// Copyright (C) 2007-2010 CEA/DEN, EDF R&D, OPEN CASCADE // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : StdMeshers_QuadToTriaAdaptor.cxx // Module : SMESH // Created : Wen May 07 16:37:07 2008 // Author : Sergey KUUL (skl) // #include "StdMeshers_QuadToTriaAdaptor.hxx" #include "SMDS_SetIterator.hxx" #include "SMESH_Algo.hxx" #include "SMESH_MesherHelper.hxx" #include #include #include #include #include #include #include #include #include #include using namespace std; enum EQuadNature { NOT_QUAD, QUAD, DEGEN_QUAD, PYRAM_APEX = 4, TRIA_APEX = 0 }; // std-like iterator used to get coordinates of nodes of mesh element typedef SMDS_StdIterator< SMESH_TNodeXYZ, SMDS_ElemIteratorPtr > TXyzIterator; namespace { //================================================================================ /*! * \brief Return true if two nodes of triangles are equal */ //================================================================================ bool EqualTriangles(const SMDS_MeshElement* F1,const SMDS_MeshElement* F2) { return ( F1->GetNode(1)==F2->GetNode(2) && F1->GetNode(2)==F2->GetNode(1) ) || ( F1->GetNode(1)==F2->GetNode(1) && F1->GetNode(2)==F2->GetNode(2) ); } //================================================================================ /*! * \brief Return true if two adjacent pyramids are too close one to another * so that a tetrahedron to built between them would have too poor quality */ //================================================================================ bool TooCloseAdjacent( const SMDS_MeshElement* PrmI, const SMDS_MeshElement* PrmJ, const bool hasShape) { const SMDS_MeshNode* nApexI = PrmI->GetNode(4); const SMDS_MeshNode* nApexJ = PrmJ->GetNode(4); if ( nApexI == nApexJ || nApexI->getshapeId() != nApexJ->getshapeId() ) return false; // Find two common base nodes and their indices within PrmI and PrmJ const SMDS_MeshNode* baseNodes[2] = { 0,0 }; int baseNodesIndI[2], baseNodesIndJ[2]; for ( int i = 0; i < 4 ; ++i ) { int j = PrmJ->GetNodeIndex( PrmI->GetNode(i)); if ( j >= 0 ) { int ind = baseNodes[0] ? 1:0; if ( baseNodes[ ind ]) return false; // pyramids with a common base face baseNodes [ ind ] = PrmI->GetNode(i); baseNodesIndI[ ind ] = i; baseNodesIndJ[ ind ] = j; } } if ( !baseNodes[1] ) return false; // not adjacent // Get normals of triangles sharing baseNodes gp_XYZ apexI = SMESH_TNodeXYZ( nApexI ); gp_XYZ apexJ = SMESH_TNodeXYZ( nApexJ ); gp_XYZ base1 = SMESH_TNodeXYZ( baseNodes[0]); gp_XYZ base2 = SMESH_TNodeXYZ( baseNodes[1]); gp_Vec baseVec( base1, base2 ); gp_Vec baI( base1, apexI ); gp_Vec baJ( base1, apexJ ); gp_Vec nI = baseVec.Crossed( baI ); gp_Vec nJ = baseVec.Crossed( baJ ); // Check angle between normals double angle = nI.Angle( nJ ); bool tooClose = ( angle < 15 * PI180 ); // Check if pyramids collide if ( !tooClose && baI * baJ > 0 ) { // find out if nI points outside of PrmI or inside int dInd = baseNodesIndI[1] - baseNodesIndI[0]; bool isOutI = ( abs(dInd)==1 ) ? dInd < 0 : dInd > 0; // find out sign of projection of nJ to baI double proj = baI * nJ; tooClose = isOutI ? proj > 0 : proj < 0; } // Check if PrmI and PrmJ are in same domain if ( tooClose && !hasShape ) { // check order of baseNodes within pyramids, it must be opposite int dInd; dInd = baseNodesIndI[1] - baseNodesIndI[0]; bool isOutI = ( abs(dInd)==1 ) ? dInd < 0 : dInd > 0; dInd = baseNodesIndJ[1] - baseNodesIndJ[0]; bool isOutJ = ( abs(dInd)==1 ) ? dInd < 0 : dInd > 0; if ( isOutJ == isOutI ) return false; // other domain // direct both normals outside pyramid ( isOutI ? nJ : nI ).Reverse(); // check absence of a face separating domains between pyramids