPoints.size(); i++ ) if ( _offPoints[i]._2edges._edges[0] == leOnV[0] ) _offPoints[i]._2edges._edges[0] = & _leOnV[0]; else break; for ( size_t i = _offPoints.size()-1; i > 0; i-- ) if ( _offPoints[i]._2edges._edges[1] == leOnV[1] ) _offPoints[i]._2edges._edges[1] = & _leOnV[1]; else break; // set _normal of _leOnV[0] and _leOnV[1] to be normal to the EDGE int iLBO = _offPoints.size() - 2; // last but one if ( leOnV[ 0 ]->Is( _LayerEdge::MULTI_NORMAL )) _leOnV[ 0 ]._normal = getNormalNormal( _eos._edges[1]->_normal, _edgeDir[0] ); else _leOnV[ 0 ]._normal = getNormalNormal( leOnV[0]->_normal, _edgeDir[0] ); if ( leOnV[ 1 ]->Is( _LayerEdge::MULTI_NORMAL )) _leOnV[ 1 ]._normal = getNormalNormal( _eos._edges.back()->_normal, _edgeDir[1] ); else _leOnV[ 1 ]._normal = getNormalNormal( leOnV[1]->_normal, _edgeDir[1] ); _leOnV[ 0 ]._len = 0; _leOnV[ 1 ]._len = 0; _leOnV[ 0 ]._lenFactor = _offPoints[1 ]._2edges._edges[1]->_lenFactor; _leOnV[ 1 ]._lenFactor = _offPoints[iLBO]._2edges._edges[0]->_lenFactor; _iSeg[0] = 0; _iSeg[1] = _offPoints.size()-2; // initialize OffPnt::_len for ( size_t i = 0; i < _offPoints.size(); ++i ) _offPoints[i]._len = 0; if ( _eos._edges[0]->NbSteps() > 1 ) // already inflated several times, init _xyz { _leOnV[0]._len = leOnV[0]->_len; _leOnV[1]._len = leOnV[1]->_len; for ( size_t i = 0; i < _offPoints.size(); i++ ) { _LayerEdge* e0 = _offPoints[i]._2edges._edges[0]; _LayerEdge* e1 = _offPoints[i]._2edges._edges[1]; const double w0 = _offPoints[i]._2edges._wgt[0]; const double w1 = _offPoints[i]._2edges._wgt[1]; double avgLen = ( e0->_len * w0 + e1->_len * w1 ); gp_XYZ avgXYZ = ( SMESH_TNodeXYZ( e0->_nodes.back() ) * w0 + SMESH_TNodeXYZ( e1->_nodes.back() ) * w1 ); _offPoints[i]._xyz = avgXYZ; _offPoints[i]._len = avgLen; } } } //================================================================================ /*! * \brief return _normal of _leOnV[is2nd] normal to the EDGE */ //================================================================================ gp_XYZ _Smoother1D::getNormalNormal( const gp_XYZ & normal, const gp_XYZ& edgeDir) { gp_XYZ cross = normal ^ edgeDir; gp_XYZ norm = edgeDir ^ cross; double size = norm.Modulus(); // if ( size == 0 ) // MULTI_NORMAL _LayerEdge // return gp_XYZ( 1e-100, 1e-100, 1e-100 ); return norm / size; } //================================================================================ /*! * \brief Writes a script creating a mesh composed of _offPoints */ //================================================================================ void _Smoother1D::offPointsToPython() const { const char* fname = "/tmp/offPoints.py"; cout << "exec(open('"<& edges) { map< double, _LayerEdge* > u2edge; for ( size_t i = 0; i < edges.size(); ++i ) u2edge.insert( u2edge.end(), make_pair( _helper->GetNodeU( E, edges[i]->_nodes[0] ), edges[i] )); ASSERT( u2edge.size() == edges.size() ); map< double, _LayerEdge* >::iterator u2e = u2edge.begin(); for ( size_t i = 0; i < edges.size(); ++i, ++u2e ) edges[i] = u2e->second; Sort2NeiborsOnEdge( edges ); } //================================================================================ /*! * \brief Set _2neibors according to the order of _LayerEdge on EDGE */ //================================================================================ void _SolidData::Sort2NeiborsOnEdge( vector< _LayerEdge* >& edges ) { if ( edges.size() < 2 || !edges[0]->_2neibors ) return; for ( size_t i = 0; i < edges.size()-1; ++i ) if ( edges[i]->_2neibors->tgtNode(1) != edges[i+1]->_nodes.back() ) edges[i]->_2neibors->reverse(); const size_t iLast = edges.size() - 1; if ( edges.size() > 1 && edges[iLast]->_2neibors->tgtNode(0) != edges[iLast-1]->_nodes.back() ) edges[iLast]->_2neibors->reverse(); } //================================================================================ /*! * \brief Return _EdgesOnShape* corresponding to the shape */ //================================================================================ _EdgesOnShape* _SolidData::GetShapeEdges(const TGeomID shapeID ) { if ( shapeID < (int)_edgesOnShape.size() && _edgesOnShape[ shapeID ]._shapeID == shapeID ) return _edgesOnShape[ shapeID ]._subMesh ? & _edgesOnShape[ shapeID ] : 0; for ( size_t i = 0; i < _edgesOnShape.size(); ++i ) if ( _edgesOnShape[i]._shapeID == shapeID ) return _edgesOnShape[i]._subMesh ? & _edgesOnShape[i] : 0; return 0; } //================================================================================ /*! * \brief Return _EdgesOnShape* corresponding to the shape */ //================================================================================ _EdgesOnShape* _SolidData::GetShapeEdges(const TopoDS_Shape& shape ) { SMESHDS_Mesh* meshDS = _proxyMesh->GetMesh()->GetMeshDS(); return GetShapeEdges( meshDS->ShapeToIndex( shape )); } //================================================================================ /*! * \brief Prepare data of the _LayerEdge for smoothing on FACE */ //================================================================================ void _SolidData::PrepareEdgesToSmoothOnFace( _EdgesOnShape* eos, bool substituteSrcNodes ) { SMESH_MesherHelper helper( *_proxyMesh->GetMesh() ); set< TGeomID > vertices; TopoDS_Face F; if ( eos->ShapeType() == TopAbs_FACE ) { // check FACE concavity and get concave VERTEXes F = TopoDS::Face( eos->_shape ); if ( isConcave( F, helper, &vertices )) _concaveFaces.insert( eos->_shapeID ); // set eos._eosConcaVer eos->_eosConcaVer.clear(); eos->_eosConcaVer.reserve( vertices.size() ); for ( set< TGeomID >::iterator v = vertices.begin(); v != vertices.end(); ++v ) { _EdgesOnShape* eov = GetShapeEdges( *v ); if ( eov && eov->_edges.size() == 1 ) { eos->_eosConcaVer.push_back( eov ); for ( size_t i = 0; i < eov->_edges[0]->_neibors.size(); ++i ) eov->_edges[0]->_neibors[i]->Set( _LayerEdge::DIFFICULT ); } } // SetSmooLen() to _LayerEdge's on FACE // for ( size_t i = 0; i < eos->_edges.size(); ++i ) // { // eos->_edges[i]->SetSmooLen( Precision::Infinite() ); // } // SMESH_subMeshIteratorPtr smIt = eos->_subMesh->getDependsOnIterator(/*includeSelf=*/false); // while ( smIt->more() ) // loop on sub-shapes of the FACE // { // _EdgesOnShape* eoe = GetShapeEdges( smIt->next()->GetId() ); // if ( !eoe ) continue; // vector<_LayerEdge*>& eE = eoe->_edges; // for ( size_t iE = 0; iE < eE.size(); ++iE ) // loop on _LayerEdge's on EDGE or VERTEX // { // if ( eE[iE]->_cosin <= theMinSmoothCosin ) // continue; // SMDS_ElemIteratorPtr segIt = eE[iE]->_nodes[0]->GetInverseElementIterator(SMDSAbs_Edge); // while ( segIt->more() ) // { // const SMDS_MeshElement* seg = segIt->next(); // if ( !eos->_subMesh->DependsOn( seg->getshapeId() )) // continue; // if ( seg->GetNode(0) != eE[iE]->_nodes[0] ) // continue; // not to check a seg twice // for ( size_t iN = 0; iN < eE[iE]->_neibors.size(); ++iN ) // { // _LayerEdge* eN = eE[iE]->_neibors[iN]; // if ( eN->_nodes[0]->getshapeId() != eos->_shapeID ) // continue; // double dist = SMESH_MeshAlgos::GetDistance( seg, SMESH_TNodeXYZ( eN->_nodes[0] )); // double smooLen = getSmoothingThickness( eE[iE]->_cosin, dist ); // eN->SetSmooLen( Min( smooLen, eN->GetSmooLen() )); // eN->Set( _LayerEdge::NEAR_BOUNDARY ); // } // } // } // } } // if ( eos->ShapeType() == TopAbs_FACE ) for ( size_t i = 0; i < eos->_edges.size(); ++i ) { eos->_edges[i]->_smooFunction = 0; eos->_edges[i]->Set( _LayerEdge::TO_SMOOTH ); } bool isCurved = false; for ( size_t i = 0; i < eos->_edges.size(); ++i ) { _LayerEdge* edge = eos->_edges[i]; // get simplices sorted _Simplex::SortSimplices( edge->_simplices ); // smoothing function edge->ChooseSmooFunction( vertices, _n2eMap ); // set _curvature double avgNormProj = 0, avgLen = 0; for ( size_t iS = 0; iS < edge->_simplices.size(); ++iS ) { _Simplex& s = edge->_simplices[iS]; gp_XYZ vec = edge->_pos.back() - SMESH_TNodeXYZ( s._nPrev ); avgNormProj += edge->_normal * vec; avgLen += vec.Modulus(); if ( substituteSrcNodes ) { s._nNext = _n2eMap[ s._nNext ]->_nodes.back(); s._nPrev = _n2eMap[ s._nPrev ]->_nodes.back(); } } avgNormProj /= edge->_simplices.size(); avgLen /= edge->_simplices.size(); if (( edge->_curvature = _Curvature::New( avgNormProj, avgLen ))) { edge->Set( _LayerEdge::SMOOTHED_C1 ); isCurved = true; SMDS_FacePositionPtr fPos = edge->_nodes[0]->GetPosition(); if ( !fPos ) for ( size_t iS = 0; iS < edge->_simplices.size() && !fPos; ++iS ) fPos = edge->_simplices[iS]._nPrev->GetPosition(); if ( fPos ) edge->_curvature->_uv.SetCoord( fPos->GetUParameter(), fPos->GetVParameter() ); } } // prepare for putOnOffsetSurface() if (( eos->ShapeType() == TopAbs_FACE ) && ( isCurved || !eos->_eosConcaVer.empty() )) { eos->_offsetSurf = helper.GetSurface( TopoDS::Face( eos->_shape )); eos->_edgeForOffset = 0; double maxCosin = -1; for ( TopExp_Explorer eExp( eos->_shape, TopAbs_EDGE ); eExp.More(); eExp.Next() ) { _EdgesOnShape* eoe = GetShapeEdges( eExp.Current() ); if ( !eoe || eoe->_edges.empty() ) continue; vector<_LayerEdge*>& eE = eoe->_edges; _LayerEdge* e = eE[ eE.size() / 2 ]; if ( e->_cosin > maxCosin ) { eos->_edgeForOffset = e; maxCosin = e->_cosin; } } } } //================================================================================ /*! * \brief Add faces for smoothing */ //================================================================================ void _SolidData::AddShapesToSmooth( const set< _EdgesOnShape* >& eosToSmooth, const set< _EdgesOnShape* >* edgesNoAnaSmooth ) { set< _EdgesOnShape * >::const_iterator eos = eosToSmooth.begin(); for ( ; eos != eosToSmooth.end(); ++eos ) { if ( !*eos || (*eos)->_toSmooth ) continue; (*eos)->_toSmooth = true; if ( (*eos)->ShapeType() == TopAbs_FACE ) { PrepareEdgesToSmoothOnFace( *eos, /*substituteSrcNodes=*/false ); (*eos)->_toSmooth = true; } } // avoid _Smoother1D::smoothAnalyticEdge() of edgesNoAnaSmooth if ( edgesNoAnaSmooth ) for ( eos = edgesNoAnaSmooth->begin(); eos != edgesNoAnaSmooth->end(); ++eos ) { if ( (*eos)->_edgeSmoother ) (*eos)->_edgeSmoother->_anaCurve.Nullify(); } } //================================================================================ /*! * \brief Limit _LayerEdge::_maxLen according to local curvature */ //================================================================================ void _ViscousBuilder::limitMaxLenByCurvature( _SolidData& data, SMESH_MesherHelper& helper ) { // find intersection of neighbor _LayerEdge's to limit _maxLen // according to local curvature (IPAL52648) // This method must be called after findCollisionEdges() where _LayerEdge's // get _lenFactor initialized in the case of eos._hyp.IsOffsetMethod() for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eosI = data._edgesOnShape[iS]; if ( eosI._edges.empty() ) continue; if ( !eosI._hyp.ToSmooth() ) { for ( size_t i = 0; i < eosI._edges.size(); ++i ) { _LayerEdge* eI = eosI._edges[i]; for ( size_t iN = 0; iN < eI->_neibors.size(); ++iN ) { _LayerEdge* eN = eI->_neibors[iN]; if ( eI->_nodes[0]->GetID() < eN->_nodes[0]->GetID() ) // treat this pair once { _EdgesOnShape* eosN = data.GetShapeEdges( eN ); limitMaxLenByCurvature( eI, eN, eosI, *eosN, eosI._hyp.ToSmooth() ); } } } } else if ( eosI.ShapeType() == TopAbs_EDGE ) { const TopoDS_Edge& E = TopoDS::Edge( eosI._shape ); if ( SMESH_Algo::IsStraight( E, /*degenResult=*/true )) continue; _LayerEdge* e0 = eosI._edges[0]; for ( size_t i = 1; i < eosI._edges.size(); ++i ) { _LayerEdge* eI = eosI._edges[i]; limitMaxLenByCurvature( eI, e0, eosI, eosI, eosI._hyp.ToSmooth() ); e0 = eI; } } } } //================================================================================ /*! * \brief Limit _LayerEdge::_maxLen according to local curvature */ //================================================================================ void _ViscousBuilder::limitMaxLenByCurvature( _LayerEdge* e1, _LayerEdge* e2, _EdgesOnShape& eos1, _EdgesOnShape& eos2, const bool isSmoothable ) { if (( e1->_nodes[0]->GetPosition()->GetDim() != e2->_nodes[0]->GetPosition()->GetDim() ) && ( e1->_cosin < 0.75 )) return; // angle > 90 deg at e1 gp_XYZ plnNorm = e1->_normal ^ e2->_normal; double norSize = plnNorm.SquareModulus(); if ( norSize < std::numeric_limits::min() ) return; // parallel normals // find closest points of skew _LayerEdge's SMESH_TNodeXYZ src1( e1->_nodes[0] ), src2( e2->_nodes[0] ); gp_XYZ dir12 = src2 - src1; gp_XYZ perp1 = e1->_normal ^ plnNorm; gp_XYZ perp2 = e2->_normal ^ plnNorm; double dot1 = perp2 * e1->_normal; double dot2 = perp1 * e2->_normal; double u1 = ( perp2 * dir12 ) / dot1; double u2 = - ( perp1 * dir12 ) / dot2; if ( u1 > 0 && u2 > 0 ) { double ovl = ( u1 * e1->_normal * dir12 - u2 * e2->_normal * dir12 ) / dir12.SquareModulus(); if ( ovl > theSmoothThickToElemSizeRatio ) { const double coef = 0.75; e1->SetMaxLen( Min( e1->_maxLen, coef * u1 / e1->_lenFactor )); e2->SetMaxLen( Min( e2->_maxLen, coef * u2 / e2->_lenFactor )); } } } //================================================================================ /*! * \brief Fill data._collisionEdges */ //================================================================================ void _ViscousBuilder::findCollisionEdges( _SolidData& data, SMESH_MesherHelper& helper ) { data._collisionEdges.clear(); // set the full thickness of the layers to LEs for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[iS]; if ( eos._edges.empty() ) continue; if ( eos.ShapeType() != TopAbs_EDGE && eos.ShapeType() != TopAbs_VERTEX ) continue; if ( !eos._sWOL.IsNull() ) continue; // PAL23566 for ( size_t i = 0; i < eos._edges.size(); ++i ) { if ( eos._edges[i]->Is( _LayerEdge::BLOCKED )) continue; double maxLen = eos._edges[i]->_maxLen; eos._edges[i]->_maxLen = Precision::Infinite(); // avoid blocking eos._edges[i]->SetNewLength( 1.5 * maxLen, eos, helper ); eos._edges[i]->_maxLen = maxLen; } } // make temporary quadrangles got by extrusion of // mesh edges along _LayerEdge._normal's vector< const SMDS_MeshElement* > tmpFaces; for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[ iS ]; if ( eos.ShapeType() != TopAbs_EDGE ) continue; if ( eos._edges.empty() ) { _LayerEdge* edge[2] = { 0, 0 }; // LE of 2 VERTEX'es SMESH_subMeshIteratorPtr smIt = eos._subMesh->getDependsOnIterator(/*includeSelf=*/false); while ( smIt->more() ) if ( _EdgesOnShape* eov = data.GetShapeEdges( smIt->next()->GetId() )) if ( eov->_edges.size() == 1 ) edge[ bool( edge[0]) ] = eov->_edges[0]; if ( edge[1] ) { _TmpMeshFaceOnEdge* f = new _TmpMeshFaceOnEdge( edge[0], edge[1], --_tmpFaceID ); tmpFaces.push_back( f ); } } for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* edge = eos._edges[i]; for ( int j = 0; j < 2; ++j ) // loop on _2NearEdges { const SMDS_MeshNode* src2 = edge->_2neibors->srcNode(j); if ( src2->GetPosition()->GetDim() > 0 && src2->GetID() < edge->_nodes[0]->GetID() ) continue; // avoid using same segment twice // a _LayerEdge containing tgt2 _LayerEdge* neiborEdge = edge->_2neibors->_edges[j]; _TmpMeshFaceOnEdge* f = new _TmpMeshFaceOnEdge( edge, neiborEdge, --_tmpFaceID ); tmpFaces.push_back( f ); } } } // Find _LayerEdge's intersecting tmpFaces. SMDS_ElemIteratorPtr fIt( new SMDS_ElementVectorIterator( tmpFaces.begin(), tmpFaces.end())); SMESHUtils::Deleter searcher ( SMESH_MeshAlgos::GetElementSearcher( *getMeshDS(), fIt )); double dist1, dist2, segLen, eps = 0.5; _CollisionEdges collEdges; vector< const SMDS_MeshElement* > suspectFaces; const double angle45 = Cos( 45. * M_PI / 180. ); for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[ iS ]; if ( eos.ShapeType() == TopAbs_FACE || !eos._sWOL.IsNull() ) continue; // find sub-shapes whose VL can influence VL on eos set< TGeomID > neighborShapes; PShapeIteratorPtr fIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_FACE ); while ( const TopoDS_Shape* face = fIt->next() ) { TGeomID faceID = getMeshDS()->ShapeToIndex( *face ); if ( _EdgesOnShape* eof = data.GetShapeEdges( faceID )) { SMESH_subMeshIteratorPtr subIt = eof->_subMesh->getDependsOnIterator(/*includeSelf=*/false); while ( subIt->more() ) neighborShapes.insert( subIt->next()->GetId() ); } } if ( eos.ShapeType() == TopAbs_VERTEX ) { PShapeIteratorPtr eIt = helper.GetAncestors( eos._shape, *_mesh, TopAbs_EDGE ); while ( const TopoDS_Shape* edge = eIt->next() ) neighborShapes.erase( getMeshDS()->ShapeToIndex( *edge )); } // find intersecting _LayerEdge's for ( size_t i = 0; i < eos._edges.size(); ++i ) { if ( eos._edges[i]->Is( _LayerEdge::MULTI_NORMAL )) continue; _LayerEdge* edge = eos._edges[i]; gp_Ax1 lastSegment = edge->LastSegment( segLen, eos ); segLen *= 1.2; gp_Vec eSegDir0, eSegDir1; if ( edge->IsOnEdge() ) { SMESH_TNodeXYZ eP( edge->_nodes[0] ); eSegDir0 = SMESH_TNodeXYZ( edge->_2neibors->srcNode(0) ) - eP; eSegDir1 = SMESH_TNodeXYZ( edge->_2neibors->srcNode(1) ) - eP; } suspectFaces.clear(); searcher->GetElementsInSphere( SMESH_TNodeXYZ( edge->_nodes.back()), edge->_len * 2, SMDSAbs_Face, suspectFaces ); collEdges._intEdges.clear(); for ( size_t j = 0 ; j < suspectFaces.size(); ++j ) { const _TmpMeshFaceOnEdge* f = (const _TmpMeshFaceOnEdge*) suspectFaces[j]; if ( f->_le1 == edge || f->_le2 == edge ) continue; if ( !neighborShapes.count( f->_le1->_nodes[0]->getshapeId() )) continue; if ( !neighborShapes.count( f->_le2->_nodes[0]->getshapeId() )) continue; if ( edge->IsOnEdge() ) { if ( edge->_2neibors->include( f->_le1 ) || edge->_2neibors->include( f->_le2 )) continue; } else { if (( f->_le1->IsOnEdge() && f->_le1->_2neibors->include( edge )) || ( f->_le2->IsOnEdge() && f->_le2->_2neibors->include( edge ))) continue; } dist1 = dist2 = Precision::Infinite(); if ( !edge->SegTriaInter( lastSegment, f->n(0), f->n(1), f->n(2), dist1, eps )) dist1 = Precision::Infinite(); if ( !edge->SegTriaInter( lastSegment, f->n(3), f->n(2), f->n(0), dist2, eps )) dist2 = Precision::Infinite(); if (( dist1 > segLen ) && ( dist2 > segLen )) continue; if ( edge->IsOnEdge() ) { // skip perpendicular EDGEs gp_Vec fSegDir = SMESH_TNodeXYZ( f->n(0) ) - SMESH_TNodeXYZ( f->n(3) ); bool isParallel = ( isLessAngle( eSegDir0, fSegDir, angle45 ) || isLessAngle( eSegDir1, fSegDir, angle45 ) || isLessAngle( eSegDir0, fSegDir.Reversed(), angle45 ) || isLessAngle( eSegDir1, fSegDir.Reversed(), angle45 )); if ( !isParallel ) continue; } // either limit inflation of edges or remember them for updating _normal // double dot = edge->_normal * f->GetDir(); // if ( dot > 0.1 ) { collEdges._intEdges.push_back( f->_le1 ); collEdges._intEdges.push_back( f->_le2 ); } // else // { // double shortLen = 0.75 * ( Min( dist1, dist2 ) / edge->_lenFactor ); // edge->SetMaxLen( Min( shortLen, edge->_maxLen )); // } } if ( !collEdges._intEdges.empty() ) { collEdges._edge = edge; data._collisionEdges.push_back( collEdges ); } } } for ( size_t i = 0 ; i < tmpFaces.size(); ++i ) delete tmpFaces[i]; // restore the zero thickness for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[iS]; if ( eos._edges.empty() ) continue; if ( eos.ShapeType() != TopAbs_EDGE && eos.ShapeType() != TopAbs_VERTEX ) continue; for ( size_t i = 0; i < eos._edges.size(); ++i ) { eos._edges[i]->InvalidateStep( 1, eos ); eos._edges[i]->_len = 0; } } } //================================================================================ /*! * \brief Find _LayerEdge's located on boundary of a convex FACE whose normal * will be updated at each inflation step */ //================================================================================ void _ViscousBuilder::findEdgesToUpdateNormalNearConvexFace( _ConvexFace & convFace, _SolidData& data, SMESH_MesherHelper& helper ) { const TGeomID convFaceID = getMeshDS()->ShapeToIndex( convFace._face ); const double preci = BRep_Tool::Tolerance( convFace._face ); Handle(ShapeAnalysis_Surface) surface = helper.GetSurface( convFace._face ); bool edgesToUpdateFound = false; map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.begin(); for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos ) { _EdgesOnShape& eos = * id2eos->second; if ( !eos._sWOL.IsNull() ) continue; if ( !eos._hyp.ToSmooth() ) continue; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* ledge = eos._edges[ i ]; if ( ledge->Is( _LayerEdge::UPD_NORMAL_CONV )) continue; // already checked if ( ledge->Is( _LayerEdge::MULTI_NORMAL )) continue; // not inflatable gp_XYZ tgtPos = ( SMESH_NodeXYZ( ledge->_nodes[0] ) + ledge->_normal * ledge->_lenFactor * ledge->_maxLen ); // the normal must be updated if distance from tgtPos to surface is less than // target thickness // find an initial UV for search of a projection of tgtPos to surface const SMDS_MeshNode* nodeInFace = 0; SMDS_ElemIteratorPtr fIt = ledge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() && !nodeInFace ) { const SMDS_MeshElement* f = fIt->next(); if ( convFaceID != f->getshapeId() ) continue; SMDS_ElemIteratorPtr nIt = f->nodesIterator(); while ( nIt->more() && !nodeInFace ) { const SMDS_MeshElement* n = nIt->next(); if ( n->getshapeId() == convFaceID ) nodeInFace = static_cast< const SMDS_MeshNode* >( n ); } } if ( !nodeInFace ) continue; gp_XY uv = helper.GetNodeUV( convFace._face, nodeInFace ); // projection surface->NextValueOfUV( uv, tgtPos, preci ); double dist = surface->Gap(); if ( dist < 0.95 * ledge->_maxLen ) { ledge->Set( _LayerEdge::UPD_NORMAL_CONV ); if ( !ledge->_curvature ) ledge->_curvature = _Factory::NewCurvature(); ledge->_curvature->_uv.SetCoord( uv.X(), uv.Y() ); edgesToUpdateFound = true; } } } if ( !convFace._isTooCurved && edgesToUpdateFound ) { data._convexFaces.insert( make_pair( convFaceID, convFace )).first->second; } } //================================================================================ /*! * \brief Modify normals of _LayerEdge's on EDGE's to avoid intersection with * _LayerEdge's on neighbor EDGE's */ //================================================================================ bool _ViscousBuilder::updateNormals( _SolidData& data, SMESH_MesherHelper& helper, int stepNb, double stepSize) { updateNormalsOfC1Vertices( data ); if ( stepNb > 0 && !updateNormalsOfConvexFaces( data, helper, stepNb )) return false; // map to store new _normal and _cosin for each intersected edge map< _LayerEdge*, _LayerEdge, _LayerEdgeCmp > edge2newEdge; map< _LayerEdge*, _LayerEdge, _LayerEdgeCmp >::iterator e2neIt; _LayerEdge zeroEdge; zeroEdge._normal.SetCoord( 0,0,0 ); zeroEdge._maxLen = Precision::Infinite(); zeroEdge._nodes.resize(1); // to init _TmpMeshFaceOnEdge set< _EdgesOnShape* > shapesToSmooth, edgesNoAnaSmooth; double segLen, dist1, dist2, dist; vector< pair< _LayerEdge*, double > > intEdgesDist; _TmpMeshFaceOnEdge quad( &zeroEdge, &zeroEdge, 0 ); for ( int iter = 0; iter < 5; ++iter ) { edge2newEdge.clear(); for ( size_t iE = 0; iE < data._collisionEdges.size(); ++iE ) { _CollisionEdges& ce = data._collisionEdges[iE]; _LayerEdge* edge1 = ce._edge; if ( !edge1 /*|| edge1->Is( _LayerEdge::BLOCKED )*/) continue; _EdgesOnShape* eos1 = data.GetShapeEdges( edge1 ); if ( !eos1 ) continue; // detect intersections gp_Ax1 lastSeg = edge1->LastSegment( segLen, *eos1 ); double testLen = 1.5 * edge1->_maxLen * edge1->_lenFactor; double eps = 0.5; intEdgesDist.clear(); double minIntDist = Precision::Infinite(); for ( size_t i = 0; i < ce._intEdges.size(); i += 2 ) { if ( edge1->Is( _LayerEdge::BLOCKED ) && ce._intEdges[i ]->Is( _LayerEdge::BLOCKED ) && ce._intEdges[i+1]->Is( _LayerEdge::BLOCKED )) continue; double dot = edge1->_normal * quad.GetDir( ce._intEdges[i], ce._intEdges[i+1] ); double fact = ( 1.1 + dot * dot ); SMESH_TNodeXYZ pSrc0( ce.nSrc(i) ), pSrc1( ce.nSrc(i+1) ); SMESH_TNodeXYZ pTgt0( ce.nTgt(i) ), pTgt1( ce.nTgt(i+1) ); gp_XYZ pLast0 = pSrc0 + ( pTgt0 - pSrc0 ) * fact; gp_XYZ pLast1 = pSrc1 + ( pTgt1 - pSrc1 ) * fact; dist1 = dist2 = Precision::Infinite(); if ( !edge1->SegTriaInter( lastSeg, pSrc0, pLast0, pSrc1, dist1, eps ) && !edge1->SegTriaInter( lastSeg, pSrc1, pLast1, pLast0, dist2, eps )) continue; dist = dist1; if ( dist > testLen || dist <= 0 ) { dist = dist2; if ( dist > testLen || dist <= 0 ) continue; } // choose a closest edge gp_Pnt intP( lastSeg.Location().XYZ() + lastSeg.Direction().XYZ() * ( dist + segLen )); double d1 = intP.SquareDistance( pSrc0 ); double d2 = intP.SquareDistance( pSrc1 ); int iClose = i + ( d2 < d1 ); _LayerEdge* edge2 = ce._intEdges[iClose]; edge2->Unset( _LayerEdge::MARKED ); // choose a closest edge among neighbors gp_Pnt srcP( SMESH_TNodeXYZ( edge1->_nodes[0] )); d1 = srcP.SquareDistance( SMESH_TNodeXYZ( edge2->_nodes[0] )); for ( size_t j = 0; j < intEdgesDist.size(); ++j ) { _LayerEdge * edgeJ = intEdgesDist[j].first; if ( edge2->IsNeiborOnEdge( edgeJ )) { d2 = srcP.SquareDistance( SMESH_TNodeXYZ( edgeJ->_nodes[0] )); ( d1 < d2 ? edgeJ : edge2 )->Set( _LayerEdge::MARKED ); } } intEdgesDist.push_back( make_pair( edge2, dist )); // if ( Abs( d2 - d1 ) / Max( d2, d1 ) < 0.5 ) // { // iClose = i + !