# Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com # # File : smeshBuilder.py # Author : Francis KLOSS, OCC # Module : SMESH import salome from salome.geom import geomBuilder import SMESH # This is necessary for back compatibility import omniORB # back compatibility SMESH.MED_V2_1 = omniORB.EnumItem("MED_V2_1", 0) # back compatibility SMESH.MED_V2_2 = omniORB.EnumItem("MED_V2_2", 1) # back compatibility from SMESH import * from salome.smesh.smesh_algorithm import Mesh_Algorithm import SALOME import SALOMEDS import os import inspect # In case the omniORBpy EnumItem class does not fully support Python 3 # (for instance in version 4.2.1-2), the comparison ordering methods must be # defined # try: SMESH.Entity_Triangle < SMESH.Entity_Quadrangle except TypeError: def enumitem_eq(self, other): try: if isinstance(other, omniORB.EnumItem): if other._parent_id == self._parent_id: return self._v == other._v else: return self._parent_id == other._parent_id else: return id(self) == id(other) except: return id(self) == id(other) def enumitem_lt(self, other): try: if isinstance(other, omniORB.EnumItem): if other._parent_id == self._parent_id: return self._v < other._v else: return self._parent_id < other._parent_id else: return id(self) < id(other) except: return id(self) < id(other) def enumitem_le(self, other): try: if isinstance(other, omniORB.EnumItem): if other._parent_id == self._parent_id: return self._v <= other._v else: return self._parent_id <= other._parent_id else: return id(self) <= id(other) except: return id(self) <= id(other) def enumitem_gt(self, other): try: if isinstance(other, omniORB.EnumItem): if other._parent_id == self._parent_id: return self._v > other._v else: return self._parent_id > other._parent_id else: return id(self) > id(other) except: return id(self) > id(other) def enumitem_ge(self, other): try: if isinstance(other, omniORB.EnumItem): if other._parent_id == self._parent_id: return self._v >= other._v else: return self._parent_id >= other._parent_id else: return id(self) >= id(other) except: return id(self) >= id(other) omniORB.EnumItem.__eq__ = enumitem_eq omniORB.EnumItem.__lt__ = enumitem_lt omniORB.EnumItem.__le__ = enumitem_le omniORB.EnumItem.__gt__ = enumitem_gt omniORB.EnumItem.__ge__ = enumitem_ge class MeshMeta(type): """Private class used to workaround a problem that sometimes isinstance(m, Mesh) returns False """ def __instancecheck__(cls, inst): """Implement isinstance(inst, cls).""" return any(cls.__subclasscheck__(c) for c in {type(inst), inst.__class__}) def __subclasscheck__(cls, sub): """Implement issubclass(sub, cls).""" return type.__subclasscheck__(cls, sub) or (cls.__name__ == sub.__name__ and cls.__module__ == sub.__module__) def DegreesToRadians(AngleInDegrees): """Convert an angle from degrees to radians """ from math import pi return AngleInDegrees * pi / 180.0 import salome_notebook notebook = salome_notebook.notebook # Salome notebook variable separator var_separator = ":" def ParseParameters(*args): """ Return list of variable values from salome notebook. The last argument, if is callable, is used to modify values got from notebook """ Result = [] Parameters = "" hasVariables = False varModifFun=None if args and callable(args[-1]): args, varModifFun = args[:-1], args[-1] for parameter in args: Parameters += str(parameter) + var_separator if isinstance(parameter,str): # check if there is an inexistent variable name if not notebook.isVariable(parameter): raise ValueError("Variable with name '" + parameter + "' doesn't exist!!!") parameter = notebook.get(parameter) hasVariables = True if varModifFun: parameter = varModifFun(parameter) pass pass Result.append(parameter) pass Parameters = Parameters[:-1] Result.append( Parameters ) Result.append( hasVariables ) return Result def ParseAngles(*args): """ Parse parameters while converting variables to radians """ return ParseParameters( *( args + (DegreesToRadians, ))) def __initPointStruct(point,*args): """ Substitute PointStruct.__init__() to create SMESH.PointStruct using notebook variables. Parameters are stored in PointStruct.parameters attribute """ point.x, point.y, point.z, point.parameters,hasVars = ParseParameters(*args) pass SMESH.PointStruct.__init__ = __initPointStruct def __initAxisStruct(ax,*args): """ Substitute AxisStruct.__init__() to create SMESH.AxisStruct using notebook variables. Parameters are stored in AxisStruct.parameters attribute """ if len( args ) != 6: raise RuntimeError("Bad nb args (%s) passed in SMESH.AxisStruct(x,y,z,dx,dy,dz)"%(len( args ))) ax.x, ax.y, ax.z, ax.vx, ax.vy, ax.vz, ax.parameters,hasVars = ParseParameters(*args) pass SMESH.AxisStruct.__init__ = __initAxisStruct smeshPrecisionConfusion = 1.e-07 def IsEqual(val1, val2, tol=smeshPrecisionConfusion): """Compare real values using smeshPrecisionConfusion as tolerance """ if abs(val1 - val2) < tol: return True return False NO_NAME = "NoName" def GetName(obj): """ Return a name of an object Returns: object name """ if obj: # object not null if isinstance(obj, SALOMEDS._objref_SObject): # study object return obj.GetName() try: ior = salome.orb.object_to_string(obj) except: ior = None if ior: sobj = salome.myStudy.FindObjectIOR(ior) if sobj: return sobj.GetName() if hasattr(obj, "GetName"): # unknown CORBA object, having GetName() method return obj.GetName() else: # unknown CORBA object, no GetName() method return NO_NAME pass if hasattr(obj, "GetName"): # unknown non-CORBA object, having GetName() method return obj.GetName() pass raise RuntimeError("Null or invalid object") def TreatHypoStatus(status, hypName, geomName, isAlgo, mesh): """ Print error message if a hypothesis was not assigned. """ if isAlgo: hypType = "algorithm" else: hypType = "hypothesis" pass reason = "" if hasattr( status, "__getitem__" ): status, reason = status[0], status[1] if status == HYP_UNKNOWN_FATAL: reason = "for unknown reason" elif status == HYP_INCOMPATIBLE: reason = "this hypothesis mismatches the algorithm" elif status == HYP_NOTCONFORM: reason = "a non-conform mesh would be built" elif status == HYP_ALREADY_EXIST: if isAlgo: return # it does not influence anything reason = hypType + " of the same dimension is already assigned to this shape" elif status == HYP_BAD_DIM: reason = hypType + " mismatches the shape" elif status == HYP_CONCURRENT : reason = "there are concurrent hypotheses on sub-shapes" elif status == HYP_BAD_SUBSHAPE: reason = "the shape is neither the main one, nor its sub-shape, nor a valid group" elif status == HYP_BAD_GEOMETRY: reason = "the algorithm is not applicable to this geometry" elif status == HYP_HIDDEN_ALGO: reason = "it is hidden by an algorithm of an upper dimension, which generates elements of all dimensions" elif status == HYP_HIDING_ALGO: reason = "it hides algorithms of lower