TIDSortedElemSet emptySet, avoidSet; int i1, i2; while ( const SMDS_MeshElement* f = SMESH_MeshEditor::FindFaceInSet( baseNodes[0], baseNodes[1], emptySet, avoidSet, &i1, &i2 )) { avoidSet.insert( f ); // face node other than baseNodes int otherNodeInd = 0; while ( otherNodeInd == i1 || otherNodeInd == i2 ) otherNodeInd++; const SMDS_MeshNode* otherFaceNode = f->GetNode( otherNodeInd ); if ( otherFaceNode == nApexI || otherFaceNode == nApexJ ) continue; // f is a temporary triangle // check if f is a base face of either of pyramids if ( f->NbCornerNodes() == 4 && ( PrmI->GetNodeIndex( otherFaceNode ) >= 0 || PrmJ->GetNodeIndex( otherFaceNode ) >= 0 )) continue; // f is a base quadrangle // check projections of face direction (baOFN) to triange normals (nI and nJ) gp_Vec baOFN( base1, SMESH_TNodeXYZ( otherFaceNode )); if ( nI * baOFN > 0 && nJ * baOFN > 0 ) { tooClose = false; // f is between pyramids break; } } } return tooClose; } } //================================================================================ /*! * \brief Merge the two pyramids (i.e. fuse their apex) and others already merged with them */ //================================================================================ void StdMeshers_QuadToTriaAdaptor::MergePiramids( const SMDS_MeshElement* PrmI, const SMDS_MeshElement* PrmJ, set & nodesToMove) { const SMDS_MeshNode* Nrem = PrmJ->GetNode(4); // node to remove //int nbJ = Nrem->NbInverseElements( SMDSAbs_Volume ); SMESH_TNodeXYZ Pj( Nrem ); // an apex node to make common to all merged pyramids SMDS_MeshNode* CommonNode = const_cast(PrmI->GetNode(4)); if ( CommonNode == Nrem ) return; // already merged //int nbI = CommonNode->NbInverseElements( SMDSAbs_Volume ); SMESH_TNodeXYZ Pi( CommonNode ); gp_XYZ Pnew = /*( nbI*Pi + nbJ*Pj ) / (nbI+nbJ);*/ 0.5 * ( Pi + Pj ); CommonNode->setXYZ( Pnew.X(), Pnew.Y(), Pnew.Z() ); nodesToMove.insert( CommonNode ); nodesToMove.erase ( Nrem ); typedef SMDS_StdIterator< const SMDS_MeshElement*, SMDS_ElemIteratorPtr > TStdElemIterator; TStdElemIterator itEnd; // find and remove coincided faces of merged pyramids vector< const SMDS_MeshElement* > inverseElems // copy inverse elements to avoid iteration on changing container ( TStdElemIterator( CommonNode->GetInverseElementIterator(SMDSAbs_Face)), itEnd); for ( unsigned i = 0; i < inverseElems.size(); ++i ) { const SMDS_MeshElement* FI = inverseElems[i]; const SMDS_MeshElement* FJEqual = 0; SMDS_ElemIteratorPtr triItJ = Nrem->GetInverseElementIterator(SMDSAbs_Face); while ( !FJEqual && triItJ->more() ) { const SMDS_MeshElement* FJ = triItJ->next(); if ( EqualTriangles( FJ, FI )) FJEqual = FJ; } if ( FJEqual ) { removeTmpElement( FI ); removeTmpElement( FJEqual ); myRemovedTrias.insert( FI ); myRemovedTrias.insert( FJEqual ); } } // set the common apex node to pyramids and triangles merged with J inverseElems.assign( TStdElemIterator( Nrem->GetInverseElementIterator()), itEnd ); for ( unsigned i = 0; i < inverseElems.size(); ++i ) { const SMDS_MeshElement* elem = inverseElems[i]; vector< const SMDS_MeshNode* > nodes( elem->begin_nodes(), elem->end_nodes() ); nodes[ elem->GetType() == SMDSAbs_Volume ? PYRAM_APEX : TRIA_APEX ] = CommonNode; GetMeshDS()->ChangeElementNodes( elem, &nodes[0], nodes.size()); } ASSERT( Nrem->NbInverseElements() == 0 ); GetMeshDS()->RemoveFreeNode( Nrem, GetMeshDS()->MeshElements( Nrem->getshapeId()), /*fromGroups=*/false); } //================================================================================ /*! * \brief Merges adjacent pyramids */ //================================================================================ void