// SMESH SMESH : implementaion of SMESH idl descriptions // // Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org // // // // File : StdMeshers_Regular_1D.cxx // Moved here from SMESH_Regular_1D.cxx // Author : Paul RASCLE, EDF // Module : SMESH // $Header$ using namespace std; #include "StdMeshers_Regular_1D.hxx" #include "SMESH_Gen.hxx" #include "SMESH_Mesh.hxx" #include "StdMeshers_LocalLength.hxx" #include "StdMeshers_NumberOfSegments.hxx" #include "StdMeshers_Arithmetic1D.hxx" #include "StdMeshers_StartEndLength.hxx" #include "StdMeshers_Deflection1D.hxx" #include #include "SMDS_MeshElement.hxx" #include "SMDS_MeshNode.hxx" #include "SMDS_EdgePosition.hxx" #include "SMESH_subMesh.hxx" #include "Utils_SALOME_Exception.hxx" #include "utilities.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //============================================================================= /*! * */ //============================================================================= StdMeshers_Regular_1D::StdMeshers_Regular_1D(int hypId, int studyId, SMESH_Gen * gen):SMESH_1D_Algo(hypId, studyId, gen) { MESSAGE("StdMeshers_Regular_1D::StdMeshers_Regular_1D"); _name = "Regular_1D"; _shapeType = (1 << TopAbs_EDGE); _compatibleHypothesis.push_back("LocalLength"); _compatibleHypothesis.push_back("NumberOfSegments"); _compatibleHypothesis.push_back("StartEndLength"); _compatibleHypothesis.push_back("Deflection1D"); _compatibleHypothesis.push_back("Arithmetic1D"); _compatibleHypothesis.push_back("AutomaticLength"); } //============================================================================= /*! * */ //============================================================================= StdMeshers_Regular_1D::~StdMeshers_Regular_1D() { } //============================================================================= /*! * */ //============================================================================= bool StdMeshers_Regular_1D::CheckHypothesis (SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, SMESH_Hypothesis::Hypothesis_Status& aStatus) { _hypType = NONE; const list &hyps = GetUsedHypothesis(aMesh, aShape); if (hyps.size() == 0) { aStatus = SMESH_Hypothesis::HYP_MISSING; return false; // can't work without a hypothesis } // use only the first hypothesis const SMESHDS_Hypothesis *theHyp = hyps.front(); string hypName = theHyp->GetName(); if (hypName == "LocalLength") { const StdMeshers_LocalLength * hyp = dynamic_cast (theHyp); ASSERT(hyp); _value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength(); ASSERT( _value[ BEG_LENGTH_IND ] > 0 ); _hypType = LOCAL_LENGTH; aStatus = SMESH_Hypothesis::HYP_OK; } else if (hypName == "NumberOfSegments") { const StdMeshers_NumberOfSegments * hyp = dynamic_cast (theHyp); ASSERT(hyp); _ivalue[ NB_SEGMENTS_IND ] = hyp->GetNumberOfSegments(); ASSERT( _ivalue[ NB_SEGMENTS_IND ] > 0 ); _ivalue[ DISTR_TYPE_IND ] = (int) hyp->GetDistrType(); switch (_ivalue[ DISTR_TYPE_IND ]) { case StdMeshers_NumberOfSegments::DT_Scale: _value[ SCALE_FACTOR_IND ] = hyp->GetScaleFactor(); break; case StdMeshers_NumberOfSegments::DT_TabFunc: _vvalue[ TAB_FUNC_IND ] = hyp->GetTableFunction(); break; case StdMeshers_NumberOfSegments::DT_ExprFunc: _svalue[ EXPR_FUNC_IND ] = hyp->GetExpressionFunction(); break; case StdMeshers_NumberOfSegments::DT_Regular: break; default: ASSERT(0); break; } if (_ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_TabFunc || _ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_ExprFunc) _ivalue[ EXP_MODE_IND ] = (int) hyp->IsExponentMode(); _hypType = NB_SEGMENTS; aStatus = SMESH_Hypothesis::HYP_OK; } else if (hypName == "Arithmetic1D") { const StdMeshers_Arithmetic1D * hyp = dynamic_cast (theHyp); ASSERT(hyp); _value[ BEG_LENGTH_IND ] = hyp->GetLength( true ); _value[ END_LENGTH_IND ] = hyp->GetLength( false ); ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 ); _hypType = ARITHMETIC_1D; aStatus = SMESH_Hypothesis::HYP_OK; } else if (hypName == "StartEndLength") { const StdMeshers_StartEndLength * hyp = dynamic_cast (theHyp); ASSERT(hyp); _value[ BEG_LENGTH_IND ] = hyp->GetLength( true ); _value[ END_LENGTH_IND ] = hyp->GetLength( false ); ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 ); _hypType = BEG_END_LENGTH; aStatus = SMESH_Hypothesis::HYP_OK; } else if (hypName == "Deflection1D") { const StdMeshers_Deflection1D * hyp = dynamic_cast (theHyp); ASSERT(hyp); _value[ DEFLECTION_IND ] = hyp->GetDeflection(); ASSERT( _value[ DEFLECTION_IND ] > 0 ); _hypType = DEFLECTION; aStatus = SMESH_Hypothesis::HYP_OK; } else if (hypName == "AutomaticLength") { StdMeshers_AutomaticLength * hyp = const_cast (dynamic_cast (theHyp)); ASSERT(hyp); _value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength( &aMesh, aShape ); ASSERT( _value[ BEG_LENGTH_IND ] > 0 ); _hypType = LOCAL_LENGTH; aStatus = SMESH_Hypothesis::HYP_OK; } else aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE; return ( _hypType != NONE ); } //======================================================================= //function : compensateError //purpose : adjust theParams so that the last segment length == an //======================================================================= static void compensateError(double a1, double an, double U1, double Un, double length, GeomAdaptor_Curve& C3d, list & theParams) { int i, nPar = theParams.size(); if ( a1 + an < length && nPar > 1 ) { list::reverse_iterator itU = theParams.rbegin(); double Ul = *itU++; // dist from the last point to the edge end , it should be equal double Ln = GCPnts_AbscissaPoint::Length( C3d, Ul, Un ); double dLn = an - Ln; // error of if ( Abs( dLn ) <= Precision::Confusion() ) return; double dU = Abs( Ul - *itU ); // parametric length of the last but one segment double dUn = dLn * Abs( Un - U1 ) / length; // parametric error of if ( dUn < 0.5 * dU ) { // last segment is a bit shorter than it should dUn = -dUn; // move the last parameter to the edge beginning } else { // last segment is much shorter than it should -> remove the last param and theParams.pop_back(); nPar--; // move the rest points toward the edge end Ln = GCPnts_AbscissaPoint::Length( C3d, theParams.back(), Un ); dUn = ( an - Ln ) * Abs( Un - U1 ) / length; if ( dUn < 0.5 * dU ) dUn = -dUn; } if ( U1 > Un ) dUn = -dUn; double q = dUn / ( nPar - 1 ); for ( itU = theParams.rbegin(), i = 1; i < nPar; itU++, i++ ) { (*itU) += dUn; dUn -= q; } } } /*! * \brief This class provides interface for a density function */ class Function { public: Function(bool expMode) : _expMode(expMode) {} double operator() (double t) const; virtual bool IsReady() const = 0; protected: virtual double compute(double t) const = 0; private: bool _expMode; }; /*! * \brief This class provides computation of density function given by a table */ class TabFunction: public Function { public: TabFunction(const vector& table, bool expMode); virtual bool IsReady() const; protected: virtual double compute(double t) const; private: const vector& _table; }; /*! * \brief This class provides computation of density function given by an expression */ class ExprFunction: public Function { public: ExprFunction(const char* expr, bool expMode); virtual bool IsReady() const; protected: virtual double compute(double t) const; private: Handle(Expr_GeneralExpression) _expression; Expr_Array1OfNamedUnknown _var; mutable TColStd_Array1OfReal _val; }; double Function::operator() (double t) const { double res = compute(t); if (_expMode) res = pow(10, res); return res; } TabFunction::TabFunction(const vector& table, bool expMode) : Function(expMode), _table(table) { } bool TabFunction::IsReady() const { return true; } double TabFunction::compute (double t) const { //find place of in table int i; for (i=0; i < _table.size()/2; i++) if (_table[i*2] > t) break; if (i >= _table.size()/2) i = _table.size()/2 - 1; if (i == 0) return _table[1]; // interpolate function value on found interval // (t - x[i-1]) / (x[i] - x[i-1]) = (y - f[i-1]) / (f[i] - f[i-1]) // => y = f[i-1] + (f[i] - f[i-1]) * (t - x[i-1]) / (x[i] - x[i-1]) double x1 = _table[(i-1)*2]; double x2 = _table[i*2]; double y1 = _table[(i-1)*2+1]; double y2 = _table[i*2+1]; if (x2 - x1 < Precision::Confusion()) throw SALOME_Exception("TabFunction::compute : confused points"); return y1 + (y2 - y1) * ((t - x1) / (x2 - x1)); } ExprFunction::ExprFunction(const char* expr, bool expMode) : Function(expMode), _var(1,1), _val(1,1) { Handle( ExprIntrp_GenExp ) gen = ExprIntrp_GenExp::Create(); gen->Process(TCollection_AsciiString((char*)expr)); if (gen->IsDone()) { _expression = gen->Expression(); _var(1) = new Expr_NamedUnknown("t"); } } bool ExprFunction::IsReady() const { return !