// Copyright (C) 2007-2019 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : StdMeshers_CartesianParameters3D.cxx // Author : Edward AGAPOV // Module : SMESH // #include "StdMeshers_CartesianParameters3D.hxx" #include "StdMeshers_NumberOfSegments.hxx" #include "StdMeshers_Distribution.hxx" #include "SMESH_Gen.hxx" #include "utilities.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; //======================================================================= //function : StdMeshers_CartesianParameters3D //purpose : Constructor //======================================================================= StdMeshers_CartesianParameters3D::StdMeshers_CartesianParameters3D(int hypId, SMESH_Gen * gen) : SMESH_Hypothesis(hypId, gen), _sizeThreshold( 4.0 ), // default according to the customer specification _toAddEdges( false ), _toConsiderInternalFaces( false ), _toUseThresholdForInternalFaces( false ), _toCreateFaces( false ) { _name = "CartesianParameters3D"; // used by "Cartesian_3D" _param_algo_dim = 3; // 3D _axisDirs[0] = 1.; _axisDirs[1] = 0.; _axisDirs[2] = 0.; _axisDirs[3] = 0.; _axisDirs[4] = 1.; _axisDirs[5] = 0.; _axisDirs[6] = 0.; _axisDirs[7] = 0.; _axisDirs[8] = 1.; _fixedPoint[0] = 0.; _fixedPoint[1] = 0.; _fixedPoint[2] = 0.; SetFixedPoint( _fixedPoint, /*toUnset=*/true ); } namespace { const char* axisName[3] = { "X", "Y", "Z" }; typedef std::pair< double, std::pair< double, double > > TCooTriple; #define gpXYZ( cTriple ) gp_XYZ( (cTriple).first, (cTriple).second.first, (cTriple).second.second ) //================================================================================ /*! * \brief Compare two normals */ //================================================================================ bool sameDir( const TCooTriple& n1, const TCooTriple& n2 ) { gp_XYZ xyz1 = gpXYZ( n1 ), xyz2 = gpXYZ( n2 ); return ( xyz1 - xyz2 ).Modulus() < 0.01; } //================================================================================ /*! * \brief Checks validity of an axis index, throws in case of invalidity */ //================================================================================ void checkAxis(const int axis) { if ( axis < 0 || axis > 2 ) throw SALOME_Exception(SMESH_Comment("Invalid axis index ") << axis << ". Valid axis indices are 0, 1 and 2"); } //================================================================================ /*! * \brief Checks validity of spacing data, throws in case of invalidity */ //================================================================================ void checkGridSpacing(std::vector& spaceFunctions, std::vector& internalPoints, const std::string& axis) throw ( SALOME_Exception ) { if ( spaceFunctions.empty() ) throw SALOME_Exception(SMESH_Comment("Empty space function for ") << axis ); for ( size_t i = 1; i < internalPoints.size(); ++i ) if ( internalPoints[i] - internalPoints[i-1] < 0 ) throw SALOME_Exception(SMESH_Comment("Wrong order of internal points along ") << axis); else if ( internalPoints[i] - internalPoints[i-1] < 1e-3 ) throw SALOME_Exception(SMESH_Comment("Too close internal points along ") << axis ); const double tol = Precision::Confusion(); if ( !internalPoints.empty() && ( internalPoints.front() < -tol || internalPoints.back() > 1 + tol )) throw SALOME_Exception(SMESH_Comment("Invalid internal points along ") << axis); if ( internalPoints.empty() || internalPoints.front() > tol ) internalPoints.insert( internalPoints.begin(), 0. ); if ( internalPoints.size() < 2 || internalPoints.back() < 1 - tol ) internalPoints.push_back( 1. ); if ( internalPoints.size() != spaceFunctions.size() + 