StdMeshers_QuadToTriaAdaptor::MergeAdjacent(const SMDS_MeshElement* PrmI, set& nodesToMove) { TIDSortedElemSet adjacentPyrams; bool mergedPyrams = false; for(int k=0; k<4; k++) // loop on 4 base nodes of PrmI { const SMDS_MeshNode* n = PrmI->GetNode(k); SMDS_ElemIteratorPtr vIt = n->GetInverseElementIterator( SMDSAbs_Volume ); while ( vIt->more() ) { const SMDS_MeshElement* PrmJ = vIt->next(); if ( PrmJ->NbCornerNodes() != 5 || !adjacentPyrams.insert( PrmJ ).second ) continue; if ( PrmI != PrmJ && TooCloseAdjacent( PrmI, PrmJ, GetMesh()->HasShapeToMesh() )) { MergePiramids( PrmI, PrmJ, nodesToMove ); mergedPyrams = true; // container of inverse elements can change vIt = n->GetInverseElementIterator( SMDSAbs_Volume ); } } } if ( mergedPyrams ) { TIDSortedElemSet::iterator prm; for (prm = adjacentPyrams.begin(); prm != adjacentPyrams.end(); ++prm) MergeAdjacent( *prm, nodesToMove ); } } //================================================================================ /*! * \brief Constructor */ //================================================================================ StdMeshers_QuadToTriaAdaptor::StdMeshers_QuadToTriaAdaptor(): myElemSearcher(0) { } //================================================================================ /*! * \brief Destructor */ //================================================================================ StdMeshers_QuadToTriaAdaptor::~StdMeshers_QuadToTriaAdaptor() { // temporary faces are deleted by ~SMESH_ProxyMesh() if ( myElemSearcher ) delete myElemSearcher; myElemSearcher=0; } //======================================================================= //function : FindBestPoint //purpose : Return a point P laying on the line (PC,V) so that triangle // (P, P1, P2) to be equilateral as much as possible // V - normal to (P1,P2,PC) //======================================================================= static gp_Pnt FindBestPoint(const gp_Pnt& P1, const gp_Pnt& P2, const gp_Pnt& PC, const gp_Vec& V) { double a = P1.Distance(P2); double b = P1.Distance(PC); double c = P2.Distance(PC); if( a < (b+c)/2 ) return PC; else { // find shift along V in order a to became equal to (b+c)/2 double shift = sqrt( a*a + (b*b-c*c)*(b*b-c*c)/16/a/a - (b*b+c*c)/2 ); gp_Dir aDir(V); gp_Pnt Pbest = PC.XYZ() + aDir.XYZ() * shift; return Pbest; } } //======================================================================= //function : HasIntersection3 //purpose : Auxilare for HasIntersection() // find intersection point between triangle (P1,P2,P3) // and segment [PC,P] //======================================================================= static bool HasIntersection3(const gp_Pnt& P, const gp_Pnt& PC, gp_Pnt& Pint, const gp_Pnt& P1, const gp_Pnt& P2, const gp_Pnt& P3) { //cout<<"HasIntersection3"< preci ) || ( (PC.Y()-PIn.Y())*(P.Y()-PIn.Y()) > preci ) || ( (PC.Z()-PIn.Z())*(P.Z()-PIn.Z()) > preci ); if(IsExternal) { return false; } // check if this point is internal for triangle (P1,P2,P3) gp_Vec V1(PIn,P1); gp_Vec V2(PIn,P2); gp_Vec V3(PIn,P3); if( V1.Magnitude()Length()==3) { return HasIntersection3( P, PC, Pint, aContour->Value(1), aContour->Value(2), aContour->Value(3) ); } else { bool check = false; if( (aContour->Value(1).Distance(aContour->Value(2)) > 1.e-6) && (aContour->Value(1).Distance(aContour->Value(3)) > 1.e-6) && (aContour->Value(2).Distance(aContour->Value(3)) > 1.e-6) ) { check = HasIntersection3( P, PC, Pint, aContour->Value(1), aContour->Value(2), aContour->Value(3) ); } if(check) return true; if( (aContour->Value(1).Distance(aContour->Value(4)) > 1.e-6) && (aContour->Value(1).Distance(aContour->Value(3)) > 1.e-6) && (aContour->Value(4).Distance(aContour->Value(3)) > 