_expression.IsNull(); } double ExprFunction::compute (double t) const { ASSERT(!_expression.IsNull()); _val(1) = t; return _expression->Evaluate(_var, _val); } //================================================================================ /*! * \brief Compute next abscissa when two previous ones are given * \param sm2 - before previous abscissa * \param sm1 - previous abscissa * \param func - function of density * \param reverse - the direction of next abscissa, increase (0) or decrease (1) * \retval double - the new abscissa * * The abscissa s is given by the formulae * * ....|--------|----------------|..... * sm2 sm1 s * * func(sm2) / func(sm1) = (sm1-sm2) / (s-sm1) * => (s-sm1) * func(sm2) = (sm1-sm2) * func(sm1) * => s = sm1 + (sm1-sm2) * func(sm1) / func(sm2) */ //================================================================================ static double nextAbscissa(double sm2, double sm1, const Function& func, int reverse) { if (reverse) { sm1 = 1.0 - sm1; sm2 = 1.0 - sm2; } return sm1 + (sm1-sm2) * func(sm1) / func(sm2); } //================================================================================ /*! * \brief Compute distribution of points on a curve following the law of a function * \param C3d - the curve to discretize * \param first - the first parameter on the curve * \param last - the last parameter on the curve * \param theReverse - flag indicating that the curve must be reversed * \param nbSeg - number of output segments * \param func - the function f(t) * \param theParams - output points * \retval bool - true if success */ //================================================================================ static bool computeParamByFunc(Adaptor3d_Curve& C3d, double first, double last, double length, bool theReverse, int nbSeg, const Function& func, list& theParams) { if (!func.IsReady()) return false; vector xxx[2]; int nbPnt = 1 + nbSeg; int rev, i; for (rev=0; rev < 2; rev++) { // curv abscisses initialisation vector x(nbPnt, 0.); // the first abscissa is 0.0 // The aim of the algorithm is to find a second abscisse x[1] such as the last // one x[nbSeg] is very close to 1.0 with the epsilon precision double x1_too_small = 0.0; double x1_too_large = RealLast(); double x1 = 1.0/nbSeg; while (1) { x[1] = x1; // Check if the abscissa of the point 2 to N-1 // are in the segment ... bool ok = true; for (i=2; i <= nbSeg; i++) { x[i] = nextAbscissa(x[i-2], x[i-1], func, rev); if (x[i] - 1.0 > Precision::Confusion()) { x[nbSeg] = x[i]; ok = false; break; } } if (!ok) { // The segments are to large // Decrease x1 ... x1_too_large = x1; x1 = (x1_too_small+x1_too_large)/2; continue; } // Look at the abscissa of the point N // which is to be close to 1.0 // break condition --> algo converged !! if (1.0 - x[nbSeg] < Precision::Confusion()) break; // not ok ... x1_too_small = x1; // Modify x1 value if (x1_too_large > 1e100) x1 = 2*x1; else x1 = (x1_too_small+x1_too_large)/2; } xxx[rev] = x; } // average vector x(nbPnt, 0.); for (i=0; i < nbPnt; i++) x[i] = (xxx[0][i] + (1.0 - xxx[1][nbPnt-i])) / 2; // apply parameters in range [0,1] to the space of the curve double prevU = first; double sign = 1.; if (theReverse) { prevU = last; sign = -1.; } for (i = 1; i < nbSeg; i++) { double curvLength = length * (x[i] - x[i-1]) * sign; GCPnts_AbscissaPoint Discret( C3d, curvLength, prevU ); if ( !Discret.IsDone() ) return false; double U = Discret.Parameter(); if ( U > first && U < last ) theParams.push_back( U ); else return false; prevU = U; } return false; } //============================================================================= /*! * */ //============================================================================= bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge, list & theParams, const bool theReverse) const { theParams.clear(); double f, l; Handle(Geom_Curve) Curve = BRep_Tool::Curve(theEdge, f, l); GeomAdaptor_Curve C3d(Curve); double length = EdgeLength(theEdge); switch( _hypType ) { case LOCAL_LENGTH: case NB_SEGMENTS: { double eltSize = 1; if ( _hypType == LOCAL_LENGTH ) { // Local Length