( d2 < d1 ); // intEdges.push_back( ce._intEdges[iClose] ); // ce._intEdges[iClose]->Unset( _LayerEdge::MARKED ); // } minIntDist = Min( edge1->_len * edge1->_lenFactor - segLen + dist, minIntDist ); } //ce._edge = 0; // compute new _normals for ( size_t i = 0; i < intEdgesDist.size(); ++i ) { _LayerEdge* edge2 = intEdgesDist[i].first; double distWgt = edge1->_len / intEdgesDist[i].second; // if ( edge1->Is( _LayerEdge::BLOCKED ) && // edge2->Is( _LayerEdge::BLOCKED )) continue; if ( edge2->Is( _LayerEdge::MARKED )) continue; edge2->Set( _LayerEdge::MARKED ); // get a new normal gp_XYZ dir1 = edge1->_normal, dir2 = edge2->_normal; double cos1 = Abs( edge1->_cosin ), cos2 = Abs( edge2->_cosin ); double wgt1 = ( cos1 + 0.001 ) / ( cos1 + cos2 + 0.002 ); double wgt2 = ( cos2 + 0.001 ) / ( cos1 + cos2 + 0.002 ); // double cos1 = Abs( edge1->_cosin ), cos2 = Abs( edge2->_cosin ); // double sgn1 = 0.1 * ( 1 + edge1->_cosin ), sgn2 = 0.1 * ( 1 + edge2->_cosin ); // double wgt1 = ( cos1 + sgn1 ) / ( cos1 + cos2 + sgn1 + sgn2 ); // double wgt2 = ( cos2 + sgn2 ) / ( cos1 + cos2 + sgn1 + sgn2 ); gp_XYZ newNormal = wgt1 * dir1 + wgt2 * dir2; newNormal.Normalize(); // get new cosin double newCos; double sgn1 = edge1->_cosin / cos1, sgn2 = edge2->_cosin / cos2; if ( cos1 < theMinSmoothCosin ) { newCos = cos2 * sgn1; } else if ( cos2 > theMinSmoothCosin ) // both cos1 and cos2 > theMinSmoothCosin { newCos = ( wgt1 * cos1 + wgt2 * cos2 ) * edge1->_cosin / cos1; } else { newCos = edge1->_cosin; } e2neIt = edge2newEdge.insert( make_pair( edge1, zeroEdge )).first; e2neIt->second._normal += distWgt * newNormal; e2neIt->second._cosin = newCos; e2neIt->second.SetMaxLen( 0.7 * minIntDist / edge1->_lenFactor ); if ( iter > 0 && sgn1 * sgn2 < 0 && edge1->_cosin < 0 ) e2neIt->second._normal += dir2; e2neIt = edge2newEdge.insert( make_pair( edge2, zeroEdge )).first; e2neIt->second._normal += distWgt * newNormal; if ( Precision::IsInfinite( zeroEdge._maxLen )) { e2neIt->second._cosin = edge2->_cosin; e2neIt->second.SetMaxLen( 1.3 * minIntDist / edge1->_lenFactor ); } if ( iter > 0 && sgn1 * sgn2 < 0 && edge2->_cosin < 0 ) e2neIt->second._normal += dir1; } } if ( edge2newEdge.empty() ) break; //return true; dumpFunction(SMESH_Comment("updateNormals")<< data._index << "_" << stepNb << "_it" << iter); // Update data of edges depending on a new _normal data.UnmarkEdges(); for ( e2neIt = edge2newEdge.begin(); e2neIt != edge2newEdge.end(); ++e2neIt ) { _LayerEdge* edge = e2neIt->first; _LayerEdge& newEdge = e2neIt->second; _EdgesOnShape* eos = data.GetShapeEdges( edge ); if ( edge->Is( _LayerEdge::BLOCKED && newEdge._maxLen > edge->_len )) continue; // Check if a new _normal is OK: newEdge._normal.Normalize(); if ( !isNewNormalOk( data, *edge, newEdge._normal )) { if ( newEdge._maxLen < edge->_len && iter > 0 ) // limit _maxLen { edge->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true ); edge->SetMaxLen( newEdge._maxLen ); edge->SetNewLength( newEdge._maxLen, *eos, helper ); } continue; // the new _normal is bad } // the new _normal is OK // find shapes that need smoothing due to change of _normal if ( edge->_cosin < theMinSmoothCosin && newEdge._cosin > theMinSmoothCosin ) { if ( eos->_sWOL.IsNull() ) { SMDS_ElemIteratorPtr fIt = edge->_nodes[0]->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) shapesToSmooth.insert( data.GetShapeEdges( fIt->next()->getshapeId() )); } else // edge inflates along a FACE { TopoDS_Shape V = helper.GetSubShapeByNode( edge->_nodes[0], getMeshDS() ); PShapeIteratorPtr eIt = helper.GetAncestors( V, *_mesh, TopAbs_EDGE, &eos->_sWOL ); while ( const TopoDS_Shape* E = eIt->next() ) { gp_Vec edgeDir = getEdgeDir( TopoDS::Edge( *E ), TopoDS::Vertex( V )); double angle = edgeDir.Angle( newEdge._normal ); // [0,PI] if ( angle < M_PI / 2 ) shapesToSmooth.insert( data.GetShapeEdges( *E )); } } } double len = edge->_len; edge->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true ); edge->SetNormal( newEdge._normal ); edge->SetCosin( newEdge._cosin ); edge->SetNewLength( len, *eos, helper ); edge->Set( _LayerEdge::MARKED ); edge->Set( _LayerEdge::NORMAL_UPDATED ); edgesNoAnaSmooth.insert( eos ); } // Update normals and other dependent data of not intersecting _LayerEdge's // neighboring the intersecting ones for ( e2neIt = edge2newEdge.begin(); e2neIt != edge2newEdge.end(); ++e2neIt ) { _LayerEdge* edge1 = e2neIt->first; _EdgesOnShape* eos1 = data.GetShapeEdges( edge1 ); if ( !edge1->Is( _LayerEdge::MARKED )) continue; if ( edge1->IsOnEdge() ) { const SMDS_MeshNode * n1 = edge1->_2neibors->srcNode(0); const SMDS_MeshNode * n2 = edge1->_2neibors->srcNode(1); edge1->SetDataByNeighbors( n1, n2, *eos1, helper ); } if ( !edge1->_2neibors || !eos1->_sWOL.IsNull() ) continue; for ( int j = 0; j < 2; ++j ) // loop on 2 neighbors { _LayerEdge* neighbor = edge1->_2neibors->_edges[j]; if ( neighbor->Is( _LayerEdge::MARKED ) /*edge2newEdge.count ( neighbor )*/) continue; // j-th neighbor is also intersected _LayerEdge* prevEdge = edge1; const int nbSteps = 10; for ( int step = nbSteps; step; --step ) // step from edge1 in j-th direction { if ( neighbor->Is( _LayerEdge::BLOCKED ) || neighbor->Is( _LayerEdge::MARKED )) break; _EdgesOnShape* eos = data.GetShapeEdges( neighbor ); if ( !eos ) continue; _LayerEdge* nextEdge = neighbor; if ( neighbor->_2neibors ) { int iNext = 0; nextEdge = neighbor->_2neibors->_edges[iNext]; if ( nextEdge == prevEdge ) nextEdge = neighbor->_2neibors->_edges[ ++iNext ]; } double r = double(step-1)/nbSteps/(iter+1); if ( !nextEdge->_2neibors ) r = Min( r, 0.5 ); gp_XYZ newNorm = prevEdge->_normal * r + nextEdge->_normal * (1-r); newNorm.Normalize(); if ( !isNewNormalOk( data, *neighbor, newNorm )) break; double len = neighbor->_len; neighbor->InvalidateStep( stepNb + 1, *eos, /*restoreLength=*/true ); neighbor->SetNormal( newNorm ); neighbor->SetCosin( prevEdge->_cosin * r + nextEdge->_cosin * (1-r) ); if ( neighbor->_2neibors ) neighbor->SetDataByNeighbors( prevEdge->_nodes[0], nextEdge->_nodes[0], *eos, helper ); neighbor->SetNewLength( len, *eos, helper ); neighbor->Set( _LayerEdge::MARKED ); neighbor->Set( _LayerEdge::NORMAL_UPDATED ); edgesNoAnaSmooth.insert( eos ); if ( !neighbor->_2neibors ) break; // neighbor is on VERTEX // goto the next neighbor prevEdge = neighbor; neighbor = nextEdge; } } } dumpFunctionEnd(); } // iterations data.AddShapesToSmooth( shapesToSmooth, &edgesNoAnaSmooth ); return true; } //================================================================================ /*! * \brief Check if a new normal is OK */ //================================================================================ bool _ViscousBuilder::isNewNormalOk( _SolidData& data, _LayerEdge& edge, const gp_XYZ& newNormal) { // check a min angle between the newNormal and surrounding faces vector<_Simplex> simplices; SMESH_TNodeXYZ n0( edge._nodes[0] ), n1, n2; _Simplex::GetSimplices( n0._node, simplices, data._ignoreFaceIds, &data ); double newMinDot = 1, curMinDot = 1; for ( size_t i = 0; i < simplices.size(); ++i ) { n1.Set( simplices[i]._nPrev ); n2.Set( simplices[i]._nNext ); gp_XYZ normFace = ( n1 - n0 ) ^ ( n2 - n0 ); double normLen2 = normFace.SquareModulus(); if ( normLen2 < std::numeric_limits::min() ) continue; normFace /= Sqrt( normLen2 ); newMinDot = Min( newNormal * normFace, newMinDot ); curMinDot = Min( edge._normal * normFace, curMinDot ); } bool ok = true; if ( newMinDot < 0.5 ) { ok = ( newMinDot >= curMinDot * 0.9 ); //return ( newMinDot >= ( curMinDot * ( 0.8 + 0.1 * edge.NbSteps() ))); // double initMinDot2 = 1. - edge._cosin * edge._cosin; // return ( newMinDot * newMinDot ) >= ( 0.8 * initMinDot2 ); } return ok; } //================================================================================ /*! * \brief Modify normals of _LayerEdge's on FACE to reflex smoothing */ //================================================================================ bool _ViscousBuilder::updateNormalsOfSmoothed( _SolidData& data, SMESH_MesherHelper& helper, const int nbSteps, const double stepSize ) { if ( data._nbShapesToSmooth == 0 || nbSteps == 0 ) return true; // no shapes needing smoothing for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[ iS ]; if ( //!eos._toSmooth || _eosC1 have _toSmooth == false !eos._hyp.ToSmooth() || eos.ShapeType() != TopAbs_FACE || eos._edges.empty() ) continue; bool toSmooth = ( eos._edges[ 0 ]->NbSteps() >= nbSteps+1 ); if ( !toSmooth ) continue; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* edge = eos._edges[i]; if ( !edge->Is( _LayerEdge::SMOOTHED )) continue; if ( edge->Is( _LayerEdge::DIFFICULT ) && nbSteps != 1 ) continue; const gp_XYZ& pPrev = edge->PrevPos(); const gp_XYZ& pLast = edge->_pos.back(); gp_XYZ stepVec = pLast - pPrev; double realStepSize = stepVec.Modulus(); if ( realStepSize < numeric_limits::min() ) continue; edge->_lenFactor = realStepSize / stepSize; edge->_normal = stepVec / realStepSize; edge->Set( _LayerEdge::NORMAL_UPDATED ); } } return true; } //================================================================================ /*! * \brief Modify normals of _LayerEdge's on C1 VERTEXes */ //================================================================================ void _ViscousBuilder::updateNormalsOfC1Vertices( _SolidData& data ) { for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eov = data._edgesOnShape[ iS ]; if ( eov._eosC1.empty() || eov.ShapeType() != TopAbs_VERTEX || eov._edges.empty() ) continue; gp_XYZ newNorm = eov._edges[0]->_normal; double curThick = eov._edges[0]->_len * eov._edges[0]->_lenFactor; bool normChanged = false; for ( size_t i = 0; i < eov._eosC1.size(); ++i ) { _EdgesOnShape* eoe = eov._eosC1[i]; const TopoDS_Edge& e = TopoDS::Edge( eoe->_shape ); const double eLen = SMESH_Algo::EdgeLength( e ); TopoDS_Shape oppV = SMESH_MesherHelper::IthVertex( 0, e ); if ( oppV.IsSame( eov._shape )) oppV = SMESH_MesherHelper::IthVertex( 1, e ); _EdgesOnShape* eovOpp = data.GetShapeEdges( oppV ); if ( !eovOpp || eovOpp->_edges.empty() ) continue; if ( eov._edges[0]->Is( _LayerEdge::BLOCKED )) continue; double curThickOpp = eovOpp->_edges[0]->_len * eovOpp->_edges[0]->_lenFactor; if ( curThickOpp + curThick < eLen ) continue; double wgt = 2. * curThick / eLen; newNorm += wgt * eovOpp->_edges[0]->_normal; normChanged = true; } if ( normChanged ) { eov._edges[0]->SetNormal( newNorm.Normalized() ); eov._edges[0]->Set( _LayerEdge::NORMAL_UPDATED ); } } } //================================================================================ /*! * \brief Modify normals of _LayerEdge's on _ConvexFace's */ //================================================================================ bool _ViscousBuilder::updateNormalsOfConvexFaces( _SolidData& data, SMESH_MesherHelper& helper, int stepNb ) { SMESHDS_Mesh* meshDS = helper.GetMeshDS(); bool isOK; map< TGeomID, _ConvexFace >::iterator id2face = data._convexFaces.begin(); for ( ; id2face != data._convexFaces.end(); ++id2face ) { _ConvexFace & convFace = (*id2face).second; convFace._normalsFixedOnBorders = false; // to update at each inflation step if ( convFace._normalsFixed ) continue; // already fixed if ( convFace.CheckPrisms() ) continue; // nothing to fix convFace._normalsFixed = true; BRepAdaptor_Surface surface ( convFace._face, false ); BRepLProp_SLProps surfProp( surface, 2, 1e-6 ); // check if the convex FACE is of spherical shape Bnd_B3d centersBox; // bbox of centers of curvature of _LayerEdge's on VERTEXes Bnd_B3d nodesBox; gp_Pnt center; map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.begin(); for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos ) { _EdgesOnShape& eos = *(id2eos->second); if ( eos.ShapeType() == TopAbs_VERTEX ) { _LayerEdge* ledge = eos._edges[ 0 ]; if ( convFace.GetCenterOfCurvature( ledge, surfProp, helper, center )) centersBox.Add( center ); } for ( size_t i = 0; i < eos._edges.size(); ++i ) nodesBox.Add( SMESH_TNodeXYZ( eos._edges[ i ]->_nodes[0] )); } if ( centersBox.IsVoid() ) { debugMsg( "Error: centersBox.IsVoid()" ); return false; } const bool isSpherical = ( centersBox.SquareExtent() < 1e-6 * nodesBox.SquareExtent() ); int nbEdges = helper.Count( convFace._face, TopAbs_EDGE, /*ignoreSame=*/false ); vector < _CentralCurveOnEdge > centerCurves( nbEdges ); if ( isSpherical ) { // set _LayerEdge::_normal as average of all normals // WARNING: different density of nodes on EDGEs is not taken into account that // can lead to an improper new normal gp_XYZ avgNormal( 0,0,0 ); nbEdges = 0; id2eos = convFace._subIdToEOS.begin(); for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos ) { _EdgesOnShape& eos = *(id2eos->second); // set data of _CentralCurveOnEdge if ( eos.ShapeType() == TopAbs_EDGE ) { _CentralCurveOnEdge& ceCurve = centerCurves[ nbEdges++ ]; ceCurve.SetShapes( TopoDS::Edge( eos._shape ), convFace, data, helper ); if ( !eos._sWOL.IsNull() ) ceCurve._adjFace.Nullify(); else ceCurve._ledges.insert( ceCurve._ledges.end(), eos._edges.begin(), eos._edges.end()); } // summarize normals for ( size_t i = 0; i < eos._edges.size(); ++i ) avgNormal += eos._edges[ i ]->_normal; } double normSize = avgNormal.SquareModulus(); if ( normSize < 1e-200 ) { debugMsg( "updateNormalsOfConvexFaces(): zero avgNormal" ); return false; } avgNormal /= Sqrt( normSize ); // compute new _LayerEdge::_cosin on EDGEs double avgCosin = 0; int nbCosin = 0; gp_Vec inFaceDir; for ( size_t iE = 0; iE < centerCurves.size(); ++iE ) { _CentralCurveOnEdge& ceCurve = centerCurves[ iE ]; if ( ceCurve._adjFace.IsNull() ) continue; for ( size_t iLE = 0; iLE < ceCurve._ledges.size(); ++iLE ) { const SMDS_MeshNode* node = ceCurve._ledges[ iLE ]->_nodes[0]; inFaceDir = getFaceDir( ceCurve._adjFace, ceCurve._edge, node, helper, isOK ); if ( isOK ) { double angle = inFaceDir.Angle( avgNormal ); // [0,PI] ceCurve._ledges[ iLE ]->_cosin = Cos( angle ); avgCosin += ceCurve._ledges[ iLE ]->_cosin; nbCosin++; } } } if ( nbCosin > 0 ) avgCosin /= nbCosin; // set _LayerEdge::_normal = avgNormal id2eos = convFace._subIdToEOS.begin(); for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos ) { _EdgesOnShape& eos = *(id2eos->second); if ( eos.ShapeType() != TopAbs_EDGE ) for ( size_t i = 0; i < eos._edges.size(); ++i ) eos._edges[ i ]->_cosin = avgCosin; for ( size_t i = 0; i < eos._edges.size(); ++i ) { eos._edges[ i ]->SetNormal( avgNormal ); eos._edges[ i ]->Set( _LayerEdge::NORMAL_UPDATED ); } } } else // if ( isSpherical ) { // We suppose that centers of curvature at all points of the FACE // lie on some curve, let's call it "central curve". For all _LayerEdge's // having a common center of curvature we define the same new normal // as a sum of normals of _LayerEdge's on EDGEs among them. // get all centers of curvature for each EDGE helper.SetSubShape( convFace._face ); _LayerEdge* vertexLEdges[2], **edgeLEdge, **edgeLEdgeEnd; TopExp_Explorer edgeExp( convFace._face, TopAbs_EDGE ); for ( int iE = 0; edgeExp.More(); edgeExp.Next(), ++iE ) { const TopoDS_Edge& edge = TopoDS::Edge( edgeExp.Current() ); // set adjacent FACE centerCurves[ iE ].SetShapes( edge, convFace, data, helper ); // get _LayerEdge's of the EDGE TGeomID edgeID = meshDS->ShapeToIndex( edge ); _EdgesOnShape* eos = data.GetShapeEdges( edgeID ); if ( !eos || eos->_edges.empty() ) { // no _LayerEdge's on EDGE, use _LayerEdge's on VERTEXes for ( int iV = 0; iV < 2; ++iV ) { TopoDS_Vertex v = helper.IthVertex( iV, edge ); TGeomID vID = meshDS->ShapeToIndex( v ); eos = data.GetShapeEdges( vID ); vertexLEdges[ iV ] = eos->_edges[ 0 ]; } edgeLEdge = &vertexLEdges[0]; edgeLEdgeEnd = edgeLEdge + 2; centerCurves[ iE ]._adjFace.Nullify(); } else { if ( ! eos->_toSmooth ) data.SortOnEdge( edge, eos->_edges ); edgeLEdge = &eos->_edges[ 0 ]; edgeLEdgeEnd = edgeLEdge + eos->_edges.size(); vertexLEdges[0] = eos->_edges.front()->_2neibors->_edges[0]; vertexLEdges[1] = eos->_edges.back() ->_2neibors->_edges[1]; if ( ! eos->_sWOL.IsNull() ) centerCurves[ iE ]._adjFace.Nullify(); } // Get curvature centers centersBox.Clear(); if ( edgeLEdge[0]->IsOnEdge() && convFace.GetCenterOfCurvature( vertexLEdges[0], surfProp, helper, center )) { // 1st VERTEX centerCurves[ iE ].Append( center, vertexLEdges[0] ); centersBox.Add( center ); } for ( ; edgeLEdge < edgeLEdgeEnd; ++edgeLEdge ) if ( convFace.GetCenterOfCurvature( *edgeLEdge, surfProp, helper, center )) { // EDGE or VERTEXes centerCurves[ iE ].Append( center, *edgeLEdge ); centersBox.Add( center ); } if ( edgeLEdge[-1]->IsOnEdge() && convFace.GetCenterOfCurvature( vertexLEdges[1], surfProp, helper, center )) { // 2nd VERTEX centerCurves[ iE ].Append( center, vertexLEdges[1] ); centersBox.Add( center ); } centerCurves[ iE ]._isDegenerated = ( centersBox.IsVoid() || centersBox.SquareExtent() < 1e-6 * nodesBox.SquareExtent() ); } // loop on EDGES of convFace._face to set up data of centerCurves // Compute new normals for _LayerEdge's on EDGEs double avgCosin = 0; int nbCosin = 0; gp_Vec inFaceDir; for ( size_t iE1 = 0; iE1 < centerCurves.size(); ++iE1 ) { _CentralCurveOnEdge& ceCurve = centerCurves[ iE1 ]; if ( ceCurve._isDegenerated ) continue; const vector< gp_Pnt >& centers = ceCurve._curvaCenters; vector< gp_XYZ > & newNormals = ceCurve._normals; for ( size_t iC1 = 0; iC1 < centers.size(); ++iC1 ) { isOK = false; for ( size_t iE2 = 0; iE2 < centerCurves.size() && !isOK; ++iE2 ) { if ( iE1 != iE2 ) isOK = centerCurves[ iE2 ].FindNewNormal( centers[ iC1 ], newNormals[ iC1 ]); } if ( isOK && !ceCurve._adjFace.IsNull() ) { // compute new _LayerEdge::_cosin const SMDS_MeshNode* node = ceCurve._ledges[ iC1 ]->_nodes[0]; inFaceDir = getFaceDir( ceCurve._adjFace, ceCurve._edge, node, helper, isOK ); if ( isOK ) { double angle = inFaceDir.Angle( newNormals[ iC1 ] ); // [0,PI] ceCurve._ledges[ iC1 ]->_cosin = Cos( angle ); avgCosin += ceCurve._ledges[ iC1 ]->_cosin; nbCosin++; } } } } // set new normals to _LayerEdge's of NOT degenerated central curves for ( size_t iE = 0; iE < centerCurves.size(); ++iE ) { if ( centerCurves[ iE ]._isDegenerated ) continue; for ( size_t iLE = 0; iLE < centerCurves[ iE ]._ledges.size(); ++iLE ) { centerCurves[ iE ]._ledges[ iLE ]->SetNormal( centerCurves[ iE ]._normals[ iLE ]); centerCurves[ iE ]._ledges[ iLE ]->Set( _LayerEdge::NORMAL_UPDATED ); } } // set new normals to _LayerEdge's of degenerated central curves for ( size_t iE = 0; iE < centerCurves.size(); ++iE ) { if ( !centerCurves[ iE ]._isDegenerated || centerCurves[ iE ]._ledges.size() < 3 ) continue; // new normal is an average of new normals at VERTEXes that // was computed on non-degenerated _CentralCurveOnEdge's gp_XYZ newNorm = ( centerCurves[ iE ]._ledges.front()->_normal + centerCurves[ iE ]._ledges.back ()->_normal ); double sz = newNorm.Modulus(); if ( sz < 1e-200 ) continue; newNorm /= sz; double newCosin = ( 0.5 * centerCurves[ iE ]._ledges.front()->_cosin + 0.5 * centerCurves[ iE ]._ledges.back ()->_cosin ); for ( size_t iLE = 1, nb = centerCurves[ iE ]._ledges.size() - 1; iLE < nb; ++iLE ) { centerCurves[ iE ]._ledges[ iLE ]->SetNormal( newNorm ); centerCurves[ iE ]._ledges[ iLE ]->_cosin = newCosin; centerCurves[ iE ]._ledges[ iLE ]->Set( _LayerEdge::NORMAL_UPDATED ); } } // Find new normals for _LayerEdge's based on FACE if ( nbCosin > 0 ) avgCosin /= nbCosin; const TGeomID faceID = meshDS->ShapeToIndex( convFace._face ); map< TGeomID, _EdgesOnShape* >::iterator id2eos = convFace._subIdToEOS.find( faceID ); if ( id2eos != convFace._subIdToEOS.end() ) { int iE = 0; gp_XYZ newNorm; _EdgesOnShape& eos = * ( id2eos->second ); for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* ledge = eos._edges[ i ]; if ( !convFace.GetCenterOfCurvature( ledge, surfProp, helper, center )) continue; for ( size_t i = 0; i < centerCurves.size(); ++i, ++iE ) { iE = iE % centerCurves.size(); if ( centerCurves[ iE ]._isDegenerated ) continue; newNorm.SetCoord( 0,0,0 ); if ( centerCurves[ iE ].FindNewNormal( center, newNorm )) { ledge->SetNormal( newNorm ); ledge->_cosin = avgCosin; ledge->Set( _LayerEdge::NORMAL_UPDATED ); break; } } } } } // not a quasi-spherical FACE // Update _LayerEdge's data according to a new normal dumpFunction(SMESH_Comment("updateNormalsOfConvexFaces")<ShapeToIndex( convFace._face )); id2eos = convFace._subIdToEOS.begin(); for ( ; id2eos != convFace._subIdToEOS.end(); ++id2eos ) { _EdgesOnShape& eos = * ( id2eos->second ); for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* & ledge = eos._edges[ i ]; double len = ledge->_len; ledge->InvalidateStep( stepNb + 1, eos, /*restoreLength=*/true ); ledge->SetCosin( ledge->_cosin ); ledge->SetNewLength( len, eos, helper ); } if ( eos.ShapeType() != TopAbs_FACE ) for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge* ledge = eos._edges[ i ]; for ( size_t iN = 0; iN < ledge->_neibors.size(); ++iN ) { _LayerEdge* neibor = ledge->_neibors[iN]; if ( neibor->_nodes[0]->GetPosition()->GetDim() == 2 ) { neibor->Set( _LayerEdge::NEAR_BOUNDARY ); neibor->Set( _LayerEdge::MOVED ); neibor->SetSmooLen( neibor->_len ); } } } } // loop on sub-shapes of convFace._face // Find FACEs adjacent to convFace._face that got necessity to smooth // as a result of normals modification set< _EdgesOnShape* > adjFacesToSmooth; for ( size_t iE = 0; iE < centerCurves.size(); ++iE ) { if ( centerCurves[ iE ]._adjFace.IsNull() || centerCurves[ iE ]._adjFaceToSmooth ) continue; for ( size_t iLE = 0; iLE < centerCurves[ iE ]._ledges.size(); ++iLE ) { if ( centerCurves[ iE ]._ledges[ iLE ]->_cosin > theMinSmoothCosin ) { adjFacesToSmooth.insert( data.GetShapeEdges( centerCurves[ iE ]._adjFace )); break; } } } data.AddShapesToSmooth( adjFacesToSmooth ); dumpFunctionEnd(); } // loop on data._convexFaces return true; } //================================================================================ /*! * \brief Return max curvature of a FACE */ //================================================================================ double _ConvexFace::GetMaxCurvature( _SolidData& data, _EdgesOnShape& eof, BRepLProp_SLProps& surfProp, SMESH_MesherHelper& helper) { double maxCurvature = 0; TopoDS_Face F = TopoDS::Face( eof._shape ); const int nbTestPnt = 5; const double oriFactor = ( F.Orientation() == TopAbs_REVERSED ? +1. : -1. ); SMESH_subMeshIteratorPtr smIt = eof._subMesh->getDependsOnIterator(/*includeSelf=*/true); while ( smIt->more() ) { SMESH_subMesh* sm = smIt->next(); const TGeomID subID = sm->GetId(); // find _LayerEdge's of a sub-shape _EdgesOnShape* eos; if (( eos = data.GetShapeEdges( subID ))) this->_subIdToEOS.insert( make_pair( subID, eos )); else continue; // check concavity and curvature and limit data._stepSize const double minCurvature = 1. / ( eos->_hyp.GetTotalThickness() * ( 1 + theThickToIntersection )); size_t iStep = Max( 1, eos->_edges.size() / nbTestPnt ); for ( size_t i = 0; i < eos->_edges.size(); i += iStep ) { gp_XY uv = helper.GetNodeUV( F, eos->_edges[ i ]->_nodes[0] ); surfProp.SetParameters( uv.X(), uv.Y() ); if ( surfProp.IsCurvatureDefined() ) { double curvature = Max( surfProp.MaxCurvature() * oriFactor, surfProp.MinCurvature() * oriFactor ); maxCurvature = Max( maxCurvature, curvature ); if ( curvature > minCurvature ) this->_isTooCurved = true; } } } // loop on sub-shapes of the FACE return maxCurvature; } //================================================================================ /*! * \brief Finds a center of curvature of a surface at a _LayerEdge */ //================================================================================ bool _ConvexFace::GetCenterOfCurvature( _LayerEdge* ledge, BRepLProp_SLProps& surfProp, SMESH_MesherHelper& helper, gp_Pnt & center ) const { gp_XY uv = helper.GetNodeUV( _face, ledge->_nodes[0] ); surfProp.SetParameters( uv.X(), uv.Y() ); if ( !surfProp.IsCurvatureDefined() ) return false; const double oriFactor = ( _face.Orientation() == TopAbs_REVERSED ? +1. : -1. ); double surfCurvatureMax = surfProp.MaxCurvature() * oriFactor; double surfCurvatureMin = surfProp.MinCurvature() * oriFactor; if ( surfCurvatureMin > surfCurvatureMax ) center = surfProp.Value().Translated( surfProp.Normal().XYZ() / surfCurvatureMin * oriFactor ); else center = surfProp.Value().Translated( surfProp.Normal().XYZ() / surfCurvatureMax * oriFactor ); return true; } //================================================================================ /*! * \brief Check that prisms are not distorted */ //================================================================================ bool _ConvexFace::CheckPrisms() const { double vol = 0; for ( size_t i = 0; i < _simplexTestEdges.size(); ++i ) { const _LayerEdge* edge = _simplexTestEdges[i]; SMESH_TNodeXYZ tgtXYZ( edge->_nodes.back() ); for ( size_t j = 0; j < edge->_simplices.size(); ++j ) if ( !edge->_simplices[j].IsForward( edge->_nodes[0], tgtXYZ, vol )) { debugMsg( "Bad simplex of _simplexTestEdges (" << " "<< edge->_nodes[0]->GetID()<< " "<< tgtXYZ._node->GetID() << " "<< edge->_simplices[j]._nPrev->GetID() << " "<< edge->_simplices[j]._nNext->GetID() << " )" ); return false; } } return true; } //================================================================================ /*! * \brief Try to compute a new normal by interpolating normals of _LayerEdge's * stored in this _CentralCurveOnEdge. * \param [in] center - curvature center of a point of another _CentralCurveOnEdge. * \param [in,out] newNormal - current normal at this point, to be redefined * \return bool - true if succeeded. */ //================================================================================ bool _CentralCurveOnEdge::FindNewNormal( const gp_Pnt& center, gp_XYZ& newNormal ) { if ( this->_isDegenerated ) return false; // find two centers the given one lies between for ( size_t i = 0, nb = _curvaCenters.size()-1; i < nb; ++i ) { double sl2 = 1.001 * _segLength2[ i ]; double d1 = center.SquareDistance( _curvaCenters[ i ]); if ( d1 > sl2 ) continue; double d2 = center.SquareDistance( _curvaCenters[ i+1 ]); if ( d2 > sl2 || d2 + d1 < 1e-100 ) continue; d1 = Sqrt( d1 ); d2 = Sqrt( d2 ); double r = d1 / ( d1 + d2 ); gp_XYZ norm = (( 1. - r ) * _ledges[ i ]->_normal + ( r ) * _ledges[ i+1 ]->_normal ); norm.Normalize(); newNormal += norm; double sz = newNormal.Modulus(); if ( sz < 1e-200 ) break; newNormal /= sz; return true; } return false; } //================================================================================ /*! * \brief Set shape members */ //================================================================================ void _CentralCurveOnEdge::SetShapes( const TopoDS_Edge& edge, const _ConvexFace& convFace, _SolidData& data, SMESH_MesherHelper& helper) { _edge = edge; PShapeIteratorPtr fIt = helper.GetAncestors( edge, *helper.GetMesh(), TopAbs_FACE ); while ( const TopoDS_Shape* F = fIt->next()) if ( !convFace._face.IsSame( *F )) { _adjFace = TopoDS::Face( *F ); _adjFaceToSmooth = false; // _adjFace already in a smoothing queue ? if ( _EdgesOnShape* eos = data.GetShapeEdges( _adjFace )) _adjFaceToSmooth = eos->_toSmooth; break; } } //================================================================================ /*! * \brief Looks for intersection of it's last segment with faces * \param distance - returns shortest distance from the last node to intersection */ //================================================================================ bool _LayerEdge::FindIntersection( SMESH_ElementSearcher& searcher, double & distance, const double& epsilon, _EdgesOnShape& eos, const SMDS_MeshElement** intFace) { vector< const SMDS_MeshElement* > suspectFaces; double segLen; gp_Ax1 lastSegment = LastSegment( segLen, eos ); searcher.GetElementsNearLine( lastSegment, SMDSAbs_Face, suspectFaces ); bool segmentIntersected = false; distance = Precision::Infinite(); int iFace = -1; // intersected face for ( size_t j = 0 ; j < suspectFaces.size() /*&& !segmentIntersected*/; ++j ) { const SMDS_MeshElement* face = suspectFaces[j]; if ( face->GetNodeIndex( _nodes.back() ) >= 0 || face->GetNodeIndex( _nodes[0] ) >= 0 ) continue; // face sharing _LayerEdge node const int nbNodes = face->NbCornerNodes(); bool intFound = false; double dist; SMDS_MeshElement::iterator nIt = face->begin_nodes(); if ( nbNodes == 3 ) { intFound = SegTriaInter( lastSegment, *nIt++, *nIt++, *nIt++, dist, epsilon ); } else { const SMDS_MeshNode* tria[3]; tria[0] = *nIt++; tria[1] = *nIt++; for ( int n2 = 2; n2 < nbNodes && !intFound; ++n2 ) { tria[2] = *nIt++; intFound = SegTriaInter(lastSegment, tria[0], tria[1], tria[2], dist, epsilon ); tria[1] = tria[2]; } } if ( intFound ) { if ( dist < segLen*(1.01) && dist > -(_len*_lenFactor-segLen) ) segmentIntersected = true; if ( distance > dist ) distance = dist, iFace = j; } } if ( intFace ) *intFace = ( iFace != -1 ) ? suspectFaces[iFace] : 0; distance -= segLen; if ( segmentIntersected ) { #ifdef __myDEBUG SMDS_MeshElement::iterator nIt = suspectFaces[iFace]->begin_nodes(); gp_XYZ intP( lastSegment.Location().XYZ() + lastSegment.Direction().XYZ() * ( distance+segLen )); cout << "nodes: tgt " << _nodes.back()->GetID() << " src " << _nodes[0]->GetID() << ", intersection with face (" << (*nIt++)->GetID()<<" "<< (*nIt++)->GetID()<<" "<< (*nIt++)->GetID() << ") at point (" << intP.X() << ", " << intP.Y() << ", " << intP.Z() << ") distance = " << distance << endl; #endif } return segmentIntersected; } //================================================================================ /*! * \brief Returns a point used to check orientation of _simplices */ //================================================================================ gp_XYZ _LayerEdge::PrevCheckPos( _EdgesOnShape* eos ) const { size_t i = Is( NORMAL_UPDATED ) && IsOnFace() ? _pos.size()-2 : 0; if ( !eos || eos->_sWOL.IsNull() ) return _pos[ i ]; if ( eos->SWOLType() == TopAbs_EDGE ) { return BRepAdaptor_Curve( TopoDS::Edge( eos->_sWOL )).Value( _pos[i].X() ).XYZ(); } //else // TopAbs_FACE return BRepAdaptor_Surface( TopoDS::Face( eos->_sWOL )).Value(_pos[i].X(), _pos[i].Y() ).XYZ(); } //================================================================================ /*! * \brief Returns size and direction of the last segment */ //================================================================================ gp_Ax1 _LayerEdge::LastSegment(double& segLen, _EdgesOnShape& eos) const { // find two non-coincident positions gp_XYZ orig = _pos.back(); gp_XYZ vec; int iPrev = _pos.size() - 2; //const double tol = ( _len > 0 ) ? 0.3*_len : 1e-100; // adjusted for IPAL52478 + PAL22576 const double tol = ( _len > 0 ) ? ( 1e-6 * _len ) : 1e-100; while ( iPrev >= 0 ) { vec = orig - _pos[iPrev]; if ( vec.SquareModulus() > tol*tol ) break; else iPrev--; } // make gp_Ax1 gp_Ax1 segDir; if ( iPrev < 0 ) { segDir.SetLocation( SMESH_TNodeXYZ( _nodes[0] )); segDir.SetDirection( _normal ); segLen = 0; } else { gp_Pnt pPrev = _pos[ iPrev ]; if ( !eos._sWOL.IsNull() ) { TopLoc_Location loc; if ( eos.SWOLType() == TopAbs_EDGE ) { double f,l; Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( eos._sWOL ), loc, f,l); pPrev = curve->Value( pPrev.X() ).Transformed( loc ); } else { Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face( eos._sWOL ), loc ); pPrev = surface->Value( pPrev.X(), pPrev.Y() ).Transformed( loc ); } vec = SMESH_TNodeXYZ( _nodes.back() ) - pPrev.XYZ(); } segDir.SetLocation( pPrev ); segDir.SetDirection( vec ); segLen = vec.Modulus(); } return segDir; } //================================================================================ /*! * \brief Return the last (or \a which) position of the target node on a FACE. * \param [in] F - the FACE this _LayerEdge is inflated along * \param [in] which - index of position * \return gp_XY - result UV */ //================================================================================ gp_XY _LayerEdge::LastUV( const TopoDS_Face& F, _EdgesOnShape& eos, int which ) const { if ( F.IsSame( eos._sWOL )) // F is my FACE return gp_XY( _pos.back().X(), _pos.back().Y() ); if ( eos.SWOLType() != TopAbs_EDGE ) // wrong call return gp_XY( 1e100, 1e100 ); // _sWOL is EDGE of F; _pos.back().X() is the last U on the EDGE double f, l, u = _pos[ which < 0 ? _pos.size()-1 : which ].X(); Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface( TopoDS::Edge(eos._sWOL), F, f,l); if ( !C2d.IsNull() && f <= u && u <= l ) return C2d->Value( u ).XY(); return gp_XY( 1e100, 1e100 ); } //================================================================================ /*! * \brief Test intersection of the last segment with a given triangle * using Moller-Trumbore algorithm * Intersection is detected if distance to intersection is less than _LayerEdge._len */ //================================================================================ bool _LayerEdge::SegTriaInter( const gp_Ax1& lastSegment, const gp_XYZ& vert0, const gp_XYZ& vert1, const gp_XYZ& vert2, double& t, const double& EPSILON) const { const gp_Pnt& orig = lastSegment.Location(); const gp_Dir& dir = lastSegment.Direction(); /* calculate distance from vert0 to ray origin */ //gp_XYZ tvec = orig.XYZ() - vert0; //if ( tvec * dir > EPSILON ) // intersected face is at back side of the temporary face this _LayerEdge belongs to //return false; gp_XYZ edge1 = vert1 - vert0; gp_XYZ edge2 = vert2 - vert0; /* begin calculating determinant - also used to calculate U parameter */ gp_XYZ pvec = dir.XYZ() ^ edge2; /* if determinant is near zero, ray lies in plane of triangle */ double det = edge1 * pvec; const double ANGL_EPSILON = 1e-12; if ( det > -ANGL_EPSILON && det < ANGL_EPSILON ) return false; /* calculate distance from vert0 to ray origin */ gp_XYZ tvec = orig.XYZ() - vert0; /* calculate U parameter and test bounds */ double u = ( tvec * pvec ) / det; //if (u < 0.0 || u > 1.0) if ( u < -EPSILON || u > 1.0 + EPSILON ) return false; /* prepare to test V parameter */ gp_XYZ qvec = tvec ^ edge1; /* calculate V parameter and test bounds */ double v = (dir.XYZ() * qvec) / det; //if ( v < 0.0 || u + v > 1.0 ) if ( v < -EPSILON || u + v > 1.0 + EPSILON ) return false; /* calculate t, ray intersects triangle */ t = (edge2 * qvec) / det; //return true; return t > 0.; } //================================================================================ /*! * \brief _LayerEdge, located at a concave VERTEX of a FACE, moves target nodes of * neighbor _LayerEdge's by it's own inflation vector. * \param [in] eov - EOS of the VERTEX * \param [in] eos - EOS of the FACE * \param [in] step - inflation step * \param [in,out] badSmooEdges - tangled _LayerEdge's */ //================================================================================ void _LayerEdge::MoveNearConcaVer( const _EdgesOnShape* eov, const _EdgesOnShape* eos, const int step, vector< _LayerEdge* > & badSmooEdges ) { // check if any of _neibors is in badSmooEdges if ( std::find_first_of( _neibors.begin(), _neibors.end(), badSmooEdges.begin(), badSmooEdges.end() ) == _neibors.end() ) return; // get all edges to move set< _LayerEdge* > edges; // find a distance between _LayerEdge on VERTEX and its neighbors gp_XYZ curPosV = SMESH_TNodeXYZ( _nodes.back() ); double dist2 = 0; for ( size_t i = 0; i < _neibors.size(); ++i ) { _LayerEdge* nEdge = _neibors[i]; if ( nEdge->_nodes[0]->getshapeId() == eos->_shapeID ) { edges.insert( nEdge ); dist2 = Max( dist2, ( curPosV - nEdge->_pos.back() ).SquareModulus() ); } } // add _LayerEdge's close to curPosV size_t nbE; do { nbE = edges.size(); for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e ) { _LayerEdge* edgeF = *e; for ( size_t i = 0; i < edgeF->_neibors.size(); ++i ) { _LayerEdge* nEdge = edgeF->_neibors[i]; if ( nEdge->_nodes[0]->getshapeId() == eos->_shapeID && dist2 > ( curPosV - nEdge->_pos.back() ).SquareModulus() ) edges.insert( nEdge ); } } } while ( nbE < edges.size() ); // move the target node of the got edges gp_XYZ prevPosV = PrevPos(); if ( eov->SWOLType() == TopAbs_EDGE ) { BRepAdaptor_Curve curve ( TopoDS::Edge( eov->_sWOL )); prevPosV = curve.Value( prevPosV.X() ).XYZ(); } else if ( eov->SWOLType() == TopAbs_FACE ) { BRepAdaptor_Surface surface( TopoDS::Face( eov->_sWOL )); prevPosV = surface.Value( prevPosV.X(), prevPosV.Y() ).XYZ(); } SMDS_FacePositionPtr fPos; //double r = 1. - Min( 0.9, step / 10. ); for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e ) { _LayerEdge* edgeF = *e; const gp_XYZ prevVF = edgeF->PrevPos() - prevPosV; const gp_XYZ newPosF = curPosV + prevVF; SMDS_MeshNode* tgtNodeF = const_cast( edgeF->_nodes.back() ); tgtNodeF->setXYZ( newPosF.X(), newPosF.Y(), newPosF.Z() ); edgeF->_pos.back() = newPosF; dumpMoveComm( tgtNodeF, "MoveNearConcaVer" ); // debug // set _curvature to make edgeF updated by putOnOffsetSurface() if ( !edgeF->_curvature ) if (( fPos = edgeF->_nodes[0]->GetPosition() )) { edgeF->_curvature = _Factory::NewCurvature(); edgeF->_curvature->_r = 0; edgeF->_curvature->_k = 0; edgeF->_curvature->_h2lenRatio = 0; edgeF->_curvature->_uv.SetCoord( fPos->GetUParameter(), fPos->GetVParameter() ); } } // gp_XYZ inflationVec( SMESH_TNodeXYZ( _nodes.back() ) - // SMESH_TNodeXYZ( _nodes[0] )); // for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e ) // { // _LayerEdge* edgeF = *e; // gp_XYZ newPos = SMESH_TNodeXYZ( edgeF->_nodes[0] ) + inflationVec; // SMDS_MeshNode* tgtNode = const_cast( edgeF->_nodes.back() ); // tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); // edgeF->_pos.back() = newPosF; // dumpMoveComm( tgtNode, "MoveNearConcaVer" ); // debug // } // smooth _LayerEdge's around moved nodes //size_t nbBadBefore = badSmooEdges.size(); for ( set< _LayerEdge* >::iterator e = edges.begin(); e != edges.end(); ++e ) { _LayerEdge* edgeF = *e; for ( size_t j = 0; j < edgeF->_neibors.size(); ++j ) if ( edgeF->_neibors[j]->_nodes[0]->getshapeId() == eos->_shapeID ) //&& !edges.count( edgeF->_neibors[j] )) { _LayerEdge* edgeFN = edgeF->_neibors[j]; edgeFN->Unset( SMOOTHED ); int nbBad = edgeFN->Smooth( step, /*isConcaFace=*/true, /*findBest=*/true ); // if ( nbBad > 0 ) // { // gp_XYZ newPos = SMESH_TNodeXYZ( edgeFN->_nodes[0] ) + inflationVec; // const gp_XYZ& prevPos = edgeFN->_pos[ edgeFN->_pos.size()-2 ]; // int nbBadAfter = edgeFN->_simplices.size(); // double vol; // for ( size_t iS = 0; iS < edgeFN->_simplices.size(); ++iS ) // { // nbBadAfter -= edgeFN->_simplices[iS].IsForward( &prevPos, &newPos, vol ); // } // if ( nbBadAfter <= nbBad ) // { // SMDS_MeshNode* tgtNode = const_cast( edgeFN->_nodes.back() ); // tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); // edgeF->_pos.back() = newPosF; // dumpMoveComm( tgtNode, "MoveNearConcaVer 2" ); // debug // nbBad = nbBadAfter; // } // } if ( nbBad > 0 ) badSmooEdges.push_back( edgeFN ); } } // move a bit not smoothed around moved nodes // for ( size_t i = nbBadBefore; i < badSmooEdges.size(); ++i ) // { // _LayerEdge* edgeF = badSmooEdges[i]; // SMDS_MeshNode* tgtNode = const_cast( edgeF->_nodes.back() ); // gp_XYZ newPos1 = SMESH_TNodeXYZ( edgeF->_nodes[0] ) + inflationVec; // gp_XYZ newPos2 = 0.5 * ( newPos1 + SMESH_TNodeXYZ( tgtNode )); // tgtNode->setXYZ( newPos2.X(), newPos2.Y(), newPos2.Z() ); // edgeF->_pos.back() = newPosF; // dumpMoveComm( tgtNode, "MoveNearConcaVer 2" ); // debug // } } //================================================================================ /*! * \brief Perform smooth of _LayerEdge's based on EDGE's * \retval bool - true if node has been moved */ //================================================================================ bool _LayerEdge::SmoothOnEdge(Handle(ShapeAnalysis_Surface)& surface, const TopoDS_Face& F, SMESH_MesherHelper& helper) { ASSERT( IsOnEdge() ); SMDS_MeshNode* tgtNode = const_cast( _nodes.back() ); SMESH_TNodeXYZ oldPos( tgtNode ); double dist01, distNewOld; SMESH_TNodeXYZ p0( _2neibors->tgtNode(0)); SMESH_TNodeXYZ p1( _2neibors->tgtNode(1)); dist01 = p0.Distance( _2neibors->tgtNode(1) ); gp_Pnt newPos = p0 * _2neibors->_wgt[0] + p1 * _2neibors->_wgt[1]; double lenDelta = 0; if ( _curvature ) { //lenDelta = _curvature->lenDelta( _len ); lenDelta = _curvature->lenDeltaByDist( dist01 ); newPos.ChangeCoord() += _normal * lenDelta; } distNewOld = newPos.Distance( oldPos ); if ( F.IsNull() ) { if ( _2neibors->_plnNorm ) { // put newPos on the plane defined by source node and _plnNorm gp_XYZ new2src = SMESH_TNodeXYZ( _nodes[0] ) - newPos.XYZ(); double new2srcProj = (*_2neibors->_plnNorm) * new2src; newPos.ChangeCoord() += (*_2neibors->_plnNorm) * new2srcProj; } tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); _pos.back() = newPos.XYZ(); } else { tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); gp_XY uv( Precision::Infinite(), 0 ); helper.CheckNodeUV( F, tgtNode, uv, 1e-10, /*force=*/true ); _pos.back().SetCoord( uv.X(), uv.Y(), 0 ); newPos = surface->Value( uv ); tgtNode->setXYZ( newPos.X(), newPos.Y(), newPos.Z() ); } // commented for IPAL0052478 // if ( _curvature && lenDelta < 0 ) // { // gp_Pnt prevPos( _pos[ _pos.size()-2 ]); // _len -= prevPos.Distance( oldPos ); // _len += prevPos.Distance( newPos ); // } bool moved = distNewOld > dist01/50; //if ( moved ) dumpMove( tgtNode ); // debug return moved; } //================================================================================ /*! * \brief Perform 3D smooth of nodes inflated from FACE. No check of validity */ //================================================================================ void _LayerEdge::SmoothWoCheck() { if ( Is( DIFFICULT )) return; bool moved = Is( SMOOTHED ); for ( size_t i = 0; i < _neibors.size() && !moved; ++i ) moved = _neibors[i]->Is( SMOOTHED ); if ( !moved ) return; gp_XYZ newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction() SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() ); n->setXYZ( newPos.X(), newPos.Y(), newPos.Z()); _pos.back() = newPos; dumpMoveComm( n, SMESH_Comment("No check - ") << _funNames[ smooFunID() ]); } //================================================================================ /*! * \brief Checks validity of _neibors on EDGEs and VERTEXes */ //================================================================================ int _LayerEdge::CheckNeiborsOnBoundary( vector< _LayerEdge* >* badNeibors, bool * needSmooth ) { if ( ! Is( NEAR_BOUNDARY )) return 0; int nbBad = 0; double vol; for ( size_t iN = 0; iN < _neibors.size(); ++iN ) { _LayerEdge* eN = _neibors[iN]; if ( eN->_nodes[0]->getshapeId() == _nodes[0]->getshapeId() ) continue; if ( needSmooth ) *needSmooth |= ( eN->Is( _LayerEdge::BLOCKED ) || eN->Is( _LayerEdge::NORMAL_UPDATED ) || eN->_pos.size() != _pos.size() ); SMESH_TNodeXYZ curPosN ( eN->_nodes.back() ); SMESH_TNodeXYZ prevPosN( eN->_nodes[0] ); for ( size_t i = 0; i < eN->_simplices.size(); ++i ) if ( eN->_nodes.size() > 1 && eN->_simplices[i].Includes( _nodes.back() ) && !eN->_simplices[i].IsForward( &prevPosN, &curPosN, vol )) { ++nbBad; if ( badNeibors ) { badNeibors->push_back( eN ); debugMsg("Bad boundary simplex ( " << " "<< eN->_nodes[0]->GetID() << " "<< eN->_nodes.back()->GetID() << " "<< eN->_simplices[i]._nPrev->GetID() << " "<< eN->_simplices[i]._nNext->GetID() << " )" ); } else { break; } } } return nbBad; } //================================================================================ /*! * \brief Perform 'smart' 3D smooth of nodes inflated from FACE * \retval int - nb of bad simplices around this _LayerEdge */ //================================================================================ int _LayerEdge::Smooth(const int step, bool findBest, vector< _LayerEdge* >& toSmooth ) { if ( !Is( MOVED ) || Is( SMOOTHED ) || Is( BLOCKED )) return 0; // shape of simplices not changed if ( _simplices.size() < 2 ) return 0; // _LayerEdge inflated along EDGE or FACE if ( Is( DIFFICULT )) // || Is( ON_CONCAVE_FACE ) findBest = true; const gp_XYZ& curPos = _pos.back(); const gp_XYZ& prevPos = _pos[0]; //PrevPos(); // quality metrics (orientation) of tetras around _tgtNode int nbOkBefore = 0; double vol, minVolBefore = 1e100; for ( size_t i = 0; i < _simplices.size(); ++i ) { nbOkBefore += _simplices[i].IsForward( &prevPos, &curPos, vol ); minVolBefore = Min( minVolBefore, vol ); } int nbBad = _simplices.size() - nbOkBefore; bool bndNeedSmooth = false; if ( nbBad == 0 ) nbBad = CheckNeiborsOnBoundary( 0, & bndNeedSmooth ); if ( nbBad > 0 ) Set( DISTORTED ); // evaluate min angle if ( nbBad == 0 && !findBest && !bndNeedSmooth ) { size_t nbGoodAngles = _simplices.size(); double angle; for ( size_t i = 0; i < _simplices.size(); ++i ) { if ( !_simplices[i].IsMinAngleOK( curPos, angle ) && angle > _minAngle ) --nbGoodAngles; } if ( nbGoodAngles == _simplices.size() ) { Unset( MOVED ); return 0; } } if ( Is( ON_CONCAVE_FACE )) findBest = true; if ( step % 2 == 0 ) findBest = false; if ( Is( ON_CONCAVE_FACE ) && !findBest ) // alternate FUN_CENTROIDAL and FUN_LAPLACIAN { if ( _smooFunction == _funs[ FUN_LAPLACIAN ] ) _smooFunction = _funs[ FUN_CENTROIDAL ]; else _smooFunction = _funs[ FUN_LAPLACIAN ]; } // compute new position for the last _pos using different _funs gp_XYZ newPos; bool moved = false; for ( int iFun = -1; iFun < theNbSmooFuns; ++iFun ) { if ( iFun < 0 ) newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction() else if ( _funs[ iFun ] == _smooFunction ) continue; // _smooFunction again else if ( step > 1 ) newPos = (this->*_funs[ iFun ])(); // try other smoothing fun else break; // let "easy" functions improve elements around distorted ones if ( _curvature ) { double delta = _curvature->lenDelta( _len ); if ( delta > 0 ) newPos += _normal * delta; else { double segLen = _normal * ( newPos - prevPos ); if ( segLen + delta > 0 ) newPos += _normal * delta; } // double segLenChange = _normal * ( curPos - newPos ); // newPos += 0.5 * _normal * segLenChange; } int nbOkAfter = 0; double minVolAfter = 1e100; for ( size_t i = 0; i < _simplices.size(); ++i ) { nbOkAfter += _simplices[i].IsForward( &prevPos, &newPos, vol ); minVolAfter = Min( minVolAfter, vol ); } // get worse? if ( nbOkAfter < nbOkBefore ) continue; if (( findBest ) && ( nbOkAfter == nbOkBefore ) && ( minVolAfter <= minVolBefore )) continue; nbBad = _simplices.size() - nbOkAfter; minVolBefore = minVolAfter; nbOkBefore = nbOkAfter; moved = true; SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() ); n->setXYZ( newPos.X(), newPos.Y(), newPos.Z()); _pos.back() = newPos; dumpMoveComm( n, SMESH_Comment( _funNames[ iFun < 0 ? smooFunID() : iFun ] ) << (nbBad ? " --BAD" : "")); if ( iFun > -1 ) { continue; // look for a better function } if ( !findBest ) break; } // loop on smoothing functions if ( moved ) // notify _neibors { Set( SMOOTHED ); for ( size_t i = 0; i < _neibors.size(); ++i ) if ( !_neibors[i]->Is( MOVED )) { _neibors[i]->Set( MOVED ); toSmooth.push_back( _neibors[i] ); } } return nbBad; } //================================================================================ /*! * \brief Perform 'smart' 3D smooth of nodes inflated from FACE * \retval int - nb of bad simplices around this _LayerEdge */ //================================================================================ int _LayerEdge::Smooth(const int step, const bool isConcaveFace, bool findBest ) { if ( !_smooFunction ) return 0; // _LayerEdge inflated along EDGE or FACE if ( Is( BLOCKED )) return 0; // not inflated const gp_XYZ& curPos = _pos.back(); const gp_XYZ& prevPos = _pos[0]; //PrevCheckPos(); // quality metrics (orientation) of tetras around _tgtNode int nbOkBefore = 0; double vol, minVolBefore = 1e100; for ( size_t i = 0; i < _simplices.size(); ++i ) { nbOkBefore += _simplices[i].IsForward( &prevPos, &curPos, vol ); minVolBefore = Min( minVolBefore, vol ); } int nbBad = _simplices.size() - nbOkBefore; if ( isConcaveFace ) // alternate FUN_CENTROIDAL and FUN_LAPLACIAN { if ( _smooFunction == _funs[ FUN_CENTROIDAL ] && step % 2 ) _smooFunction = _funs[ FUN_LAPLACIAN ]; else if ( _smooFunction == _funs[ FUN_LAPLACIAN ] && !( step % 2 )) _smooFunction = _funs[ FUN_CENTROIDAL ]; } // compute new position for the last _pos using different _funs gp_XYZ newPos; for ( int iFun = -1; iFun < theNbSmooFuns; ++iFun ) { if ( iFun < 0 ) newPos = (this->*_smooFunction)(); // fun chosen by ChooseSmooFunction() else if ( _funs[ iFun ] == _smooFunction ) continue; // _smooFunction again else if ( step > 1 ) newPos = (this->*_funs[ iFun ])(); // try other smoothing fun else break; // let "easy" functions improve elements around distorted ones if ( _curvature ) { double delta = _curvature->lenDelta( _len ); if ( delta > 0 ) newPos += _normal * delta; else { double segLen = _normal * ( newPos - prevPos ); if ( segLen + delta > 0 ) newPos += _normal * delta; } // double segLenChange = _normal * ( curPos - newPos ); // newPos += 0.5 * _normal * segLenChange; } int nbOkAfter = 0; double minVolAfter = 1e100; for ( size_t i = 0; i < _simplices.size(); ++i ) { nbOkAfter += _simplices[i].IsForward( &prevPos, &newPos, vol ); minVolAfter = Min( minVolAfter, vol ); } // get worse? if ( nbOkAfter < nbOkBefore ) continue; if (( isConcaveFace || findBest ) && ( nbOkAfter == nbOkBefore ) && ( minVolAfter <= minVolBefore ) ) continue; nbBad = _simplices.size() - nbOkAfter; minVolBefore = minVolAfter; nbOkBefore = nbOkAfter; SMDS_MeshNode* n = const_cast< SMDS_MeshNode* >( _nodes.back() ); n->setXYZ( newPos.X(), newPos.Y(), newPos.Z()); _pos.back() = newPos; dumpMoveComm( n, SMESH_Comment( _funNames[ iFun < 0 ? smooFunID() : iFun ] ) << ( nbBad ? "--BAD" : "")); // commented for IPAL0052478 // _len -= prevPos.Distance(SMESH_TNodeXYZ( n )); // _len += prevPos.Distance(newPos); if ( iFun > -1 ) // findBest || the chosen _fun makes worse { //_smooFunction = _funs[ iFun ]; // cout << "# " << _funNames[ iFun ] << "\t N:" << _nodes.back()->GetID() // << "\t nbBad: " << _simplices.size() - nbOkAfter // << " minVol: " << minVolAfter // << " " << newPos.X() << " " << newPos.Y() << " " << newPos.Z() // << endl; continue; // look for a better function } if ( !findBest ) break; } // loop on smoothing functions return nbBad; } //================================================================================ /*! * \brief Chooses a smoothing technique giving a position most close to an initial one. * For a correct result, _simplices must contain nodes lying on geometry. */ //================================================================================ void _LayerEdge::ChooseSmooFunction( const set< TGeomID >& concaveVertices, const TNode2Edge& n2eMap) { if ( _smooFunction ) return; // use smoothNefPolygon() near concaveVertices if ( !concaveVertices.empty() ) { _smooFunction = _funs[ FUN_CENTROIDAL ]; Set( ON_CONCAVE_FACE ); for ( size_t i = 0; i < _simplices.size(); ++i ) { if ( concaveVertices.count( _simplices[i]._nPrev->getshapeId() )) { _smooFunction = _funs[ FUN_NEFPOLY ]; // set FUN_CENTROIDAL to neighbor edges for ( i = 0; i < _neibors.size(); ++i ) { if ( _neibors[i]->_nodes[0]->GetPosition()->GetDim() == 2 ) { _neibors[i]->_smooFunction = _funs[ FUN_CENTROIDAL ]; } } return; } } // // this choice is done only if ( !concaveVertices.empty() ) for Grids/smesh/bugs_19/X1 // // where the nodes are smoothed too far along a sphere thus creating // // inverted _simplices // double dist[theNbSmooFuns]; // //double coef[theNbSmooFuns] = { 1., 1.2, 1.4, 1.4 }; // double coef[theNbSmooFuns] = { 1., 1., 1., 1. }; // double minDist = Precision::Infinite(); // gp_Pnt p = SMESH_TNodeXYZ( _nodes[0] ); // for ( int i = 0; i < FUN_NEFPOLY; ++i ) // { // gp_Pnt newP = (this->*_funs[i])(); // dist[i] = p.SquareDistance( newP ); // if ( dist[i]*coef[i] < minDist ) // { // _smooFunction = _funs[i]; // minDist = dist[i]*coef[i]; // } // } } else { _smooFunction = _funs[ FUN_LAPLACIAN ]; } // int minDim = 3; // for ( size_t i = 0; i < _simplices.size(); ++i ) // minDim = Min( minDim, _simplices[i]._nPrev->GetPosition()->GetDim() ); // if ( minDim == 0 ) // _smooFunction = _funs[ FUN_CENTROIDAL ]; // else if ( minDim == 1 ) // _smooFunction = _funs[ FUN_CENTROIDAL ]; // int iMin; // for ( int i = 0; i < FUN_NB; ++i ) // { // //cout << dist[i] << " "; // if ( _smooFunction == _funs[i] ) { // iMin = i; // //debugMsg( fNames[i] ); // break; // } // } // cout << _funNames[ iMin ] << "\t N:" << _nodes.back()->GetID() << endl; } //================================================================================ /*! * \brief Returns a name of _SmooFunction */ //================================================================================ int _LayerEdge::smooFunID( _LayerEdge::PSmooFun fun) const { if ( !fun ) fun = _smooFunction; for ( int i = 0; i < theNbSmooFuns; ++i ) if ( fun == _funs[i] ) return i; return theNbSmooFuns; } //================================================================================ /*! * \brief Computes a new node position using Laplacian smoothing */ //================================================================================ gp_XYZ _LayerEdge::smoothLaplacian() { gp_XYZ newPos (0,0,0); for ( size_t i = 0; i < _simplices.size(); ++i ) newPos += SMESH_TNodeXYZ( _simplices[i]._nPrev ); newPos /= _simplices.size(); return newPos; } //================================================================================ /*! * \brief Computes a new node position using angular-based smoothing */ //================================================================================ gp_XYZ _LayerEdge::smoothAngular() { vector< gp_Vec > edgeDir; edgeDir. reserve( _simplices.size() + 1 ); vector< double > edgeSize; edgeSize.reserve( _simplices.size() ); vector< gp_XYZ > points; points. reserve( _simplices.size() + 1 ); gp_XYZ pPrev = SMESH_TNodeXYZ( _simplices.back()._nPrev ); gp_XYZ pN( 0,0,0 ); for ( size_t i = 0; i < _simplices.size(); ++i ) { gp_XYZ p = SMESH_TNodeXYZ( _simplices[i]._nPrev ); edgeDir.push_back( p - pPrev ); edgeSize.push_back( edgeDir.back().Magnitude() ); if ( edgeSize.back() < numeric_limits::min() ) { edgeDir.pop_back(); edgeSize.pop_back(); } else { edgeDir.back() /= edgeSize.back(); points.push_back( p ); pN += p; } pPrev = p; } edgeDir.push_back ( edgeDir[0] ); edgeSize.push_back( edgeSize[0] ); pN /= points.size(); gp_XYZ newPos(0,0,0); double sumSize = 0; for ( size_t i = 0; i < points.size(); ++i ) { gp_Vec toN = pN - points[i]; double toNLen = toN.Magnitude(); if ( toNLen < numeric_limits::min() ) { newPos += pN; continue; } gp_Vec bisec = edgeDir[i] + edgeDir[i+1]; double bisecLen = bisec.SquareMagnitude(); if ( bisecLen < numeric_limits::min() ) { gp_Vec norm = edgeDir[i] ^ toN; bisec = norm ^ edgeDir[i]; bisecLen = bisec.SquareMagnitude(); } bisecLen = Sqrt( bisecLen ); bisec /= bisecLen; #if 1 gp_XYZ pNew = ( points[i] + bisec.XYZ() * toNLen ) * bisecLen; sumSize += bisecLen; #else gp_XYZ pNew = ( points[i] + bisec.XYZ() * toNLen ) * ( edgeSize[i] + edgeSize[i+1] ); sumSize += ( edgeSize[i] + edgeSize[i+1] ); #endif newPos += pNew; } newPos /= sumSize; // project newPos to an average plane gp_XYZ norm(0,0,0); // plane normal points.push_back( points[0] ); for ( size_t i = 1; i < points.size(); ++i ) { gp_XYZ vec1 = points[ i-1 ] - pN; gp_XYZ vec2 = points[ i ] - pN; gp_XYZ cross = vec1 ^ vec2; try { cross.Normalize(); if ( cross * norm < numeric_limits::min() ) norm += cross.Reversed(); else norm += cross; } catch (Standard_Failure) { // if |cross| == 0. } } gp_XYZ vec = newPos - pN; double r = ( norm * vec ) / norm.SquareModulus(); // param [0,1] on norm newPos = newPos - r * norm; return newPos; } //================================================================================ /*! * \brief Computes a new node position using weighted node positions */ //================================================================================ gp_XYZ _LayerEdge::smoothLengthWeighted() { vector< double > edgeSize; edgeSize.reserve( _simplices.size() + 1); vector< gp_XYZ > points; points. reserve( _simplices.size() ); gp_XYZ pPrev = SMESH_TNodeXYZ( _simplices.back()._nPrev ); for ( size_t i = 0; i < _simplices.size(); ++i ) { gp_XYZ p = SMESH_TNodeXYZ( _simplices[i]._nPrev ); edgeSize.push_back( ( p - pPrev ).Modulus() ); if ( edgeSize.back() < numeric_limits::min() ) { edgeSize.pop_back(); } else { points.push_back( p ); } pPrev = p; } edgeSize.push_back( edgeSize[0] ); gp_XYZ newPos(0,0,0); double sumSize = 0; for ( size_t i = 0; i < points.size(); ++i ) { newPos += points[i] * ( edgeSize[i] + edgeSize[i+1] ); sumSize += edgeSize[i] + edgeSize[i+1]; } newPos /= sumSize; return newPos; } //================================================================================ /*! * \brief Computes a new node position using angular-based smoothing */ //================================================================================ gp_XYZ _LayerEdge::smoothCentroidal() { gp_XYZ newPos(0,0,0); gp_XYZ pN = SMESH_TNodeXYZ( _nodes.back() ); double sumSize = 0; for ( size_t i = 0; i < _simplices.size(); ++i ) { gp_XYZ p1 = SMESH_TNodeXYZ( _simplices[i]._nPrev ); gp_XYZ p2 = SMESH_TNodeXYZ( _simplices[i]._nNext ); gp_XYZ gc = ( pN + p1 + p2 ) / 3.; double size = (( p1 - pN ) ^ ( p2 - pN )).Modulus(); sumSize += size; newPos += gc * size; } newPos /= sumSize; return newPos; } //================================================================================ /*! * \brief Computes a new node position located inside a Nef polygon */ //================================================================================ gp_XYZ _LayerEdge::smoothNefPolygon() #ifdef OLD_NEF_POLYGON { gp_XYZ newPos(0,0,0); // get a plane to search a solution on vector< gp_XYZ > vecs( _simplices.size() + 1 ); size_t i; const double tol = numeric_limits::min(); gp_XYZ center(0,0,0); for ( i = 0; i < _simplices.size(); ++i ) { vecs[i] = ( SMESH_TNodeXYZ( _simplices[i]._nNext ) - SMESH_TNodeXYZ( _simplices[i]._nPrev )); center += SMESH_TNodeXYZ( _simplices[i]._nPrev ); } vecs.back() = vecs[0]; center /= _simplices.size(); gp_XYZ zAxis(0,0,0); for ( i = 0; i < _simplices.size(); ++i ) zAxis += vecs[i] ^ vecs[i+1]; gp_XYZ yAxis; for ( i = 0; i < _simplices.size(); ++i ) { yAxis = vecs[i]; if ( yAxis.SquareModulus() > tol ) break; } gp_XYZ xAxis = yAxis ^ zAxis; // SMESH_TNodeXYZ p0( _simplices[0]._nPrev ); // const double tol = 1e-6 * ( p0.Distance( _simplices[1]._nPrev ) + // p0.Distance( _simplices[2]._nPrev )); // gp_XYZ center = smoothLaplacian(); // gp_XYZ xAxis, yAxis, zAxis; // for ( i = 0; i < _simplices.size(); ++i ) // { // xAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; // if ( xAxis.SquareModulus() > tol*tol ) // break; // } // for ( i = 1; i < _simplices.size(); ++i ) // { // yAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; // zAxis = xAxis ^ yAxis; // if ( zAxis.SquareModulus() > tol*tol ) // break; // } // if ( i == _simplices.size() ) return newPos; yAxis = zAxis ^ xAxis; xAxis /= xAxis.Modulus(); yAxis /= yAxis.Modulus(); // get half-planes of _simplices vector< _halfPlane > halfPlns( _simplices.size() ); int nbHP = 0; for ( size_t i = 0; i < _simplices.size(); ++i ) { gp_XYZ OP1 = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; gp_XYZ OP2 = SMESH_TNodeXYZ( _simplices[i]._nNext ) - center; gp_XY p1( OP1 * xAxis, OP1 * yAxis ); gp_XY p2( OP2 * xAxis, OP2 * yAxis ); gp_XY vec12 = p2 - p1; double dist12 = vec12.Modulus(); if ( dist12 < tol ) continue; vec12 /= dist12; halfPlns[ nbHP ]._pos = p1; halfPlns[ nbHP ]._dir = vec12; halfPlns[ nbHP ]._inNorm.SetCoord( -vec12.Y(), vec12.X() ); ++nbHP; } // intersect boundaries of half-planes, define state of intersection points // in relation to all half-planes and calculate internal point of a 2D polygon double sumLen = 0; gp_XY newPos2D (0,0); enum { UNDEF = -1, NOT_OUT, IS_OUT, NO_INT }; typedef std::pair< gp_XY, int > TIntPntState; // coord and isOut state TIntPntState undefIPS( gp_XY(1e100,1e100), UNDEF ); vector< vector< TIntPntState > > allIntPnts( nbHP ); for ( int iHP1 = 0; iHP1 < nbHP; ++iHP1 ) { vector< TIntPntState > & intPnts1 = allIntPnts[ iHP1 ]; if ( intPnts1.empty() ) intPnts1.resize( nbHP, undefIPS ); int iPrev = SMESH_MesherHelper::WrapIndex( iHP1 - 1, nbHP ); int iNext = SMESH_MesherHelper::WrapIndex( iHP1 + 1, nbHP ); int nbNotOut = 0; const gp_XY* segEnds[2] = { 0, 0 }; // NOT_OUT points for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 ) { if ( iHP1 == iHP2 ) continue; TIntPntState & ips1 = intPnts1[ iHP2 ]; if ( ips1.second == UNDEF ) { // find an intersection point of boundaries of iHP1 and iHP2 if ( iHP2 == iPrev ) // intersection with neighbors is known ips1.first = halfPlns[ iHP1 ]._pos; else if ( iHP2 == iNext ) ips1.first = halfPlns[ iHP2 ]._pos; else if ( !halfPlns[ iHP1 ].FindIntersection( halfPlns[ iHP2 ], ips1.first )) ips1.second = NO_INT; // classify the found intersection point if ( ips1.second != NO_INT ) { ips1.second = NOT_OUT; for ( int i = 0; i < nbHP && ips1.second == NOT_OUT; ++i ) if ( i != iHP1 && i != iHP2 && halfPlns[ i ].IsOut( ips1.first, tol )) ips1.second = IS_OUT; } vector< TIntPntState > & intPnts2 = allIntPnts[ iHP2 ]; if ( intPnts2.empty() ) intPnts2.resize( nbHP, undefIPS ); TIntPntState & ips2 = intPnts2[ iHP1 ]; ips2 = ips1; } if ( ips1.second == NOT_OUT ) { ++nbNotOut; segEnds[ bool(segEnds[0]) ] = & ips1.first; } } // find a NOT_OUT segment of boundary which is located between // two NOT_OUT int points if ( nbNotOut < 2 ) continue; // no such a segment if ( nbNotOut > 2 ) { // sort points along the boundary map< double, TIntPntState* > ipsByParam; for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 ) { TIntPntState & ips1 = intPnts1[ iHP2 ]; if ( ips1.second != NO_INT ) { gp_XY op = ips1.first - halfPlns[ iHP1 ]._pos; double param = op * halfPlns[ iHP1 ]._dir; ipsByParam.insert( make_pair( param, & ips1 )); } } // look for two neighboring NOT_OUT points nbNotOut = 0; map< double, TIntPntState* >::iterator u2ips = ipsByParam.begin(); for ( ; u2ips != ipsByParam.end(); ++u2ips ) { TIntPntState & ips1 = *(u2ips->second); if ( ips1.second == NOT_OUT ) segEnds[ bool( nbNotOut++ ) ] = & ips1.first; else if ( nbNotOut >= 2 ) break; else nbNotOut = 0; } } if ( nbNotOut >= 2 ) { double len = ( *segEnds[0] - *segEnds[1] ).Modulus(); sumLen += len; newPos2D += 0.5 * len * ( *segEnds[0] + *segEnds[1] ); } } if ( sumLen > 0 ) { newPos2D /= sumLen; newPos = center + xAxis * newPos2D.X() + yAxis * newPos2D.Y(); } else { newPos = center; } return newPos; } #else // OLD_NEF_POLYGON { ////////////////////////////////// NEW gp_XYZ newPos(0,0,0); // get a plane to search a solution on size_t i; gp_XYZ center(0,0,0); for ( i = 0; i < _simplices.size(); ++i ) center += SMESH_TNodeXYZ( _simplices[i]._nPrev ); center /= _simplices.size(); vector< gp_XYZ > vecs( _simplices.size() + 1 ); for ( i = 0; i < _simplices.size(); ++i ) vecs[i] = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; vecs.back() = vecs[0]; const double tol = numeric_limits::min(); gp_XYZ zAxis(0,0,0); for ( i = 0; i < _simplices.size(); ++i ) { gp_XYZ cross = vecs[i] ^ vecs[i+1]; try { cross.Normalize(); if ( cross * zAxis < tol ) zAxis += cross.Reversed(); else zAxis += cross; } catch (Standard_Failure) { // if |cross| == 0. } } gp_XYZ yAxis; for ( i = 0; i < _simplices.size(); ++i ) { yAxis = vecs[i]; if ( yAxis.SquareModulus() > tol ) break; } gp_XYZ xAxis = yAxis ^ zAxis; // SMESH_TNodeXYZ p0( _simplices[0]._nPrev ); // const double tol = 1e-6 * ( p0.Distance( _simplices[1]._nPrev ) + // p0.Distance( _simplices[2]._nPrev )); // gp_XYZ center = smoothLaplacian(); // gp_XYZ xAxis, yAxis, zAxis; // for ( i = 0; i < _simplices.size(); ++i ) // { // xAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; // if ( xAxis.SquareModulus() > tol*tol ) // break; // } // for ( i = 1; i < _simplices.size(); ++i ) // { // yAxis = SMESH_TNodeXYZ( _simplices[i]._nPrev ) - center; // zAxis = xAxis ^ yAxis; // if ( zAxis.SquareModulus() > tol*tol ) // break; // } // if ( i == _simplices.size() ) return newPos; yAxis = zAxis ^ xAxis; xAxis /= xAxis.Modulus(); yAxis /= yAxis.Modulus(); // get half-planes of _simplices vector< _halfPlane > halfPlns( _simplices.size() ); int nbHP = 0; for ( size_t i = 0; i < _simplices.size(); ++i ) { const gp_XYZ& OP1 = vecs[ i ]; const gp_XYZ& OP2 = vecs[ i+1 ]; gp_XY p1( OP1 * xAxis, OP1 * yAxis ); gp_XY p2( OP2 * xAxis, OP2 * yAxis ); gp_XY vec12 = p2 - p1; double dist12 = vec12.Modulus(); if ( dist12 < tol ) continue; vec12 /= dist12; halfPlns[ nbHP ]._pos = p1; halfPlns[ nbHP ]._dir = vec12; halfPlns[ nbHP ]._inNorm.SetCoord( -vec12.Y(), vec12.X() ); ++nbHP; } // intersect boundaries of half-planes, define state of intersection points // in relation to all half-planes and calculate internal point of a 2D polygon double sumLen = 0; gp_XY newPos2D (0,0); enum { UNDEF = -1, NOT_OUT, IS_OUT, NO_INT }; typedef std::pair< gp_XY, int > TIntPntState; // coord and isOut state TIntPntState undefIPS( gp_XY(1e100,1e100), UNDEF ); vector< vector< TIntPntState > > allIntPnts( nbHP ); for ( int iHP1 = 0; iHP1 < nbHP; ++iHP1 ) { vector< TIntPntState > & intPnts1 = allIntPnts[ iHP1 ]; if ( intPnts1.empty() ) intPnts1.resize( nbHP, undefIPS ); int iPrev = SMESH_MesherHelper::WrapIndex( iHP1 - 1, nbHP ); int iNext = SMESH_MesherHelper::WrapIndex( iHP1 + 1, nbHP ); int nbNotOut = 0; const gp_XY* segEnds[2] = { 0, 0 }; // NOT_OUT points for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 ) { if ( iHP1 == iHP2 ) continue; TIntPntState & ips1 = intPnts1[ iHP2 ]; if ( ips1.second == UNDEF ) { // find an intersection point of boundaries of iHP1 and iHP2 if ( iHP2 == iPrev ) // intersection with neighbors is known ips1.first = halfPlns[ iHP1 ]._pos; else if ( iHP2 == iNext ) ips1.first = halfPlns[ iHP2 ]._pos; else if ( !halfPlns[ iHP1 ].FindIntersection( halfPlns[ iHP2 ], ips1.first )) ips1.second = NO_INT; // classify the found intersection point if ( ips1.second != NO_INT ) { ips1.second = NOT_OUT; for ( int i = 0; i < nbHP && ips1.second == NOT_OUT; ++i ) if ( i != iHP1 && i != iHP2 && halfPlns[ i ].IsOut( ips1.first, tol )) ips1.second = IS_OUT; } vector< TIntPntState > & intPnts2 = allIntPnts[ iHP2 ]; if ( intPnts2.empty() ) intPnts2.resize( nbHP, undefIPS ); TIntPntState & ips2 = intPnts2[ iHP1 ]; ips2 = ips1; } if ( ips1.second == NOT_OUT ) { ++nbNotOut; segEnds[ bool(segEnds[0]) ] = & ips1.first; } } // find a NOT_OUT segment of boundary which is located between // two NOT_OUT int points if ( nbNotOut < 2 ) continue; // no such a segment if ( nbNotOut > 2 ) { // sort points along the boundary map< double, TIntPntState* > ipsByParam; for ( int iHP2 = 0; iHP2 < nbHP; ++iHP2 ) { TIntPntState & ips1 = intPnts1[ iHP2 ]; if ( ips1.second != NO_INT ) { gp_XY op = ips1.first - halfPlns[ iHP1 ]._pos; double param = op * halfPlns[ iHP1 ]._dir; ipsByParam.insert( make_pair( param, & ips1 )); } } // look for two neighboring NOT_OUT points nbNotOut = 0; map< double, TIntPntState* >::iterator u2ips = ipsByParam.begin(); for ( ; u2ips != ipsByParam.end(); ++u2ips ) { TIntPntState & ips1 = *(u2ips->second); if ( ips1.second == NOT_OUT ) segEnds[ bool( nbNotOut++ ) ] = & ips1.first; else if ( nbNotOut >= 2 ) break; else nbNotOut = 0; } } if ( nbNotOut >= 2 ) { double len = ( *segEnds[0] - *segEnds[1] ).Modulus(); sumLen += len; newPos2D += 0.5 * len * ( *segEnds[0] + *segEnds[1] ); } } if ( sumLen > 0 ) { newPos2D /= sumLen; newPos = center + xAxis * newPos2D.X() + yAxis * newPos2D.Y(); } else { newPos = center; } return newPos; } #endif // OLD_NEF_POLYGON //================================================================================ /*! * \brief Add a new segment to _LayerEdge during inflation */ //================================================================================ void _LayerEdge::SetNewLength( double len, _EdgesOnShape& eos, SMESH_MesherHelper& helper ) { if ( Is( BLOCKED )) return; if ( len > _maxLen ) { len = _maxLen; Block( eos.GetData() ); } const double lenDelta = len - _len; if ( lenDelta < len * 1e-3 ) { Block( eos.GetData() ); return; } SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() ); gp_XYZ oldXYZ = SMESH_TNodeXYZ( n ); gp_XYZ newXYZ; if ( eos._hyp.IsOffsetMethod() ) { newXYZ = oldXYZ; gp_Vec faceNorm; SMDS_ElemIteratorPtr faceIt = _nodes[0]->GetInverseElementIterator( SMDSAbs_Face ); while ( faceIt->more() ) { const SMDS_MeshElement* face = faceIt->next(); if ( !eos.GetNormal( face, faceNorm )) continue; // translate plane of a face gp_XYZ baryCenter = oldXYZ + faceNorm.XYZ() * lenDelta; // find point of intersection of the face plane located at baryCenter // and _normal located at newXYZ double d = -( faceNorm.XYZ() * baryCenter ); // d of plane equation ax+by+cz+d=0 double dot = ( faceNorm.XYZ() * _normal ); if ( dot < std::numeric_limits::min() ) dot = lenDelta * 1e-3; double step = -( faceNorm.XYZ() * newXYZ + d ) / dot; newXYZ += step * _normal; } _lenFactor = _normal * ( newXYZ - oldXYZ ) / lenDelta; // _lenFactor is used in InvalidateStep() } else { newXYZ = oldXYZ + _normal * lenDelta * _lenFactor; } n->setXYZ( newXYZ.X(), newXYZ.Y(), newXYZ.Z() ); _pos.push_back( newXYZ ); if ( !eos._sWOL.IsNull() ) { double distXYZ[4]; bool uvOK = false; if ( eos.SWOLType() == TopAbs_EDGE ) { double u = Precision::Infinite(); // to force projection w/o distance check uvOK = helper.CheckNodeU( TopoDS::Edge( eos._sWOL ), n, u, /*tol=*/2*lenDelta, /*force=*/true, distXYZ ); _pos.back().SetCoord( u, 0, 0 ); if ( _nodes.size() > 1 && uvOK ) { SMDS_EdgePositionPtr pos = n->GetPosition(); pos->SetUParameter( u ); } } else // TopAbs_FACE { gp_XY uv( Precision::Infinite(), 0 ); uvOK = helper.CheckNodeUV( TopoDS::Face( eos._sWOL ), n, uv, /*tol=*/2*lenDelta, /*force=*/true, distXYZ ); _pos.back().SetCoord( uv.X(), uv.Y(), 0 ); if ( _nodes.size() > 1 && uvOK ) { SMDS_FacePositionPtr pos = n->GetPosition(); pos->SetUParameter( uv.X() ); pos->SetVParameter( uv.Y() ); } } if ( uvOK ) { n->setXYZ( distXYZ[1], distXYZ[2], distXYZ[3]); } else { n->setXYZ( oldXYZ.X(), oldXYZ.Y(), oldXYZ.Z() ); _pos.pop_back(); Block( eos.GetData() ); return; } } _len = len; // notify _neibors if ( eos.ShapeType() != TopAbs_FACE ) { for ( size_t i = 0; i < _neibors.size(); ++i ) //if ( _len > _neibors[i]->GetSmooLen() ) _neibors[i]->Set( MOVED ); Set( MOVED ); } dumpMove( n ); //debug } //================================================================================ /*! * \brief Set BLOCKED flag and propagate limited _maxLen to _neibors */ //================================================================================ void _LayerEdge::Block( _SolidData& data ) { //if ( Is( BLOCKED )) return; Set( BLOCKED ); SMESH_Comment msg( "#BLOCK shape="); msg << data.GetShapeEdges( this )->_shapeID << ", nodes " << _nodes[0]->GetID() << ", " << _nodes.back()->GetID(); dumpCmd( msg + " -- BEGIN"); SetMaxLen( _len ); std::queue<_LayerEdge*> queue; queue.push( this ); gp_Pnt pSrc, pTgt, pSrcN, pTgtN; while ( !queue.empty() ) { _LayerEdge* edge = queue.front(); queue.pop(); pSrc = SMESH_TNodeXYZ( edge->_nodes[0] ); pTgt = SMESH_TNodeXYZ( edge->_nodes.back() ); for ( size_t iN = 0; iN < edge->_neibors.size(); ++iN ) { _LayerEdge* neibor = edge->_neibors[iN]; if ( neibor->_maxLen < edge->_maxLen * 1.01 ) continue; pSrcN = SMESH_TNodeXYZ( neibor->_nodes[0] ); pTgtN = SMESH_TNodeXYZ( neibor->_nodes.back() ); double minDist = pSrc.SquareDistance( pSrcN ); minDist = Min( pTgt.SquareDistance( pTgtN ), minDist ); minDist = Min( pSrc.SquareDistance( pTgtN ), minDist ); minDist = Min( pTgt.SquareDistance( pSrcN ), minDist ); double newMaxLen = edge->_maxLen + 0.5 * Sqrt( minDist ); //if ( edge->_nodes[0]->getshapeId() == neibor->_nodes[0]->getshapeId() ) viscous_layers_00/A3 { //newMaxLen *= edge->_lenFactor / neibor->_lenFactor; // newMaxLen *= Min( edge->_lenFactor / neibor->_lenFactor, // neibor->_lenFactor / edge->_lenFactor ); } if ( neibor->_maxLen > newMaxLen ) { neibor->SetMaxLen( newMaxLen ); if ( neibor->_maxLen < neibor->_len ) { _EdgesOnShape* eos = data.GetShapeEdges( neibor ); int lastStep = neibor->Is( BLOCKED ) ? 1 : 0; while ( neibor->_len > neibor->_maxLen && neibor->NbSteps() > lastStep ) neibor->InvalidateStep( neibor->NbSteps(), *eos, /*restoreLength=*/true ); neibor->SetNewLength( neibor->_maxLen, *eos, data.GetHelper() ); //neibor->Block( data ); } queue.push( neibor ); } } } dumpCmd( msg + " -- END"); } //================================================================================ /*! * \brief Remove last inflation step */ //================================================================================ void _LayerEdge::InvalidateStep( size_t curStep, const _EdgesOnShape& eos, bool restoreLength ) { if ( _pos.size() > curStep && _nodes.size() > 1 ) { _pos.resize( curStep ); gp_Pnt nXYZ = _pos.back(); SMDS_MeshNode* n = const_cast< SMDS_MeshNode*>( _nodes.back() ); SMESH_TNodeXYZ curXYZ( n ); if ( !eos._sWOL.IsNull() ) { TopLoc_Location loc; if ( eos.SWOLType() == TopAbs_EDGE ) { SMDS_EdgePositionPtr pos = n->GetPosition(); pos->SetUParameter( nXYZ.X() ); double f,l; Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( eos._sWOL ), loc, f,l); nXYZ = curve->Value( nXYZ.X() ).Transformed( loc ); } else { SMDS_FacePositionPtr pos = n->GetPosition(); pos->SetUParameter( nXYZ.X() ); pos->SetVParameter( nXYZ.Y() ); Handle(Geom_Surface) surface = BRep_Tool::Surface( TopoDS::Face(eos._sWOL), loc ); nXYZ = surface->Value( nXYZ.X(), nXYZ.Y() ).Transformed( loc ); } } n->setXYZ( nXYZ.X(), nXYZ.Y(), nXYZ.Z() ); dumpMove( n ); if ( restoreLength ) { if ( NbSteps() == 0 ) _len = 0.; else if ( IsOnFace() && Is( MOVED )) _len = ( nXYZ.XYZ() - SMESH_NodeXYZ( _nodes[0] )) * _normal; else _len -= ( nXYZ.XYZ() - curXYZ ).Modulus() / _lenFactor; } } return; } //================================================================================ /*! * \brief Return index of a _pos distant from _normal */ //================================================================================ int _LayerEdge::GetSmoothedPos( const double tol ) { int iSmoothed = 0; for ( size_t i = 1; i < _pos.size() && !iSmoothed; ++i ) { double normDist = ( _pos[i] - _pos[0] ).Crossed( _normal ).SquareModulus(); if ( normDist > tol * tol ) iSmoothed = i; } return iSmoothed; } //================================================================================ /*! * \brief Smooth a path formed by _pos of a _LayerEdge smoothed on FACE */ //================================================================================ void _LayerEdge::SmoothPos( const vector< double >& segLen, const double tol ) { if ( /*Is( NORMAL_UPDATED ) ||*/ _pos.size() <= 2 ) return; // find the 1st smoothed _pos int iSmoothed = GetSmoothedPos( tol ); if ( !iSmoothed ) return; gp_XYZ normal = _normal; if ( Is( NORMAL_UPDATED )) { double minDot = 1; for ( size_t i = 0; i < _neibors.size(); ++i ) { if ( _neibors[i]->IsOnFace() ) { double dot = _normal * _neibors[i]->_normal; if ( dot < minDot ) { normal = _neibors[i]->_normal; minDot = dot; } } } if ( minDot == 1. ) for ( size_t i = 1; i < _pos.size(); ++i ) { normal = _pos[i] - _pos[0]; double size = normal.Modulus(); if ( size > RealSmall() ) { normal /= size; break; } } } const double r = 0.2; for ( int iter = 0; iter < 50; ++iter ) { double minDot = 1; for ( size_t i = Max( 1, iSmoothed-1-iter ); i < _pos.size()-1; ++i ) { gp_XYZ midPos = 0.5 * ( _pos[i-1] + _pos[i+1] ); gp_XYZ newPos = ( 1-r ) * midPos + r * _pos[i]; _pos[i] = newPos; double midLen = 0.5 * ( segLen[i-1] + segLen[i+1] ); double newLen = ( 1-r ) * midLen + r * segLen[i]; const_cast< double& >( segLen[i] ) = newLen; // check angle between normal and (_pos[i+1], _pos[i] ) gp_XYZ posDir = _pos[i+1] - _pos[i]; double size = posDir.SquareModulus(); if ( size > RealSmall() ) minDot = Min( minDot, ( normal * posDir ) * ( normal * posDir ) / size ); } if ( minDot > 0.5 * 0.5 ) break; } return; } //================================================================================ /*! * \brief Print flags */ //================================================================================ std::string _LayerEdge::DumpFlags() const { SMESH_Comment dump; for ( int flag = 1; flag < 0x1000000; flag *= 2 ) if ( _flags & flag ) { EFlags f = (EFlags) flag; switch ( f ) { case TO_SMOOTH: dump << "TO_SMOOTH"; break; case MOVED: dump << "MOVED"; break; case SMOOTHED: dump << "SMOOTHED"; break; case DIFFICULT: dump << "DIFFICULT"; break; case ON_CONCAVE_FACE: dump << "ON_CONCAVE_FACE"; break; case BLOCKED: dump << "BLOCKED"; break; case INTERSECTED: dump << "INTERSECTED"; break; case NORMAL_UPDATED: dump << "NORMAL_UPDATED"; break; case UPD_NORMAL_CONV: dump << "UPD_NORMAL_CONV"; break; case MARKED: dump << "MARKED"; break; case MULTI_NORMAL: dump << "MULTI_NORMAL"; break; case NEAR_BOUNDARY: dump << "NEAR_BOUNDARY"; break; case SMOOTHED_C1: dump << "SMOOTHED_C1"; break; case DISTORTED: dump << "DISTORTED"; break; case RISKY_SWOL: dump << "RISKY_SWOL"; break; case SHRUNK: dump << "SHRUNK"; break; case UNUSED_FLAG: dump << "UNUSED_FLAG"; break; } dump << " "; } cout << dump << endl; return dump; } //================================================================================ /*! * \brief Create layers of prisms */ //================================================================================ bool _ViscousBuilder::refine(_SolidData& data) { SMESH_MesherHelper& helper = data.GetHelper(); helper.SetElementsOnShape(false); Handle(Geom_Curve) curve; Handle(ShapeAnalysis_Surface) surface; TopoDS_Edge geomEdge; TopoDS_Face geomFace; TopLoc_Location loc; double f,l, u = 0; gp_XY uv; vector< gp_XYZ > pos3D; bool isOnEdge, isTooConvexFace = false; TGeomID prevBaseId = -1; TNode2Edge* n2eMap = 0; TNode2Edge::iterator n2e; // Create intermediate nodes on each _LayerEdge for ( size_t iS = 0; iS < data._edgesOnShape.size(); ++iS ) { _EdgesOnShape& eos = data._edgesOnShape[iS]; if ( eos._edges.empty() ) continue; if ( eos._edges[0]->_nodes.size() < 2 ) continue; // on _noShrinkShapes // get data of a shrink shape isOnEdge = false; geomEdge.Nullify(); geomFace.Nullify(); curve.Nullify(); surface.Nullify(); if ( !eos._sWOL.IsNull() ) { isOnEdge = ( eos.SWOLType() == TopAbs_EDGE ); if ( isOnEdge ) { geomEdge = TopoDS::Edge( eos._sWOL ); curve = BRep_Tool::Curve( geomEdge, loc, f,l); } else { geomFace = TopoDS::Face( eos._sWOL ); surface = helper.GetSurface( geomFace ); } } else if ( eos.ShapeType() == TopAbs_FACE && eos._toSmooth ) { geomFace = TopoDS::Face( eos._shape ); surface = helper.GetSurface( geomFace ); // propagate _toSmooth back to _eosC1, which was unset in findShapesToSmooth() for ( size_t i = 0; i < eos._eosC1.size(); ++i ) eos._eosC1[ i ]->_toSmooth = true; isTooConvexFace = false; if ( _ConvexFace* cf = data.GetConvexFace( eos._shapeID )) isTooConvexFace = cf->_isTooCurved; } vector< double > segLen; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge& edge = *eos._edges[i]; if ( edge._pos.size() < 2 ) continue; // get accumulated length of segments segLen.resize( edge._pos.size() ); segLen[0] = 0.0; if ( eos._sWOL.IsNull() ) { bool useNormal = true; bool usePos = false; bool smoothed = false; double preci = 0.1 * edge._len; if ( eos._toSmooth && edge._pos.size() > 2 ) { smoothed = edge.GetSmoothedPos( preci ); } if ( smoothed ) { if ( !surface.IsNull() && !isTooConvexFace ) // edge smoothed on FACE { useNormal = usePos = false; gp_Pnt2d uv = helper.GetNodeUV( geomFace, edge._nodes[0] ); for ( size_t j = 1; j < edge._pos.size() && !useNormal; ++j ) { uv = surface->NextValueOfUV( uv, edge._pos[j], preci ); if ( surface->Gap() < 2. * edge._len ) segLen[j] = surface->Gap(); else useNormal = true; } } } else if ( !edge.Is( _LayerEdge::NORMAL_UPDATED )) { #ifndef __NODES_AT_POS useNormal = usePos = false; edge._pos[1] = edge._pos.back(); edge._pos.resize( 2 ); segLen.resize( 2 ); segLen[ 1 ] = edge._len; #endif } if ( useNormal && edge.Is( _LayerEdge::NORMAL_UPDATED )) { useNormal = usePos = false; _LayerEdge tmpEdge; // get original _normal tmpEdge._nodes.push_back( edge._nodes[0] ); if ( !setEdgeData( tmpEdge, eos, helper, data )) usePos = true; else for ( size_t j = 1; j < edge._pos.size(); ++j ) segLen[j] = ( edge._pos[j] - edge._pos[0] ) * tmpEdge._normal; } if ( useNormal ) { for ( size_t j = 1; j < edge._pos.size(); ++j ) segLen[j] = ( edge._pos[j] - edge._pos[0] ) * edge._normal; } if ( usePos ) { for ( size_t j = 1; j < edge._pos.size(); ++j ) segLen[j] = segLen[j-1] + ( edge._pos[j-1] - edge._pos[j] ).Modulus(); } else { bool swapped = ( edge._pos.size() > 2 ); while ( swapped ) { swapped = false; for ( size_t j = 1; j < edge._pos.size()-1; ++j ) if ( segLen[j] > segLen.back() ) { segLen.erase( segLen.begin() + j ); edge._pos.erase( edge._pos.begin() + j ); --j; } else if ( segLen[j] < segLen[j-1] ) { std::swap( segLen[j], segLen[j-1] ); std::swap( edge._pos[j], edge._pos[j-1] ); swapped = true; } } } // smooth a path formed by edge._pos #ifndef __NODES_AT_POS if (( smoothed ) /*&& ( eos.ShapeType() == TopAbs_FACE || edge.Is( _LayerEdge::SMOOTHED_C1 ))*/) edge.SmoothPos( segLen, preci ); #endif } else if ( eos._isRegularSWOL ) // usual SWOL { if ( edge.Is( _LayerEdge::SMOOTHED )) { SMESH_NodeXYZ p0( edge._nodes[0] ); for ( size_t j = 1; j < edge._pos.size(); ++j ) { gp_XYZ pj = surface->Value( edge._pos[j].X(), edge._pos[j].Y() ).XYZ(); segLen[j] = ( pj - p0 ) * edge._normal; } } else { for ( size_t j = 1; j < edge._pos.size(); ++j ) segLen[j] = segLen[j-1] + (edge._pos[j-1] - edge._pos[j] ).Modulus(); } } else if ( !surface.IsNull() ) // SWOL surface with singularities { pos3D.resize( edge._pos.size() ); for ( size_t j = 0; j < edge._pos.size(); ++j ) pos3D[j] = surface->Value( edge._pos[j].X(), edge._pos[j].Y() ).XYZ(); for ( size_t j = 1; j < edge._pos.size(); ++j ) segLen[j] = segLen[j-1] + ( pos3D[j-1] - pos3D[j] ).Modulus(); } // allocate memory for new nodes if it is not yet refined const SMDS_MeshNode* tgtNode = edge._nodes.back(); if ( edge._nodes.size() == 2 ) { #ifdef __NODES_AT_POS int nbNodes = edge._pos.size(); #else int nbNodes = eos._hyp.GetNumberLayers() + 1; #endif edge._nodes.resize( nbNodes, 0 ); edge._nodes[1] = 0; edge._nodes.back() = tgtNode; } // restore shapePos of the last node by already treated _LayerEdge of another _SolidData const TGeomID baseShapeId = edge._nodes[0]->getshapeId(); if ( baseShapeId != prevBaseId ) { map< TGeomID, TNode2Edge* >::iterator s2ne = data._s2neMap.find( baseShapeId ); n2eMap = ( s2ne == data._s2neMap.end() ) ? 