1.e-6) ) { check = HasIntersection3( P, PC, Pint, aContour->Value(1), aContour->Value(3), aContour->Value(4) ); } if(check) return true; } return false; } //================================================================================ /*! * \brief Checks if a line segment (P,PC) intersects any mesh face. * \param P - first segment end * \param PC - second segment end (it is a gravity center of quadrangle) * \param Pint - (out) intersection point * \param aMesh - mesh * \param aShape - shape to check faces on * \param NotCheckedFace - mesh face not to check * \retval bool - true if there is an intersection */ //================================================================================ bool StdMeshers_QuadToTriaAdaptor::CheckIntersection (const gp_Pnt& P, const gp_Pnt& PC, gp_Pnt& Pint, SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, const SMDS_MeshElement* NotCheckedFace) { if ( !myElemSearcher ) myElemSearcher = SMESH_MeshEditor(&aMesh).GetElementSearcher(); SMESH_ElementSearcher* searcher = const_cast(myElemSearcher); //SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); //cout<<" CheckIntersection: meshDS->NbFaces() = "<NbFaces()< suspectElems; searcher->GetElementsNearLine( line, SMDSAbs_Face, suspectElems); for ( int i = 0; i < suspectElems.size(); ++i ) { const SMDS_MeshElement* face = suspectElems[i]; if ( face == NotCheckedFace ) continue; Handle(TColgp_HSequenceOfPnt) aContour = new TColgp_HSequenceOfPnt; for ( int i = 0; i < face->NbCornerNodes(); ++i ) aContour->Append( SMESH_TNodeXYZ( face->GetNode(i) )); if( HasIntersection(P, PC, Pres, aContour) ) { res = true; double tmp = PC.Distance(Pres); if(tmp& FNodes, gp_Pnt& PC, gp_Vec& VNorm, const SMDS_MeshElement** volumes) { if( face->NbCornerNodes() != 4 ) { return NOT_QUAD; } int i = 0; gp_XYZ xyzC(0., 0., 0.); for ( i = 0; i < 4; ++i ) { gp_XYZ p = SMESH_TNodeXYZ( FNodes[i] = face->GetNode(i) ); PN->SetValue( i+1, p ); xyzC += p; } PC = xyzC/4; int nbp = 4; int j = 0; for(i=1; i<4; i++) { j = i+1; for(; j<=4; j++) { if( PN->Value(i).Distance(PN->Value(j)) < 1.e-6 ) break; } if(j<=4) break; } //int deg_num = IsDegenarate(PN); //if(deg_num>0) { bool hasdeg = false; if(i<4) { //cout<<"find degeneration"<Value(i); list< const SMDS_MeshNode* >::iterator itdg = myDegNodes.begin(); const SMDS_MeshNode* DegNode = 0; for(; itdg!=myDegNodes.end(); itdg++) { const SMDS_MeshNode* N = (*itdg); gp_Pnt Ptmp(N->X(),N->Y(),N->Z()); if(Pdeg.Distance(Ptmp)<1.e-6) { DegNode = N; //DegNode = const_cast(N); break; } } if(!DegNode) { DegNode = FNodes[i-1]; myDegNodes.push_back(DegNode); } else { FNodes[i-1] = DegNode; } for(i=j; i<4; i++) { PN->SetValue(i,PN->Value(i+1)); FNodes[i-1] = FNodes[i]; } nbp = 3; } PN->SetValue(nbp+1,PN->Value(1)); FNodes[nbp] = FNodes[0]; // find normal direction gp_Vec V1(PC,PN->Value(nbp)); gp_Vec V2(PC,PN->Value(1)); VNorm = V1.Crossed(V2); VN->SetValue(nbp,VNorm); for(i=1; iValue(i)); V2 = gp_Vec(PC,PN->Value(i+1)); gp_Vec Vtmp = V1.Crossed(V2); VN->SetValue(i,Vtmp); VNorm += Vtmp; } // find volumes sharing the face if ( volumes ) { volumes[0] = volumes[1] = 0; SMDS_ElemIteratorPtr vIt = FNodes[0]->GetInverseElementIterator( SMDSAbs_Volume ); while ( vIt->more() ) { const SMDS_MeshElement* vol = vIt->next(); bool volSharesAllNodes = true; for ( int i = 1; i < face->NbNodes() && volSharesAllNodes; ++i ) volSharesAllNodes = ( vol->GetNodeIndex( FNodes[i] ) >= 0 ); if ( volSharesAllNodes ) volumes[ volumes[0] ? 