// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : StdMeshers_QuadToTriaAdaptor.cxx // Module : SMESH // Created : Wen May 07 16:37:07 2008 // Author : Sergey KUUL (skl) #include "StdMeshers_QuadToTriaAdaptor.hxx" #include "SMDS_IteratorOnIterators.hxx" #include "SMDS_SetIterator.hxx" #include "SMESHDS_GroupBase.hxx" #include "SMESHDS_Mesh.hxx" #include "SMESH_Algo.hxx" #include "SMESH_Group.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_MeshAlgos.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_subMesh.hxx" #include #include #include #include #include #include #include #include #include #include #include "utilities.h" #include #include #include using namespace std; enum EQuadNature { NOT_QUAD, QUAD, DEGEN_QUAD, PYRAM_APEX = 4, TRIA_APEX = 0 }; // std-like iterator used to get coordinates of nodes of mesh element typedef SMDS_StdIterator< SMESH_TNodeXYZ, SMDS_ElemIteratorPtr > TXyzIterator; namespace { //================================================================================ /*! * \brief Return true if two nodes of triangles are equal */ //================================================================================ bool EqualTriangles(const SMDS_MeshElement* F1,const SMDS_MeshElement* F2) { return ( F1->GetNode(1)==F2->GetNode(2) && F1->GetNode(2)==F2->GetNode(1) ) || ( F1->GetNode(1)==F2->GetNode(1) && F1->GetNode(2)==F2->GetNode(2) ); } //================================================================================ /*! * \brief Return true if two adjacent pyramids are too close one to another * so that a tetrahedron to built between them would have too poor quality */ //================================================================================ bool TooCloseAdjacent( const SMDS_MeshElement* PrmI, const SMDS_MeshElement* PrmJ, const bool hasShape) { const SMDS_MeshNode* nApexI = PrmI->GetNode(4); const SMDS_MeshNode* nApexJ = PrmJ->GetNode(4); if ( nApexI == nApexJ || nApexI->getshapeId() != nApexJ->getshapeId() ) return false; // Find two common base nodes and their indices within PrmI and PrmJ const SMDS_MeshNode* baseNodes[2] = { 0,0 }; int baseNodesIndI[2], baseNodesIndJ[2]; for ( int i = 0; i < 4 ; ++i ) { int j = PrmJ->GetNodeIndex( PrmI->GetNode(i)); if ( j >= 0 ) { int ind = baseNodes[0] ? 1:0; if ( baseNodes[ ind ]) return false; // pyramids with a common base face baseNodes [ ind ] = PrmI->GetNode(i); baseNodesIndI[ ind ] = i; baseNodesIndJ[ ind ] = j; } } if ( !baseNodes[1] ) return false; // not adjacent // Get normals of triangles sharing baseNodes gp_XYZ apexI = SMESH_TNodeXYZ( nApexI ); gp_XYZ apexJ = SMESH_TNodeXYZ( nApexJ ); gp_XYZ base1 = SMESH_TNodeXYZ( baseNodes[0]); gp_XYZ base2 = SMESH_TNodeXYZ( baseNodes[1]); gp_Vec baseVec( base1, base2 ); gp_Vec baI( base1, apexI ); gp_Vec baJ( base1, apexJ ); gp_Vec nI = baseVec.Crossed( baI ); gp_Vec nJ = baseVec.Crossed( baJ ); // Check angle between normals double angle = nI.Angle( nJ ); bool tooClose = ( angle < 15. * M_PI / 180. ); // Check if pyramids collide if ( !tooClose && ( baI * baJ > 0 ) && ( nI * nJ > 0 )) { // find out if nI points outside of PrmI or inside int dInd = baseNodesIndI[1] - baseNodesIndI[0]; bool isOutI = ( abs(dInd)==1 ) ? dInd < 0 : dInd > 0; // find out sign of projection of baI to nJ double proj = baI * nJ; tooClose = ( isOutI ? proj > 0 : proj < 0 ); } // Check if PrmI and PrmJ are in same domain if ( tooClose && !hasShape ) { // check order of baseNodes within pyramids, it must be opposite int dInd; dInd = baseNodesIndI[1] - baseNodesIndI[0]; bool isOutI = ( abs(dInd)==1 ) ? dInd < 0 : dInd > 0; dInd = baseNodesIndJ[1] - baseNodesIndJ[0]; bool isOutJ = ( abs(dInd)==1 ) ? dInd < 0 : dInd > 0; if ( isOutJ == isOutI ) return false; // other domain // direct both normals outside pyramid ( isOutI ? nJ : nI ).Reverse(); // check absence of a face separating domains between pyramids TIDSortedElemSet emptySet, avoidSet; int i1, i2; while ( const SMDS_MeshElement* f = SMESH_MeshAlgos::FindFaceInSet( baseNodes[0], baseNodes[1], emptySet, avoidSet, &i1, &i2 )) { avoidSet.insert( f ); // face node other than baseNodes int otherNodeInd = 0; while ( otherNodeInd == i1 || otherNodeInd == i2 ) otherNodeInd++; const SMDS_MeshNode* otherFaceNode = f->GetNode( otherNodeInd ); if ( otherFaceNode == nApexI || otherFaceNode == nApexJ ) continue; // f is a temporary triangle // check if f is a base face of either of pyramids if ( f->NbCornerNodes() == 4 && ( PrmI->GetNodeIndex( otherFaceNode ) >= 0 || PrmJ->GetNodeIndex( otherFaceNode ) >= 0 )) continue; // f is a base quadrangle // check projections of face direction (baOFN) to triangle normals (nI and nJ) gp_Vec baOFN( base2, SMESH_TNodeXYZ( otherFaceNode )); if ( nI * baOFN > 0 && nJ * baOFN > 0 && baI* baOFN > 0 && baJ* baOFN > 0 ) // issue 0023212 { tooClose = false; // f is between pyramids break; } } } return tooClose; } //================================================================================ /*! * \brief Move medium nodes of merged quadratic pyramids */ //================================================================================ void UpdateQuadraticPyramids(const set& commonApex, SMESHDS_Mesh* meshDS) { typedef SMDS_StdIterator< const SMDS_MeshElement*, SMDS_ElemIteratorPtr > TStdElemIterator; TStdElemIterator itEnd; // shift of node index to get medium nodes between the 4 base nodes and the apex const int base2MediumShift = 9; set::const_iterator nIt = commonApex.begin(); for ( ; nIt != commonApex.end(); ++nIt ) { SMESH_TNodeXYZ apex( *nIt ); vector< const SMDS_MeshElement* > pyrams // pyramids sharing the apex node ( TStdElemIterator( apex._node->GetInverseElementIterator( SMDSAbs_Volume )), itEnd ); // Select medium nodes to keep and medium nodes to remove typedef map < const SMDS_MeshNode*, const SMDS_MeshNode*, TIDCompare > TN2NMap; TN2NMap base2medium; // to keep vector< const SMDS_MeshNode* > nodesToRemove; for ( unsigned i = 0; i < pyrams.size(); ++i ) for ( int baseIndex = 0; baseIndex < PYRAM_APEX; ++baseIndex ) { SMESH_TNodeXYZ base = pyrams[i]->GetNode( baseIndex ); const SMDS_MeshNode* medium = pyrams[i]->GetNode( baseIndex + base2MediumShift ); TN2NMap::iterator b2m = base2medium.insert( make_pair( base._node, medium )).first; if ( b2m->second != medium ) { nodesToRemove.push_back( medium ); } else { // move the kept medium node gp_XYZ newXYZ = 0.5 * ( apex + base ); meshDS->MoveNode( medium, newXYZ.X(), newXYZ.Y(), newXYZ.Z() ); } } // Within pyramids, replace nodes to remove by nodes to keep for ( unsigned i = 0; i < pyrams.size(); ++i ) { vector< const SMDS_MeshNode* > nodes( pyrams[i]->begin_nodes(), pyrams[i]->end_nodes() ); for ( int baseIndex = 0; baseIndex < PYRAM_APEX; ++baseIndex ) { const SMDS_MeshNode* base = pyrams[i]->GetNode( baseIndex ); nodes[ baseIndex + base2MediumShift ] = base2medium[ base ]; } meshDS->ChangeElementNodes( pyrams[i], &nodes[0], nodes.size()); } // Remove the replaced nodes if ( !nodesToRemove.empty() ) { SMESHDS_SubMesh * sm = meshDS->MeshElements( nodesToRemove[0]->getshapeId() ); for ( unsigned i = 0; i < nodesToRemove.size(); ++i ) meshDS->RemoveFreeNode( nodesToRemove[i], sm, /*fromGroups=*/false); } } } //================================================================================ /*! * \brief Store an error about overlapping faces */ //================================================================================ bool overlapError( SMESH_Mesh& mesh, const SMDS_MeshElement* face1, const SMDS_MeshElement* face2, const TopoDS_Shape& shape = TopoDS_Shape()) { if ( !face1 || !face2 ) return false; SMESH_Comment msg; msg << "face " << face1->GetID() << " overlaps face " << face2->GetID(); SMESH_subMesh * sm = 0; if ( shape.IsNull() ) { sm = mesh.GetSubMesh( mesh.GetShapeToMesh() ); } else if ( shape.ShapeType() >= TopAbs_SOLID ) { sm = mesh.GetSubMesh( shape ); } else { TopoDS_Iterator it ( shape ); if ( it.More() ) sm = mesh.GetSubMesh( it.Value() ); } if ( sm ) { SMESH_ComputeErrorPtr& err = sm->GetComputeError(); if ( !err || err->IsOK() ) { SMESH_BadInputElements* badElems = new SMESH_BadInputElements( mesh.GetMeshDS(),COMPERR_BAD_INPUT_MESH, msg, sm->GetAlgo() ); badElems->add( face1 ); badElems->add( face2 ); err.reset( badElems ); } } return false; // == "algo fails" } } //================================================================================ /*! * \brief Merge the two pyramids (i.e. fuse their apex) and others already merged with them */ //================================================================================ void StdMeshers_QuadToTriaAdaptor::MergePiramids( const SMDS_MeshElement* PrmI, const SMDS_MeshElement* PrmJ, set & nodesToMove) { // cout << endl << "Merge " << PrmI->GetID() << " " << PrmJ->GetID() << " " // << PrmI->GetNode(4) << PrmJ->GetNode(4) << endl; const SMDS_MeshNode* Nrem = PrmJ->GetNode(4); // node to remove //int nbJ = Nrem->NbInverseElements( SMDSAbs_Volume ); SMESH_TNodeXYZ Pj( Nrem ); // an apex node to make common to all merged pyramids SMDS_MeshNode* CommonNode = const_cast(PrmI->GetNode(4)); if ( CommonNode == Nrem ) return; // already merged //int nbI = CommonNode->NbInverseElements( SMDSAbs_Volume ); SMESH_TNodeXYZ Pi( CommonNode ); gp_XYZ Pnew = /*( nbI*Pi + nbJ*Pj ) / (nbI+nbJ);*/ 0.5 * ( Pi + Pj ); CommonNode->setXYZ( Pnew.X(), Pnew.Y(), Pnew.Z() ); nodesToMove.insert( CommonNode ); nodesToMove.erase ( Nrem ); typedef SMDS_StdIterator< const SMDS_MeshElement*, SMDS_ElemIteratorPtr > TStdElemIterator; TStdElemIterator itEnd; // find and remove coincided faces of merged pyramids vector< const SMDS_MeshElement* > inverseElems // copy inverse elements to avoid iteration on changing container ( TStdElemIterator( CommonNode->GetInverseElementIterator(SMDSAbs_Face)), itEnd); for ( size_t i = 0; i < inverseElems.size(); ++i ) { const SMDS_MeshElement* FI = inverseElems[i]; const SMDS_MeshElement* FJEqual = 0; SMDS_ElemIteratorPtr triItJ = Nrem->GetInverseElementIterator(SMDSAbs_Face); while ( !FJEqual && triItJ->more() ) { const SMDS_MeshElement* FJ = triItJ->next(); if ( EqualTriangles( FJ, FI )) FJEqual = FJ; } if ( FJEqual ) { removeTmpElement( FI ); removeTmpElement( FJEqual ); myRemovedTrias.insert( FI ); myRemovedTrias.insert( FJEqual ); } } // set the common apex node to pyramids and triangles merged with J vector< const SMDS_MeshNode* > nodes; inverseElems.assign( TStdElemIterator( Nrem->GetInverseElementIterator()), itEnd ); for ( size_t i = 0; i < inverseElems.size(); ++i ) { const SMDS_MeshElement* elem = inverseElems[i]; nodes.assign( elem->begin_nodes(), elem->end_nodes() ); nodes[ elem->GetType() == SMDSAbs_Volume ? PYRAM_APEX : TRIA_APEX ] = CommonNode; GetMeshDS()->ChangeElementNodes( elem, &nodes[0], nodes.size()); } ASSERT( Nrem->NbInverseElements() == 0 ); GetMeshDS()->RemoveFreeNode( Nrem, GetMeshDS()->MeshElements( Nrem->getshapeId()), /*fromGroups=*/false); } //================================================================================ /*! * \brief Merges adjacent pyramids */ //================================================================================ void StdMeshers_QuadToTriaAdaptor::MergeAdjacent(const SMDS_MeshElement* PrmI, set& nodesToMove, const bool isRecursion) { TIDSortedElemSet adjacentPyrams; bool mergedPyrams = false; for ( int k=0; k<4; k++ ) // loop on 4 base nodes of PrmI { const SMDS_MeshNode* n = PrmI->GetNode(k); SMDS_ElemIteratorPtr vIt = n->GetInverseElementIterator( SMDSAbs_Volume ); while ( vIt->more() ) { const SMDS_MeshElement* PrmJ = vIt->next(); if ( PrmJ == PrmI || PrmJ->NbCornerNodes() != 5 || !adjacentPyrams.insert( PrmJ ).second ) continue; if ( TooCloseAdjacent( PrmI, PrmJ, GetMesh()->HasShapeToMesh() )) { MergePiramids( PrmI, PrmJ, nodesToMove ); mergedPyrams = true; // container of inverse elements can change // vIt = n->GetInverseElementIterator( SMDSAbs_Volume ); -- iterator re-implemented } } } if ( mergedPyrams && !isRecursion ) { TIDSortedElemSet::iterator prm; for (prm = adjacentPyrams.begin(); prm != adjacentPyrams.end(); ++prm) MergeAdjacent( *prm, nodesToMove, true ); } } //================================================================================ /*! * \brief Constructor */ //================================================================================ StdMeshers_QuadToTriaAdaptor::StdMeshers_QuadToTriaAdaptor(): myElemSearcher(0) { } //================================================================================ /*! * \brief Destructor */ //================================================================================ StdMeshers_QuadToTriaAdaptor::~StdMeshers_QuadToTriaAdaptor() { // temporary faces are deleted by ~SMESH_ProxyMesh() if ( myElemSearcher ) delete myElemSearcher; myElemSearcher=0; } //======================================================================= //function : FindBestPoint //purpose : Return a point P laying on the line (PC,V) so that triangle // (P, P1, P2) to be equilateral as much as possible // V - normal to (P1,P2,PC) //======================================================================= static gp_Pnt FindBestPoint(const gp_Pnt& P1, const gp_Pnt& P2, const gp_Pnt& PC, const gp_Vec& V) { gp_Pnt Pbest = PC; const double a2 = P1.SquareDistance(P2); const double b2 = P1.SquareDistance(PC); const double c2 = P2.SquareDistance(PC); if ( a2 < ( b2 + Sqrt( 4 * b2 * c2 ) + c2 ) / 4 ) // ( a < (b+c)/2 ) return Pbest; else { // find shift along V in order a to became equal to (b+c)/2 const double Vsize = V.Magnitude(); if ( fabs( Vsize ) > std::numeric_limits::min() ) { const double shift = sqrt( a2 + (b2-c2)*(b2-c2)/16/a2 - (b2+c2)/2 ); Pbest.ChangeCoord() += shift * V.XYZ() / Vsize; } } return Pbest; } //======================================================================= //function : HasIntersection3 //purpose : Find intersection point between a triangle (P1,P2,P3) // and a segment [PC,P] //======================================================================= static bool HasIntersection3(const gp_Pnt& P, const gp_Pnt& PC, gp_Pnt& Pint, const gp_Pnt& P1, const gp_Pnt& P2, const gp_Pnt& P3) { const double EPSILON = 1e-6; double segLen = P.Distance( PC ); gp_XYZ orig = PC.XYZ(); gp_XYZ dir = ( P.XYZ() - PC.XYZ() ) / segLen; gp_XYZ vert0 = P1.XYZ(); gp_XYZ vert1 = P2.XYZ(); gp_XYZ vert2 = P3.XYZ(); gp_XYZ edge1 = vert1 - vert0; gp_XYZ edge2 = vert2 - vert0; /* begin calculating determinant - also used to calculate U parameter */ gp_XYZ pvec = dir ^ edge2; /* if determinant is near zero, ray lies in plane of triangle */ double det = edge1 * pvec; const double ANGL_EPSILON = 1e-12; if ( det > -ANGL_EPSILON && det < ANGL_EPSILON ) return false; /* calculate distance from vert0 to ray origin */ gp_XYZ tvec = orig - vert0; /* calculate U parameter and test bounds */ double u = ( tvec * pvec ) / det; //if (u < 0.0 || u > 1.0) if (u < -EPSILON || u > 1.0 + EPSILON) return false; /* prepare to test V parameter */ gp_XYZ qvec = tvec ^ edge1; /* calculate V parameter and test bounds */ double v = (dir * qvec) / det; //if ( v < 0.0 || u + v > 1.0 ) if ( v < -EPSILON || u + v > 1.0 + EPSILON) return false; /* calculate t, ray intersects triangle */ double t = (edge2 * qvec) / det; Pint = orig + dir * t; return ( t > 0. && t < segLen ); } //======================================================================= //function : HasIntersection //purpose : Auxilare for CheckIntersection() //======================================================================= static bool HasIntersection(const gp_Pnt& P, const gp_Pnt& PC, gp_Pnt& Pint, TColgp_SequenceOfPnt& aContour) { if ( aContour.Length() == 3 ) { return HasIntersection3( P, PC, Pint, aContour(1), aContour(2), aContour(3) ); } else { bool check = false; if( (aContour(1).SquareDistance(aContour(2)) > 1.e-12) && (aContour(1).SquareDistance(aContour(3)) > 1.e-12) && (aContour(2).SquareDistance(aContour(3)) > 1.e-12) ) { check = HasIntersection3( P, PC, Pint, aContour(1), aContour(2), aContour(3) ); } if(check) return true; if( (aContour(1).SquareDistance(aContour(4)) > 1.e-12) && (aContour(1).SquareDistance(aContour(3)) > 1.e-12) && (aContour(4).SquareDistance(aContour(3)) > 1.e-12) ) { check = HasIntersection3( P, PC, Pint, aContour(1), aContour(3), aContour(4) ); } if(check) return true; } return false; } //================================================================================ /*! * \brief Return allowed height of a pyramid * \param Papex - optimal pyramid apex * \param PC - gravity center of a quadrangle * \param PN - four nodes of the quadrangle * \param aMesh - mesh * \param NotCheckedFace - the quadrangle face * \param Shape - the shape being meshed * \retval false if mesh invalidity detected */ //================================================================================ bool StdMeshers_QuadToTriaAdaptor::LimitHeight (gp_Pnt& Papex, const gp_Pnt& PC, const TColgp_Array1OfPnt& PN, const vector& FNodes, SMESH_Mesh& aMesh, const SMDS_MeshElement* NotCheckedFace, const bool UseApexRay, const TopoDS_Shape& Shape) { if ( !myElemSearcher ) myElemSearcher = SMESH_MeshAlgos::GetElementSearcher( *aMesh.GetMeshDS() ); SMESH_ElementSearcher* searcher = const_cast(myElemSearcher); // Find intersection of faces with (P,PC) segment elongated 3 times double height = Papex.Distance( PC ); gp_Ax1 line( PC, gp_Vec( PC, Papex )); gp_Pnt Pint, Ptest; vector< const SMDS_MeshElement* > suspectFaces; TColgp_SequenceOfPnt aContour; if ( UseApexRay ) { double idealHeight = height; const SMDS_MeshElement* intFace = 0; // find intersection closest to PC Ptest = PC.XYZ() + line.Direction().XYZ() * height * 3; searcher->GetElementsNearLine( line, SMDSAbs_Face, suspectFaces ); for ( size_t iF = 0; iF < suspectFaces.size(); ++iF ) { const SMDS_MeshElement* face = suspectFaces[iF]; if ( face == NotCheckedFace ) continue; aContour.Clear(); for ( int i = 0, nb = face->NbCornerNodes(); i < nb; ++i ) aContour.Append( SMESH_TNodeXYZ( face->GetNode(i) )); if ( HasIntersection( Ptest, PC, Pint, aContour )) { double dInt = PC.Distance( Pint ) / 3.; if ( dInt < height ) { height = dInt; intFace = face; } } } if ( height < 1e-2 * idealHeight && intFace ) return overlapError( aMesh, NotCheckedFace, intFace, Shape ); } // Find faces intersecting triangular facets of the pyramid (issue 23212) gp_XYZ center = PC.XYZ() + line.Direction().XYZ() * height * 0.5; double diameter = Max( PN(1).Distance(PN(3)), PN(2).Distance(PN(4))); suspectFaces.clear(); searcher->GetElementsInSphere( center, diameter * 0.6, SMDSAbs_Face, suspectFaces); const double upShift = 1.5; Ptest = PC.XYZ() + line.Direction().XYZ() * height * upShift; // tmp apex for ( size_t iF = 0; iF < suspectFaces.size(); ++iF ) { const SMDS_MeshElement* face = suspectFaces[iF]; if ( face == NotCheckedFace ) continue; if ( face->GetNodeIndex( FNodes[0] ) >= 0 || face->GetNodeIndex( FNodes[1] ) >= 0 || face->GetNodeIndex( FNodes[2] ) >= 0 || face->GetNodeIndex( FNodes[3] ) >= 0 ) continue; // neighbor face of the quadrangle // limit height using points of intersection of face links with pyramid facets int nbN = face->NbCornerNodes(); gp_Pnt P1 = SMESH_TNodeXYZ( face->GetNode( nbN-1 )); // 1st link end for ( int i = 0; i < nbN; ++i ) { gp_Pnt P2 = SMESH_TNodeXYZ( face->GetNode(i) ); // 2nd link end for ( int iN = 1; iN <= 4; ++iN ) // loop on pyramid facets { if ( HasIntersection3( P1, P2, Pint, PN(iN), PN(iN+1), Ptest )) { height = Min( height, gp_Vec( PC, Pint ) * line.Direction() ); //Ptest = PC.XYZ() + line.Direction().XYZ() * height * upShift; // new tmp apex } } P1 = P2; } } Papex = PC.XYZ() + line.Direction().XYZ() * height; return true; } //================================================================================ /*! * \brief Retrieve data of the given face * \param PN - coordinates of face nodes * \param VN - cross products of vectors (PC-PN(i)) ^ (PC-PN(i+1)) * \param FNodes - face nodes * \param PC - gravity center of nodes * \param VNorm - face normal (sum of VN) * \param volumes - two volumes sharing the given face, the first is in VNorm direction * \retval int - 0 if given face is not quad, * 1 if given face is quad, * 2 if given face is degenerate quad (two nodes are coincided) */ //================================================================================ int StdMeshers_QuadToTriaAdaptor::Preparation(const SMDS_MeshElement* face, TColgp_Array1OfPnt& PN, TColgp_Array1OfVec& VN, vector& FNodes, gp_Pnt& PC, gp_Vec& VNorm, const SMDS_MeshElement** volumes) { if( face->NbCornerNodes() != 4 ) { return NOT_QUAD; } int i = 0; gp_XYZ xyzC(0., 0., 0.); for ( i = 0; i < 4; ++i ) { gp_XYZ p = SMESH_TNodeXYZ( FNodes[i] = face->GetNode(i) ); PN.SetValue( i+1, p ); xyzC += p; } PC = xyzC/4; int nbp = 4; int j = 0; for ( i = 1; i < 4; i++ ) { j = i+1; for(; j<=4; j++) { if( PN(i).Distance(PN(j)) < 1.e-6 ) break; } if(j<=4) break; } bool hasdeg = false; if ( i < 4 ) { hasdeg = true; gp_Pnt Pdeg = PN(i); list< const SMDS_MeshNode* >::iterator itdg = myDegNodes.begin(); const SMDS_MeshNode* DegNode = 0; for(; itdg!