0 : s2ne->second; prevBaseId = baseShapeId; } _LayerEdge* edgeOnSameNode = 0; bool useExistingPos = false; if ( n2eMap && (( n2e = n2eMap->find( edge._nodes[0] )) != n2eMap->end() )) { edgeOnSameNode = n2e->second; useExistingPos = ( edgeOnSameNode->_len < edge._len ); const gp_XYZ& otherTgtPos = edgeOnSameNode->_pos.back(); SMDS_PositionPtr lastPos = tgtNode->GetPosition(); if ( isOnEdge ) { SMDS_EdgePositionPtr epos = lastPos; epos->SetUParameter( otherTgtPos.X() ); } else { SMDS_FacePositionPtr fpos = lastPos; fpos->SetUParameter( otherTgtPos.X() ); fpos->SetVParameter( otherTgtPos.Y() ); } } // calculate height of the first layer double h0; const double T = segLen.back(); //data._hyp.GetTotalThickness(); const double f = eos._hyp.GetStretchFactor(); const int N = eos._hyp.GetNumberLayers(); const double fPowN = pow( f, N ); if ( fPowN - 1 <= numeric_limits::min() ) h0 = T / N; else h0 = T * ( f - 1 )/( fPowN - 1 ); const double zeroLen = std::numeric_limits::min(); // create intermediate nodes double hSum = 0, hi = h0/f; size_t iSeg = 1; for ( size_t iStep = 1; iStep < edge._nodes.size(); ++iStep ) { // compute an intermediate position hi *= f; hSum += hi; while ( hSum > segLen[iSeg] && iSeg < segLen.size()-1 ) ++iSeg; int iPrevSeg = iSeg-1; while ( fabs( segLen[iPrevSeg] - segLen[iSeg]) <= zeroLen && iPrevSeg > 0 ) --iPrevSeg; double r = ( segLen[iSeg] - hSum ) / ( segLen[iSeg] - segLen[iPrevSeg] ); gp_Pnt pos = r * edge._pos[iPrevSeg] + (1-r) * edge._pos[iSeg]; #ifdef __NODES_AT_POS pos = edge._pos[ iStep ]; #endif SMDS_MeshNode*& node = const_cast< SMDS_MeshNode*& >( edge._nodes[ iStep ]); if ( !eos._sWOL.IsNull() ) { // compute XYZ by parameters if ( isOnEdge ) { u = pos.X(); if ( !node ) pos = curve->Value( u ).Transformed(loc); } else if ( eos._isRegularSWOL ) { uv.SetCoord( pos.X(), pos.Y() ); if ( !node ) pos = surface->Value( pos.X(), pos.Y() ); } else { uv.SetCoord( pos.X(), pos.Y() ); gp_Pnt p = r * pos3D[ iPrevSeg ] + (1-r) * pos3D[ iSeg ]; uv = surface->NextValueOfUV( uv, p, BRep_Tool::Tolerance( geomFace )).XY(); if ( !node ) pos = surface->Value( uv ); } } // create or update the node if ( !node ) { node = helper.AddNode( pos.X(), pos.Y(), pos.Z()); if ( !eos._sWOL.IsNull() ) { if ( isOnEdge ) getMeshDS()->SetNodeOnEdge( node, geomEdge, u ); else getMeshDS()->SetNodeOnFace( node, geomFace, uv.X(), uv.Y() ); } else { getMeshDS()->SetNodeInVolume( node, helper.GetSubShapeID() ); } } else { if ( !eos._sWOL.IsNull() ) { // make average pos from new and current parameters if ( isOnEdge ) { //u = 0.5 * ( u + helper.GetNodeU( geomEdge, node )); if ( useExistingPos ) u = helper.GetNodeU( geomEdge, node ); pos = curve->Value( u ).Transformed(loc); SMDS_EdgePositionPtr epos = node->GetPosition(); epos->SetUParameter( u ); } else { //uv = 0.5 * ( uv + helper.GetNodeUV( geomFace, node )); if ( useExistingPos ) uv = helper.GetNodeUV( geomFace, node ); pos = surface->Value( uv ); SMDS_FacePositionPtr fpos = node->GetPosition(); fpos->SetUParameter( uv.X() ); fpos->SetVParameter( uv.Y() ); } } node->setXYZ( pos.X(), pos.Y(), pos.Z() ); } } // loop on edge._nodes if ( !eos._sWOL.IsNull() ) // prepare for shrink() { if ( isOnEdge ) edge._pos.back().SetCoord( u, 0,0); else edge._pos.back().SetCoord( uv.X(), uv.Y() ,0); if ( edgeOnSameNode ) edgeOnSameNode->_pos.back() = edge._pos.back(); } } // loop on eos._edges to create nodes if ( !getMeshDS()->IsEmbeddedMode() ) // Log node movement for ( size_t i = 0; i < eos._edges.size(); ++i ) { SMESH_TNodeXYZ p ( eos._edges[i]->_nodes.back() ); getMeshDS()->MoveNode( p._node, p.X(), p.Y(), p.Z() ); } } // Create volumes helper.SetElementsOnShape(true); vector< vector* > nnVec; set< vector* > nnSet; set< int > degenEdgeInd; vector degenVols; TopExp_Explorer exp( data._solid, TopAbs_FACE ); for ( ; exp.More(); exp.Next() ) { const TGeomID faceID = getMeshDS()->ShapeToIndex( exp.Current() ); if ( data._ignoreFaceIds.count( faceID )) continue; _EdgesOnShape* eos = data.GetShapeEdges( faceID ); SMDS_MeshGroup* group = StdMeshers_ViscousLayers::CreateGroup( eos->_hyp.GetGroupName(), *helper.GetMesh(), SMDSAbs_Volume ); std::vector< const SMDS_MeshElement* > vols; const bool isReversedFace = data._reversedFaceIds.count( faceID ); SMESHDS_SubMesh* fSubM = getMeshDS()->MeshElements( exp.Current() ); SMDS_ElemIteratorPtr fIt = fSubM->GetElements(); while ( fIt->more() ) { const SMDS_MeshElement* face = fIt->next(); const int nbNodes = face->NbCornerNodes(); nnVec.resize( nbNodes ); nnSet.clear(); degenEdgeInd.clear(); size_t maxZ = 0, minZ = std::numeric_limits::max(); SMDS_NodeIteratorPtr nIt = face->nodeIterator(); for ( int iN = 0; iN < nbNodes; ++iN ) { const SMDS_MeshNode* n = nIt->next(); _LayerEdge* edge = data._n2eMap[ n ]; const int i = isReversedFace ? nbNodes-1-iN : iN; nnVec[ i ] = & edge->_nodes; maxZ = std::max( maxZ, nnVec[ i ]->size() ); minZ = std::min( minZ, nnVec[ i ]->size() ); if ( helper.HasDegeneratedEdges() ) nnSet.insert( nnVec[ i ]); } if ( maxZ == 0 ) continue; if ( 0 < nnSet.size() && nnSet.size() < 3 ) continue; vols.clear(); const SMDS_MeshElement* vol; switch ( nbNodes ) { case 3: // TRIA { // PENTA for ( size_t iZ = 1; iZ < minZ; ++iZ ) { vol = helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1], (*nnVec[0])[iZ], (*nnVec[1])[iZ], (*nnVec[2])[iZ]); vols.push_back( vol ); } for ( size_t iZ = minZ; iZ < maxZ; ++iZ ) { for ( int iN = 0; iN < nbNodes; ++iN ) if ( nnVec[ iN ]->size() < iZ+1 ) degenEdgeInd.insert( iN ); if ( degenEdgeInd.size() == 1 ) // PYRAM { int i2 = *degenEdgeInd.begin(); int i0 = helper.WrapIndex( i2 - 1, nbNodes ); int i1 = helper.WrapIndex( i2 + 1, nbNodes ); vol = helper.AddVolume( (*nnVec[i0])[iZ-1], (*nnVec[i1])[iZ-1], (*nnVec[i1])[iZ ], (*nnVec[i0])[iZ ], (*nnVec[i2]).back()); vols.push_back( vol ); } else // TETRA { int i3 = !degenEdgeInd.count(0) ? 0 : !degenEdgeInd.count(1) ? 1 : 2; vol = helper.AddVolume( (*nnVec[ 0 ])[ i3 == 0 ? iZ-1 : nnVec[0]->size()-1 ], (*nnVec[ 1 ])[ i3 == 1 ? iZ-1 : nnVec[1]->size()-1 ], (*nnVec[ 2 ])[ i3 == 2 ? iZ-1 : nnVec[2]->size()-1 ], (*nnVec[ i3 ])[ iZ ]); vols.push_back( vol ); } } break; // TRIA } case 4: // QUAD { // HEX for ( size_t iZ = 1; iZ < minZ; ++iZ ) { vol = helper.AddVolume( (*nnVec[0])[iZ-1], (*nnVec[1])[iZ-1], (*nnVec[2])[iZ-1], (*nnVec[3])[iZ-1], (*nnVec[0])[iZ], (*nnVec[1])[iZ], (*nnVec[2])[iZ], (*nnVec[3])[iZ]); vols.push_back( vol ); } for ( size_t iZ = minZ; iZ < maxZ; ++iZ ) { for ( int iN = 0; iN < nbNodes; ++iN ) if ( nnVec[ iN ]->size() < iZ+1 ) degenEdgeInd.insert( iN ); switch ( degenEdgeInd.size() ) { case 2: // PENTA { int i2 = *degenEdgeInd.begin(); int i3 = *degenEdgeInd.rbegin(); bool ok = ( i3 - i2 == 1 ); if ( i2 == 0 && i3 == 3 ) { i2 = 3; i3 = 0; ok = true; } int i0 = helper.WrapIndex( i3 + 1, nbNodes ); int i1 = helper.WrapIndex( i0 + 1, nbNodes ); vol = helper.AddVolume( nnVec[i3]->back(), (*nnVec[i0])[iZ], (*nnVec[i0])[iZ-1], nnVec[i2]->back(), (*nnVec[i1])[iZ], (*nnVec[i1])[iZ-1]); vols.push_back( vol ); if ( !ok && vol ) degenVols.push_back( vol ); } break; default: // degen HEX { vol = helper.AddVolume( nnVec[0]->size() > iZ-1 ? (*nnVec[0])[iZ-1] : nnVec[0]->back(), nnVec[1]->size() > iZ-1 ? (*nnVec[1])[iZ-1] : nnVec[1]->back(), nnVec[2]->size() > iZ-1 ? (*nnVec[2])[iZ-1] : nnVec[2]->back(), nnVec[3]->size() > iZ-1 ? (*nnVec[3])[iZ-1] : nnVec[3]->back(), nnVec[0]->size() > iZ ? (*nnVec[0])[iZ] : nnVec[0]->back(), nnVec[1]->size() > iZ ? (*nnVec[1])[iZ] : nnVec[1]->back(), nnVec[2]->size() > iZ ? (*nnVec[2])[iZ] : nnVec[2]->back(), nnVec[3]->size() > iZ ? (*nnVec[3])[iZ] : nnVec[3]->back()); vols.push_back( vol ); degenVols.push_back( vol ); } } } break; // HEX } default: return error("Not supported type of element", data._index); } // switch ( nbNodes ) if ( group ) for ( size_t i = 0; i < vols.size(); ++i ) group->Add( vols[ i ]); } // while ( fIt->more() ) } // loop on FACEs if ( !degenVols.empty() ) { SMESH_ComputeErrorPtr& err = _mesh->GetSubMesh( data._solid )->GetComputeError(); if ( !err || err->IsOK() ) { SMESH_BadInputElements* badElems = new SMESH_BadInputElements( getMeshDS(), COMPERR_WARNING, "Bad quality volumes created" ); badElems->myBadElements.insert( badElems->myBadElements.end(), degenVols.begin(),degenVols.end() ); err.reset( badElems ); } } return true; } namespace VISCOUS_3D { struct ShrinkFace; //-------------------------------------------------------------------------------- /*! * \brief Pair of periodic FACEs */ struct PeriodicFaces { typedef StdMeshers_ProjectionUtils::TrsfFinder3D Trsf; ShrinkFace* _shriFace[2]; TNodeNodeMap _nnMap; Trsf _trsf; PeriodicFaces( ShrinkFace* sf1, ShrinkFace* sf2 ): _shriFace{ sf1, sf2 } {} bool IncludeShrunk( const TopoDS_Face& face, const TopTools_MapOfShape& shrunkFaces ) const; bool MoveNodes( const TopoDS_Face& tgtFace ); void Clear() { _nnMap.clear(); } bool IsEmpty() const { return _nnMap.empty(); } }; //-------------------------------------------------------------------------------- /*! * \brief Shrink FACE data used to find periodic FACEs */ struct ShrinkFace { // ................................................................................ struct BndPart //!< part of FACE boundary, either shrink or no-shrink { bool _isShrink, _isReverse; int _nbSegments; AverageHyp* _hyp; std::vector< SMESH_NodeXYZ > _nodes; TopAbs_ShapeEnum _vertSWOLType[2]; // shrink part includes VERTEXes AverageHyp* _vertHyp[2]; BndPart(): _isShrink(0), _isReverse(0), _nbSegments(0), _hyp(0), _vertSWOLType{ TopAbs_WIRE, TopAbs_WIRE }, _vertHyp{ 0, 0 } {} bool operator==( const BndPart& other ) const { return ( _isShrink == other._isShrink && _nbSegments == other._nbSegments && _nodes.size() == other._nodes.size() && vertSWOLType1() == other.vertSWOLType1() && vertSWOLType2() == other.vertSWOLType2() && (( !_isShrink ) || ( *_hyp == *other._hyp && vertHyp1() == other.vertHyp1() && vertHyp2() == other.vertHyp2() )) ); } bool CanAppend( const BndPart& other ) { return ( _isShrink == other._isShrink && (( !_isShrink ) || ( *_hyp == *other._hyp && *_hyp == vertHyp2() && vertHyp2() == other.vertHyp1() )) ); } void Append( const BndPart& other ) { _nbSegments += other._nbSegments; bool hasCommonNode = ( _nodes.back()->GetID() == other._nodes.front()->GetID() ); _nodes.insert( _nodes.end(), other._nodes.begin() + hasCommonNode, other._nodes.end() ); _vertSWOLType[1] = other._vertSWOLType[1]; if ( _isShrink ) _vertHyp[1] = other._vertHyp[1]; } const SMDS_MeshNode* Node(size_t i) const { return _nodes[ _isReverse ? ( _nodes.size() - 1 - i ) : i ]._node; } void Reverse() { _isReverse = !_isReverse; } const TopAbs_ShapeEnum& vertSWOLType1() const { return _vertSWOLType[ _isReverse ]; } const TopAbs_ShapeEnum& vertSWOLType2() const { return _vertSWOLType[ !_isReverse ]; } const AverageHyp& vertHyp1() const { return *(_vertHyp[ _isReverse ]); } const AverageHyp& vertHyp2() const { return *(_vertHyp[ !_isReverse ]); } }; // ................................................................................ SMESH_subMesh* _subMesh; _SolidData* _data1; _SolidData* _data2; //bool _isPeriodic; std::list< BndPart > _boundary; int _boundarySize, _nbBoundaryParts; void Init( SMESH_subMesh* sm, _SolidData* sd1, _SolidData* sd2 ) { _subMesh = sm; _data1 = sd1; _data2 = sd2; //_isPeriodic = false; } bool IsSame( const TopoDS_Face& face ) const { return _subMesh->GetSubShape().IsSame( face ); } bool IsShrunk( const TopTools_MapOfShape& shrunkFaces ) const { return shrunkFaces.Contains( _subMesh->GetSubShape() ); } //================================================================================ /*! * Check if meshes on two FACEs are equal */ bool IsPeriodic( ShrinkFace& other, PeriodicFaces& periodic ) { if ( !IsSameNbElements( other )) return false; this->SetBoundary(); other.SetBoundary(); if ( this->_boundarySize != other._boundarySize || this->_nbBoundaryParts != other._nbBoundaryParts ) return false; for ( int isReverse = 0; isReverse < 2; ++isReverse ) { if ( isReverse ) Reverse( _boundary ); // check boundaries bool equalBoundary = false; for ( int iP = 0; iP < _nbBoundaryParts && !equalBoundary; ++iP ) { if ( ! ( equalBoundary = ( this->_boundary == other._boundary ))) // set first part at end _boundary.splice( _boundary.end(), _boundary, _boundary.begin() ); } if ( !equalBoundary ) continue; // check connectivity std::set elemsThis, elemsOther; this->GetElements( elemsThis ); other.GetElements( elemsOther ); SMESH_MeshEditor::Sew_Error err = SMESH_MeshEditor::FindMatchingNodes( elemsThis, elemsOther, this->_boundary.front().Node(0), other._boundary.front().Node(0), this->_boundary.front().Node(1), other._boundary.front().Node(1), periodic._nnMap ); if ( err != SMESH_MeshEditor::SEW_OK ) continue; // check node positions std::vector< gp_XYZ > srcPnts, tgtPnts; this->GetBoundaryPoints( srcPnts ); other.GetBoundaryPoints( tgtPnts ); if ( !periodic._trsf.Solve( srcPnts, tgtPnts )) { continue; } double tol = std::numeric_limits::max(); for ( size_t i = 1; i < srcPnts.size(); ++i ) { tol = Min( tol, ( srcPnts[i-1] - srcPnts[i] ).SquareModulus() ); } tol = 0.01 * Sqrt( tol ); bool nodeCoincide = true; TNodeNodeMap::iterator n2n = periodic._nnMap.begin(); for ( ; n2n != periodic._nnMap.end() && nodeCoincide; ++n2n ) { SMESH_NodeXYZ nSrc = n2n->first; SMESH_NodeXYZ nTgt = n2n->second; gp_XYZ pTgt = periodic._trsf.Transform( nSrc ); nodeCoincide = (( pTgt - nTgt ).SquareModulus() < tol ); } if ( nodeCoincide ) return true; } return false; } bool IsSameNbElements( ShrinkFace& other ) // check number of mesh faces { SMESHDS_SubMesh* sm1 = this->_subMesh->GetSubMeshDS(); SMESHDS_SubMesh* sm2 = other._subMesh->GetSubMeshDS(); return ( sm1->NbElements() == sm2->NbElements() && sm1->NbNodes() == sm2->NbNodes() ); } void Reverse( std::list< BndPart >& boundary ) { boundary.reverse(); for ( std::list< BndPart >::iterator part = boundary.begin(); part != boundary.end(); ++part ) part->Reverse(); } void SetBoundary() { if ( !_boundary.empty() ) return; TopoDS_Face F = TopoDS::Face( _subMesh->GetSubShape() ); if ( F.Orientation() >= TopAbs_INTERNAL ) F.Orientation( TopAbs_FORWARD ); std::list< TopoDS_Edge > edges; std::list< int > nbEdgesInWire; /*int nbWires =*/ SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire); // std::list< TopoDS_Edge >::iterator edgesEnd = edges.end(); // if ( nbWires > 1 ) { // edgesEnd = edges.begin(); // std::advance( edgesEnd, nbEdgesInWire.front() ); // } StdMeshers_FaceSide fSide( F, edges, _subMesh->GetFather(), /*fwd=*/true, /*skipMedium=*/true ); _boundarySize = fSide.NbSegments(); //TopoDS_Vertex vv[2]; //std::list< TopoDS_Edge >::iterator edgeIt = edges.begin(); for ( int iE = 0; iE < nbEdgesInWire.front(); ++iE ) { BndPart bndPart; _EdgesOnShape* eos = _data1->GetShapeEdges( fSide.EdgeID( iE )); bndPart._isShrink = ( eos->SWOLType() == TopAbs_FACE ); if ( bndPart._isShrink ) if (( _data1->_noShrinkShapes.count( eos->_shapeID )) || ( _data2 && _data2->_noShrinkShapes.count( eos->_shapeID ))) bndPart._isShrink = false; if ( bndPart._isShrink ) { bndPart._hyp = & eos->_hyp; _EdgesOnShape* eov[2] = { _data1->GetShapeEdges( fSide.FirstVertex( iE )), _data1->GetShapeEdges( fSide.LastVertex ( iE )) }; for ( int iV = 0; iV < 2; ++iV ) { bndPart._vertHyp [iV] = & eov[iV]->_hyp; bndPart._vertSWOLType[iV] = eov[iV]->SWOLType(); if ( _data1->_noShrinkShapes.count( eov[iV]->_shapeID )) bndPart._vertSWOLType[iV] = TopAbs_SHAPE; if ( _data2 && bndPart._vertSWOLType[iV] != TopAbs_SHAPE ) { eov[iV] = _data2->GetShapeEdges( iV ? fSide.LastVertex(iE) : fSide.FirstVertex(iE )); if ( _data2->_noShrinkShapes.count( eov[iV]->_shapeID )) bndPart._vertSWOLType[iV] = TopAbs_SHAPE; else if ( eov[iV]->SWOLType() > bndPart._vertSWOLType[iV] ) bndPart._vertSWOLType[iV] = eov[iV]->SWOLType(); } } } std::vector nodes = fSide.GetOrderedNodes( iE ); bndPart._nodes.assign( nodes.begin(), nodes.end() ); bndPart._nbSegments = bndPart._nodes.size() - 1; if ( _boundary.empty() || ! _boundary.back().CanAppend( bndPart )) _boundary.push_back( bndPart ); else _boundary.back().Append( bndPart ); } _nbBoundaryParts = _boundary.size(); if ( _nbBoundaryParts > 1 && _boundary.front()._isShrink == _boundary.back()._isShrink ) { _boundary.back().Append( _boundary.front() ); _boundary.pop_front(); --_nbBoundaryParts; } } void GetElements( std::set& theElems) { if ( SMESHDS_SubMesh* sm = _subMesh->GetSubMeshDS() ) for ( SMDS_ElemIteratorPtr fIt = sm->GetElements(); fIt->more(); ) theElems.insert( theElems.end(), fIt->next() ); return ; } void GetBoundaryPoints( std::vector< gp_XYZ >& points ) { points.reserve( _boundarySize ); size_t nb = _boundary.rbegin()->_nodes.size(); int lastID = _boundary.rbegin()->Node( nb - 1 )->GetID(); std::list< BndPart >::const_iterator part = _boundary.begin(); for ( ; part != _boundary.end(); ++part ) { size_t nb = part->_nodes.size(); size_t iF = 0; size_t iR = nb - 1; size_t* i = part->_isReverse ? &iR : &iF; if ( part->_nodes[ *i ]->GetID() == lastID ) ++iF, --iR; for ( ; iF < nb; ++iF, --iR ) points.push_back( part->_nodes[ *i ]); --iF, ++iR; lastID = part->_nodes[ *i ]->GetID(); } } }; // struct ShrinkFace //-------------------------------------------------------------------------------- /*! * \brief Periodic FACEs */ struct Periodicity { std::vector< ShrinkFace > _shrinkFaces; std::vector< PeriodicFaces > _periodicFaces; PeriodicFaces* GetPeriodic( const TopoDS_Face& face, const TopTools_MapOfShape& shrunkFaces ) { for ( size_t i = 0; i < _periodicFaces.size(); ++i ) if ( _periodicFaces[ i ].IncludeShrunk( face, shrunkFaces )) return & _periodicFaces[ i ]; return 0; } void ClearPeriodic( const TopoDS_Face& face ) { for ( size_t i = 0; i < _periodicFaces.size(); ++i ) if ( _periodicFaces[ i ]._shriFace[0]->IsSame( face ) || _periodicFaces[ i ]._shriFace[1]->IsSame( face )) _periodicFaces[ i ].Clear(); } }; //================================================================================ /*! * Check if a pair includes the given FACE and the other FACE is already shrunk */ bool PeriodicFaces::IncludeShrunk( const TopoDS_Face& face, const TopTools_MapOfShape& shrunkFaces ) const { if ( IsEmpty() ) return false; return (( _shriFace[0]->IsSame( face ) && _shriFace[1]->IsShrunk( shrunkFaces )) || ( _shriFace[1]->IsSame( face ) && _shriFace[0]->IsShrunk( shrunkFaces ))); } //================================================================================ /*! * Make equal meshes on periodic faces by moving corresponding nodes */ bool PeriodicFaces::MoveNodes( const TopoDS_Face& tgtFace ) { int iTgt = _shriFace[1]->IsSame( tgtFace ); int iSrc = 1 - iTgt; _SolidData* dataSrc = _shriFace[iSrc]->_data1; _SolidData* dataTgt = _shriFace[iTgt]->_data1; Trsf * trsf = & _trsf, trsfInverse; if ( iSrc != 0 ) { trsfInverse = _trsf; if ( !trsfInverse.Invert()) return false; trsf = &trsfInverse; } SMESHDS_Mesh* meshDS = dataSrc->GetHelper().GetMeshDS(); TNode2Edge::iterator n2e; TNodeNodeMap::iterator n2n = _nnMap.begin(); for ( ; n2n != _nnMap.end(); ++n2n ) { const SMDS_MeshNode* const* nn = & n2n->first; const SMDS_MeshNode* nSrc = nn[ iSrc ]; const SMDS_MeshNode* nTgt = nn[ iTgt ]; if (( nSrc->GetPosition()->GetDim() == 2 ) || (( n2e = dataSrc->_n2eMap.find( nSrc )) == dataSrc->_n2eMap.end() )) { SMESH_NodeXYZ pSrc = nSrc; gp_XYZ pTgt = trsf->Transform( pSrc ); meshDS->MoveNode( nTgt, pTgt.X(), pTgt.Y(), pTgt.Z() ); } else { _LayerEdge* leSrc = n2e->second; n2e = dataTgt->_n2eMap.find( nTgt ); if ( n2e == dataTgt->_n2eMap.end() ) break; _LayerEdge* leTgt = n2e->second; if ( leSrc->_nodes.size() != leTgt->_nodes.size() ) break; for ( size_t iN = 1; iN < leSrc->_nodes.size(); ++iN ) { SMESH_NodeXYZ pSrc = leSrc->_nodes[ iN ]; gp_XYZ pTgt = trsf->Transform( pSrc ); meshDS->MoveNode( leTgt->_nodes[ iN ], pTgt.X(), pTgt.Y(), pTgt.Z() ); } } } bool done = ( n2n == _nnMap.end() ); debugMsg( "PeriodicFaces::MoveNodes " << _shriFace[iSrc]->_subMesh->GetId() << " -> " << _shriFace[iTgt]->_subMesh->GetId() << " -- " << ( done ? "DONE" : "FAIL")); return done; } } // namespace VISCOUS_3D; Periodicity part //================================================================================ /*! * \brief Find FACEs to shrink, that are equally meshed before shrink (i.e. periodic) * and should remain equal after shrink */ //================================================================================ void _ViscousBuilder::findPeriodicFaces() { // make map of (ids of FACEs to shrink mesh on) to (list of _SolidData containing // _LayerEdge's inflated along FACE or EDGE) std::map< TGeomID, std::list< _SolidData* > > id2sdMap; for ( size_t i = 0 ; i < _sdVec.size(); ++i ) { _SolidData& data = _sdVec[i]; std::map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin(); for (; s2s != data._shrinkShape2Shape.end(); ++s2s ) if ( s2s->second.ShapeType() == TopAbs_FACE ) id2sdMap[ getMeshDS()->ShapeToIndex( s2s->second )].push_back( &data ); } _periodicity.reset( new Periodicity ); _periodicity->_shrinkFaces.resize( id2sdMap.size() ); std::map< TGeomID, std::list< _SolidData* > >::iterator id2sdIt = id2sdMap.begin(); for ( size_t i = 0; i < id2sdMap.size(); ++i, ++id2sdIt ) { _SolidData* sd1 = id2sdIt->second.front(); _SolidData* sd2 = id2sdIt->second.back(); _periodicity->_shrinkFaces[ i ].Init( _mesh->GetSubMeshContaining( id2sdIt->first ), sd1, sd2 ); } for ( size_t i1 = 0; i1 < _periodicity->_shrinkFaces.size(); ++i1 ) for ( size_t i2 = i1 + 1; i2 < _periodicity->_shrinkFaces.size(); ++i2 ) { PeriodicFaces pf( & _periodicity->_shrinkFaces[ i1 ], & _periodicity->_shrinkFaces[ i2 ]); if ( pf._shriFace[0]->IsPeriodic( *pf._shriFace[1], pf )) { _periodicity->_periodicFaces.push_back( pf ); } } return; } //================================================================================ /*! * \brief Shrink 2D mesh on faces to let space for inflated layers */ //================================================================================ bool _ViscousBuilder::shrink(_SolidData& theData) { // make map of (ids of FACEs to shrink mesh on) to (list of _SolidData containing // _LayerEdge's inflated along FACE or EDGE) map< TGeomID, list< _SolidData* > > f2sdMap; for ( size_t i = 0 ; i < _sdVec.size(); ++i ) { _SolidData& data = _sdVec[i]; map< TGeomID, TopoDS_Shape >::iterator s2s = data._shrinkShape2Shape.begin(); for (; s2s != data._shrinkShape2Shape.end(); ++s2s ) if ( s2s->second.ShapeType() == TopAbs_FACE && !