1 ) throw SALOME_Exception (SMESH_Comment("Numbre of internal points mismatch number of functions for ") << axis); for ( size_t i = 0; i < spaceFunctions.size(); ++i ) spaceFunctions[i] = StdMeshers_NumberOfSegments::CheckExpressionFunction( spaceFunctions[i], -1 ); } } //======================================================================= //function : SetGrid //purpose : Sets coordinates of node positions along an axes //======================================================================= void StdMeshers_CartesianParameters3D::SetGrid(std::vector& coords, int axis) throw ( SALOME_Exception ) { checkAxis( axis ); if ( coords.size() < 2 ) throw SALOME_Exception(LOCALIZED("Wrong number of grid coordinates")); std::sort( coords.begin(), coords.end() ); bool changed = ( _coords[axis] != coords ); if ( changed ) { _coords[axis] = coords; NotifySubMeshesHypothesisModification(); } _spaceFunctions[axis].clear(); _internalPoints[axis].clear(); } //======================================================================= //function : SetGridSpacing //purpose : Set grid spacing along the three axes //======================================================================= void StdMeshers_CartesianParameters3D::SetGridSpacing(std::vector& xSpaceFuns, std::vector& xInternalPoints, const int axis) throw ( SALOME_Exception ) { checkAxis( axis ); checkGridSpacing( xSpaceFuns, xInternalPoints, axisName[axis] ); bool changed = ( xSpaceFuns != _spaceFunctions[axis] || xInternalPoints != _internalPoints[axis] ); _spaceFunctions[axis] = xSpaceFuns; _internalPoints[axis] = xInternalPoints; _coords[axis].clear(); if ( changed ) NotifySubMeshesHypothesisModification(); } //======================================================================= //function : SetFixedPoint //purpose : * Set/unset a fixed point, at which a node will be created provided that grid // * is defined by spacing in all directions //======================================================================= void StdMeshers_CartesianParameters3D::SetFixedPoint(const double p[3], bool toUnset) { if ( toUnset != Precision::IsInfinite( _fixedPoint[0] )) NotifySubMeshesHypothesisModification(); if ( toUnset ) _fixedPoint[0] = Precision::Infinite(); else std::copy( &p[0], &p[0]+3, &_fixedPoint[0] ); } //======================================================================= //function : GetFixedPoint //purpose : Returns either false or (true + point coordinates) //======================================================================= bool StdMeshers_CartesianParameters3D::GetFixedPoint(double p[3]) const { if ( Precision::IsInfinite( _fixedPoint[0] )) return false; std::copy( &_fixedPoint[0], &_fixedPoint[0]+3, &p[0] ); return true; } //======================================================================= //function : SetSizeThreshold //purpose : Set size threshold //======================================================================= void StdMeshers_CartesianParameters3D::SetSizeThreshold(const double threshold) throw ( SALOME_Exception ) { if ( threshold <= 1.0 ) throw SALOME_Exception(LOCALIZED("threshold must be > 1.0")); bool changed = fabs( _sizeThreshold - threshold ) > 1e-6; _sizeThreshold = threshold; if ( changed ) NotifySubMeshesHypothesisModification(); } //======================================================================= //function : GetGridSpacing //purpose : return spacing //======================================================================= void StdMeshers_CartesianParameters3D::GetGridSpacing(std::vector& spaceFunctions, std::vector& internalPoints, const int axis) const throw ( SALOME_Exception ) { if ( !IsGridBySpacing(axis) ) throw SALOME_Exception(LOCALIZED("The grid is defined by coordinates and not by spacing")); spaceFunctions = _spaceFunctions[axis]; internalPoints = _internalPoints[axis]; } //======================================================================= //function : IsGridBySpacing //======================================================================= bool StdMeshers_CartesianParameters3D::IsGridBySpacing(const int axis) const throw ( SALOME_Exception ) { checkAxis(axis); return !