1 : 0 ] = vol; // we could additionally check that vol has all FNodes in its one face using SMDS_VolumeTool } // define volume position relating to the face normal if ( volumes[0] ) { // get volume gc SMDS_ElemIteratorPtr nodeIt = volumes[0]->nodesIterator(); gp_XYZ volGC(0,0,0); volGC = accumulate( TXyzIterator(nodeIt), TXyzIterator(), volGC ) / volumes[0]->NbNodes(); if ( VNorm * gp_Vec( PC, volGC ) < 0 ) swap( volumes[0], volumes[1] ); } } //cout<<" VNorm("< myPyramids; SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); SMESH_MesherHelper helper(aMesh); helper.IsQuadraticSubMesh(aShape); helper.SetElementsOnShape( true ); if ( myElemSearcher ) delete myElemSearcher; if ( aProxyMesh ) myElemSearcher = SMESH_MeshEditor(&aMesh).GetElementSearcher( aProxyMesh->GetFaces(aShape)); else myElemSearcher = SMESH_MeshEditor(&aMesh).GetElementSearcher(); const SMESHDS_SubMesh * aSubMeshDSFace; Handle(TColgp_HArray1OfPnt) PN = new TColgp_HArray1OfPnt(1,5); Handle(TColgp_HArray1OfVec) VN = new TColgp_HArray1OfVec(1,4); vector FNodes(5); gp_Pnt PC; gp_Vec VNorm; for (TopExp_Explorer exp(aShape,TopAbs_FACE);exp.More();exp.Next()) { const TopoDS_Shape& aShapeFace = exp.Current(); if ( aProxyMesh ) aSubMeshDSFace = aProxyMesh->GetSubMesh( aShapeFace ); else aSubMeshDSFace = meshDS->MeshElements( aShapeFace ); vector trias, quads; bool hasNewTrias = false; if ( aSubMeshDSFace ) { bool isRev = false; if ( helper.NbAncestors( aShapeFace, aMesh, aShape.ShapeType() ) > 1 ) isRev = SMESH_Algo::IsReversedSubMesh( TopoDS::Face(aShapeFace), meshDS ); SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements(); while ( iteratorElem->more() ) // loop on elements on a geometrical face { const SMDS_MeshElement* face = iteratorElem->next(); // preparation step to get face info int stat = Preparation(face, PN, VN, FNodes, PC, VNorm); switch ( stat ) { case NOT_QUAD: trias.push_back( face ); break; case DEGEN_QUAD: { // degenerate face // add triangles to result map SMDS_MeshFace* NewFace; if(!isRev) NewFace = meshDS->AddFace( FNodes[0], FNodes[1], FNodes[2] ); else NewFace = meshDS->AddFace( FNodes[0], FNodes[2], FNodes[1] ); storeTmpElement( NewFace ); trias.push_back ( NewFace ); quads.push_back( face ); hasNewTrias = true; break; } case QUAD: { if(!isRev) VNorm.Reverse(); double xc = 0., yc = 0., zc = 0.; int i = 1; for(; i<=4; i++) { gp_Pnt Pbest; if(!isRev) Pbest = FindBestPoint(PN->Value(i), PN->Value(i+1), PC, VN->Value(i).Reversed()); else Pbest = FindBestPoint(PN->Value(i), PN->Value(i+1), PC, VN->Value(i)); xc += Pbest.X(); yc += Pbest.Y(); zc += Pbest.Z(); } gp_Pnt PCbest(xc/4., yc/4., zc/4.); // check PCbest double height = PCbest.Distance(PC); if(height<1.e-6) { // create new PCbest using a bit shift along VNorm PCbest = PC.XYZ() + VNorm.XYZ() * 0.001; } else { // check possible intersection with other faces gp_Pnt Pint; bool check = CheckIntersection(PCbest, PC, Pint, aMesh, aShape, face); if(check) { //cout<<"--PC("<AddFace( NewNode, FNodes[i], FNodes[i+1] )); storeTmpElement( trias.back() ); } // create a pyramid if ( isRev ) swap( FNodes[1], FNodes[3]); SMDS_MeshVolume* aPyram = helper.AddVolume( FNodes[0], FNodes[1], FNodes[2], FNodes[3], NewNode ); myPyramids.push_back(aPyram); quads.push_back( face ); hasNewTrias = true; break; } // case QUAD: } // switch ( stat ) } // end loop on elements on a face submesh bool sourceSubMeshIsProxy = false; if ( aProxyMesh ) { // move proxy sub-mesh from other proxy mesh to this sourceSubMeshIsProxy = takeProxySubMesh( aShapeFace, aProxyMesh ); // move also tmp elements added in mesh takeTmpElemsInMesh( aProxyMesh ); } if ( hasNewTrias ) { SMESH_ProxyMesh::SubMesh* prxSubMesh = getProxySubMesh( aShapeFace ); prxSubMesh->ChangeElements( trias.begin(), trias.end() ); // delete tmp