_shrunkFaces.Contains( s2s->second )) { f2sdMap[ getMeshDS()->ShapeToIndex( s2s->second )].push_back( &data ); // Put mesh faces on the shrunk FACE to the proxy sub-mesh to avoid // usage of mesh faces made in addBoundaryElements() by the 3D algo or // by StdMeshers_QuadToTriaAdaptor if ( SMESHDS_SubMesh* smDS = getMeshDS()->MeshElements( s2s->second )) { SMESH_ProxyMesh::SubMesh* proxySub = data._proxyMesh->getFaceSubM( TopoDS::Face( s2s->second ), /*create=*/true); if ( proxySub->NbElements() == 0 ) { SMDS_ElemIteratorPtr fIt = smDS->GetElements(); while ( fIt->more() ) { const SMDS_MeshElement* f = fIt->next(); // as a result 3D algo will use elements from proxySub and not from smDS proxySub->AddElement( f ); f->setIsMarked( true ); // Mark nodes on the FACE to discriminate them from nodes // added by addBoundaryElements(); marked nodes are to be smoothed while shrink() for ( int iN = 0, nbN = f->NbNodes(); iN < nbN; ++iN ) { const SMDS_MeshNode* n = f->GetNode( iN ); if ( n->GetPosition()->GetDim() == 2 ) n->setIsMarked( true ); } } } } } } SMESH_MesherHelper helper( *_mesh ); helper.ToFixNodeParameters( true ); // EDGEs to shrink map< TGeomID, _Shrinker1D > e2shrMap; vector< _EdgesOnShape* > subEOS; vector< _LayerEdge* > lEdges; // loop on FACEs to shrink mesh on map< TGeomID, list< _SolidData* > >::iterator f2sd = f2sdMap.begin(); for ( ; f2sd != f2sdMap.end(); ++f2sd ) { list< _SolidData* > & dataList = f2sd->second; if ( dataList.front()->_n2eMap.empty() || dataList.back() ->_n2eMap.empty() ) continue; // not yet computed if ( dataList.front() != &theData && dataList.back() != &theData ) continue; _SolidData& data = *dataList.front(); _SolidData* data2 = dataList.size() > 1 ? dataList.back() : 0; const TopoDS_Face& F = TopoDS::Face( getMeshDS()->IndexToShape( f2sd->first )); SMESH_subMesh* sm = _mesh->GetSubMesh( F ); SMESHDS_SubMesh* smDS = sm->GetSubMeshDS(); Handle(Geom_Surface) surface = BRep_Tool::Surface( F ); _shrunkFaces.Add( F ); helper.SetSubShape( F ); // ============================== // Use periodicity to move nodes // ============================== PeriodicFaces* periodic = _periodicity->GetPeriodic( F, _shrunkFaces ); bool movedByPeriod = ( periodic && periodic->MoveNodes( F )); // =========================== // Prepare data for shrinking // =========================== // Collect nodes to smooth (they are marked at the beginning of this method) vector < const SMDS_MeshNode* > smoothNodes; if ( !movedByPeriod ) { SMDS_NodeIteratorPtr nIt = smDS->GetNodes(); while ( nIt->more() ) { const SMDS_MeshNode* n = nIt->next(); if ( n->isMarked() ) smoothNodes.push_back( n ); } } // Find out face orientation double refSign = 1; const set ignoreShapes; bool isOkUV; if ( !smoothNodes.empty() ) { vector<_Simplex> simplices; _Simplex::GetSimplices( smoothNodes[0], simplices, ignoreShapes ); helper.GetNodeUV( F, simplices[0]._nPrev, 0, &isOkUV ); // fix UV of simplex nodes helper.GetNodeUV( F, simplices[0]._nNext, 0, &isOkUV ); gp_XY uv = helper.GetNodeUV( F, smoothNodes[0], 0, &isOkUV ); if ( !simplices[0].IsForward(uv, smoothNodes[0], F, helper, refSign )) refSign = -1; } // Find _LayerEdge's inflated along F subEOS.clear(); lEdges.clear(); { SMESH_subMeshIteratorPtr subIt = sm->getDependsOnIterator(/*includeSelf=*/false, /*complexFirst=*/true); //!!! while ( subIt->more() ) { const TGeomID subID = subIt->next()->GetId(); if ( data._noShrinkShapes.count( subID )) continue; _EdgesOnShape* eos = data.GetShapeEdges( subID ); if ( !eos || eos->_sWOL.IsNull() ) if ( data2 ) // check in adjacent SOLID { eos = data2->GetShapeEdges( subID ); if ( !eos || eos->_sWOL.IsNull() ) continue; } subEOS.push_back( eos ); if ( !movedByPeriod ) for ( size_t i = 0; i < eos->_edges.size(); ++i ) { lEdges.push_back( eos->_edges[ i ] ); prepareEdgeToShrink( *eos->_edges[ i ], *eos, helper, smDS ); } } } dumpFunction(SMESH_Comment("beforeShrinkFace")<first); // debug SMDS_ElemIteratorPtr fIt = smDS->GetElements(); while ( fIt->more() ) if ( const SMDS_MeshElement* f = fIt->next() ) dumpChangeNodes( f ); dumpFunctionEnd(); // Replace source nodes by target nodes in mesh faces to shrink dumpFunction(SMESH_Comment("replNodesOnFace")<first); // debug const SMDS_MeshNode* nodes[20]; for ( size_t iS = 0; iS < subEOS.size(); ++iS ) { _EdgesOnShape& eos = * subEOS[ iS ]; for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge& edge = *eos._edges[i]; const SMDS_MeshNode* srcNode = edge._nodes[0]; const SMDS_MeshNode* tgtNode = edge._nodes.back(); SMDS_ElemIteratorPtr fIt = srcNode->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) { const SMDS_MeshElement* f = fIt->next(); if ( !smDS->Contains( f ) || !f->isMarked() ) continue; SMDS_NodeIteratorPtr nIt = f->nodeIterator(); for ( int iN = 0; nIt->more(); ++iN ) { const SMDS_MeshNode* n = nIt->next(); nodes[iN] = ( n == srcNode ? tgtNode : n ); } helper.GetMeshDS()->ChangeElementNodes( f, nodes, f->NbNodes() ); dumpChangeNodes( f ); } } } dumpFunctionEnd(); // find out if a FACE is concave const bool isConcaveFace = isConcave( F, helper ); // Create _SmoothNode's on face F vector< _SmoothNode > nodesToSmooth( smoothNodes.size() ); { dumpFunction(SMESH_Comment("fixUVOnFace")<first); // debug const bool sortSimplices = isConcaveFace; for ( size_t i = 0; i < smoothNodes.size(); ++i ) { const SMDS_MeshNode* n = smoothNodes[i]; nodesToSmooth[ i ]._node = n; // src nodes must be already replaced by tgt nodes to have tgt nodes in _simplices _Simplex::GetSimplices( n, nodesToSmooth[ i ]._simplices, ignoreShapes, 0, sortSimplices); // fix up incorrect uv of nodes on the FACE helper.GetNodeUV( F, n, 0, &isOkUV); dumpMove( n ); } dumpFunctionEnd(); } //if ( nodesToSmooth.empty() ) continue; // Find EDGE's to shrink and set simpices to LayerEdge's set< _Shrinker1D* > eShri1D; { for ( size_t iS = 0; iS < subEOS.size(); ++iS ) { _EdgesOnShape& eos = * subEOS[ iS ]; if ( eos.SWOLType() == TopAbs_EDGE ) { SMESH_subMesh* edgeSM = _mesh->GetSubMesh( eos._sWOL ); VISCOUS_3D::ToClearSubWithMain( edgeSM, data._solid ); if ( !movedByPeriod ) { _Shrinker1D& shrinker = e2shrMap[ edgeSM->GetId() ]; eShri1D.insert( & shrinker ); shrinker.AddEdge( eos._edges[0], eos, helper ); // restore params of nodes on EDGE if the EDGE has been already // shrunk while shrinking other FACE shrinker.RestoreParams(); } } for ( size_t i = 0; i < eos._edges.size(); ++i ) { _LayerEdge& edge = * eos._edges[i]; _Simplex::GetSimplices( /*tgtNode=*/edge._nodes.back(), edge._simplices, ignoreShapes ); // additionally mark tgt node; only marked nodes will be used in SetNewLength2d() // not-marked nodes are those added by refine() edge._nodes.back()->setIsMarked( true ); } } } bool toFixTria = false; // to improve quality of trias by diagonal swap if ( isConcaveFace && !movedByPeriod ) { const bool hasTria = _mesh->NbTriangles(), hasQuad = _mesh->NbQuadrangles(); if ( hasTria != hasQuad ) { toFixTria = hasTria; } else { set nbNodesSet; SMDS_ElemIteratorPtr fIt = smDS->GetElements(); while ( fIt->more() && nbNodesSet.size() < 2 ) nbNodesSet.insert( fIt->next()->NbCornerNodes() ); toFixTria = ( *nbNodesSet.begin() == 3 ); } } // ================== // Perform shrinking // ================== bool shrunk = !movedByPeriod; int nbBad, shriStep=0, smooStep=0; _SmoothNode::SmoothType smoothType = isConcaveFace ? _SmoothNode::ANGULAR : _SmoothNode::LAPLACIAN; SMESH_Comment errMsg; while ( shrunk ) { shriStep++; // Move boundary nodes (actually just set new UV) // ----------------------------------------------- dumpFunction(SMESH_Comment("moveBoundaryOnF")<first<<"_st"<SetNewLength2d( surface, F, eos, helper ); } } dumpFunctionEnd(); // Move nodes on EDGE's // (XYZ is set as soon as a needed length reached in SetNewLength2d()) set< _Shrinker1D* >::iterator shr = eShri1D.begin(); for ( ; shr != eShri1D.end(); ++shr ) (*shr)->Compute( /*set3D=*/false, helper ); // Smoothing in 2D // ----------------- int nbNoImpSteps = 0; bool moved = true; nbBad = 1; while (( nbNoImpSteps < 5 && nbBad > 0) && moved) { dumpFunction(SMESH_Comment("shrinkFace")<first<<"_st"<<++smooStep); // debug int oldBadNb = nbBad; nbBad = 0; moved = false; // '% 5' minimizes NB FUNCTIONS on viscous_layers_00/B2 case _SmoothNode::SmoothType smooTy = ( smooStep % 5 ) ? smoothType : _SmoothNode::LAPLACIAN; for ( size_t i = 0; i < nodesToSmooth.size(); ++i ) { moved |= nodesToSmooth[i].Smooth( nbBad, surface, helper, refSign, smooTy, /*set3D=*/isConcaveFace); } if ( nbBad < oldBadNb ) nbNoImpSteps = 0; else nbNoImpSteps++; dumpFunctionEnd(); } errMsg.clear(); if ( nbBad > 0 ) errMsg << "Can't shrink 2D mesh on face " << f2sd->first; if ( shriStep > 200 ) errMsg << "Infinite loop at shrinking 2D mesh on face " << f2sd->first; if ( !errMsg.empty() ) break; // Fix narrow triangles by swapping diagonals // --------------------------------------- if ( toFixTria ) { set usedNodes; fixBadFaces( F, helper, /*is2D=*/true, shriStep, & usedNodes); // swap diagonals // update working data set::iterator n; for ( size_t i = 0; i < nodesToSmooth.size() && !usedNodes.empty(); ++i ) { n = usedNodes.find( nodesToSmooth[ i ]._node ); if ( n != usedNodes.end()) { _Simplex::GetSimplices( nodesToSmooth[ i ]._node, nodesToSmooth[ i ]._simplices, ignoreShapes, NULL, /*sortSimplices=*/ smoothType == _SmoothNode::ANGULAR ); usedNodes.erase( n ); } } for ( size_t i = 0; i < lEdges.size() && !usedNodes.empty(); ++i ) { n = usedNodes.find( /*tgtNode=*/ lEdges[i]->_nodes.back() ); if ( n != usedNodes.end()) { _Simplex::GetSimplices( lEdges[i]->_nodes.back(), lEdges[i]->_simplices, ignoreShapes ); usedNodes.erase( n ); } } } // TODO: check effect of this additional smooth // additional laplacian smooth to increase allowed shrink step // for ( int st = 1; st; --st ) // { // dumpFunction(SMESH_Comment("shrinkFace")<first<<"_st"<<++smooStep); // debug // for ( size_t i = 0; i < nodesToSmooth.size(); ++i ) // { // nodesToSmooth[i].Smooth( nbBad,surface,helper,refSign, // _SmoothNode::LAPLACIAN,/*set3D=*/false); // } // } } // while ( shrunk ) if ( !errMsg.empty() ) // Try to re-compute the shrink FACE { debugMsg( "Re-compute FACE " << f2sd->first << " because " << errMsg ); // remove faces SMESHDS_SubMesh* psm = data._proxyMesh->getFaceSubM( F ); { vector< const SMDS_MeshElement* > facesToRm; if ( psm ) { facesToRm.reserve( psm->NbElements() ); for ( SMDS_ElemIteratorPtr ite = psm->GetElements(); ite->more(); ) facesToRm.push_back( ite->next() ); for ( size_t i = 0 ; i < _sdVec.size(); ++i ) if (( psm = _sdVec[i]._proxyMesh->getFaceSubM( F ))) psm->Clear(); } for ( size_t i = 0; i < facesToRm.size(); ++i ) getMeshDS()->RemoveFreeElement( facesToRm[i], smDS, /*fromGroups=*/false ); } // remove nodes { TIDSortedNodeSet nodesToKeep; // nodes of _LayerEdge to keep for ( size_t iS = 0; iS < subEOS.size(); ++iS ) { for ( size_t i = 0; i < subEOS[iS]->_edges.size(); ++i ) nodesToKeep.insert( ++( subEOS[iS]->_edges[i]->_nodes.begin() ), subEOS[iS]->_edges[i]->_nodes.end() ); } SMDS_NodeIteratorPtr itn = smDS->GetNodes(); while ( itn->more() ) { const SMDS_MeshNode* n = itn->next(); if ( !nodesToKeep.count( n )) getMeshDS()->RemoveFreeNode( n, smDS, /*fromGroups=*/false ); } } _periodicity->ClearPeriodic( F ); // restore position and UV of target nodes gp_Pnt p; for ( size_t iS = 0; iS < subEOS.size(); ++iS ) for ( size_t i = 0; i < subEOS[iS]->_edges.size(); ++i ) { _LayerEdge* edge = subEOS[iS]->_edges[i]; SMDS_MeshNode* tgtNode = const_cast< SMDS_MeshNode*& >( edge->_nodes.back() ); if ( edge->_pos.empty() || edge->Is( _LayerEdge::SHRUNK )) continue; if ( subEOS[iS]->SWOLType() == TopAbs_FACE ) { SMDS_FacePositionPtr pos = tgtNode->GetPosition(); pos->SetUParameter( edge->_pos[0].X() ); pos->SetVParameter( edge->_pos[0].Y() ); p = surface->Value( edge->_pos[0].X(), edge->_pos[0].Y() ); } else { SMDS_EdgePositionPtr pos = tgtNode->GetPosition(); pos->SetUParameter( edge->_pos[0].Coord( U_TGT )); p = BRepAdaptor_Curve( TopoDS::Edge( subEOS[iS]->_sWOL )).Value( pos->GetUParameter() ); } tgtNode->setXYZ( p.X(), p.Y(), p.Z() ); dumpMove( tgtNode ); } // shrink EDGE sub-meshes and set proxy sub-meshes UVPtStructVec uvPtVec; set< _Shrinker1D* >::iterator shrIt = eShri1D.begin(); for ( shrIt = eShri1D.begin(); shrIt != eShri1D.end(); ++shrIt ) { _Shrinker1D* shr = (*shrIt); shr->Compute( /*set3D=*/true, helper ); // set proxy mesh of EDGEs w/o layers map< double, const SMDS_MeshNode* > nodes; SMESH_Algo::GetSortedNodesOnEdge( getMeshDS(), shr->GeomEdge(),/*skipMedium=*/true, nodes); // remove refinement nodes const SMDS_MeshNode* sn0 = shr->SrcNode(0), *sn1 = shr->SrcNode(1); const SMDS_MeshNode* tn0 = shr->TgtNode(0), *tn1 = shr->TgtNode(1); map< double, const SMDS_MeshNode* >::iterator u2n = nodes.begin(); if ( u2n->second == sn0 || u2n->second == sn1 ) { while ( u2n->second != tn0 && u2n->second != tn1 ) ++u2n; nodes.erase( nodes.begin(), u2n ); } u2n = --nodes.end(); if ( u2n->second == sn0 || u2n->second == sn1 ) { while ( u2n->second != tn0 && u2n->second != tn1 ) --u2n; nodes.erase( ++u2n, nodes.end() ); } // set proxy sub-mesh uvPtVec.resize( nodes.size() ); u2n = nodes.begin(); BRepAdaptor_Curve2d curve( shr->GeomEdge(), F ); for ( size_t i = 0; i < nodes.size(); ++i, ++u2n ) { uvPtVec[ i ].node = u2n->second; uvPtVec[ i ].param = u2n->first; uvPtVec[ i ].SetUV( curve.Value( u2n->first ).XY() ); } StdMeshers_FaceSide fSide( uvPtVec, F, shr->GeomEdge(), _mesh ); StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( fSide ); } // set proxy mesh of EDGEs with layers vector< _LayerEdge* > edges; for ( size_t iS = 0; iS < subEOS.size(); ++iS ) { _EdgesOnShape& eos = * subEOS[ iS ]; if ( eos.ShapeType() != TopAbs_EDGE ) continue; const TopoDS_Edge& E = TopoDS::Edge( eos._shape ); data.SortOnEdge( E, eos._edges ); edges.clear(); if ( _EdgesOnShape* eov = data.GetShapeEdges( helper.IthVertex( 0, E, /*CumOri=*/false ))) if ( !eov->_edges.empty() ) edges.push_back( eov->_edges[0] ); // on 1st VERTEX edges.insert( edges.end(), eos._edges.begin(), eos._edges.end() ); if ( _EdgesOnShape* eov = data.GetShapeEdges( helper.IthVertex( 1, E, /*CumOri=*/false ))) if ( !eov->_edges.empty() ) edges.push_back( eov->_edges[0] ); // on last VERTEX uvPtVec.resize( edges.size() ); for ( size_t i = 0; i < edges.size(); ++i ) { uvPtVec[ i ].node = edges[i]->_nodes.back(); uvPtVec[ i ].param = helper.GetNodeU( E, edges[i]->_nodes[0] ); uvPtVec[ i ].SetUV( helper.GetNodeUV( F, edges[i]->_nodes.back() )); } BRep_Tool::Range( E, uvPtVec[0].param, uvPtVec.back().param ); StdMeshers_FaceSide fSide( uvPtVec, F, E, _mesh ); StdMeshers_ViscousLayers2D::SetProxyMeshOfEdge( fSide ); } // temporary clear the FACE sub-mesh from faces made by refine() vector< const SMDS_MeshElement* > elems; elems.reserve( smDS->NbElements() + smDS->NbNodes() ); for ( SMDS_ElemIteratorPtr ite = smDS->GetElements(); ite->more(); ) elems.push_back( ite->next() ); for ( SMDS_NodeIteratorPtr ite = smDS->GetNodes(); ite->more(); ) elems.push_back( ite->next() ); smDS->Clear(); // compute the mesh on the FACE sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); sm->ComputeStateEngine( SMESH_subMesh::COMPUTE_SUBMESH ); // re-fill proxy sub-meshes of the FACE for ( size_t i = 0 ; i < _sdVec.size(); ++i ) if (( psm = _sdVec[i]._proxyMesh->getFaceSubM( F ))) for ( SMDS_ElemIteratorPtr ite = smDS->GetElements(); ite->more(); ) psm->AddElement( ite->next() ); // re-fill smDS for ( size_t i = 0; i < elems.size(); ++i ) smDS->AddElement( elems[i] ); if ( sm->GetComputeState() != SMESH_subMesh::COMPUTE_OK ) return error( errMsg ); } // end of re-meshing in case of failed smoothing else if ( !movedByPeriod ) { // No wrongly shaped faces remain; final smooth. Set node XYZ. bool isStructuredFixed = false; if ( SMESH_2D_Algo* algo = dynamic_cast( sm->GetAlgo() )) isStructuredFixed = algo->FixInternalNodes( *data._proxyMesh, F ); if ( !isStructuredFixed ) { if ( isConcaveFace ) // fix narrow faces by swapping diagonals fixBadFaces( F, helper, /*is2D=*/false, ++shriStep ); for ( int st = 3; st; --st ) { switch( st ) { case 1: smoothType = _SmoothNode::LAPLACIAN; break; case 2: smoothType = _SmoothNode::LAPLACIAN; break; case 3: smoothType = _SmoothNode::ANGULAR; break; } dumpFunction(SMESH_Comment("shrinkFace")<first<<"_st"<<++smooStep); // debug for ( size_t i = 0; i < nodesToSmooth.size(); ++i ) { nodesToSmooth[i].Smooth( nbBad,surface,helper,refSign, smoothType,/*set3D=*/st==1 ); } dumpFunctionEnd(); } } if ( !getMeshDS()->IsEmbeddedMode() ) // Log node movement for ( size_t i = 0; i < nodesToSmooth.size(); ++i ) { SMESH_TNodeXYZ p ( nodesToSmooth[i]._node ); getMeshDS()->MoveNode( nodesToSmooth[i]._node, p.X(), p.Y(), p.Z() ); } } // Set an event listener to clear FACE sub-mesh together with SOLID sub-mesh VISCOUS_3D::ToClearSubWithMain( sm, data._solid ); if ( data2 ) VISCOUS_3D::ToClearSubWithMain( sm, data2->_solid ); } // loop on FACES to shrink mesh on // Replace source nodes by target nodes in shrunk mesh edges map< int, _Shrinker1D >::iterator e2shr = e2shrMap.begin(); for ( ; e2shr != e2shrMap.end(); ++e2shr ) e2shr->second.SwapSrcTgtNodes( getMeshDS() ); return true; } //================================================================================ /*! * \brief Computes 2d shrink direction and finds nodes limiting shrinking */ //================================================================================ bool _ViscousBuilder::prepareEdgeToShrink( _LayerEdge& edge, _EdgesOnShape& eos, SMESH_MesherHelper& helper, const SMESHDS_SubMesh* faceSubMesh) { const SMDS_MeshNode* srcNode = edge._nodes[0]; const SMDS_MeshNode* tgtNode = edge._nodes.back(); if ( eos.SWOLType() == TopAbs_FACE ) { if ( tgtNode->GetPosition()->GetDim() != 2 ) // not inflated edge { edge._pos.clear(); edge.Set( _LayerEdge::SHRUNK ); return srcNode == tgtNode; } gp_XY srcUV ( edge._pos[0].X(), edge._pos[0].Y() ); //helper.GetNodeUV( F, srcNode ); gp_XY tgtUV = edge.LastUV( TopoDS::Face( eos._sWOL ), eos ); //helper.GetNodeUV( F, tgtNode ); gp_Vec2d uvDir( srcUV, tgtUV ); double uvLen = uvDir.Magnitude(); uvDir /= uvLen; edge._normal.SetCoord( uvDir.X(),uvDir.Y(), 0 ); edge._len = uvLen; //edge._pos.resize(1); edge._pos[0].SetCoord( tgtUV.X(), tgtUV.Y(), 0 ); // set UV of source node to target node SMDS_FacePositionPtr pos = tgtNode->GetPosition(); pos->SetUParameter( srcUV.X() ); pos->SetVParameter( srcUV.Y() ); } else // _sWOL is TopAbs_EDGE { if ( tgtNode->GetPosition()->GetDim() != 1 ) // not inflated edge { edge._pos.clear(); edge.Set( _LayerEdge::SHRUNK ); return srcNode == tgtNode; } const TopoDS_Edge& E = TopoDS::Edge( eos._sWOL ); SMESHDS_SubMesh* edgeSM = getMeshDS()->MeshElements( E ); if ( !edgeSM || edgeSM->NbElements() == 0 ) return error(SMESH_Comment("Not meshed EDGE ") << getMeshDS()->ShapeToIndex( E )); const SMDS_MeshNode* n2 = 0; SMDS_ElemIteratorPtr eIt = srcNode->GetInverseElementIterator(SMDSAbs_Edge); while ( eIt->more() && !n2 ) { const SMDS_MeshElement* e = eIt->next(); if ( !edgeSM->Contains(e)) continue; n2 = e->GetNode( 0 ); if ( n2 == srcNode ) n2 = e->GetNode( 1 ); } if ( !n2 ) return error(SMESH_Comment("Wrongly meshed EDGE ") << getMeshDS()->ShapeToIndex( E )); if ( n2 == tgtNode ) // for 3D_mesh_GHS3D_01/B1 { // shrunk by other SOLID edge.Set( _LayerEdge::SHRUNK ); // ??? return true; } double uSrc = helper.GetNodeU( E, srcNode, n2 ); double uTgt = helper.GetNodeU( E, tgtNode, srcNode ); double u2 = helper.GetNodeU( E, n2, srcNode ); //edge._pos.clear(); if ( fabs( uSrc-uTgt ) < 0.99 * fabs( uSrc-u2 )) { // tgtNode is located so that it does not make faces with wrong orientation edge.Set( _LayerEdge::SHRUNK ); return true; } //edge._pos.resize(1); edge._pos[0].SetCoord( U_TGT, uTgt ); edge._pos[0].SetCoord( U_SRC, uSrc ); edge._pos[0].SetCoord( LEN_TGT, fabs( uSrc-uTgt )); edge._simplices.resize( 1 ); edge._simplices[0]._nPrev = n2; // set U of source node to the target node SMDS_EdgePositionPtr pos = tgtNode->GetPosition(); pos->SetUParameter( uSrc ); } return true; } //================================================================================ /*! * \brief Restore position of a sole node of a _LayerEdge based on _noShrinkShapes */ //================================================================================ void _ViscousBuilder::restoreNoShrink( _LayerEdge& edge ) const { if ( edge._nodes.size() == 1 ) { edge._pos.clear(); edge._len = 0; const SMDS_MeshNode* srcNode = edge._nodes[0]; TopoDS_Shape S = SMESH_MesherHelper::GetSubShapeByNode( srcNode, getMeshDS() ); if ( S.IsNull() ) return; gp_Pnt p; switch ( S.ShapeType() ) { case TopAbs_EDGE: { double f,l; TopLoc_Location loc; Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge( S ), loc, f, l ); if ( curve.IsNull() ) return; SMDS_EdgePositionPtr ePos = srcNode->GetPosition(); p = curve->Value( ePos->GetUParameter() ); break; } case TopAbs_VERTEX: { p = BRep_Tool::Pnt( TopoDS::Vertex( S )); break; } default: return; } getMeshDS()->MoveNode( srcNode, p.X(), p.Y(), p.Z() ); dumpMove( srcNode ); } } //================================================================================ /*! * \brief Try to fix triangles with high aspect ratio by swapping diagonals */ //================================================================================ void _ViscousBuilder::fixBadFaces(const TopoDS_Face& F, SMESH_MesherHelper& helper, const bool is2D, const int step, set * involvedNodes) { SMESH::Controls::AspectRatio qualifier; SMESH::Controls::TSequenceOfXYZ points(3), points1(3), points2(3); const double maxAspectRatio = is2D ? 