_spaceFunctions[axis].empty(); } //======================================================================= //function : ComputeCoordinates //purpose : Computes node coordinates by spacing functions //======================================================================= void StdMeshers_CartesianParameters3D::ComputeCoordinates(const double x0, const double x1, vector& theSpaceFuns, vector& thePoints, vector& coords, const string& axis, const double* xForced ) throw ( SALOME_Exception ) { checkGridSpacing( theSpaceFuns, thePoints, axis ); vector spaceFuns = theSpaceFuns; vector points = thePoints; bool forced = false; if (( forced = ( xForced && ( x0 < *xForced ) && ( *xForced < x1 )))) { // divide a range at xForced // find a range to insert xForced double pos = ( *xForced - x0 ) / ( x1 - x0 ); int iR = 1; while ( pos > points[ iR ] ) ++iR; // insert xForced vector::iterator pntIt = points.begin() + iR; points.insert( pntIt, pos ); vector::iterator funIt = spaceFuns.begin() + iR; spaceFuns.insert( funIt, spaceFuns[ iR-1 ]); } coords.clear(); for ( size_t i = 0; i < spaceFuns.size(); ++i ) { StdMeshers::FunctionExpr fun( spaceFuns[i].c_str(), /*convMode=*/-1 ); const double p0 = x0 * ( 1. - points[i]) + x1 * points[i]; const double p1 = x0 * ( 1. - points[i+1]) + x1 * points[i+1]; const double length = p1 - p0; const size_t nbSections = 1000; const double sectionLen = ( p1 - p0 ) / nbSections; vector< double > nbSegments( nbSections + 1 ); nbSegments[ 0 ] = 0.; double t, spacing = 0; for ( size_t i = 1; i <= nbSections; ++i ) { t = double( i ) / nbSections; if ( !fun.value( t, spacing ) || spacing < std::numeric_limits::min() ) throw SALOME_Exception(LOCALIZED("Invalid spacing function")); nbSegments[ i ] = nbSegments[ i-1 ] + std::min( 1., sectionLen / spacing ); } const int nbCells = max (1, int(floor(nbSegments.back()+0.5))); const double corr = nbCells / nbSegments.back(); if ( coords.empty() ) coords.push_back( p0 ); for ( size_t iCell = 1, i = 1; i <= nbSections; ++i ) { if ( nbSegments[i]*corr >= iCell ) { t = (i - ( nbSegments[i] - iCell/corr )/( nbSegments[i] - nbSegments[i-1] )) / nbSections; coords.push_back( p0 + t * length ); ++iCell; } } const double lastCellLen = coords.back() - coords[ coords.size() - 2 ]; if ( fabs( coords.back() - p1 ) > 0.5 * lastCellLen ) coords.push_back ( p1 ); } // correct coords if a forced point is too close to a neighbor node if ( forced ) { size_t iF = 0; double minLen = ( x1 - x0 ); for ( size_t i = 1; i < coords.size(); ++i ) { if ( !iF && Abs( coords[i] - *xForced ) < 1e-20 ) iF = i++; // xForced found else minLen = Min( minLen, coords[i] - coords[i-1] ); } const double tol = minLen * 1e-3; int iRem = -1; if (( iF > 1 ) && ( coords[iF] - coords[iF-1] < tol )) iRem = iF-1; else if (( iF < coords.size()-2 ) && ( coords[iF+1] - coords[iF] < tol )) iRem = iF+1; if ( iRem > 0 ) coords.erase( coords.begin() + iRem ); } } //======================================================================= //function : GetCoordinates //purpose : Return coordinates of node positions along the three