hypothesis double nbseg = ceil(length / _value[ BEG_LENGTH_IND ]); // integer sup if (nbseg <= 0) nbseg = 1; // degenerated edge eltSize = length / nbseg; } else { // Number Of Segments hypothesis switch (_ivalue[ DISTR_TYPE_IND ]) { case StdMeshers_NumberOfSegments::DT_Scale: { double scale = _value[ SCALE_FACTOR_IND ]; if ( theReverse ) scale = 1. / scale; double alpha = pow( scale , 1.0 / (_ivalue[ NB_SEGMENTS_IND ] - 1)); double factor = (l - f) / (1 - pow( alpha,_ivalue[ NB_SEGMENTS_IND ])); int i, NbPoints = 1 + _ivalue[ NB_SEGMENTS_IND ]; for ( i = 2; i < NbPoints; i++ ) { double param = f + factor * (1 - pow(alpha, i - 1)); theParams.push_back( param ); } return true; } break; case StdMeshers_NumberOfSegments::DT_TabFunc: { TabFunction func(_vvalue[ TAB_FUNC_IND ], (bool)_ivalue[ EXP_MODE_IND ]); return computeParamByFunc(C3d, f, l, length, theReverse, _ivalue[ NB_SEGMENTS_IND ], func, theParams); } break; case StdMeshers_NumberOfSegments::DT_ExprFunc: { ExprFunction func(_svalue[ EXPR_FUNC_IND ].c_str(), (bool)_ivalue[ EXP_MODE_IND ]); return computeParamByFunc(C3d, f, l, length, theReverse, _ivalue[ NB_SEGMENTS_IND ], func, theParams); } break; case StdMeshers_NumberOfSegments::DT_Regular: eltSize = length / _ivalue[ NB_SEGMENTS_IND ]; break; default: return false; } } GCPnts_UniformAbscissa Discret(C3d, eltSize, f, l); if ( !Discret.IsDone() ) return false; int NbPoints = Discret.NbPoints(); for ( int i = 2; i < NbPoints; i++ ) { double param = Discret.Parameter(i); theParams.push_back( param ); } return true; } case BEG_END_LENGTH: { // geometric progression: SUM(n) = ( a1 - an * q ) / ( 1 - q ) = length double a1 = _value[ BEG_LENGTH_IND ]; double an = _value[ END_LENGTH_IND ]; double q = ( length - a1 ) / ( length - an ); double U1 = theReverse ? l : f; double Un = theReverse ? f : l; double param = U1; double eltSize = theReverse ? -a1 : a1; while ( 1 ) { // computes a point on a curve at the distance // from the point of parameter . GCPnts_AbscissaPoint Discret( C3d, eltSize, param ); if ( !Discret.IsDone() ) break; param = Discret.Parameter(); if ( param > f && param < l ) theParams.push_back( param ); else break; eltSize *= q; } compensateError( a1, an, U1, Un, length, C3d, theParams ); return true; } case ARITHMETIC_1D: { // arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = length double a1 = _value[ BEG_LENGTH_IND ]; double an = _value[ END_LENGTH_IND ]; double q = ( an - a1 ) / ( 2 *length/( a1 + an ) - 1 ); int n = int( 1 + ( an - a1 ) / q ); double U1 = theReverse ? l : f; double Un = theReverse ? f : l; double param = U1; double eltSize = a1; if ( theReverse ) { eltSize = -eltSize; q = -q; } while ( n-- > 0 && eltSize * ( Un - U1 ) > 0 ) { // computes a point on a curve at the distance // from the point of parameter . GCPnts_AbscissaPoint Discret( C3d, eltSize, param ); if ( !Discret.IsDone() ) break; param = Discret.Parameter(); if ( param > f && param < l ) theParams.push_back( param ); else break; eltSize += q; } compensateError( a1, an, U1, Un, length, C3d, theParams ); return true; } case DEFLECTION: { GCPnts_UniformDeflection Discret(C3d, _value[ DEFLECTION_IND ], true); if ( !Discret.IsDone() ) return false; int NbPoints = Discret.NbPoints(); for ( int i = 2; i < NbPoints; i++ ) { double param = Discret.Parameter(i); theParams.push_back( param ); } return true; } default:; } return false; } //============================================================================= /*! * */ //============================================================================= bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape) { MESSAGE("StdMeshers_Regular_1D::Compute"); if ( _hypType == NONE ) return false; SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); aMesh.GetSubMesh(aShape); const TopoDS_Edge & EE = TopoDS::Edge(aShape); TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD)); int shapeID = meshDS->ShapeToIndex( E ); double f, l; Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l); TopoDS_Vertex VFirst, VLast; TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l ASSERT(!VFirst.IsNull()); SMDS_NodeIteratorPtr lid= aMesh.GetSubMesh(VFirst)->GetSubMeshDS()->GetNodes(); if (!lid->more()) { MESSAGE (" NO NODE BUILT ON VERTEX "); return false; } const SMDS_MeshNode * idFirst = lid->next(); ASSERT(!VLast.IsNull()); lid=aMesh.GetSubMesh(VLast)->GetSubMeshDS()->GetNodes(); if (!lid->more()) { MESSAGE (" NO NODE BUILT ON VERTEX "); return false; } const SMDS_MeshNode * idLast = lid->next(); if (!Curve.IsNull()) { list< double > params; bool reversed = false; if ( !