quadrangles removed from aProxyMesh if ( sourceSubMeshIsProxy ) { for ( unsigned i = 0; i < quads.size(); ++i ) removeTmpElement( quads[i] ); delete myElemSearcher; myElemSearcher = SMESH_MeshEditor(&aMesh).GetElementSearcher( aProxyMesh->GetFaces(aShape)); } } } } // end for(TopExp_Explorer exp(aShape,TopAbs_FACE);exp.More();exp.Next()) { return Compute2ndPart(aMesh, myPyramids); } //================================================================================ /*! * \brief Computes pyramids in mesh with no shape */ //================================================================================ bool StdMeshers_QuadToTriaAdaptor::Compute(SMESH_Mesh& aMesh) { SMESH_ProxyMesh::setMesh( aMesh ); SMESH_ProxyMesh::_allowedTypes.push_back( SMDSEntity_Triangle ); SMESH_ProxyMesh::_allowedTypes.push_back( SMDSEntity_Quad_Triangle ); if ( aMesh.NbQuadrangles() < 1 ) return false; vector myPyramids; SMESH_MesherHelper helper(aMesh); helper.IsQuadraticSubMesh(aMesh.GetShapeToMesh()); helper.SetElementsOnShape( true ); if ( !myElemSearcher ) myElemSearcher = SMESH_MeshEditor(&aMesh).GetElementSearcher(); SMESH_ElementSearcher* searcher = const_cast(myElemSearcher); SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); SMESH_ProxyMesh::SubMesh* prxSubMesh = getProxySubMesh(); SMDS_FaceIteratorPtr fIt = meshDS->facesIterator(/*idInceasingOrder=*/true); while( fIt->more()) { const SMDS_MeshElement* face = fIt->next(); if ( !face ) continue; // retrieve needed information about a face Handle(TColgp_HArray1OfPnt) PN = new TColgp_HArray1OfPnt(1,5); Handle(TColgp_HArray1OfVec) VN = new TColgp_HArray1OfVec(1,4); vector FNodes(5); gp_Pnt PC; gp_Vec VNorm; const SMDS_MeshElement* volumes[2]; int what = Preparation(face, PN, VN, FNodes, PC, VNorm, volumes); if ( what == NOT_QUAD ) continue; if ( volumes[0] && volumes[1] ) continue; // face is shared by two volumes - no space for a pyramid if ( what == DEGEN_QUAD ) { // degenerate face // add a triangle to the proxy mesh SMDS_MeshFace* NewFace; // check orientation double tmp = PN->Value(1).Distance(PN->Value(2)) + PN->Value(2).Distance(PN->Value(3)); // far points in VNorm direction gp_Pnt Ptmp1 = PC.XYZ() + VNorm.XYZ() * tmp * 1.e6; gp_Pnt Ptmp2 = PC.XYZ() - VNorm.XYZ() * tmp * 1.e6; // check intersection for Ptmp1 and Ptmp2 bool IsRev = false; bool IsOK1 = false; bool IsOK2 = false; double dist1 = RealLast(); double dist2 = RealLast(); gp_Pnt Pres1,Pres2; gp_Ax1 line( PC, VNorm ); vector< const SMDS_MeshElement* > suspectElems; searcher->GetElementsNearLine( line, SMDSAbs_Face, suspectElems); for ( int iF = 0; iF < suspectElems.size(); ++iF ) { const SMDS_MeshElement* F = suspectElems[iF]; if(F==face) continue; Handle(TColgp_HSequenceOfPnt) aContour = new TColgp_HSequenceOfPnt; for ( int i = 0; i < 4; ++i ) aContour->Append( SMESH_TNodeXYZ( F->GetNode(i) )); gp_Pnt PPP; if( !volumes[0] && HasIntersection(Ptmp1, PC, PPP, aContour) ) { IsOK1 = true; double tmp = PC.Distance(PPP); if(tmpAddFace( FNodes[0], FNodes[1], FNodes[2] ); else NewFace = meshDS->AddFace( FNodes[0], FNodes[2], FNodes[1] ); storeTmpElement( NewFace ); prxSubMesh->AddElement( NewFace ); continue; } // Case of non-degenerated quadrangle // Find pyramid peak gp_XYZ PCbest(0., 0., 0.); // pyramid peak int i = 1; for(; i<=4; i++) { gp_Pnt Pbest = FindBestPoint(PN->Value(i), PN->Value(i+1), PC, VN->Value(i)); PCbest += Pbest.XYZ(); } PCbest /= 4; double height = PC.Distance(PCbest); // pyramid height to precise if(height<1.e-6) { // create new PCbest using a bit shift along VNorm PCbest = PC.XYZ() + VNorm.XYZ() * 0.001; height = PC.Distance(PCbest); } // Restrict pyramid