4. : 2; _NodeCoordHelper xyz( F, helper, is2D ); // find bad triangles vector< const SMDS_MeshElement* > badTrias; vector< double > badAspects; SMESHDS_SubMesh* sm = helper.GetMeshDS()->MeshElements( F ); SMDS_ElemIteratorPtr fIt = sm->GetElements(); while ( fIt->more() ) { const SMDS_MeshElement * f = fIt->next(); if ( f->NbCornerNodes() != 3 ) continue; for ( int iP = 0; iP < 3; ++iP ) points(iP+1) = xyz( f->GetNode(iP)); double aspect = qualifier.GetValue( points ); if ( aspect > maxAspectRatio ) { badTrias.push_back( f ); badAspects.push_back( aspect ); } } if ( step == 1 ) { dumpFunction(SMESH_Comment("beforeSwapDiagonals_F")<GetElements(); while ( fIt->more() ) { const SMDS_MeshElement * f = fIt->next(); if ( f->NbCornerNodes() == 3 ) dumpChangeNodes( f ); } dumpFunctionEnd(); } if ( badTrias.empty() ) return; // find couples of faces to swap diagonal typedef pair < const SMDS_MeshElement* , const SMDS_MeshElement* > T2Trias; vector< T2Trias > triaCouples; TIDSortedElemSet involvedFaces, emptySet; for ( size_t iTia = 0; iTia < badTrias.size(); ++iTia ) { T2Trias trias [3]; double aspRatio [3]; int i1, i2, i3; if ( !involvedFaces.insert( badTrias[iTia] ).second ) continue; for ( int iP = 0; iP < 3; ++iP ) points(iP+1) = xyz( badTrias[iTia]->GetNode(iP)); // find triangles adjacent to badTrias[iTia] with better aspect ratio after diag-swaping int bestCouple = -1; for ( int iSide = 0; iSide < 3; ++iSide ) { const SMDS_MeshNode* n1 = badTrias[iTia]->GetNode( iSide ); const SMDS_MeshNode* n2 = badTrias[iTia]->GetNode(( iSide+1 ) % 3 ); trias [iSide].first = badTrias[iTia]; trias [iSide].second = SMESH_MeshAlgos::FindFaceInSet( n1, n2, emptySet, involvedFaces, & i1, & i2 ); if (( ! trias[iSide].second ) || ( trias[iSide].second->NbCornerNodes() != 3 ) || ( ! sm->Contains( trias[iSide].second ))) continue; // aspect ratio of an adjacent tria for ( int iP = 0; iP < 3; ++iP ) points2(iP+1) = xyz( trias[iSide].second->GetNode(iP)); double aspectInit = qualifier.GetValue( points2 ); // arrange nodes as after diag-swaping if ( helper.WrapIndex( i1+1, 3 ) == i2 ) i3 = helper.WrapIndex( i1-1, 3 ); else i3 = helper.WrapIndex( i1+1, 3 ); points1 = points; points1( 1+ iSide ) = points2( 1+ i3 ); points2( 1+ i2 ) = points1( 1+ ( iSide+2 ) % 3 ); // aspect ratio after diag-swaping aspRatio[ iSide ] = qualifier.GetValue( points1 ) + qualifier.GetValue( points2 ); if ( aspRatio[ iSide ] > aspectInit + badAspects[ iTia ] ) continue; // prevent inversion of a triangle gp_Vec norm1 = gp_Vec( points1(1), points1(3) ) ^ gp_Vec( points1(1), points1(2) ); gp_Vec norm2 = gp_Vec( points2(1), points2(3) ) ^ gp_Vec( points2(1), points2(2) ); if ( norm1 * norm2 < 0. && norm1.Angle( norm2 ) > 70./180.*M_PI ) continue; if ( bestCouple < 0 || aspRatio[ bestCouple ] > aspRatio[ iSide ] ) bestCouple = iSide; } if ( bestCouple >= 0 ) { triaCouples.push_back( trias[bestCouple] ); involvedFaces.insert ( trias[bestCouple].second ); } else { involvedFaces.erase( badTrias[iTia] ); } } if ( triaCouples.empty() ) return; // swap diagonals SMESH_MeshEditor editor( helper.GetMesh() ); dumpFunction(SMESH_Comment("beforeSwapDiagonals_F")<insert( triaCouples[i].first->begin_nodes(), triaCouples[i].first->end_nodes() ); involvedNodes->insert( triaCouples[i].second->begin_nodes(), triaCouples[i].second->end_nodes() ); } // just for debug dump resulting triangles dumpFunction(SMESH_Comment("swapDiagonals_F")<( _nodes.back() ); if ( eos.SWOLType() == TopAbs_FACE ) { gp_XY curUV = helper.GetNodeUV( F, tgtNode ); gp_Pnt2d tgtUV( _pos[0].X(), _pos[0].Y() ); gp_Vec2d uvDir( _normal.X(), _normal.Y() ); const double uvLen = tgtUV.Distance( curUV ); const double kSafe = Max( 0.5, 1. - 0.1 * _simplices.size() ); // Select shrinking step such that not to make faces with wrong orientation. double stepSize = 1e100; for ( size_t i = 0; i < _simplices.size(); ++i ) { if ( !_simplices[i]._nPrev->isMarked() || !_simplices[i]._nNext->isMarked() ) continue; // simplex of quadrangle created by addBoundaryElements() // find intersection of 2 lines: curUV-tgtUV and that connecting simplex nodes gp_XY uvN1 = helper.GetNodeUV( F, _simplices[i]._nPrev ); gp_XY uvN2 = helper.GetNodeUV( F, _simplices[i]._nNext ); gp_XY dirN = uvN2 - uvN1; double det = uvDir.Crossed( dirN ); if ( Abs( det ) < std::numeric_limits::min() ) continue; gp_XY dirN2Cur = curUV - uvN1; double step = dirN.Crossed( dirN2Cur ) / det; if ( step > 0 ) stepSize = Min( step, stepSize ); } gp_Pnt2d newUV; if ( uvLen <= stepSize ) { newUV = tgtUV; Set( SHRUNK ); //_pos.clear(); } else if ( stepSize > 0 ) { newUV = curUV + uvDir.XY() * stepSize * kSafe; } else { return true; } SMDS_FacePositionPtr pos = tgtNode->GetPosition(); pos->SetUParameter( newUV.X() ); pos->SetVParameter( newUV.Y() ); #ifdef __myDEBUG gp_Pnt p = surface->Value( newUV.X(), newUV.Y() ); tgtNode->setXYZ( p.X(), p.Y(), p.Z() ); dumpMove( tgtNode ); #endif } else // _sWOL is TopAbs_EDGE { const TopoDS_Edge& E = TopoDS::Edge( eos._sWOL ); const SMDS_MeshNode* n2 = _simplices[0]._nPrev; SMDS_EdgePositionPtr tgtPos = tgtNode->GetPosition(); const double u2 = helper.GetNodeU( E, n2, tgtNode ); const double uSrc = _pos[0].Coord( U_SRC ); const double lenTgt = _pos[0].Coord( LEN_TGT ); double newU = _pos[0].Coord( U_TGT ); if ( lenTgt < 0.99 * fabs( uSrc-u2 )) // n2 got out of src-tgt range { Set( _LayerEdge::SHRUNK ); //_pos.clear(); } else { newU = 0.1 * tgtPos->GetUParameter() + 0.9 * u2; } tgtPos->SetUParameter( newU ); #ifdef __myDEBUG gp_XY newUV = helper.GetNodeUV( F, tgtNode, _nodes[0]); gp_Pnt p = surface->Value( newUV.X(), newUV.Y() ); tgtNode->setXYZ( p.X(), p.Y(), p.Z() ); dumpMove( tgtNode ); #endif } return true; } //================================================================================ /*! * \brief Perform smooth on the FACE * \retval bool - true if the node has been moved */ //================================================================================ bool _SmoothNode::Smooth(int& nbBad, Handle(Geom_Surface)& surface, SMESH_MesherHelper& helper, const double refSign, SmoothType how, bool set3D) { const TopoDS_Face& face = TopoDS::Face( helper.GetSubShape() ); // get uv of surrounding nodes vector uv( _simplices.size() ); for ( size_t i = 0; i < _simplices.size(); ++i ) uv[i] = helper.GetNodeUV( face, _simplices[i]._nPrev, _node ); // compute new UV for the node gp_XY newPos (0,0); if ( how == TFI && _simplices.size() == 4 ) { gp_XY corners[4]; for ( size_t i = 0; i < _simplices.size(); ++i ) if ( _simplices[i]._nOpp ) corners[i] = helper.GetNodeUV( face, _simplices[i]._nOpp, _node ); else throw SALOME_Exception(LOCALIZED("TFI smoothing: _Simplex::_nOpp not set!")); newPos = helper.calcTFI ( 0.5, 0.5, corners[0], corners[1], corners[2], corners[3], uv[1], uv[2], uv[3], uv[0] ); } else if ( how == ANGULAR ) { newPos = computeAngularPos( uv, helper.GetNodeUV( face, _node ), refSign ); } else if ( how == CENTROIDAL && _simplices.size() > 3 ) { // average centers of diagonals wieghted with their reciprocal lengths if ( _simplices.size() == 4 ) { double w1 = 1. / ( uv[2]-uv[0] ).SquareModulus(); double w2 = 1. / ( uv[3]-uv[1] ).SquareModulus(); newPos = ( w1 * ( uv[2]+uv[0] ) + w2 * ( uv[3]+uv[1] )) / ( w1+w2 ) / 2; } else { double sumWeight = 0; int nb = _simplices.size() == 4 ? 2 : _simplices.size(); for ( int i = 0; i < nb; ++i ) { int iFrom = i + 2; int iTo = i + _simplices.size() - 1; for ( int j = iFrom; j < iTo; ++j ) { int i2 = SMESH_MesherHelper::WrapIndex( j, _simplices.size() ); double w = 1. / ( uv[i]-uv[i2] ).SquareModulus(); sumWeight += w; newPos += w * ( uv[i]+uv[i2] ); } } newPos /= 2 * sumWeight; // 2 is to get a middle between uv's } } else { // Laplacian smooth for ( size_t i = 0; i < _simplices.size(); ++i ) newPos += uv[i]; newPos /= _simplices.size(); } // count quality metrics (orientation) of triangles around the node int nbOkBefore = 0; gp_XY tgtUV = helper.GetNodeUV( face, _node ); for ( size_t i = 0; i < _simplices.size(); ++i ) nbOkBefore += _simplices[i].IsForward( tgtUV, _node, face, helper, refSign ); int nbOkAfter = 0; for ( size_t i = 0; i < _simplices.size(); ++i ) nbOkAfter += _simplices[i].IsForward( newPos, _node, face, helper, refSign ); if ( nbOkAfter < nbOkBefore ) { nbBad += _simplices.size() - nbOkBefore; return false; } SMDS_FacePositionPtr pos = _node->GetPosition(); pos->SetUParameter( newPos.X() ); pos->SetVParameter( newPos.Y() ); #ifdef __myDEBUG set3D = true; #endif if ( set3D ) { gp_Pnt p = surface->Value( newPos.X(), newPos.Y() ); const_cast< SMDS_MeshNode* >( _node )->setXYZ( p.X(), p.Y(), p.Z() ); dumpMove( _node ); } nbBad += _simplices.size() - nbOkAfter; return ( (tgtUV-newPos).SquareModulus() > 1e-10 ); } //================================================================================ /*! * \brief Computes new UV using angle based smoothing technique */ //================================================================================ gp_XY _SmoothNode::computeAngularPos(vector& uv, const gp_XY& uvToFix, const double refSign) { uv.push_back( uv.front() ); vector< gp_XY > edgeDir ( uv.size() ); vector< double > edgeSize( uv.size() ); for ( size_t i = 1; i < edgeDir.size(); ++i ) { edgeDir [i-1] = uv[i] - uv[i-1]; edgeSize[i-1] = edgeDir[i-1].Modulus(); if ( edgeSize[i-1] < numeric_limits::min() ) edgeDir[i-1].SetX( 100 ); else edgeDir[i-1] /= edgeSize[i-1] * refSign; } edgeDir.back() = edgeDir.front(); edgeSize.back() = edgeSize.front(); gp_XY newPos(0,0); //int nbEdges = 0; double sumSize = 0; for ( size_t i = 1; i < edgeDir.size(); ++i ) { if ( edgeDir[i-1].X() > 1. ) continue; int i1 = i-1; while ( edgeDir[i].X() > 1. && ++i < edgeDir.size() ); if ( i == edgeDir.size() ) break; gp_XY p = uv[i]; gp_XY norm1( -edgeDir[i1].Y(), edgeDir[i1].X() ); gp_XY norm2( -edgeDir[i].Y(), edgeDir[i].X() ); gp_XY bisec = norm1 + norm2; double bisecSize = bisec.Modulus(); if ( bisecSize < numeric_limits::min() ) { bisec = -edgeDir[i1] + edgeDir[i]; bisecSize = bisec.Modulus(); } bisec /= bisecSize; gp_XY dirToN = uvToFix - p; double distToN = dirToN.Modulus(); if ( bisec * dirToN < 0 ) distToN = -distToN; newPos += ( p + bisec * distToN ) * ( edgeSize[i1] + edgeSize[i] ); //++nbEdges; sumSize += edgeSize[i1] + edgeSize[i]; } newPos /= /*nbEdges * */sumSize; return newPos; } //================================================================================ /*! * \brief Keep a _LayerEdge inflated along the EDGE */ //================================================================================ void _Shrinker1D::AddEdge( const _LayerEdge* e, _EdgesOnShape& eos, SMESH_MesherHelper& helper ) { // init if ( _nodes.empty() ) { _edges[0] = _edges[1] = 0; _done = false; } // check _LayerEdge if ( e == _edges[0] || e == _edges[1] || e->_nodes.size() < 2 ) return; if ( eos.SWOLType() != TopAbs_EDGE ) throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added")); if ( _edges[0] && !_geomEdge.IsSame( eos._sWOL )) throw SALOME_Exception(LOCALIZED("Wrong _LayerEdge is added")); // store _LayerEdge _geomEdge = TopoDS::Edge( eos._sWOL ); double f,l; BRep_Tool::Range( _geomEdge, f,l ); double u = helper.GetNodeU( _geomEdge, e->_nodes[0], e->_nodes.back()); _edges[ u < 0.5*(f+l) ? 0 : 1 ] = e; // Update _nodes const SMDS_MeshNode* tgtNode0 = TgtNode( 0 ); const SMDS_MeshNode* tgtNode1 = TgtNode( 1 ); if ( _nodes.empty() ) { SMESHDS_SubMesh * eSubMesh = helper.GetMeshDS()->MeshElements( _geomEdge ); if ( !eSubMesh || eSubMesh->NbNodes() < 1 ) return; TopLoc_Location loc; Handle(Geom_Curve) C = BRep_Tool::Curve( _geomEdge, loc, f,l ); GeomAdaptor_Curve aCurve(C, f,l); const double totLen = GCPnts_AbscissaPoint::Length(aCurve, f, l); int nbExpectNodes = eSubMesh->NbNodes(); _initU .reserve( nbExpectNodes ); _normPar.reserve( nbExpectNodes ); _nodes .reserve( nbExpectNodes ); SMDS_NodeIteratorPtr nIt = eSubMesh->GetNodes(); while ( nIt->more() ) { const SMDS_MeshNode* node = nIt->next(); // skip refinement nodes if ( node->NbInverseElements(SMDSAbs_Edge) == 0 || node == tgtNode0 || node == tgtNode1 ) continue; bool hasMarkedFace = false; SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() && !hasMarkedFace ) hasMarkedFace = fIt->next()->isMarked(); if ( !hasMarkedFace ) continue; _nodes.push_back( node ); _initU.push_back( helper.GetNodeU( _geomEdge, node )); double len = GCPnts_AbscissaPoint::Length(aCurve, f, _initU.back()); _normPar.push_back( len / totLen ); } } else { // remove target node of the _LayerEdge from _nodes size_t nbFound = 0; for ( size_t i = 0; i < _nodes.size(); ++i ) if ( !_nodes[i] || _nodes[i] == tgtNode0 || _nodes[i] == tgtNode1 ) _nodes[i] = 0, nbFound++; if ( nbFound == _nodes.size() ) _nodes.clear(); } } //================================================================================ /*! * \brief Move nodes on EDGE from ends where _LayerEdge's are inflated */ //================================================================================ void _Shrinker1D::Compute(bool set3D, SMESH_MesherHelper& helper) { if ( _done || _nodes.empty()) return; const _LayerEdge* e = _edges[0]; if ( !e ) e = _edges[1]; if ( !e ) return; _done = (( !_edges[0] || _edges[0]->Is( _LayerEdge::SHRUNK )) && ( !_edges[1] || _edges[1]->Is( _LayerEdge::SHRUNK ))); double f,l; if ( set3D || _done ) { Handle(Geom_Curve) C = BRep_Tool::Curve(_geomEdge, f,l); GeomAdaptor_Curve aCurve(C, f,l); if ( _edges[0] ) f = helper.GetNodeU( _geomEdge, _edges[0]->_nodes.back(), _nodes[0] ); if ( _edges[1] ) l = helper.GetNodeU( _geomEdge, _edges[1]->_nodes.back(), _nodes.back() ); double totLen = GCPnts_AbscissaPoint::Length( aCurve, f, l ); for ( size_t i = 0; i < _nodes.size(); ++i ) { if ( !_nodes[i] ) continue; double len = totLen * _normPar[i]; GCPnts_AbscissaPoint discret( aCurve, len, f ); if ( !discret.IsDone() ) return throw SALOME_Exception(LOCALIZED("GCPnts_AbscissaPoint failed")); double u = discret.Parameter(); SMDS_EdgePositionPtr pos = _nodes[i]->GetPosition(); pos->SetUParameter( u ); gp_Pnt p = C->Value( u ); const_cast< SMDS_MeshNode*>( _nodes[i] )->setXYZ( p.X(), p.Y(), p.Z() ); } } else { BRep_Tool::Range( _geomEdge, f,l ); if ( _edges[0] ) f = helper.GetNodeU( _geomEdge, _edges[0]->_nodes.back(), _nodes[0] ); if ( _edges[1] ) l = helper.GetNodeU( _geomEdge, _edges[1]->_nodes.back(), _nodes.back() ); for ( size_t i = 0; i < _nodes.size(); ++i ) { if ( !_nodes[i] ) continue; double u = f * ( 1-_normPar[i] ) + l * _normPar[i]; SMDS_EdgePositionPtr pos = _nodes[i]->GetPosition(); pos->SetUParameter( u ); } } } //================================================================================ /*! * \brief Restore initial parameters of nodes on EDGE */ //================================================================================ void _Shrinker1D::RestoreParams() { if ( _done ) for ( size_t i = 0; i < _nodes.size(); ++i ) { if ( !_nodes[i] ) continue; SMDS_EdgePositionPtr pos = _nodes[i]->GetPosition(); pos->SetUParameter( _initU[i] ); } _done = false; } //================================================================================ /*! * \brief Replace source nodes by target nodes in shrunk mesh edges */ //================================================================================ void _Shrinker1D::SwapSrcTgtNodes( SMESHDS_Mesh* mesh ) { const SMDS_MeshNode* nodes[3]; for ( int i = 0; i < 2; ++i ) { if ( !_edges[i] ) continue; SMESHDS_SubMesh * eSubMesh = mesh->MeshElements( _geomEdge ); if ( !eSubMesh ) return; const SMDS_MeshNode* srcNode = _edges[i]->_nodes[0]; const SMDS_MeshNode* tgtNode = _edges[i]->_nodes.back(); const SMDS_MeshNode* scdNode = _edges[i]->_nodes[1]; SMDS_ElemIteratorPtr eIt = srcNode->GetInverseElementIterator(SMDSAbs_Edge); while ( eIt->more() ) { const SMDS_MeshElement* e = eIt->next(); if ( !eSubMesh->Contains( e ) || e->GetNodeIndex( scdNode ) >= 0 ) continue; SMDS_ElemIteratorPtr nIt = e->nodesIterator(); for ( int iN = 0; iN < e->NbNodes(); ++iN ) { const SMDS_MeshNode* n = static_cast( nIt->next() ); nodes[iN] = ( n == srcNode ? tgtNode : n ); } mesh->ChangeElementNodes( e, nodes, e->NbNodes() ); } } } //================================================================================ /*! * \brief Creates 2D and 1D elements on boundaries of new prisms */ //================================================================================ bool _ViscousBuilder::addBoundaryElements(_SolidData& data) { SMESH_MesherHelper helper( *_mesh ); vector< const SMDS_MeshNode* > faceNodes; //for ( size_t i = 0; i < _sdVec.size(); ++i ) { //_SolidData& data = _sdVec[i]; TopTools_IndexedMapOfShape geomEdges; TopExp::MapShapes( data._solid, TopAbs_EDGE, geomEdges ); for ( int iE = 1; iE <= geomEdges.Extent(); ++iE ) { const TopoDS_Edge& E = TopoDS::Edge( geomEdges(iE)); const TGeomID edgeID = getMeshDS()->ShapeToIndex( E ); if ( data._noShrinkShapes.count( edgeID )) continue; // Get _LayerEdge's based on E map< double, const SMDS_MeshNode* > u2nodes; if ( !SMESH_Algo::GetSortedNodesOnEdge( getMeshDS(), E, /*ignoreMedium=*/false, u2nodes)) continue; vector< _LayerEdge* > ledges; ledges.reserve( u2nodes.size() ); TNode2Edge & n2eMap = data._n2eMap; map< double, const SMDS_MeshNode* >::iterator u2n = u2nodes.begin(); { //check if 2D elements are needed on E TNode2Edge::iterator n2e = n2eMap.find( u2n->second ); if ( n2e == n2eMap.end() ) continue; // no layers on vertex ledges.push_back( n2e->second ); u2n++; if (( n2e = n2eMap.find( u2n->second )) == n2eMap.end() ) continue; // no layers on E ledges.push_back( n2eMap[ u2n->second ]); const SMDS_MeshNode* tgtN0 = ledges[0]->_nodes.back(); const SMDS_MeshNode* tgtN1 = ledges[1]->_nodes.back(); int nbSharedPyram = 0; SMDS_ElemIteratorPtr vIt = tgtN1->GetInverseElementIterator(SMDSAbs_Volume); while ( vIt->more() ) { const SMDS_MeshElement* v = vIt->next(); nbSharedPyram += int( v->GetNodeIndex( tgtN0 ) >= 0 ); } if ( nbSharedPyram > 1 ) continue; // not free border of the pyramid faceNodes.clear(); faceNodes.push_back( ledges[0]->_nodes[0] ); faceNodes.push_back( ledges[1]->_nodes[0] ); if ( ledges[0]->_nodes.size() > 1 ) faceNodes.push_back( ledges[0]->_nodes[1] ); if ( ledges[1]->_nodes.size() > 1 ) faceNodes.push_back( ledges[1]->_nodes[1] ); if ( getMeshDS()->FindElement( faceNodes, SMDSAbs_Face, /*noMedium=*/true)) continue; // faces already created } for ( ++u2n; u2n != u2nodes.end(); ++u2n ) ledges.push_back( n2eMap[ u2n->second ]); // Find out orientation and type of face to create bool reverse = false, isOnFace; TopoDS_Shape F; map< TGeomID, TopoDS_Shape >::iterator e2f = data._shrinkShape2Shape.find( edgeID ); if (( isOnFace = ( e2f != data._shrinkShape2Shape.end() ))) { F = e2f->second.Oriented( TopAbs_FORWARD ); reverse = ( helper.GetSubShapeOri( F, E ) == TopAbs_REVERSED ); if ( helper.GetSubShapeOri( data._solid, F ) == TopAbs_REVERSED ) reverse = !reverse, F.Reverse(); if ( helper.IsReversedSubMesh( TopoDS::Face(F) )) reverse = !reverse; } else if ( !data._ignoreFaceIds.count( e2f->first )) { // find FACE with layers sharing E PShapeIteratorPtr fIt = helper.GetAncestors( E, *_mesh, TopAbs_FACE, &data._solid ); if ( fIt->more() ) F = *( fIt->next() ); } // Find the sub-mesh to add new faces SMESHDS_SubMesh* sm = 0; if ( isOnFace ) sm = getMeshDS()->MeshElements( F ); else sm = data._proxyMesh->getFaceSubM( TopoDS::Face(F), /*create=*/true ); if ( !sm ) return error("error in addBoundaryElements()", data._index); // Find a proxy sub-mesh of the FACE of an adjacent SOLID, which will use the new boundary // faces for 3D meshing (PAL23414) SMESHDS_SubMesh* adjSM = 0; if ( isOnFace ) { const TGeomID faceID = sm->GetID(); PShapeIteratorPtr soIt = helper.GetAncestors( F, *_mesh, TopAbs_SOLID ); while ( const TopoDS_Shape* solid = soIt->next() ) if ( !solid->IsSame( data._solid )) { size_t iData = _solids.FindIndex( *solid ) - 1; if ( iData < _sdVec.size() && _sdVec[ iData ]._ignoreFaceIds.count( faceID ) && _sdVec[ iData ]._shrinkShape2Shape.count( edgeID ) == 0 ) { SMESH_ProxyMesh::SubMesh* proxySub = _sdVec[ iData ]._proxyMesh->getFaceSubM( TopoDS::Face( F ), /*create=*/false); if ( proxySub && proxySub->NbElements() > 0 ) adjSM = proxySub; } } } // Make faces const int dj1 = reverse ? 0 : 1; const int dj2 = reverse ? 1 : 0; vector< const SMDS_MeshElement*> ff; // new faces row SMESHDS_Mesh* m = getMeshDS(); for ( size_t j = 1; j < ledges.size(); ++j ) { vector< const SMDS_MeshNode*>& nn1 = ledges[j-dj1]->_nodes; vector< const SMDS_MeshNode*>& nn2 = ledges[j-dj2]->_nodes; ff.resize( std::max( nn1.size(), nn2.size() ), NULL ); if ( nn1.size() == nn2.size() ) { if ( isOnFace ) for ( size_t z = 1; z < nn1.size(); ++z ) sm->AddElement( ff[z-1] = m->AddFace( nn1[z-1], nn2[z-1], nn2[z], nn1[z] )); else for ( size_t z = 1; z < nn1.size(); ++z ) sm->AddElement( new SMDS_FaceOfNodes( nn1[z-1], nn2[z-1], nn2[z], nn1[z] )); } else if ( nn1.size() == 1 ) { if ( isOnFace ) for ( size_t z = 1; z < nn2.size(); ++z ) sm->AddElement( ff[z-1] = m->AddFace( nn1[0], nn2[z-1], nn2[z] )); else for ( size_t z = 1; z < nn2.size(); ++z ) sm->AddElement( new SMDS_FaceOfNodes( nn1[0], nn2[z-1], nn2[z] )); } else { if ( isOnFace ) for ( size_t z = 1; z < nn1.size(); ++z ) sm->AddElement( ff[z-1] = m->AddFace( nn1[z-1], nn2[0], nn1[z] )); else for ( size_t z = 1; z < nn1.size(); ++z ) sm->AddElement( new SMDS_FaceOfNodes( nn1[z-1], nn2[0], nn2[z] )); } if ( adjSM ) // add faces to a proxy SM of the adjacent SOLID { for ( size_t z = 0; z < ff.size(); ++z ) if ( ff[ z ]) adjSM->AddElement( ff[ z ]); ff.clear(); } } // Make edges for ( int isFirst = 0; isFirst < 2; ++isFirst ) { _LayerEdge* edge = isFirst ? ledges.front() : ledges.back(); _EdgesOnShape* eos = data.GetShapeEdges( edge ); if ( eos && eos->SWOLType() == TopAbs_EDGE ) { vector< const SMDS_MeshNode*>& nn = edge->_nodes; if ( nn.size() < 2 || nn[1]->NbInverseElements( SMDSAbs_Edge ) >= 2 ) continue; helper.SetSubShape( eos->_sWOL ); helper.SetElementsOnShape( true ); for ( size_t z = 1; z < nn.size(); ++z ) helper.AddEdge( nn[z-1], nn[z] ); } } } // loop on EDGE's } // loop on _SolidData's return true; }