=myDegNodes.end(); itdg++) { const SMDS_MeshNode* N = (*itdg); gp_Pnt Ptmp(N->X(),N->Y(),N->Z()); if(Pdeg.Distance(Ptmp)<1.e-6) { DegNode = N; break; } } if(!DegNode) { DegNode = FNodes[i-1]; myDegNodes.push_back(DegNode); } else { FNodes[i-1] = DegNode; } for(i=j; i<4; i++) { PN.SetValue(i,PN.Value(i+1)); FNodes[i-1] = FNodes[i]; } nbp = 3; } PN.SetValue(nbp+1,PN(1)); FNodes[nbp] = FNodes[0]; // find normal direction gp_Vec V1(PC,PN(nbp)); gp_Vec V2(PC,PN(1)); VNorm = V1.Crossed(V2); VN.SetValue(nbp,VNorm); for(i=1; iGetInverseElementIterator( SMDSAbs_Volume ); while ( vIt->more() ) { const SMDS_MeshElement* vol = vIt->next(); bool volSharesAllNodes = true; for ( int i = 1; i < face->NbNodes() && volSharesAllNodes; ++i ) volSharesAllNodes = ( vol->GetNodeIndex( FNodes[i] ) >= 0 ); if ( volSharesAllNodes ) volumes[ volumes[0] ? 1 : 0 ] = vol; // we could additionally check that vol has all FNodes in its one face using SMDS_VolumeTool } // define volume position relating to the face normal if ( volumes[0] ) { // get volume gc SMDS_ElemIteratorPtr nodeIt = volumes[0]->nodesIterator(); gp_XYZ volGC(0,0,0); volGC = accumulate( TXyzIterator(nodeIt), TXyzIterator(), volGC ) / volumes[0]->NbNodes(); if ( VNorm * gp_Vec( PC, volGC ) < 0 ) swap( volumes[0], volumes[1] ); } } return hasdeg ? DEGEN_QUAD : QUAD; } //======================================================================= //function : Compute //purpose : //======================================================================= bool StdMeshers_QuadToTriaAdaptor::Compute(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, SMESH_ProxyMesh* aProxyMesh) { SMESH_ProxyMesh::setMesh( aMesh ); if ( aShape.ShapeType() != TopAbs_SOLID && aShape.ShapeType() != TopAbs_SHELL ) return false; myShape = aShape; vector myPyramids; const SMESHDS_SubMesh * aSubMeshDSFace; SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); SMESH_MesherHelper helper(aMesh); helper.IsQuadraticSubMesh(aShape); helper.SetElementsOnShape( true ); if ( myElemSearcher ) delete myElemSearcher; vector< SMDS_ElemIteratorPtr > itVec; if ( aProxyMesh ) { itVec.push_back( aProxyMesh->GetFaces( aShape )); } else { for ( TopExp_Explorer exp(aShape,TopAbs_FACE); exp.More(); exp.Next() ) if (( aSubMeshDSFace = meshDS->MeshElements( exp.Current() ))) itVec.push_back( aSubMeshDSFace->GetElements() ); } typedef SMDS_IteratorOnIterators< const SMDS_MeshElement*, vector< SMDS_ElemIteratorPtr > > TIter; SMDS_ElemIteratorPtr faceIt( new TIter( itVec )); myElemSearcher = SMESH_MeshAlgos::GetElementSearcher( *meshDS, faceIt ); TColgp_Array1OfPnt PN(1,5); TColgp_Array1OfVec VN(1,4); vector FNodes(5); gp_Pnt PC; gp_Vec VNorm; for ( TopExp_Explorer exp(aShape,TopAbs_FACE); exp.More(); exp.Next() ) { const TopoDS_Shape& aShapeFace = exp.Current(); if ( aProxyMesh ) aSubMeshDSFace = aProxyMesh->GetSubMesh( aShapeFace ); else aSubMeshDSFace = meshDS->MeshElements( aShapeFace ); vector trias, quads; bool hasNewTrias = false; if ( aSubMeshDSFace ) { bool isRev = false; if ( helper.NbAncestors( aShapeFace, aMesh, aShape.ShapeType() ) > 1 ) isRev = helper.IsReversedSubMesh( TopoDS::Face(aShapeFace) ); SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements(); while ( iteratorElem->more() ) // loop on elements on a geometrical face { const SMDS_MeshElement* face = iteratorElem->next(); // preparation step to get face info int stat = Preparation(face, PN, VN, FNodes, PC, VNorm); switch ( stat ) { case NOT_QUAD: trias.push_back( face ); break; case DEGEN_QUAD: { // degenerate face // add triangles to result map SMDS_MeshFace* NewFace; if(!isRev) NewFace = meshDS->AddFace( FNodes[0], FNodes[1], FNodes[2] ); else NewFace = meshDS->AddFace( FNodes[0], FNodes[2], FNodes[1] ); storeTmpElement( NewFace ); trias.push_back ( NewFace ); quads.push_back( face ); hasNewTrias = true; break; } case QUAD: { if(!isRev) VNorm.Reverse(); double xc = 0., yc = 0., zc = 0.; int i = 1; for(; i<=4; i++) { gp_Pnt Pbest; if(!isRev) Pbest = FindBestPoint(PN(i), PN(i+1), PC, VN(i).Reversed()); else Pbest = FindBestPoint(PN(i), PN(i+1), PC, VN(i)); xc += Pbest.X(); yc += Pbest.Y(); zc += Pbest.Z(); } gp_Pnt PCbest(xc/4., yc/4., zc/4.); // check PCbest double height = PCbest.Distance(PC); if ( height < 1.e-6 ) { // create new PCbest using a bit shift along VNorm PCbest = PC.XYZ() + VNorm.XYZ() * 0.001; } else { // check possible intersection with other