height by intersection with other faces gp_Vec tmpDir(PC,PCbest); tmpDir.Normalize(); double tmp = PN->Value(1).Distance(PN->Value(3)) + PN->Value(2).Distance(PN->Value(4)); // far points: in (PC, PCbest) direction and vice-versa gp_Pnt farPnt[2] = { PC.XYZ() + tmpDir.XYZ() * tmp * 1.e6, PC.XYZ() - tmpDir.XYZ() * tmp * 1.e6 }; // check intersection for farPnt1 and farPnt2 bool intersected[2] = { false, false }; double dist [2] = { RealLast(), RealLast() }; gp_Pnt intPnt[2]; gp_Ax1 line( PC, tmpDir ); vector< const SMDS_MeshElement* > suspectElems; searcher->GetElementsNearLine( line, SMDSAbs_Face, suspectElems); for ( int iF = 0; iF < suspectElems.size(); ++iF ) { const SMDS_MeshElement* F = suspectElems[iF]; if(F==face) continue; Handle(TColgp_HSequenceOfPnt) aContour = new TColgp_HSequenceOfPnt; int nbN = F->NbNodes() / ( F->IsQuadratic() ? 2 : 1 ); for ( i = 0; i < nbN; ++i ) aContour->Append( SMESH_TNodeXYZ( F->GetNode(i) )); gp_Pnt intP; for ( int isRev = 0; isRev < 2; ++isRev ) { if( !volumes[isRev] && HasIntersection(farPnt[isRev], PC, intP, aContour) ) { intersected[isRev] = true; double d = PC.Distance( intP ); if( d < dist[isRev] ) { intPnt[isRev] = intP; dist [isRev] = d; } } } } // Create one or two pyramids for ( int isRev = 0; isRev < 2; ++isRev ) { if( !intersected[isRev] ) continue; double pyramidH = Min( height, PC.Distance(intPnt[isRev])/3.); PCbest = PC.XYZ() + tmpDir.XYZ() * (isRev ? -pyramidH : pyramidH); // create node for PCbest SMDS_MeshNode* NewNode = helper.AddNode( PCbest.X(), PCbest.Y(), PCbest.Z() ); // add triangles to result map for(i=0; i<4; i++) { SMDS_MeshFace* NewFace; if(isRev) NewFace = meshDS->AddFace( NewNode, FNodes[i], FNodes[i+1] ); else NewFace = meshDS->AddFace( NewNode, FNodes[i+1], FNodes[i] ); storeTmpElement( NewFace ); prxSubMesh->AddElement( NewFace ); } // create a pyramid SMDS_MeshVolume* aPyram; if(isRev) aPyram = helper.AddVolume( FNodes[0], FNodes[1], FNodes[2], FNodes[3], NewNode ); else aPyram = helper.AddVolume( FNodes[0], FNodes[3], FNodes[2], FNodes[1], NewNode ); myPyramids.push_back(aPyram); } } // end loop on all faces return Compute2ndPart(aMesh, myPyramids); } //================================================================================ /*! * \brief Update created pyramids and faces to avoid their intersection */ //================================================================================ bool StdMeshers_QuadToTriaAdaptor::Compute2ndPart(SMESH_Mesh& aMesh, const vector& myPyramids) { if(myPyramids.empty()) return true; SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); int i, j, k, myShapeID = myPyramids[0]->GetNode(4)->getshapeId(); if ( myElemSearcher ) delete myElemSearcher; myElemSearcher = SMESH_MeshEditor(&aMesh).GetElementSearcher(); SMESH_ElementSearcher* searcher = const_cast(myElemSearcher); set nodesToMove; // check adjacent pyramids for ( i = 0; i < myPyramids.size(); ++i ) { const SMDS_MeshElement* PrmI = myPyramids[i]; MergeAdjacent( PrmI, nodesToMove ); } // iterate on all pyramids for ( i = 0; i < myPyramids.size(); ++i ) { const SMDS_MeshElement* PrmI = myPyramids[i]; // compare PrmI with all the rest pyramids // collect adjacent pyramids and nodes coordinates of PrmI set checkedPyrams; vector PsI(5); for(k=0; k<5; k++) // loop on 4 base nodes of PrmI { const SMDS_MeshNode* n = PrmI->GetNode(k); PsI[k] = SMESH_TNodeXYZ( n ); SMDS_ElemIteratorPtr vIt = n->GetInverseElementIterator( SMDSAbs_Volume ); while ( vIt->more() ) { const SMDS_MeshElement* PrmJ = vIt->next(); if ( SMESH_Algo::GetCommonNodes( PrmI, PrmJ ).size() > 1 ) checkedPyrams.insert( PrmJ ); } } // check