_mainEdge.IsNull() ) reversed = aMesh.IsReversedInChain( EE, _mainEdge ); try { if ( ! computeInternalParameters( E, params, reversed )) return false; } catch ( Standard_Failure ) { return false; } // edge extrema (indexes : 1 & NbPoints) already in SMDS (TopoDS_Vertex) // only internal nodes receive an edge position with param on curve const SMDS_MeshNode * idPrev = idFirst; for (list::iterator itU = params.begin(); itU != params.end(); itU++) { double param = *itU; gp_Pnt P = Curve->Value(param); //Add the Node in the DataStructure SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z()); meshDS->SetNodeOnEdge(node, shapeID, param); SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node); meshDS->SetMeshElementOnShape(edge, shapeID); idPrev = node; } SMDS_MeshEdge* edge = meshDS->AddEdge(idPrev, idLast); meshDS->SetMeshElementOnShape(edge, shapeID); } else { // Edge is a degenerated Edge : We put n = 5 points on the edge. int NbPoints = 5; BRep_Tool::Range(E, f, l); double du = (l - f) / (NbPoints - 1); //MESSAGE("************* Degenerated edge! *****************"); TopoDS_Vertex V1, V2; TopExp::Vertices(E, V1, V2); gp_Pnt P = BRep_Tool::Pnt(V1); const SMDS_MeshNode * idPrev = idFirst; for (int i = 2; i < NbPoints; i++) { double param = f + (i - 1) * du; SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z()); meshDS->SetNodeOnEdge(node, shapeID, param); SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node); meshDS->SetMeshElementOnShape(edge, shapeID); idPrev = node; } SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, idLast); meshDS->SetMeshElementOnShape(edge, shapeID); } return true; } //============================================================================= /*! * See comments in SMESH_Algo.cxx */ //============================================================================= const list & StdMeshers_Regular_1D::GetUsedHypothesis( SMESH_Mesh & aMesh, const TopoDS_Shape & aShape) { _usedHypList.clear(); _usedHypList = GetAppliedHypothesis(aMesh, aShape); // copy int nbHyp = _usedHypList.size(); _mainEdge.Nullify(); if (nbHyp == 0) { // Check, if propagated from some other edge if (aShape.ShapeType() == TopAbs_EDGE && aMesh.IsPropagatedHypothesis(aShape, _mainEdge)) { // Propagation of 1D hypothesis from on this edge //_usedHypList = GetAppliedHypothesis(aMesh, _mainEdge); // copy // use a general method in order not to nullify _mainEdge _usedHypList = SMESH_Algo::GetUsedHypothesis(aMesh, _mainEdge); // copy nbHyp = _usedHypList.size(); } } if (nbHyp == 0) { TopTools_ListIteratorOfListOfShape ancIt( aMesh.GetAncestors( aShape )); for (; ancIt.More(); ancIt.Next()) { const TopoDS_Shape& ancestor = ancIt.Value(); _usedHypList = GetAppliedHypothesis(aMesh, ancestor); // copy nbHyp = _usedHypList.size(); if (nbHyp == 1) break; } } if (nbHyp > 1) _usedHypList.clear(); //only one compatible hypothesis allowed return _usedHypList; } //============================================================================= /*! * */ //============================================================================= ostream & StdMeshers_Regular_1D::SaveTo(ostream & save) { return save; } //============================================================================= /*! * */ //============================================================================= istream & StdMeshers_Regular_1D::LoadFrom(istream & load) { return load; } //============================================================================= /*! * */ //============================================================================= ostream & operator <<(ostream & save, StdMeshers_Regular_1D & hyp) { return hyp.SaveTo( save ); } //============================================================================= /*! * */ //============================================================================= istream & operator >>(istream & load, StdMeshers_Regular_1D & hyp) { return hyp.LoadFrom( load ); }