/*! \page smeshpy_interface_page Python interface Python API for SALOME %Mesh module defines several classes that can be used for easy mesh creation and edition. Documentation for SALOME %Mesh module Python API is available in two forms: - Structured documentation, where all methods and classes are grouped by their functionality, like it is done in the GUI documentation - Linear documentation grouped only by classes, declared in the \ref smesh and StdMeshersDC Python packages. Python package \ref smesh provides an interface to create and handle meshes. It can be used to create an empty mesh or to import mesh from the data file. As soon as mesh is created, it is possible to manage it via its own methods, described in \ref smesh.Mesh "class Mesh" documentation. Class \ref smesh.Mesh "Mesh" allows assigning algorithms to a mesh. Please note that some algorithms, included in the standard SALOME distribution are always available. Python package \ref StdMeshersDC provides an interface for standard meshing algorithms included into the SALOME %Mesh module distribution, like: - REGULAR (1D) - COMPOSITE (1D) - MEFISTO (2D) - Quadrangle (2D) - Hexa(3D) - etc ... To add meshing hypotheses, it is possible to use the functions provided by the algorithms interfaces. An example below demonstrates usage of the Python API for 3d mesh generation. \anchor example_3d_mesh

Example of 3d mesh generation:

\code from geompy import * import smesh ### # Geometry: an assembly of a box, a cylinder and a truncated cone # meshed with tetrahedral ### # Define values name = "ex21_lamp" cote = 60 section = 20 size = 200 radius_1 = 80 radius_2 = 40 height = 100 # Build a box box = MakeBox(-cote, -cote, -cote, +cote, +cote, +cote) # Build a cylinder pt1 = MakeVertex(0, 0, cote/3) di1 = MakeVectorDXDYDZ(0, 0, 1) cyl = MakeCylinder(pt1, di1, section, size) # Build a truncated cone pt2 = MakeVertex(0, 0, size) cone = MakeCone(pt2, di1, radius_1, radius_2, height) # Fuse box_cyl = MakeFuse(box, cyl) piece = MakeFuse(box_cyl, cone) # Add to the study addToStudy(piece, name) # Create a group of faces group = CreateGroup(piece, ShapeType["FACE"]) group_name = name + "_grp" addToStudy(group, group_name) group.SetName(group_name) # Add faces to the group faces = SubShapeAllIDs(piece, ShapeType["FACE"]) UnionIDs(group, faces) ### # Create a mesh ### # Define a mesh on a geometry tetra = smesh.Mesh(piece, name) # Define 1D hypothesis algo1d = tetra.Segment() algo1d.LocalLength(10) # Define 2D hypothesis algo2d = tetra.Triangle() algo2d.LengthFromEdges() # Define 3D hypothesis algo3d = tetra.Tetrahedron() algo3d.MaxElementVolume(100) # Compute the mesh tetra.Compute() # Create a groupe of faces tetra.Group(group) \endcode Examples of Python scripts for Mesh operations are available by the following links: - \subpage tui_creating_meshes_page - \subpage tui_cartesian_algo - \subpage tui_use_existing_faces - \subpage tui_viewing_meshes_page - \subpage tui_defining_hypotheses_page - \subpage tui_quality_controls_page - \subpage tui_filters_page - \subpage tui_grouping_elements_page - \subpage tui_modifying_meshes_page - \subpage tui_transforming_meshes_page - \subpage tui_notebook_smesh_page - \subpage tui_measurements_page - \subpage tui_generate_flat_elements_page - \subpage tui_work_on_objects_from_gui */