dimensions by generating elements of all dimensions" elif status == HYP_NEED_SHAPE: reason = "algorithm can't work without shape" elif status == HYP_INCOMPAT_HYPS: pass else: return where = geomName if where: where = '"%s"' % geomName if mesh: meshName = GetName( mesh ) if meshName and meshName != NO_NAME: where = '"%s" shape in "%s" mesh ' % ( geomName, meshName ) if status < HYP_UNKNOWN_FATAL and where: print('"%s" was assigned to %s but %s' %( hypName, where, reason )) elif where: print('"%s" was not assigned to %s : %s' %( hypName, where, reason )) else: print('"%s" was not assigned : %s' %( hypName, reason )) pass def AssureGeomPublished(mesh, geom, name=''): """ Private method. Add geom (sub-shape of the main shape) into the study if not yet there """ if not isinstance( geom, geomBuilder.GEOM._objref_GEOM_Object ): return if not geom.GetStudyEntry(): ## get a name if not name and geom.GetShapeType() != geomBuilder.GEOM.COMPOUND: # for all groups SubShapeName() return "Compound_-1" name = mesh.geompyD.SubShapeName(geom, mesh.geom) if not name: name = "%s_%s"%(geom.GetShapeType(), id(geom)%10000) ## publish mesh.geompyD.addToStudyInFather( mesh.geom, geom, name ) return def FirstVertexOnCurve(mesh, edge): """ Returns: the first vertex of a geometrical edge by ignoring orientation """ vv = mesh.geompyD.SubShapeAll( edge, geomBuilder.geomBuilder.ShapeType["VERTEX"]) if not vv: raise TypeError("Given object has no vertices") if len( vv ) == 1: return vv[0] v0 = mesh.geompyD.MakeVertexOnCurve(edge,0.) xyz = mesh.geompyD.PointCoordinates( v0 ) # coords of the first vertex xyz1 = mesh.geompyD.PointCoordinates( vv[0] ) xyz2 = mesh.geompyD.PointCoordinates( vv[1] ) dist1, dist2 = 0,0 for i in range(3): dist1 += abs( xyz[i] - xyz1[i] ) dist2 += abs( xyz[i] - xyz2[i] ) if dist1 < dist2: return vv[0] else: return vv[1] smeshInst = None """ Warning: smeshInst is a singleton """ engine = None doLcc = False created = False class smeshBuilder( SMESH._objref_SMESH_Gen, object ): """ This class allows to create, load or manipulate meshes. It has a set of methods to create, load or copy meshes, to combine several meshes, etc. It also has methods to get infos and measure meshes. """ # MirrorType enumeration POINT = SMESH_MeshEditor.POINT AXIS = SMESH_MeshEditor.AXIS PLANE = SMESH_MeshEditor.PLANE # Smooth_Method enumeration LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH PrecisionConfusion = smeshPrecisionConfusion # TopAbs_State enumeration [TopAbs_IN, TopAbs_OUT, TopAbs_ON, TopAbs_UNKNOWN] = list(range(4)) # Methods of splitting a hexahedron into tetrahedra Hex_5Tet, Hex_6Tet, Hex_24Tet, Hex_2Prisms, Hex_4Prisms = 1, 2, 3, 1, 2 def __new__(cls, *args): global engine global smeshInst global doLcc #print("==== __new__", engine, smeshInst, doLcc) if smeshInst is None: # smesh engine is either retrieved from engine, or created smeshInst = engine # Following test avoids a recursive loop if doLcc: if smeshInst is not None: # smesh engine not created: existing engine found doLcc = False if doLcc: doLcc = False # FindOrLoadComponent called: # 1. CORBA resolution of server # 2. the __new__ method is called again #print("==== smeshInst = lcc.FindOrLoadComponent ", engine, smeshInst, doLcc) smeshInst = salome.lcc.FindOrLoadComponent( "FactoryServer", "SMESH" ) else: # FindOrLoadComponent not called if smeshInst is None: # smeshBuilder instance is created from lcc.FindOrLoadComponent #print("==== smeshInst = super(smeshBuilder,cls).__new__(cls) ", engine, smeshInst, doLcc) smeshInst = super(smeshBuilder,cls).__new__(cls) else: # smesh engine not created: existing engine found #print("==== existing ", engine, smeshInst, doLcc) pass #print("====1 ", smeshInst) return smeshInst #print("====2 ", smeshInst) return smeshInst def __init__(self, *args): global created #print("--------------- smeshbuilder __init__ ---", created) if not created: created = True SMESH._objref_SMESH_Gen.__init__(self, *args) def DumpPython(self, theStudy, theIsPublished=True, theIsMultiFile=True): """ Dump component to the Python script. This method overrides IDL function to allow default values for the parameters. """ return SMESH._objref_SMESH_Gen.DumpPython(self, theStudy, theIsPublished, theIsMultiFile) def SetDumpPythonHistorical(self, isHistorical): """ Set mode of DumpPython(), *historical* or *snapshot*. In the *historical* mode, the Python Dump script includes all commands performed by SMESH engine. In the *snapshot* mode, commands relating to objects removed from the Study are excluded from the script as well as commands not influencing the current state of meshes """ if isHistorical: val = "true" else: val = "false" SMESH._objref_SMESH_Gen.SetOption(self, "historical_python_dump", val) def init_smesh(self,geompyD = None): """ Set Geometry component """ #print("init_smesh") self.UpdateStudy(geompyD) notebook.myStudy = salome.myStudy def Mesh(self, obj=0, name=0): """ Create a mesh. This mesh can be either * an empty mesh not bound to geometry, if *obj* == 0 * an empty mesh bound to geometry, if *obj* is GEOM.GEOM_Object * a mesh wrapping a :class:`CORBA mesh ` given as *obj* parameter. Parameters: obj: either 1. a :class:`CORBA mesh ` got by calling e.g. :: salome.myStudy.FindObjectID("0:1:2:3").GetObject() 2. a geometrical object for meshing 3. none. name: the name for the new mesh. Returns: an instance of class :class:`Mesh`. """ if isinstance(obj,str): obj,name = name,obj return Mesh(self, self.geompyD, obj, name) def EnumToLong(self,theItem): """ Return a long value from enumeration """ return theItem._v def ColorToString(self,c): """ Convert SALOMEDS.Color to string. To be used with filters. Parameters: c: color value (SALOMEDS.Color) Returns: a string representation of the color. """ val = "" if isinstance(c, SALOMEDS.Color): val = "%s;%s;%s" % (c.R, c.G, c.B) elif isinstance(c, str): val = c else: raise ValueError("Color value should be of string or SALOMEDS.Color type") return val def GetPointStruct(self,theVertex): """ Get :class:`SMESH.PointStruct` from vertex Parameters: theVertex (GEOM.GEOM_Object): vertex Returns: :class:`SMESH.PointStruct` """ [x, y, z] = self.geompyD.PointCoordinates(theVertex) return PointStruct(x,y,z) def GetDirStruct(self,theVector): """ Get :class:`SMESH.DirStruct` from vector Parameters: theVector (GEOM.GEOM_Object): vector Returns: :class:`SMESH.DirStruct` """ vertices = self.geompyD.SubShapeAll( theVector, geomBuilder.geomBuilder.ShapeType["VERTEX"] ) if(len(vertices) != 2): print("Error: vector object is incorrect.") return None p1 = self.geompyD.PointCoordinates(vertices[0]) p2 = self.geompyD.PointCoordinates(vertices[1]) pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2]) dirst = DirStruct(pnt) return dirst def MakeDirStruct(self,x,y,z): """ Make :class:`SMESH.DirStruct` from