axes. // If the grid is defined by spacing functions, the coordinates are computed //======================================================================= void StdMeshers_CartesianParameters3D::GetCoordinates(std::vector& xNodes, std::vector& yNodes, std::vector& zNodes, const Bnd_Box& bndBox) const throw ( SALOME_Exception ) { double x0,y0,z0, x1,y1,z1; if ( IsGridBySpacing(0) || IsGridBySpacing(1) || IsGridBySpacing(2)) { if ( bndBox.IsVoid() || bndBox.IsXThin( Precision::Confusion() ) || bndBox.IsYThin( Precision::Confusion() ) || bndBox.IsZThin( Precision::Confusion() ) ) throw SALOME_Exception(LOCALIZED("Invalid bounding box")); bndBox.Get(x0,y0,z0, x1,y1,z1); } double fp[3], *pfp[3] = { NULL, NULL, NULL }; if ( GetFixedPoint( fp )) { // convert fp into a basis defined by _axisDirs gp_XYZ axis[3] = { gp_XYZ( _axisDirs[0], _axisDirs[1], _axisDirs[2] ), gp_XYZ( _axisDirs[3], _axisDirs[4], _axisDirs[5] ), gp_XYZ( _axisDirs[6], _axisDirs[7], _axisDirs[8] ) }; axis[0].Normalize(); axis[1].Normalize(); axis[2].Normalize(); gp_Mat basis( axis[0], axis[1], axis[2] ); gp_Mat bi = basis.Inverted(); gp_XYZ p( fp[0], fp[1], fp[2] ); p *= bi; p.Coord( fp[0], fp[1], fp[2] ); pfp[0] = & fp[0]; pfp[1] = & fp[1]; pfp[2] = & fp[2]; } StdMeshers_CartesianParameters3D* me = const_cast(this); if ( IsGridBySpacing(0) ) ComputeCoordinates ( x0, x1, me->_spaceFunctions[0], me->_internalPoints[0], xNodes, "X", pfp[0] ); else xNodes = _coords[0]; if ( IsGridBySpacing(1) ) ComputeCoordinates ( y0, y1, me->_spaceFunctions[1], me->_internalPoints[1], yNodes, "Y", pfp[1] ); else yNodes = _coords[1]; if ( IsGridBySpacing(2) ) ComputeCoordinates ( z0, z1, me->_spaceFunctions[2], me->_internalPoints[2], zNodes, "Z", pfp[2] ); else zNodes = _coords[2]; } //======================================================================= //function : ComputeOptimalAxesDirs //purpose : Returns axes at which number of hexahedra is maximal //======================================================================= void StdMeshers_CartesianParameters3D:: ComputeOptimalAxesDirs(const TopoDS_Shape& shape, const bool isOrthogonal, double dirCoords[9]) { for ( int i = 0; i < 9; ++i ) dirCoords[i] = 0.; dirCoords[0] = dirCoords[4] = dirCoords[8] = 1.; if ( shape.IsNull() ) return; TopLoc_Location loc; TopExp_Explorer exp; // get external FACEs of the shape TopTools_MapOfShape faceMap; for ( exp.Init( shape, TopAbs_FACE ); exp.More(); exp.Next() ) if ( !faceMap.Add( exp.Current() )) faceMap.Remove( exp.Current() ); // sort areas of planar faces by normal direction std::multimap< TCooTriple, double > areasByNormal; TopTools_MapIteratorOfMapOfShape fIt ( faceMap ); for ( ; fIt.More(); fIt.Next() ) { const TopoDS_Face& face = TopoDS::Face( fIt.Key() ); Handle(Geom_Surface) surf = BRep_Tool::Surface( face, loc ); if ( surf.IsNull() ) continue; GeomLib_IsPlanarSurface check( surf, 1e-5 ); if ( !check.IsPlanar() ) continue; GProp_GProps SProps; BRepGProp::SurfaceProperties( face, SProps ); double area = SProps.Mass(); gp_Pln pln = check.Plan(); gp_Dir norm = pln.Axis().Direction().Transformed( loc ); if ( norm.X() < -1e-3 ) { // negative X norm.Reverse(); } else if ( norm.X() < 1e-3 ) { // zero X if ( norm.Y() < -1e-3 ) { // negative Y norm.Reverse(); } else if ( norm.Y() < 1e-3 ) { // zero X && zero Y if ( norm.Y() < -1e-3 ) // negative Z norm.Reverse(); } } TCooTriple coo3( norm.X(), make_pair( norm.Y(), norm.Z() )); areasByNormal.insert( make_pair( coo3, area )); } // group coplanar normals and sort groups by sum area std::multimap< double, vector< const TCooTriple* > > normsByArea; std::multimap< TCooTriple, double >::iterator norm2a = areasByNormal.begin(); const TCooTriple* norm1 = 0; double sumArea = 0; vector< const TCooTriple* > norms; for ( size_t iF = 1; norm2a != areasByNormal.end(); ++norm2a, ++iF ) { if ( !norm1 || !sameDir( *norm1, norm2a->first )) { if ( !norms.empty() ) { normsByArea.insert( make_pair( sumArea, norms )); norms.clear(); } norm1 = & norm2a->first; sumArea = norm2a->second; norms.push_back( norm1 ); } else { sumArea += norm2a->second; norms.push_back( & norm2a->first ); } if ( iF == areasByNormal.size() ) normsByArea.insert( make_pair( sumArea, norms )); } // try to set dirs by planar faces gp_XYZ normDirs[3]; // normals to largest planes if ( !normsByArea.empty() ) { norm1 = normsByArea.rbegin()->second[0]; normDirs[0] = gpXYZ( *norm1 ); if ( normsByArea.size() == 1 ) { normDirs[1] = normDirs[0]; if ( Abs( normDirs[0].Y() ) < 1e-100 && Abs( normDirs[0].Z() ) < 1e-100 ) // normDirs[0] || OX normDirs[1].SetY( normDirs[0].Y() + 1. ); else normDirs[1].SetX( normDirs[0].X() + 1. ); } else { // look for 2 other directions gp_XYZ testDir = normDirs[0], minDir, maxDir; for ( int is2nd = 0; is2nd < 2; ++is2nd ) { double maxMetric = 0, minMetric = 1e100; std::multimap< double, vector< const TCooTriple* > >::iterator a2n; for ( a2n = normsByArea.begin(); a2n != normsByArea.end(); ++a2n ) { gp_XYZ n = gpXYZ( *( a2n->second[0]) ); double dot = Abs( n * testDir ); double metric = ( 1. - dot ) * ( isOrthogonal ? 1 : a2n->first ); if ( metric > maxMetric ) { maxDir = n; maxMetric = metric; } if ( metric < minMetric ) { minDir = n; minMetric = metric; } } if ( is2nd ) { normDirs[2] = minDir; } else { normDirs[1] = maxDir; normDirs[2] = normDirs[0] ^ normDirs[1]; if ( isOrthogonal || normsByArea.size() < 3 ) break; testDir = normDirs[2]; } } } if ( isOrthogonal || normsByArea.size() == 1 ) { normDirs[2] = normDirs[0] ^ normDirs[1]; normDirs[1] = normDirs[2] ^ normDirs[0]; } } else { return; } gp_XYZ dirs[3]; dirs[0] = normDirs[0] ^ normDirs[1]; dirs[1] = normDirs[1] ^ normDirs[2]; dirs[2] = normDirs[2] ^ normDirs[0]; dirs[0].Normalize(); dirs[1].Normalize(); dirs[2].Normalize(); // Select dirs for X, Y and Z axes int iX = ( Abs( dirs[0].X() ) > Abs( dirs[1].X() )) ? 0 : 1; if ( Abs( dirs[iX].X() ) < Abs( dirs[2].X() )) iX = 2; int iY = ( iX == 0 ) ? 1 : (( Abs( dirs[0].Y() ) > Abs( dirs[1].Y() )) ? 0 : 1 ); if ( Abs( dirs[iY].Y() ) < Abs( dirs[2].Y() ) && iX != 2 ) iY = 2; int iZ = 3 - iX - iY; if ( dirs[iX].X() < 0 ) dirs[iX].Reverse(); if ( dirs[iY].Y() < 0 ) dirs[iY].Reverse(); gp_XYZ zDir = dirs[iX] ^ dirs[iY]; if ( dirs[iZ] * zDir < 0 ) dirs[iZ].Reverse(); dirCoords[0] = dirs[iX].X(); dirCoords[1] = dirs[iX].Y(); dirCoords[2] = dirs[iX].Z(); dirCoords[3] = dirs[iY].X(); dirCoords[4] = dirs[iY].Y(); dirCoords[5] = dirs[iY].Z(); dirCoords[6] = dirs[iZ].X(); dirCoords[7] = dirs[iZ].Y(); dirCoords[8] = dirs[iZ].Z(); } //======================================================================= //function : SetAxisDirs //purpose : Sets custom direction of axes //======================================================================= void StdMeshers_CartesianParameters3D::SetAxisDirs(const double* the9DirComps) throw ( SALOME_Exception ) { gp_Vec x( the9DirComps[0], the9DirComps[1], the9DirComps[2] ); gp_Vec y( the9DirComps[3], the9DirComps[4], the9DirComps[5] ); gp_Vec z( the9DirComps[6], the9DirComps[7], the9DirComps[8] ); if ( x.Magnitude() < RealSmall() || y.Magnitude() < RealSmall() || z.Magnitude() < RealSmall() ) throw SALOME_Exception("Zero magnitude of axis direction"); if ( x.IsParallel( y, M_PI / 180. ) || x.IsParallel( z, M_PI / 