intersection with distant pyramids for(k=0; k<4; k++) // loop on 4 base nodes of PrmI { gp_Vec Vtmp(PsI[k],PsI[4]); gp_Ax1 line( PsI[k], Vtmp ); vector< const SMDS_MeshElement* > suspectPyrams; searcher->GetElementsNearLine( line, SMDSAbs_Volume, suspectPyrams); for ( j = 0; j < suspectPyrams.size(); ++j ) { const SMDS_MeshElement* PrmJ = suspectPyrams[j]; if ( PrmJ == PrmI || PrmJ->NbCornerNodes() != 5 ) continue; if ( myShapeID != PrmJ->GetNode(4)->getshapeId()) continue; // pyramid from other SOLID if ( PrmI->GetNode(4) == PrmJ->GetNode(4) ) continue; // pyramids PrmI and PrmJ already merged if ( !checkedPyrams.insert( PrmJ ).second ) continue; // already checked TXyzIterator xyzIt( PrmJ->nodesIterator() ); vector PsJ( xyzIt, TXyzIterator() ); gp_Pnt Pint; bool hasInt=false; for(k=0; k<4 && !hasInt; k++) { gp_Vec Vtmp(PsI[k],PsI[4]); gp_Pnt Pshift = PsI[k].XYZ() + Vtmp.XYZ() * 0.01; // base node moved a bit to apex hasInt = ( HasIntersection3( Pshift, PsI[4], Pint, PsJ[0], PsJ[1], PsJ[4]) || HasIntersection3( Pshift, PsI[4], Pint, PsJ[1], PsJ[2], PsJ[4]) || HasIntersection3( Pshift, PsI[4], Pint, PsJ[2], PsJ[3], PsJ[4]) || HasIntersection3( Pshift, PsI[4], Pint, PsJ[3], PsJ[0], PsJ[4]) ); } for(k=0; k<4 && !hasInt; k++) { gp_Vec Vtmp(PsJ[k],PsJ[4]); gp_Pnt Pshift = PsJ[k].XYZ() + Vtmp.XYZ() * 0.01; hasInt = ( HasIntersection3( Pshift, PsJ[4], Pint, PsI[0], PsI[1], PsI[4]) || HasIntersection3( Pshift, PsJ[4], Pint, PsI[1], PsI[2], PsI[4]) || HasIntersection3( Pshift, PsJ[4], Pint, PsI[2], PsI[3], PsI[4]) || HasIntersection3( Pshift, PsJ[4], Pint, PsI[3], PsI[0], PsI[4]) ); } if ( hasInt ) { // count common nodes of base faces of two pyramids int nbc = 0; for (k=0; k<4; k++) nbc += int ( PrmI->GetNodeIndex( PrmJ->GetNode(k) ) >= 0 ); if ( nbc == 4 ) continue; // pyrams have a common base face if(nbc>0) { // Merge the two pyramids and others already merged with them MergePiramids( PrmI, PrmJ, nodesToMove ); } else { // nbc==0 // decrease height of pyramids gp_XYZ PCi(0,0,0), PCj(0,0,0); for(k=0; k<4; k++) { PCi += PsI[k].XYZ(); PCj += PsJ[k].XYZ(); } PCi /= 4; PCj /= 4; gp_Vec VN1(PCi,PsI[4]); gp_Vec VN2(PCj,PsJ[4]); gp_Vec VI1(PCi,Pint); gp_Vec VI2(PCj,Pint); double ang1 = fabs(VN1.Angle(VI1)); double ang2 = fabs(VN2.Angle(VI2)); double coef1 = 0.5 - (( ang1(PrmI->GetNode(4)); aNode1->setXYZ( PCi.X()+VN1.X(), PCi.Y()+VN1.Y(), PCi.Z()+VN1.Z() ); SMDS_MeshNode* aNode2 = const_cast(PrmJ->GetNode(4)); aNode2->setXYZ( PCj.X()+VN2.X(), PCj.Y()+VN2.Y(), PCj.Z()+VN2.Z() ); nodesToMove.insert( aNode1 ); nodesToMove.insert( aNode2 ); } // fix intersections that could appear after apex movement MergeAdjacent( PrmI, nodesToMove ); MergeAdjacent( PrmJ, nodesToMove ); } // end if(hasInt) } // loop on suspectPyrams } // loop on 4 base nodes of PrmI } // loop on all pyramids if( !nodesToMove.empty() && !meshDS->IsEmbeddedMode() ) { set::iterator n = nodesToMove.begin(); for ( ; n != nodesToMove.end(); ++n ) meshDS->MoveNode( *n, (*n)->X(), (*n)->Y(), (*n)->Z() ); } // erase removed triangles from the proxy mesh if ( !myRemovedTrias.empty() ) { for ( int i = 0; i <= meshDS->MaxShapeIndex(); ++i ) if ( SMESH_ProxyMesh::SubMesh* sm = findProxySubMesh(i)) { vector faces; faces.reserve( sm->NbElements() ); SMDS_ElemIteratorPtr fIt = sm->GetElements(); while ( fIt->more() ) { const SMDS_MeshElement* tria = fIt->next(); set::iterator rmTria = myRemovedTrias.find( tria ); if ( rmTria != myRemovedTrias.end() ) myRemovedTrias.erase( rmTria ); else faces.push_back( tria ); } sm->ChangeElements( faces.begin(), faces.end() ); } } myDegNodes.clear(); delete myElemSearcher; myElemSearcher=0; return true; }