a triplet of floats Parameters: x,y,z (float): vector components Returns: :class:`SMESH.DirStruct` """ pnt = PointStruct(x,y,z) return DirStruct(pnt) def GetAxisStruct(self,theObj): """ Get :class:`SMESH.AxisStruct` from a geometrical object Parameters: theObj (GEOM.GEOM_Object): line or plane Returns: :class:`SMESH.AxisStruct` """ import GEOM edges = self.geompyD.SubShapeAll( theObj, geomBuilder.geomBuilder.ShapeType["EDGE"] ) axis = None if len(edges) > 1: vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geomBuilder.geomBuilder.ShapeType["VERTEX"] ) vertex3, vertex4 = self.geompyD.SubShapeAll( edges[1], geomBuilder.geomBuilder.ShapeType["VERTEX"] ) vertex1 = self.geompyD.PointCoordinates(vertex1) vertex2 = self.geompyD.PointCoordinates(vertex2) vertex3 = self.geompyD.PointCoordinates(vertex3) vertex4 = self.geompyD.PointCoordinates(vertex4) v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]] v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]] normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ] axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2]) axis._mirrorType = SMESH.SMESH_MeshEditor.PLANE elif len(edges) == 1: vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geomBuilder.geomBuilder.ShapeType["VERTEX"] ) p1 = self.geompyD.PointCoordinates( vertex1 ) p2 = self.geompyD.PointCoordinates( vertex2 ) axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2]) axis._mirrorType = SMESH.SMESH_MeshEditor.AXIS elif theObj.GetShapeType() == GEOM.VERTEX: x,y,z = self.geompyD.PointCoordinates( theObj ) axis = AxisStruct( x,y,z, 1,0,0,) axis._mirrorType = SMESH.SMESH_MeshEditor.POINT return axis # From SMESH_Gen interface: # ------------------------ def SetName(self, obj, name): """ Set the given name to an object Parameters: obj: the object to rename name: a new object name """ if isinstance( obj, Mesh ): obj = obj.GetMesh() elif isinstance( obj, Mesh_Algorithm ): obj = obj.GetAlgorithm() ior = salome.orb.object_to_string(obj) SMESH._objref_SMESH_Gen.SetName(self, ior, name) def SetEmbeddedMode( self,theMode ): """ Set the current mode """ SMESH._objref_SMESH_Gen.SetEmbeddedMode(self,theMode) def IsEmbeddedMode(self): """ Get the current mode """ return SMESH._objref_SMESH_Gen.IsEmbeddedMode(self) def UpdateStudy( self, geompyD = None ): """ Update the current study. Calling UpdateStudy() allows to update meshes at switching GEOM->SMESH """ #self.UpdateStudy() if not geompyD: from salome.geom import geomBuilder geompyD = geomBuilder.geom if not geompyD: geompyD = geomBuilder.New() pass self.geompyD=geompyD self.SetGeomEngine(geompyD) SMESH._objref_SMESH_Gen.UpdateStudy(self) sb = salome.myStudy.NewBuilder() sc = salome.myStudy.FindComponent("SMESH") if sc: sb.LoadWith(sc, self) pass def SetEnablePublish( self, theIsEnablePublish ): """ Set enable publishing in the study. Calling SetEnablePublish( False ) allows to switch **off** publishing in the Study of mesh objects. """ #self.SetEnablePublish(theIsEnablePublish) SMESH._objref_SMESH_Gen.SetEnablePublish(self,theIsEnablePublish) global notebook notebook = salome_notebook.NoteBook( theIsEnablePublish ) def CreateMeshesFromUNV( self,theFileName ): """ Create a Mesh object importing data from the given UNV file Returns: an instance of class :class:`Mesh` """ aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromUNV(self,theFileName) aMesh = Mesh(self, self.geompyD, aSmeshMesh) return aMesh def CreateMeshesFromMED( self,theFileName ): """ Create a Mesh object(s) importing data from the given MED file Returns: a tuple ( list of class :class:`Mesh` instances, :class:`SMESH.DriverMED_ReadStatus` ) """ aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromMED(self,theFileName) aMeshes = [ Mesh(self, self.geompyD, m) for m in aSmeshMeshes ] return aMeshes, aStatus def CreateMeshesFromSAUV( self,theFileName ): """ Create a Mesh object(s) importing data from the given SAUV file Returns: a tuple ( list of class :class:`Mesh` instances, :class:`SMESH.DriverMED_ReadStatus` ) """ aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromSAUV(self,theFileName) aMeshes = [ Mesh(self, self.geompyD, m) for m in aSmeshMeshes ] return aMeshes, aStatus def CreateMeshesFromSTL( self, theFileName ): """ Create a Mesh object importing data from the given STL file Returns: an instance of class :class:`Mesh` """ aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromSTL(self,theFileName) aMesh = Mesh(self, self.geompyD, aSmeshMesh) return aMesh def CreateMeshesFromCGNS( self, theFileName ): """ Create Mesh objects importing data from the given CGNS file Returns: a tuple ( list of class :class:`Mesh` instances, :class:`SMESH.DriverMED_ReadStatus` ) """ aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromCGNS(self,theFileName) aMeshes = [ Mesh(self, self.geompyD, m) for m in aSmeshMeshes ] return aMeshes, aStatus def CreateMeshesFromGMF( self, theFileName ): """ Create a Mesh object importing data from the given GMF file. GMF files must have .mesh extension for the ASCII format and .meshb for the binary format. Returns: ( an instance of class :class:`Mesh`, :class:`SMESH.ComputeError` ) """ aSmeshMesh, error = SMESH._objref_SMESH_Gen.CreateMeshesFromGMF(self, theFileName, True) if error.comment: print("*** CreateMeshesFromGMF() errors:\n", error.comment) return Mesh(self, self.geompyD, aSmeshMesh), error def Concatenate( self, meshes, uniteIdenticalGroups, mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False, name = ""): """ Concatenate the given meshes into one mesh. All groups of input meshes will be present in the new mesh. Parameters: meshes: :class:`meshes, sub-meshes, groups or filters ` to combine into one mesh uniteIdenticalGroups: if True, groups with same names are united, else they are renamed mergeNodesAndElements: if True, equal nodes and elements are merged mergeTolerance: tolerance for merging nodes allGroups: forces creation of groups corresponding to every input mesh name: name of a new mesh Returns: an instance of class :class:`Mesh` """ if not meshes: return None for i,m in enumerate(meshes): if isinstance(m, Mesh): meshes[i] = m.GetMesh() mergeTolerance,Parameters,hasVars = ParseParameters(mergeTolerance) meshes[0].SetParameters(Parameters) if allGroups: aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups( self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance) else: aSmeshMesh = SMESH._objref_SMESH_Gen.Concatenate( self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance) aMesh = Mesh(self, self.geompyD, aSmeshMesh, name=name) return aMesh def CopyMesh( self, meshPart, meshName, toCopyGroups=False, toKeepIDs=False): """ Create a mesh by copying a part of another mesh. Parameters: meshPart: a part of mesh to copy, either :class:`mesh, sub-mesh, group or filter `. To copy nodes