180. ) || y.IsParallel( z, M_PI / 180. )) throw SALOME_Exception("Parallel axis directions"); gp_Vec normXY = x ^ y, normYZ = y ^ z; if ( normXY.IsParallel( normYZ, M_PI / 180. )) throw SALOME_Exception("Axes lie in one plane"); bool isChanged = false; for ( int i = 0; i < 9; ++i ) { if ( Abs( _axisDirs[i] - the9DirComps[i] ) > 1e-7 ) isChanged = true; _axisDirs[i] = the9DirComps[i]; } if ( isChanged ) NotifySubMeshesHypothesisModification(); } //======================================================================= //function : GetGrid //purpose : Return coordinates of node positions along the three axes //======================================================================= void StdMeshers_CartesianParameters3D::GetGrid(std::vector& coords, int axis) const throw ( SALOME_Exception ) { if ( IsGridBySpacing(axis) ) throw SALOME_Exception(LOCALIZED("The grid is defined by spacing and not by coordinates")); coords = _coords[axis]; } //======================================================================= //function : GetSizeThreshold //purpose : Return size threshold //======================================================================= double StdMeshers_CartesianParameters3D::GetSizeThreshold() const { return _sizeThreshold; } //======================================================================= //function : SetToAddEdges //purpose : Enables implementation of geometrical edges into the mesh. If this feature // is disabled, sharp edges of the shape are lost ("smoothed") in the mesh if // they don't coincide with the grid lines //======================================================================= void StdMeshers_CartesianParameters3D::SetToAddEdges(bool toAdd) { if ( _toAddEdges != toAdd ) { _toAddEdges = toAdd; NotifySubMeshesHypothesisModification(); } } //======================================================================= //function : GetToAddEdges //purpose : Returns true if implementation of geometrical edges into the // mesh is enabled //======================================================================= bool StdMeshers_CartesianParameters3D::GetToAddEdges() const { return _toAddEdges; } //======================================================================= //function : SetToConsiderInternalFaces //purpose : Enables treatment of geom faces either shared by solids or internal //======================================================================= void StdMeshers_CartesianParameters3D::SetToConsiderInternalFaces(bool toTreat) { if ( _toConsiderInternalFaces != toTreat ) { _toConsiderInternalFaces = toTreat; NotifySubMeshesHypothesisModification(); } } //======================================================================= //function : SetToUseThresholdForInternalFaces //purpose : Enables applying size threshold to grid cells cut by internal geom faces. //======================================================================= void StdMeshers_CartesianParameters3D::SetToUseThresholdForInternalFaces(bool toUse) { if ( _toUseThresholdForInternalFaces != toUse ) { _toUseThresholdForInternalFaces = toUse; NotifySubMeshesHypothesisModification(); } } //======================================================================= //function : SetToCreateFaces //purpose : Enables creation of mesh faces. //======================================================================= void StdMeshers_CartesianParameters3D::SetToCreateFaces(bool toCreate) { if ( _toCreateFaces != toCreate ) { _toCreateFaces = toCreate; NotifySubMeshesHypothesisModification(); } } //======================================================================= //function : IsDefined //purpose : Return true if parameters are well defined //======================================================================= bool StdMeshers_CartesianParameters3D::IsDefined() const { for ( int i = 0; i < 3; ++i ) if (_coords[i].empty() && (_spaceFunctions[i].empty() || _internalPoints[i].empty())) return false; return ( _sizeThreshold > 1.0 ); } //======================================================================= //function : SaveTo //purpose : store my parameters into a stream //======================================================================= std::ostream & StdMeshers_CartesianParameters3D::SaveTo(std::ostream & save) { save << _sizeThreshold << " "; for ( int i = 0; i < 3; ++i ) { save << _coords[i].size() << " "; for ( size_t j = 0; j < _coords[i].size(); ++j ) save << _coords[i][j] << " "; save << _internalPoints[i].size() << " "; for ( size_t j = 0; j < _internalPoints[i].size(); ++j ) save << _internalPoints[i][j] << " "; save << _spaceFunctions[i].size() << " "; for ( size_t j = 0; j < _spaceFunctions[i].size(); ++j ) save << _spaceFunctions[i][j] << " "; } save << _toAddEdges << " "; save.setf( save.scientific ); save.precision( 12 ); for ( int i = 0; i < 9; ++i ) save << _axisDirs[i] << " "; for ( int i = 0; i < 3; ++i ) save << _fixedPoint[i] << " "; save << " " << _toConsiderInternalFaces << " " << _toUseThresholdForInternalFaces << " " << _toCreateFaces; return save; } //======================================================================= //function : LoadFrom //purpose : restore my parameters from a stream //======================================================================= std::istream & StdMeshers_CartesianParameters3D::LoadFrom(std::istream & load) { bool ok; ok = static_cast( load >> _sizeThreshold ); for ( int ax = 0; ax < 3; ++ax ) { if (ok) { size_t i = 0; ok = static_cast(load >> i ); if ( i > 0 && ok ) { _coords[ax].resize( i ); for ( i = 0; i < _coords[ax].size() && ok; ++i ) ok = static_cast(load >> _coords[ax][i] ); } } if (ok) { size_t i = 0; ok = static_cast(load >> i ); if ( i > 0 && ok ) { _internalPoints[ax].resize( i ); for ( i = 0; i < _internalPoints[ax].size() && ok; ++i ) ok = static_cast(load >> _internalPoints[ax][i] ); } } if (ok) { size_t i = 0; ok = static_cast(load >> i ); if ( i > 0 && ok ) { _spaceFunctions[ax].resize( i ); for ( i = 0; i < _spaceFunctions[ax].size() && ok; ++i ) ok = static_cast(load >> _spaceFunctions[ax][i] ); } } } ok = static_cast( load >> _toAddEdges ); for ( int i = 0; i < 9 && ok; ++i ) ok = static_cast( load >> _axisDirs[i]); for ( int i = 0; i < 3 && ok ; ++i ) ok = static_cast( load >> _fixedPoint[i]); if ( load >> _toConsiderInternalFaces ) { load >> _toUseThresholdForInternalFaces; load >> _toCreateFaces; } return load; } //======================================================================= //function : SetParametersByMesh //======================================================================= bool StdMeshers_CartesianParameters3D::SetParametersByMesh(const SMESH_Mesh* , const TopoDS_Shape& ) { return false; } //======================================================================= //function : SetParametersByDefaults //======================================================================= bool StdMeshers_CartesianParameters3D::SetParametersByDefaults(const TDefaults& dflts, const SMESH_Mesh* /*theMesh*/) { if ( dflts._elemLength > 1e-100 ) { vector spacing( 1, SMESH_Comment(dflts._elemLength)); vector intPnts; SetGridSpacing( spacing, intPnts, 0 ); SetGridSpacing( spacing, intPnts, 1 ); SetGridSpacing( spacing, intPnts, 2 ); return true; } return false; }