faces if ( !LimitHeight( PCbest, PC, PN, FNodes, aMesh, face, /*UseApexRay=*/true, aShape )) return false; } // create node for PCbest SMDS_MeshNode* NewNode = helper.AddNode( PCbest.X(), PCbest.Y(), PCbest.Z() ); // add triangles to result map for(i=0; i<4; i++) { trias.push_back ( meshDS->AddFace( NewNode, FNodes[i], FNodes[i+1] )); storeTmpElement( trias.back() ); } // create a pyramid if ( isRev ) swap( FNodes[1], FNodes[3]); SMDS_MeshVolume* aPyram = helper.AddVolume( FNodes[0], FNodes[1], FNodes[2], FNodes[3], NewNode ); myPyramids.push_back(aPyram); quads.push_back( face ); hasNewTrias = true; break; } // case QUAD: } // switch ( stat ) } // end loop on elements on a face submesh bool sourceSubMeshIsProxy = false; if ( aProxyMesh ) { // move proxy sub-mesh from other proxy mesh to this sourceSubMeshIsProxy = takeProxySubMesh( aShapeFace, aProxyMesh ); // move also tmp elements added in mesh takeTmpElemsInMesh( aProxyMesh ); } if ( hasNewTrias ) { SMESH_ProxyMesh::SubMesh* prxSubMesh = getProxySubMesh( aShapeFace ); prxSubMesh->ChangeElements( trias.begin(), trias.end() ); // delete tmp quadrangles removed from aProxyMesh if ( sourceSubMeshIsProxy ) { for ( unsigned i = 0; i < quads.size(); ++i ) removeTmpElement( quads[i] ); delete myElemSearcher; myElemSearcher = SMESH_MeshAlgos::GetElementSearcher( *meshDS, aProxyMesh->GetFaces(aShape)); } } } } // end for(TopExp_Explorer exp(aShape,TopAbs_FACE);exp.More();exp.Next()) { return Compute2ndPart(aMesh, myPyramids); } //================================================================================ /*! * \brief Computes pyramids in mesh with no shape */ //================================================================================ bool StdMeshers_QuadToTriaAdaptor::Compute(SMESH_Mesh& aMesh) { SMESH_ProxyMesh::setMesh( aMesh ); SMESH_ProxyMesh::_allowedTypes.push_back( SMDSEntity_Triangle ); SMESH_ProxyMesh::_allowedTypes.push_back( SMDSEntity_Quad_Triangle ); if ( aMesh.NbQuadrangles() < 1 ) return false; // find if there is a group of faces identified as skin faces, with normal going outside the volume std::string groupName = "skinFaces"; SMESHDS_GroupBase* groupDS = 0; SMESH_Mesh::GroupIteratorPtr groupIt = aMesh.GetGroups(); while ( groupIt->more() ) { groupDS = 0; SMESH_Group * group = groupIt->next(); if ( !group ) continue; groupDS = group->GetGroupDS(); if ( !groupDS || groupDS->IsEmpty() ) { groupDS = 0; continue; } if (groupDS->GetType() != SMDSAbs_Face) { groupDS = 0; continue; } std::string grpName = group->GetName(); if (grpName == groupName) { break; } else groupDS = 0; } const bool toFindVolumes = aMesh.NbVolumes() > 0; vector myPyramids; SMESH_MesherHelper helper(aMesh); helper.IsQuadraticSubMesh(aMesh.GetShapeToMesh()); helper.SetElementsOnShape( true ); SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); SMESH_ProxyMesh::SubMesh* prxSubMesh = getProxySubMesh(); if ( !myElemSearcher ) myElemSearcher = SMESH_MeshAlgos::GetElementSearcher( *meshDS ); SMESH_ElementSearcher* searcher = const_cast(myElemSearcher); SMESHUtils::Deleter volSearcher( SMESH_MeshAlgos::GetElementSearcher( *meshDS )); vector< const SMDS_MeshElement* > suspectFaces, foundVolumes; TColgp_Array1OfPnt PN(1,5); TColgp_Array1OfVec VN(1,4); vector FNodes(5); TColgp_SequenceOfPnt aContour; SMDS_FaceIteratorPtr fIt = meshDS->facesIterator(); while( fIt->more()) { const SMDS_MeshElement* face = fIt->next(); if ( !face ) continue; // retrieve needed information about a face gp_Pnt PC; gp_Vec VNorm; const SMDS_MeshElement* volumes[2]; int what = Preparation(face, PN, VN, FNodes, PC, VNorm, volumes); if ( what == NOT_QUAD ) continue; if ( volumes[0] && volumes[1] ) continue; // face is shared by two volumes - no room for a pyramid if ( what == DEGEN_QUAD ) { // degenerate face // add a triangle to the proxy mesh SMDS_MeshFace* NewFace; // check orientation double tmp = PN(1).Distance(PN(2)) + PN(2).Distance(PN(3)); // far points in VNorm direction gp_Pnt Ptmp1 = PC.XYZ() + VNorm.XYZ() * tmp * 1.e6; gp_Pnt Ptmp2 = PC.XYZ() - VNorm.XYZ() * tmp * 1.e6; // check intersection for Ptmp1 and Ptmp2 bool IsRev = false; bool IsOK1 = false; bool IsOK2 = false; double dist1 = RealLast(); double dist2 = RealLast(); gp_Pnt Pres1,Pres2; gp_Ax1 line( PC, VNorm ); vector< const SMDS_MeshElement* > suspectFaces; searcher->GetElementsNearLine( line, SMDSAbs_Face, suspectFaces); for ( size_t iF = 0; iF < suspectFaces.size(); ++iF ) { const SMDS_MeshElement* F = suspectFaces[iF]; if ( F == face ) continue; aContour.Clear(); for ( int i = 0; i < 4; ++i ) aContour.Append( SMESH_TNodeXYZ( F->GetNode(i) )); gp_Pnt PPP; if ( !volumes[0] && HasIntersection( Ptmp1, PC, PPP, aContour )) { IsOK1 = true; double tmp = PC.Distance(PPP); if ( tmp < dist1 ) { Pres1 = PPP; dist1 = tmp; } } if ( !volumes[1] && HasIntersection( Ptmp2, PC, PPP, aContour )) { IsOK2 = true; double tmp = PC.Distance(PPP); if ( tmp < dist2 ) { Pres2 = PPP; dist2 = tmp; } } } if( IsOK1 && !IsOK2 ) { // using existed direction } else if( !IsOK1 && IsOK2 ) { // using opposite direction IsRev = true; } else { // IsOK1 && IsOK2 double tmp1 = PC.Distance(Pres1); double tmp2 = PC.Distance(Pres2); if(tmp1AddFace( FNodes[0], FNodes[1], FNodes[2] ); else NewFace = meshDS->AddFace( FNodes[0], FNodes[2], FNodes[1] ); storeTmpElement( NewFace ); prxSubMesh->AddElement( NewFace ); continue; } // ----------------------------------- // Case of non-degenerated quadrangle // ----------------------------------- // Find pyramid peak gp_XYZ PCbest(0., 0., 0.); // pyramid peak int i = 1; for ( ; i <= 4; i++ ) { gp_Pnt Pbest = FindBestPoint(PN(i), PN(i+1), PC, VN(i)); PCbest += Pbest.XYZ(); } PCbest /= 4; double height = PC.Distance(PCbest); // pyramid height to precise if ( height < 1.e-6 ) { // create new PCbest using a bit shift along VNorm PCbest = PC.XYZ() + VNorm.XYZ() * 0.001; height = PC.Distance(PCbest); if ( height < std::numeric_limits::min() ) return false; // batterfly element } // Restrict pyramid height by intersection with other faces gp_Vec tmpDir(PC,PCbest); tmpDir.Normalize(); double tmp = PN(1).Distance(PN(3)) + PN(2).Distance(PN(4)); // far points: in (PC, PCbest) direction and vice-versa gp_Pnt farPnt[2] = { PC.XYZ() + tmpDir.XYZ() * tmp * 1.e6, PC.XYZ() - tmpDir.XYZ() * tmp * 1.e6 }; // check intersection for farPnt1 and farPnt2 bool intersected[2] = { false, false }; double dist2int [2] = { RealLast(), RealLast() }; gp_Pnt intPnt [2]; int intFaceInd [2] = { 0, 0 }; if ( toFindVolumes && 0 ) // non-conformal mesh is not suitable for any mesher so far { // there are volumes in the mesh, in a non-conformal mesh an neighbor // volume can be not found yet for ( int isRev = 0; isRev < 2; ++isRev ) { if ( volumes[isRev] ) continue; gp_Pnt testPnt = PC.XYZ() + tmpDir.XYZ() * height * ( isRev ? -0.1: 0.1 ); foundVolumes.clear(); if ( volSearcher->FindElementsByPoint( testPnt, SMDSAbs_Volume, foundVolumes )) volumes[isRev] = foundVolumes[0]; } if ( volumes[0] && volumes[1] ) continue; // no room for a pyramid } gp_Ax1 line( PC, tmpDir ); suspectFaces.clear(); searcher->GetElementsNearLine( line, SMDSAbs_Face, suspectFaces); for ( size_t iF = 0; iF < suspectFaces.size(); ++iF ) { const SMDS_MeshElement* F = suspectFaces[iF]; if ( F == face ) continue; aContour.Clear(); int nbN = F->NbCornerNodes(); for ( i = 0; i < nbN; ++i ) aContour.Append( SMESH_TNodeXYZ( F->GetNode(i) )); gp_Pnt intP; for ( int isRev = 0; isRev < 2; ++isRev ) { if( !volumes[isRev] && HasIntersection(farPnt[isRev], PC, intP, aContour) ) { double d = PC.Distance( intP ); if ( d < dist2int[isRev] ) { intersected[isRev] = true; intPnt [isRev] = intP; dist2int [isRev] = d; intFaceInd [isRev] = iF; } } } } // if the face belong to the group of skinFaces, do not build a pyramid outside if ( groupDS && groupDS->Contains(face) ) { intersected[0] = false; } else if ( intersected[0] && intersected[1] ) // check if one of pyramids is in a hole { gp_Pnt P ( PC.XYZ() + tmpDir.XYZ() * 0.5 * dist2int[0] ); if ( searcher->GetPointState( P ) == TopAbs_OUT ) intersected[0] = false; else { P = ( PC.XYZ() - tmpDir.XYZ() * 0.5 * dist2int[1] ); if ( searcher->GetPointState( P ) == TopAbs_OUT ) intersected[1] = false; } } // Create one or two pyramids for ( int isRev = 0; isRev < 2; ++isRev ) { if ( !intersected[isRev] ) continue; double pyramidH = Min( height, dist2int[isRev]/3. ); gp_Pnt Papex = PC.XYZ() + tmpDir.XYZ() * (isRev ? -pyramidH : pyramidH); if ( pyramidH < 1e-2 * height ) return overlapError( aMesh, face, suspectFaces[ intFaceInd[isRev] ] ); if ( !LimitHeight( Papex, PC, PN, FNodes, aMesh, face, /*UseApexRay=*/false )) return false; // create node for Papex SMDS_MeshNode* NewNode = helper.AddNode( Papex.X(), Papex.Y(), Papex.Z() ); // add triangles to result map for ( i = 0; i < 4; i++) { SMDS_MeshFace* NewFace; if(isRev) NewFace = meshDS->AddFace( NewNode, FNodes[i], FNodes[i+1] ); else NewFace = meshDS->AddFace( NewNode, FNodes[i+1], FNodes[i] ); storeTmpElement( NewFace ); prxSubMesh->AddElement( NewFace ); } // create a pyramid SMDS_MeshVolume* aPyram; if(isRev) aPyram = helper.AddVolume( FNodes[0], FNodes[1], FNodes[2], FNodes[3], NewNode ); else aPyram = helper.AddVolume( FNodes[0], FNodes[3], FNodes[2], FNodes[1], NewNode ); myPyramids.push_back(aPyram); } } // end loop on all faces return Compute2ndPart(aMesh, myPyramids); } //================================================================================ /*! * \brief Update created pyramids and faces to avoid their intersection */ //================================================================================ bool StdMeshers_QuadToTriaAdaptor::Compute2ndPart(SMESH_Mesh& aMesh, const vector& myPyramids) { if ( myPyramids.empty() ) return true; SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); size_t i, j, k; //int myShapeID = myPyramids[0]->GetNode(4)->getshapeId(); { SMDS_ElemIteratorPtr pyramIt( new SMDS_ElementVectorIterator( myPyramids.begin(), myPyramids.end() )); if ( myElemSearcher ) delete myElemSearcher; myElemSearcher = SMESH_MeshAlgos::GetElementSearcher( *meshDS, pyramIt ); } SMESH_ElementSearcher* searcher = const_cast( myElemSearcher ); set