or elements not forming any mesh object, pass result of :meth:`Mesh.GetIDSource` as *meshPart* meshName: a name of the new mesh toCopyGroups: to create in the new mesh groups the copied elements belongs to toKeepIDs: to preserve order of the copied elements or not Returns: an instance of class :class:`Mesh` """ if (isinstance( meshPart, Mesh )): meshPart = meshPart.GetMesh() mesh = SMESH._objref_SMESH_Gen.CopyMesh( self,meshPart,meshName,toCopyGroups,toKeepIDs ) return Mesh(self, self.geompyD, mesh) def GetSubShapesId( self, theMainObject, theListOfSubObjects ): """ Return IDs of sub-shapes Parameters: theMainObject (GEOM.GEOM_Object): a shape theListOfSubObjects: sub-shapes (list of GEOM.GEOM_Object) Returns: the list of integer values """ return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects) def GetPattern(self): """ Create a pattern mapper. Returns: an instance of :class:`SMESH.SMESH_Pattern` :ref:`Example of Patterns usage ` """ return SMESH._objref_SMESH_Gen.GetPattern(self) def SetBoundaryBoxSegmentation(self, nbSegments): """ Set number of segments per diagonal of boundary box of geometry, by which default segment length of appropriate 1D hypotheses is defined in GUI. Default value is 10. """ SMESH._objref_SMESH_Gen.SetBoundaryBoxSegmentation(self,nbSegments) # Filtering. Auxiliary functions: # ------------------------------ def GetEmptyCriterion(self): """ Create an empty criterion Returns: :class:`SMESH.Filter.Criterion` """ Type = self.EnumToLong(FT_Undefined) Compare = self.EnumToLong(FT_Undefined) Threshold = 0 ThresholdStr = "" ThresholdID = "" UnaryOp = self.EnumToLong(FT_Undefined) BinaryOp = self.EnumToLong(FT_Undefined) Tolerance = 1e-07 TypeOfElement = ALL Precision = -1 ##@1e-07 return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID, UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision) def GetCriterion(self,elementType, CritType, Compare = FT_EqualTo, Threshold="", UnaryOp=FT_Undefined, BinaryOp=FT_Undefined, Tolerance=1e-07): """ Create a criterion by the given parameters Criterion structures allow to define complex filters by combining them with logical operations (AND / OR) (see example below) Parameters: elementType: the :class:`type of elements ` (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME) CritType: the type of criterion :class:`SMESH.FunctorType` (SMESH.FT_Taper, SMESH.FT_Area, etc.). Note that the items starting from FT_LessThan are not suitable for *CritType*. Compare: belongs to {SMESH.FT_LessThan, SMESH.FT_MoreThan, SMESH.FT_EqualTo} Threshold: the threshold value (range of ids as string, shape, numeric) UnaryOp: SMESH.FT_LogicalNOT or SMESH.FT_Undefined BinaryOp: a binary logical operation SMESH.FT_LogicalAND, SMESH.FT_LogicalOR or SMESH.FT_Undefined Tolerance: the tolerance used by SMESH.FT_BelongToGeom, SMESH.FT_BelongToSurface, SMESH.FT_LyingOnGeom, SMESH.FT_CoplanarFaces criteria Returns: :class:`SMESH.Filter.Criterion` Example: :ref:`combining_filters` """ if not CritType in SMESH.FunctorType._items: raise TypeError("CritType should be of SMESH.FunctorType") aCriterion = self.GetEmptyCriterion() aCriterion.TypeOfElement = elementType aCriterion.Type = self.EnumToLong(CritType) aCriterion.Tolerance = Tolerance aThreshold = Threshold if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]: aCriterion.Compare = self.EnumToLong(Compare) elif Compare == "=" or Compare == "==": aCriterion.Compare = self.EnumToLong(FT_EqualTo) elif Compare == "<": aCriterion.Compare = self.EnumToLong(FT_LessThan) elif Compare == ">": aCriterion.Compare = self.EnumToLong(FT_MoreThan) elif Compare != FT_Undefined: aCriterion.Compare = self.EnumToLong(FT_EqualTo) aThreshold = Compare if CritType in [FT_BelongToGeom, FT_BelongToPlane, FT_BelongToGenSurface, FT_BelongToCylinder, FT_LyingOnGeom]: # Check that Threshold is GEOM object if isinstance(aThreshold, geomBuilder.GEOM._objref_GEOM_Object): aCriterion.ThresholdStr = GetName(aThreshold) aCriterion.ThresholdID = aThreshold.GetStudyEntry() if not aCriterion.ThresholdID: name = aCriterion.ThresholdStr if not name: name = "%s_%s"%(aThreshold.GetShapeType(), id(aThreshold)%10000) aCriterion.ThresholdID = self.geompyD.addToStudy( aThreshold, name ) # or a name of GEOM object elif isinstance( aThreshold, str ): aCriterion.ThresholdStr = aThreshold else: raise TypeError("The Threshold should be a shape.") if isinstance(UnaryOp,float): aCriterion.Tolerance = UnaryOp UnaryOp = FT_Undefined pass elif CritType == FT_BelongToMeshGroup: # Check that Threshold is a group if isinstance(aThreshold, SMESH._objref_SMESH_GroupBase): if aThreshold.GetType() != elementType: raise ValueError("Group type mismatches Element type") aCriterion.ThresholdStr = aThreshold.GetName() aCriterion.ThresholdID = salome.orb.object_to_string( aThreshold ) study = salome.myStudy if study: so = study.FindObjectIOR( aCriterion.ThresholdID ) if so: entry = so.GetID() if entry: aCriterion.ThresholdID = entry else: raise TypeError("The Threshold should be a Mesh Group") elif CritType == FT_RangeOfIds: # Check that Threshold is string if isinstance(aThreshold, str): aCriterion.ThresholdStr = aThreshold else: raise TypeError("The Threshold should be a string.") elif CritType == FT_CoplanarFaces: # Check the Threshold if isinstance(aThreshold, int): aCriterion.ThresholdID = str(aThreshold) elif isinstance(aThreshold, str): ID = int(aThreshold) if ID < 1: raise ValueError("Invalid ID of mesh face: '%s'"%aThreshold) aCriterion.ThresholdID = aThreshold else: raise TypeError("The Threshold should be an ID of mesh face and not '%s'"%aThreshold) elif CritType == FT_ConnectedElements: # Check the Threshold if isinstance(aThreshold, geomBuilder.GEOM._objref_GEOM_Object): # shape aCriterion.ThresholdID = aThreshold.GetStudyEntry() if not aCriterion.ThresholdID: name = aThreshold.GetName() if not name: name = "%s_%s"%(aThreshold.GetShapeType(), id(aThreshold)%10000) aCriterion.ThresholdID = self.geompyD.addToStudy( aThreshold, name ) elif isinstance(aThreshold, int): # node id aCriterion.Threshold = aThreshold elif isinstance(aThreshold, list): # 3 point coordinates if len( aThreshold ) < 3: raise ValueError("too few point coordinates, must be 3") aCriterion.ThresholdStr = " ".join( [str(c) for c in aThreshold[:3]] ) elif isinstance(aThreshold, str): if aThreshold.isdigit(): aCriterion.Threshold = aThreshold # node id else: aCriterion.ThresholdStr = aThreshold # hope that it's point coordinates else: raise TypeError("The Threshold should either a VERTEX, or a node ID, "\ "or a list of point coordinates and not '%s'"%aThreshold) elif CritType == FT_ElemGeomType: # Check the Threshold try: aCriterion.Threshold = self.EnumToLong(aThreshold) assert( aThreshold in SMESH.GeometryType._items ) except: if isinstance(aThreshold, int): aCriterion.Threshold = aThreshold else: raise TypeError("The Threshold should be an integer or SMESH.GeometryType.") pass pass elif CritType == FT_EntityType: # Check the Threshold try: aCriterion.Threshold = self.EnumToLong(aThreshold) assert( aThreshold in SMESH.EntityType._items ) except: if isinstance(aThreshold, int): aCriterion.Threshold = aThreshold else: raise TypeError("The Threshold should be an integer or SMESH.EntityType.") pass pass elif CritType == FT_GroupColor: # Check the Threshold try: aCriterion.ThresholdStr = self.ColorToString(aThreshold) except: raise TypeError("The threshold value should be of SALOMEDS.Color type") pass elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_FreeNodes, FT_FreeFaces, FT_LinearOrQuadratic, FT_BadOrientedVolume, FT_BareBorderFace, FT_BareBorderVolume, FT_OverConstrainedFace, FT_OverConstrainedVolume, FT_EqualNodes,FT_EqualEdges,FT_EqualFaces,FT_EqualVolumes ]: # At this point the Threshold is unnecessary if aThreshold == FT_LogicalNOT: aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT) elif aThreshold in [FT_LogicalAND, FT_LogicalOR]: aCriterion.BinaryOp = aThreshold else: # Check Threshold try: aThreshold = float(aThreshold) aCriterion.Threshold = aThreshold except: raise TypeError("The Threshold should be a number.") return None if Threshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT: aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT) if Threshold in [FT_LogicalAND, FT_LogicalOR]: aCriterion.BinaryOp = self.EnumToLong(Threshold) if UnaryOp in [FT_LogicalAND, FT_LogicalOR]: aCriterion.BinaryOp = self.EnumToLong(UnaryOp) if BinaryOp in [FT_LogicalAND, FT_LogicalOR]: aCriterion.BinaryOp = self.EnumToLong(BinaryOp) return aCriterion def GetFilter(self,elementType, CritType=FT_Undefined, Compare=FT_EqualTo, Threshold="", UnaryOp=FT_Undefined, Tolerance=1e-07, mesh=None): """ Create a filter with the given parameters Parameters: elementType: the :class:`type of elements ` (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME) CritType: the :class:`type of criterion ` (SMESH.FT_Taper, SMESH.FT_Area, etc.). Note that the items starting from FT_LessThan are not suitable for CritType. Compare: belongs to {SMESH.FT_LessThan, SMESH.FT_MoreThan, SMESH.FT_EqualTo} Threshold: the threshold value (range of ids as string, shape, numeric) UnaryOp: SMESH.FT_LogicalNOT or SMESH.FT_Undefined Tolerance: the tolerance used by SMESH.FT_BelongToGeom, SMESH.FT_BelongToSurface, SMESH.FT_LyingOnGeom, SMESH.FT_CoplanarFaces and SMESH.FT_EqualNodes criteria mesh: the mesh to initialize the filter with Returns: :class:`SMESH.Filter` Examples: See :doc:`Filters usage examples ` """ aCriterion = self.GetCriterion(elementType, CritType, Compare, Threshold, UnaryOp, FT_Undefined,Tolerance) aFilterMgr = self.CreateFilterManager() aFilter = aFilterMgr.CreateFilter() aCriteria = [] aCriteria.append(aCriterion) aFilter.SetCriteria(aCriteria) if mesh: if isinstance( mesh, Mesh ): aFilter.SetMesh( mesh.GetMesh() ) else : aFilter.SetMesh( mesh ) aFilterMgr.UnRegister() return aFilter def GetFilterFromCriteria(self,criteria, binOp=SMESH.FT_LogicalAND): """ Create a filter from criteria Parameters: criteria: a list of :class:`SMESH.Filter.Criterion` binOp: binary operator used when binary operator of criteria is undefined Returns: :class:`SMESH.Filter` Examples: See :doc:`Filters usage examples ` """ for i in range( len( criteria ) - 1 ): if criteria[i].BinaryOp == self.EnumToLong( SMESH.FT_Undefined ): criteria[i].BinaryOp = self.EnumToLong( binOp ) aFilterMgr = self.CreateFilterManager() aFilter = aFilterMgr.CreateFilter() aFilter.SetCriteria(criteria) aFilterMgr.UnRegister() return aFilter def GetFunctor(self,theCriterion): """ Create a numerical functor by its type Parameters: theCriterion (SMESH.FunctorType): functor type. Note that not all items correspond to numerical functors. Returns: :class:`SMESH.NumericalFunctor` """ if isinstance( theCriterion, SMESH._objref_NumericalFunctor ): return theCriterion aFilterMgr = self.CreateFilterManager() functor = None if theCriterion == FT_AspectRatio: functor = aFilterMgr.CreateAspectRatio() elif theCriterion == FT_AspectRatio3D: functor = aFilterMgr.CreateAspectRatio3D() elif theCriterion == FT_Warping: functor = aFilterMgr.CreateWarping() elif theCriterion == FT_MinimumAngle: functor = aFilterMgr.CreateMinimumAngle() elif theCriterion == FT_Taper: functor = aFilterMgr.CreateTaper() elif theCriterion == FT_Skew: functor = aFilterMgr.CreateSkew() elif theCriterion == FT_Area: functor = aFilterMgr.CreateArea() elif theCriterion == FT_Volume3D: functor = aFilterMgr.CreateVolume3D() elif theCriterion == FT_MaxElementLength2D: functor = aFilterMgr.CreateMaxElementLength2D() elif theCriterion == FT_MaxElementLength3D: functor = aFilterMgr.CreateMaxElementLength3D() elif theCriterion == FT_MultiConnection: functor = aFilterMgr.CreateMultiConnection() elif theCriterion == FT_MultiConnection2D: functor = aFilterMgr.CreateMultiConnection2D() elif theCriterion == FT_Length: functor = aFilterMgr.CreateLength() elif theCriterion == FT_Length2D: functor = aFilterMgr.CreateLength2D() elif theCriterion == FT_Deflection2D: functor = aFilterMgr.CreateDeflection2D() elif theCriterion == FT_NodeConnectivityNumber: functor = aFilterMgr.CreateNodeConnectivityNumber() elif theCriterion == FT_BallDiameter: functor = aFilterMgr.CreateBallDiameter() else: print("Error: given parameter is not numerical functor type.") aFilterMgr.UnRegister() return functor def CreateHypothesis(self, theHType, theLibName="libStdMeshersEngine.so"): """ Create hypothesis Parameters: theHType (string): mesh hypothesis type theLibName (string): mesh plug-in library name Returns: created hypothesis instance """ hyp = SMESH._objref_SMESH_Gen.CreateHypothesis(self, theHType, theLibName ) if isinstance( hyp, SMESH._objref_SMESH_Algo ): return hyp # wrap hypothesis methods for meth_name in dir( hyp.__class__ ): if not meth_name.startswith("Get") and \ not meth_name in dir ( SMESH._objref_SMESH_Hypothesis ): method = getattr ( hyp.__class__, meth_name ) if callable(method): setattr( hyp, meth_name, hypMethodWrapper( hyp, method )) return hyp def GetMeshInfo(self, obj): """ Get the mesh statistic. Use :meth:`smeshBuilder.EnumToLong` to get an integer from an item of :class:`SMESH.EntityType`. Returns: dictionary { :class:`SMESH.EntityType` - "count of elements" } """ if isinstance( obj, Mesh ): obj = obj.GetMesh() d = {} if hasattr(obj, "GetMeshInfo"): values = obj.GetMeshInfo() for i in range(SMESH.Entity_Last._v): if i < len(values): d[SMESH.EntityType._item(i)]=values[i] pass return d def MinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False): """ Get minimum distance between two objects * If *src2* is None, and *id2* = 0, distance from *src1* / *id1* to the origin is computed. * If *src2* is None, and *id2* != 0, it is assumed that both *id1* and *id2* belong to *src1*. Parameters: src1 (SMESH.SMESH_IDSource): first source object src2 (SMESH.SMESH_IDSource): second source object id1 (int): node/element id from the first source id2 (int): node/element id from the second (or first) source isElem1 (boolean): *True* if *id1* is element id, *False* if it is node id isElem2 (boolean): *True* if *id2* is element id, *False* if it is node id Returns: minimum distance value See also: :meth:`GetMinDistance` """ result = self.GetMinDistance(src1, src2, id1, id2, isElem1, isElem2) if result is None: result = 0.0 else: result = result.value return result def GetMinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False): """ Get :class:`SMESH.Measure` structure specifying minimum distance data between two objects * If *src2* is None, and *id2* = 0, distance from *src1* / *id1* to the origin is computed. * If *src2* is None, and *id2* != 0, it is assumed that both *id1* and *id2* belong to *src1*. Parameters: src1 (SMESH.SMESH_IDSource): first source object src2 (SMESH.SMESH_IDSource): second source object id1 (int): node/element id from the first source id2 (int): node/element id from the second (or first) source isElem1 (boolean): *True* if **id1** is element id, *False* if it is node id isElem2 (boolean): *True* if **id2** is element id, *False* if it is node id Returns: :class:`SMESH.Measure` structure or None if input data is invalid See also: :meth:`MinDistance` """ if isinstance(src1, Mesh): src1 = src1.mesh if isinstance(src2, Mesh): src2 = src2.mesh if src2 is None and id2 != 0: src2 = src1 if not hasattr(src1, "_narrow"): return None src1 = src1._narrow(SMESH.SMESH_IDSource) if not src1: return None unRegister = genObjUnRegister() if id1 != 0: m = src1.GetMesh() e = m.GetMeshEditor() if isElem1: src1 = e.MakeIDSource([id1], SMESH.FACE) else: src1 = e.MakeIDSource([id1], SMESH.NODE) unRegister.set( src1 ) pass if hasattr(src2, "_narrow"): src2 = src2._narrow(SMESH.SMESH_IDSource) if src2 and id2 != 0: m = src2.GetMesh() e = m.GetMeshEditor() if isElem2: src2 = e.MakeIDSource([id2], SMESH.FACE) else: src2 = e.MakeIDSource([id2], SMESH.NODE) unRegister.set( src2 ) pass pass aMeasurements = self.CreateMeasurements() unRegister.set( aMeasurements ) result = aMeasurements.MinDistance(src1, src2) return result def BoundingBox(self, objects): """ Get bounding box of the specified object(s) Parameters: objects (SMESH.SMESH_IDSource): single source object or list of source objects Returns: tuple of six values (minX, minY, minZ, maxX, maxY, maxZ) See also: :meth:`GetBoundingBox` """ result = self.GetBoundingBox(objects) if result is None: result = (0.0,)*6 else: result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ) return result def GetBoundingBox(self, objects): """ Get :class:`SMESH.Measure` structure specifying bounding box data of the specified object(s) Parameters: objects (SMESH.SMESH_IDSource): single source object or list of source objects Returns: :class:`SMESH.Measure` structure See also: :meth:`BoundingBox` """ if isinstance(objects, tuple): objects = list(objects) if not isinstance(objects, list): objects = [objects] srclist = [] for o in objects: if isinstance(o, Mesh): srclist.append(o.mesh) elif hasattr(o, "_narrow"): src = o._narrow(SMESH.SMESH_IDSource) if src: srclist.append(src) pass pass aMeasurements = self.CreateMeasurements() result = aMeasurements.BoundingBox(srclist) aMeasurements.UnRegister() return result def GetLength(self, obj): """ Get sum of lengths of all 1D elements in the mesh object. Parameters: obj: :class:`mesh, sub-mesh, group or filter ` Returns: sum of lengths of all 1D elements """ if isinstance(obj, Mesh): obj = obj.mesh if isinstance(obj, Mesh_Algorithm): obj = obj.GetSubMesh() aMeasurements = self.CreateMeasurements() value = aMeasurements.Length(obj) aMeasurements.UnRegister() return value def GetArea(self, obj): """ Get sum of areas of all 2D elements in the mesh object. Parameters: obj: :class:`mesh, sub-mesh, group or filter ` Returns: sum of areas of all 2D elements """ if isinstance(obj, Mesh): obj = obj.mesh if isinstance(obj, Mesh_Algorithm): obj = obj.GetSubMesh() aMeasurements = self.CreateMeasurements() value = aMeasurements.Area(obj) aMeasurements.UnRegister() return value def GetVolume(self, obj): """ Get sum of volumes of all 3D elements in the mesh object. Parameters: obj: :class:`mesh, sub-mesh, group or filter ` Returns: sum of volumes of all 3D elements """ if isinstance(obj, Mesh): obj = obj.mesh if isinstance(obj, Mesh_Algorithm): obj = obj.GetSubMesh() aMeasurements = self.CreateMeasurements() value = aMeasurements.Volume(obj) aMeasurements.UnRegister() return value def GetGravityCenter(self, obj): """ Get gravity center of all nodes of the mesh object. Parameters: obj: :class:`mesh, sub-mesh, group or filter ` Returns: Three components of the gravity center (x,y,z) """ if isinstance(obj, Mesh): obj = obj.mesh if isinstance(obj, Mesh_Algorithm): obj = obj.GetSubMesh() aMeasurements = self.CreateMeasurements() pointStruct = aMeasurements.GravityCenter(obj) aMeasurements.UnRegister() return pointStruct.x, pointStruct.y, pointStruct.z pass # end of class smeshBuilder import omniORB omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshBuilder) """Registering the new proxy for SMESH.SMESH_Gen""" def New( instance=None, instanceGeom=None): """ Create a new smeshBuilder instance. The smeshBuilder class provides the Python interface to create or load meshes. Typical use is:: import salome salome.salome_init() from salome.smesh import smeshBuilder smesh = smeshBuilder.New() Parameters: study: SALOME study, generally obtained by salome.myStudy. instance: CORBA proxy of SMESH Engine. If None, the default Engine is used. instanceGeom: CORBA proxy of GEOM Engine. If None, the default Engine is used. Returns: :class:`smeshBuilder` instance """ global engine global smeshInst global doLcc engine = instance if engine is None: doLcc = True smeshInst = smeshBuilder() assert isinstance(smeshInst,smeshBuilder), "Smesh engine class is %s but should be smeshBuilder.smeshBuilder. Import salome.smesh.smeshBuilder before creating the instance."%smeshInst.