nodesToMove; // check adjacent pyramids for ( i = 0; i < myPyramids.size(); ++i ) { const SMDS_MeshElement* PrmI = myPyramids[i]; MergeAdjacent( PrmI, nodesToMove ); } // iterate on all new pyramids vector< const SMDS_MeshElement* > suspectPyrams; for ( i = 0; i < myPyramids.size(); ++i ) { const SMDS_MeshElement* PrmI = myPyramids[i]; const SMDS_MeshNode* apexI = PrmI->GetNode( PYRAM_APEX ); // compare PrmI with all the rest pyramids // collect adjacent pyramids and nodes coordinates of PrmI set checkedPyrams; gp_Pnt PsI[5]; for ( k = 0; k < 5; k++ ) { const SMDS_MeshNode* n = PrmI->GetNode(k); PsI[k] = SMESH_TNodeXYZ( n ); SMDS_ElemIteratorPtr vIt = n->GetInverseElementIterator( SMDSAbs_Volume ); while ( vIt->more() ) { const SMDS_MeshElement* PrmJ = vIt->next(); if ( SMESH_MeshAlgos::GetCommonNodes( PrmI, PrmJ ).size() > 1 ) checkedPyrams.insert( PrmJ ); } } // get pyramids to check gp_XYZ PC = ( PsI[0].XYZ() + PsI[1].XYZ() + PsI[2].XYZ() + PsI[3].XYZ() ) / 4.; gp_XYZ ray = PsI[4].XYZ() - PC; gp_XYZ center = PC + 0.5 * ray; double diameter = Max( PsI[0].Distance(PsI[2]), PsI[1].Distance(PsI[3])); suspectPyrams.clear(); searcher->GetElementsInSphere( center, diameter * 0.6, SMDSAbs_Volume, suspectPyrams); // check intersection with distant pyramids for ( j = 0; j < suspectPyrams.size(); ++j ) { const SMDS_MeshElement* PrmJ = suspectPyrams[j]; if ( PrmJ == PrmI ) continue; if ( apexI == PrmJ->GetNode( PYRAM_APEX )) continue; // pyramids PrmI and PrmJ already merged if ( !checkedPyrams.insert( PrmJ ).second ) continue; // already checked gp_Pnt PsJ[5]; for ( k = 0; k < 5; k++ ) PsJ[k] = SMESH_TNodeXYZ( PrmJ->GetNode(k) ); if ( ray * ( PsJ[4].XYZ() - PC ) < 0. ) continue; // PrmJ is below PrmI for ( k = 0; k < 4; k++ ) // loop on 4 base nodes of PrmI { gp_Pnt Pint; bool hasInt=false; for ( k = 0; k < 4 && !hasInt; k++ ) { gp_Vec Vtmp( PsI[k], PsI[ PYRAM_APEX ]); gp_Pnt Pshift = PsI[k].XYZ() + Vtmp.XYZ() * 0.01; // base node moved a bit to apex hasInt = ( HasIntersection3( Pshift, PsI[4], Pint, PsJ[0], PsJ[1], PsJ[PYRAM_APEX]) || HasIntersection3( Pshift, PsI[4], Pint, PsJ[1], PsJ[2], PsJ[PYRAM_APEX]) || HasIntersection3( Pshift, PsI[4], Pint, PsJ[2], PsJ[3], PsJ[PYRAM_APEX]) || HasIntersection3( Pshift, PsI[4], Pint, PsJ[3], PsJ[0], PsJ[PYRAM_APEX]) ); } for ( k = 0; k < 4 && !hasInt; k++ ) { gp_Vec Vtmp( PsJ[k], PsJ[ PYRAM_APEX ]); gp_Pnt Pshift = PsJ[k].XYZ() + Vtmp.XYZ() * 0.01; hasInt = ( HasIntersection3( Pshift, PsJ[4], Pint, PsI[0], PsI[1], PsI[PYRAM_APEX]) || HasIntersection3( Pshift, PsJ[4], Pint, PsI[1], PsI[2], PsI[PYRAM_APEX]) || HasIntersection3( Pshift, PsJ[4], Pint, PsI[2], PsI[3], PsI[PYRAM_APEX]) || HasIntersection3( Pshift, PsJ[4], Pint, PsI[3], PsI[0], PsI[PYRAM_APEX]) ); } if ( hasInt ) { // count common nodes of base faces of two pyramids int nbc = 0; for ( k = 0; k < 4; k++ ) nbc += int ( PrmI->GetNodeIndex( PrmJ->GetNode(k) ) >= 0 ); if ( nbc == 4 ) continue; // pyrams have a common base face if ( nbc > 0 ) { // Merge the two pyramids and others already merged with them MergePiramids( PrmI, PrmJ, nodesToMove ); } else // nbc==0 { // decrease height of pyramids gp_XYZ PCi(0,0,0), PCj(0,0,0); for ( k = 0; k < 4; k++ ) { PCi += PsI[k].XYZ(); PCj += PsJ[k].XYZ(); } PCi /= 4; PCj /= 4; gp_Vec VN1(PCi,PsI[4]); gp_Vec VN2(PCj,PsJ[4]); gp_Vec VI1(PCi,Pint); gp_Vec VI2(PCj,Pint); double ang1 = fabs(VN1.Angle(VI1)); double ang2 = fabs(VN2.Angle(VI2)); double coef1 = 0.5 - (( ang1 < M_PI/3. ) ? cos(ang1)*0.25 : 0 ); double coef2 = 0.5 - (( ang2 < M_PI/3. ) ? cos(ang2)*0.25 : 0 ); // cos(ang2) ? // double coef2 = 0.5; // if(ang2( apexI ); aNode1->setXYZ( PCi.X()+VN1.X(), PCi.Y()+VN1.Y(), PCi.Z()+VN1.Z() ); SMDS_MeshNode* aNode2 = const_cast(PrmJ->GetNode( PYRAM_APEX )); aNode2->setXYZ( PCj.X()+VN2.X(), PCj.Y()+VN2.Y(), PCj.Z()+VN2.Z() ); nodesToMove.insert( aNode1 ); nodesToMove.insert( aNode2 ); } // fix intersections that can appear after apex movement MergeAdjacent( PrmI, nodesToMove ); MergeAdjacent( PrmJ, nodesToMove ); } // end if(hasInt) } // loop on suspectPyrams } // loop on 4 base nodes of PrmI } // loop on all pyramids if( !nodesToMove.empty() && !meshDS->IsEmbeddedMode() ) { set::iterator n = nodesToMove.begin(); for ( ; n != nodesToMove.end(); ++n ) meshDS->MoveNode( *n, (*n)->X(), (*n)->Y(), (*n)->Z() ); } // move medium nodes of merged quadratic pyramids if ( myPyramids[0]->IsQuadratic() ) UpdateQuadraticPyramids( nodesToMove, GetMeshDS() ); // erase removed triangles from the proxy mesh if ( !myRemovedTrias.empty() ) { for ( int i = 0; i <= meshDS->MaxShapeIndex(); ++i ) if ( SMESH_ProxyMesh::SubMesh* sm = findProxySubMesh(i)) { vector faces; faces.reserve( sm->NbElements() ); SMDS_ElemIteratorPtr fIt = sm->GetElements(); while ( fIt->more() ) { const SMDS_MeshElement* tria = fIt->next(); set::iterator rmTria = myRemovedTrias.find( tria ); if ( rmTria != myRemovedTrias.end() ) myRemovedTrias.erase( rmTria ); else faces.push_back( tria ); } sm->ChangeElements( faces.begin(), faces.end() ); } } myDegNodes.clear(); delete myElemSearcher; myElemSearcher=0; return true; }