__class__ smeshInst.init_smesh(instanceGeom) return smeshInst # Public class: Mesh # ================== class Mesh(metaclass = MeshMeta): """ This class allows defining and managing a mesh. It has a set of methods to build a mesh on the given geometry, including the definition of sub-meshes. It also has methods to define groups of mesh elements, to modify a mesh (by addition of new nodes and elements and by changing the existing entities), to get information about a mesh and to export a mesh in different formats. """ geom = 0 mesh = 0 editor = 0 def __init__(self, smeshpyD, geompyD, obj=0, name=0): """ Constructor Create a mesh on the shape *obj* (or an empty mesh if *obj* is equal to 0) and sets the GUI name of this mesh to *name*. Parameters: smeshpyD: an instance of smeshBuilder class geompyD: an instance of geomBuilder class obj: Shape to be meshed or :class:`SMESH.SMESH_Mesh` object name: Study name of the mesh """ self.smeshpyD = smeshpyD self.geompyD = geompyD if obj is None: obj = 0 objHasName = False if obj != 0: if isinstance(obj, geomBuilder.GEOM._objref_GEOM_Object): self.geom = obj objHasName = True # publish geom of mesh (issue 0021122) if not self.geom.GetStudyEntry(): objHasName = False geompyD.init_geom() if name: geo_name = name + " shape" else: geo_name = "%s_%s to mesh"%(self.geom.GetShapeType(), id(self.geom)%100) geompyD.addToStudy( self.geom, geo_name ) self.SetMesh( self.smeshpyD.CreateMesh(self.geom) ) elif isinstance(obj, SMESH._objref_SMESH_Mesh): self.SetMesh(obj) else: self.SetMesh( self.smeshpyD.CreateEmptyMesh() ) if name: self.smeshpyD.SetName(self.mesh, name) elif objHasName: self.smeshpyD.SetName(self.mesh, GetName(obj)) # + " mesh" if not self.geom: self.geom = self.mesh.GetShapeToMesh() self.editor = self.mesh.GetMeshEditor() self.functors = [None] * SMESH.FT_Undefined._v # set self to algoCreator's for attrName in dir(self): attr = getattr( self, attrName ) if isinstance( attr, algoCreator ): setattr( self, attrName, attr.copy( self )) pass pass pass def __del__(self): """ Destructor. Clean-up resources """ if self.mesh: #self.mesh.UnRegister() pass pass def SetMesh(self, theMesh): """ Initialize the Mesh object from an instance of :class:`SMESH.SMESH_Mesh` interface Parameters: theMesh: a :class:`SMESH.SMESH_Mesh` object """ # do not call Register() as this prevents mesh servant deletion at closing study #if self.mesh: self.mesh.UnRegister() self.mesh = theMesh if self.mesh: #self.mesh.Register() self.geom = self.mesh.GetShapeToMesh() pass def GetMesh(self): """ Return the mesh, that is an encapsulated instance of :class:`SMESH.SMESH_Mesh` interface Returns: a :class:`SMESH.SMESH_Mesh` object """ return self.mesh def GetName(self): """ Get the name of the mesh Returns: the name of the mesh as a string """ name = GetName(self.GetMesh()) return name def SetName(self, name): """ Set a name to the mesh Parameters: name: a new name of the mesh """ self.smeshpyD.SetName(self.GetMesh(), name) def GetSubMesh(self, geom, name): """ Get a sub-mesh object associated to a *geom* geometrical object. Parameters: geom: a geometrical object (shape) name: a name for the sub-mesh in the Object Browser Returns: an object of type :class:`SMESH.SMESH_subMesh`, representing a part of mesh, which lies on the given shape Note: A sub-mesh is implicitly created when a sub-shape is specified at creating an algorithm, for example:: algo1D = mesh.Segment(geom=Edge_1) creates a sub-mesh on *Edge_1* and assign Wire Discretization algorithm to it. The created sub-mesh can be retrieved from the algorithm:: submesh = algo1D.GetSubMesh() """ AssureGeomPublished( self, geom, name ) submesh = self.mesh.GetSubMesh( geom, name ) return submesh def GetShape(self): """ Return the shape associated to the mesh Returns: a GEOM_Object """ return self.geom def SetShape(self, geom): """ Associate the given shape to the mesh (entails the recreation of the mesh) Parameters: geom: the shape to be meshed (GEOM_Object) """ self.mesh = self.smeshpyD.CreateMesh(geom) def Load(self): """ Load mesh from the study after opening the study """ self.mesh.Load() def IsReadyToCompute(self, theSubObject): """ Return true if the hypotheses are defined well Parameters: theSubObject: a sub-shape of a mesh shape Returns: True or False """ return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject) def GetAlgoState(self, theSubObject): """ Return errors of hypotheses definition. The list of errors is empty if everything is OK. Parameters: theSubObject: a sub-shape of a mesh shape Returns: a list of errors """ return self.smeshpyD.GetAlgoState(self.mesh, theSubObject) def GetGeometryByMeshElement(self, theElementID, theGeomName): """ Return a geometrical object on which the given element was built. The returned geometrical object, if not nil, is either found in the study or published by this method with the given name Parameters: theElementID: the id of the mesh element theGeomName: the user-defined name of the geometrical object Returns: GEOM.GEOM_Object instance """ return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName ) def MeshDimension(self): """ Return the mesh dimension depending on the dimension of the underlying shape or, if the mesh is not based on any shape, basing on deimension of elements Returns: mesh dimension as an integer value [0,3] """ if self.mesh.HasShapeToMesh(): shells = self.geompyD.SubShapeAllIDs( self.geom, self.geompyD.ShapeType["SOLID"] ) if len( shells ) > 0 : return 3 elif self.geompyD.NumberOfFaces( self.geom ) > 0 : return 2 elif self.geompyD.NumberOfEdges( self.geom ) > 0 : return 1 else: return 0; else: if self.NbVolumes() > 0: return 3 if self.NbFaces() > 0: return 2 if self.NbEdges() > 0: return 1 return 0 def Evaluate(self, geom=0): """ Evaluate size of prospective mesh on a shape Returns: a list where i-th element is a number of elements of i-th :class:`SMESH.EntityType`. To know predicted number of e.g. edges, inquire it this way:: Evaluate()[ smesh.EnumToLong( SMESH.Entity_Edge )] """ if geom == 0 or not isinstance(geom, geomBuilder.GEOM._objref_GEOM_Object): if self.geom == 0: geom = self.mesh.GetShapeToMesh() else: geom = self.geom return self.smeshpyD.Evaluate(self.mesh, geom) def Compute(self, geom=0, discardModifs=False, refresh=False): """ Compute the mesh and return the status of the computation Parameters: geom: geomtrical shape on which mesh data should be computed discardModifs: if True and the mesh has been edited since a last total re-compute and that may prevent successful partial re-compute, then the mesh is cleaned before Compute() refresh: if *True*, Object Browser is automatically updated (when running in GUI) Returns: True or False """ if geom == 0 or not isinstance(geom, geomBuilder.GEOM._objref_GEOM_Object): if self.geom == 0: geom = self.mesh.GetShapeToMesh() else: geom = self.geom ok = False try: if discardModifs and self.mesh.HasModificationsToDiscard(): # issue 0020693 self.mesh.Clear() ok = self.smeshpyD.Compute(self.mesh, geom) except SALOME.SALOME_Exception as ex: print("Mesh computation failed, exception caught:") print(" ", ex.details.text) except: import traceback print("Mesh computation failed, exception caught:") traceback.print_exc() if True:#not ok: allReasons = "" # Treat compute errors computeErrors = self.smeshpyD.GetComputeErrors( self.mesh, geom ) shapeText = "" for err in computeErrors: if self.mesh.HasShapeToMesh(): shapeText = " on %s" % self.GetSubShapeName( err.subShapeID ) errText = "" stdErrors = ["OK", #COMPERR_OK "Invalid input mesh", #COMPERR_BAD_INPUT_MESH "std::exception", #COMPERR_STD_EXCEPTION "OCC exception", #COMPERR_OCC_EXCEPTION "..", #COMPERR_SLM_EXCEPTION "Unknown exception", #COMPERR_EXCEPTION "Memory allocation problem", #COMPERR_MEMORY_PB "Algorithm failed", #COMPERR_ALGO_FAILED "Unexpected geometry", #COMPERR_BAD_SHAPE "Warning", #COMPERR_WARNING "Computation cancelled",#COMPERR_CANCELED "No mesh on sub-shape"] #COMPERR_NO_MESH_ON_SHAPE if err.code > 0: if err.code < len(stdErrors): errText = stdErrors[err.code] else: errText = "code %s" % -err.code if errText: errText += ". " errText += err.comment if allReasons: allReasons += "\n" if ok: allReasons += '- "%s"%s - %s' %(err.algoName, shapeText, errText) else: allReasons += '- "%s" failed%s. Error: %s' %(err.algoName, shapeText, errText) pass # Treat hyp errors errors = self.smeshpyD.GetAlgoState( self.mesh, geom ) for err in errors: if err.isGlobalAlgo: glob = "global" else: glob = "local" pass dim = err.algoDim name = err.algoName if len(name) == 0: reason = '%s %sD algorithm is missing' % (glob, dim) elif err.state == HYP_MISSING: reason = ('%s %sD algorithm "%s" misses %sD hypothesis' % (glob, dim, name, dim)) elif err.state == HYP_NOTCONFORM: reason = 'Global "Not Conform mesh allowed" hypothesis is missing' elif err.state == HYP_BAD_PARAMETER: reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value' % ( glob, dim, name )) elif err.state == HYP_BAD_GEOMETRY: reason = ('%s %sD algorithm "%s" is assigned to mismatching' 'geometry' % ( glob, dim, name )) elif err.state == HYP_HIDDEN_ALGO: reason = ('%s %sD algorithm "%s" is ignored due to presence of a %s ' 'algorithm of upper dimension generating %sD mesh' % ( glob, dim, name, glob, dim )) else: reason = ("For unknown reason. " "Developer, revise Mesh.Compute() implementation in smeshBuilder.py!") pass if allReasons: allReasons += "\n" allReasons += "- " + reason pass if not ok or allReasons != "": msg = '"' + GetName(self.mesh) + '"' if ok: msg += " has been computed with warnings" else: msg += " has not been computed" if allReasons != "": msg += ":" else: msg += "." print(msg) print(allReasons) pass if salome.sg.hasDesktop(): if not isinstance( refresh, list): # not a call from subMesh.Compute() smeshgui = salome.ImportComponentGUI("SMESH") smeshgui.Init() smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) ) if refresh: salome.sg.updateObjBrowser() return ok def GetComputeErrors(self, shape=0 ): """ Return a list of error messages (:class:`SMESH.ComputeError`) of the last :meth:`Compute` """ if shape == 0: shape = self.mesh.GetShapeToMesh() return self.smeshpyD.GetComputeErrors( self.mesh, shape ) def GetSubShapeName(self, subShapeID ): """ Return a name of a sub-shape by its ID. Possible variants (for *subShapeID* == 3): - **"Face_12"** - published sub-shape - **FACE #3** - not published sub-shape - **sub-shape #3** - invalid sub-shape ID - **#3** - error in this function Parameters: subShapeID: a unique ID of a sub-shape Returns: a string describing the sub-shape """ if not self.mesh.HasShapeToMesh(): return "" try: shapeText = "" mainIOR = salome.orb.object_to_string( self.GetShape() ) s = salome.myStudy mainSO = s.FindObjectIOR(mainIOR) if mainSO: if subShapeID == 1: shapeText = '"%s"' % mainSO.GetName() subIt = s.NewChildIterator(mainSO) while subIt.More(): subSO = subIt.Value() subIt.Next() obj = subSO.GetObject() if not obj: continue go = obj._narrow( geomBuilder.GEOM._objref_GEOM_Object ) if not go: continue try: ids = self.geompyD.GetSubShapeID( self.GetShape(), go ) except: continue if ids == subShapeID: shapeText = '"%s"' % subSO.GetName() break if not shapeText: shape = self.geompyD.GetSubShape( self.GetShape(), [subShapeID]) if shape: shapeText = '%s #%s' % (shape.GetShapeType(), subShapeID) else: shapeText = 'sub-shape #%s' % (subShapeID) except: shapeText = "#%s" % (subShapeID) return shapeText def GetFailedShapes(self, publish=False): """ Return a list of sub-shapes meshing of which failed, grouped into GEOM groups by error of an algorithm Parameters: publish: if *True*, the returned groups will be published in the study Returns: a list of GEOM groups each named after a failed algorithm """ algo2shapes = {} computeErrors = self.smeshpyD.GetComputeErrors( self.mesh, self.GetShape() ) for err in computeErrors: shape = self.geompyD.GetSubShape( self.GetShape(), [err.subShapeID]) if not shape: continue if err.algoName in algo2shapes: algo2shapes[ err.algoName ].append( shape ) else: algo2shapes[ err.algoName ] = [ shape ] pass groups = [] for algoName, shapes in list(algo2shapes.items()): while shapes: groupType = self.smeshpyD.EnumToLong( shapes[0].GetShapeType() ) otherTypeShapes = [] sameTypeShapes = [] group = self.geompyD.CreateGroup( self.geom, groupType ) for shape in shapes: if shape.GetShapeType() == shapes[0].GetShapeType(): sameTypeShapes.append( shape ) else: otherTypeShapes.append( shape ) self.geompyD.UnionList( group, sameTypeShapes ) if otherTypeShapes: group.SetName( "%s %s" % ( algoName, shapes[0].GetShapeType() )) else: group.SetName( algoName ) groups.append( group ) shapes = otherTypeShapes pass if publish: for group in groups: self.geompyD.addToStudyInFather( self.geom, group, group.GetName() ) return groups def GetMeshOrder(self): """ Return sub-mesh objects list in meshing order Returns: list of lists of :class:`sub-meshes ` """ return self.mesh.GetMeshOrder() def SetMeshOrder(self, submeshes): """ Set order in which concurrent sub-meshes should be meshed Parameters: submeshes: list of lists of :class:`sub-meshes ` """ return self.mesh.SetMeshOrder(submeshes) def Clear(self, refresh=False): """ Remove all nodes and elements generated on geometry. Imported elements remain. Parameters: refresh: if *True*, Object browser is automatically updated (when running in GUI) """ self.mesh.Clear() if ( salome.sg.hasDesktop() ): smeshgui = salome.ImportComponentGUI("SMESH") smeshgui.Init() smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True ) if refresh: salome.sg.updateObjBrowser() def ClearSubMesh(self, geomId, refresh=False): """ Remove all nodes and elements of indicated shape Parameters: geomId: the ID of a sub-shape to remove elements on refresh: if *True*, Object browser is automatically updated (when running in GUI) """ self.mesh.ClearSubMesh(geomId) if salome.sg.hasDesktop(): smeshgui = salome.ImportComponentGUI("SMESH") smeshgui.Init() smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True ) if refresh: salome.sg.updateObjBrowser() def AutomaticTetrahedralization(self, fineness=0): """ Compute a tetrahedral mesh using AutomaticLength + MEFISTO + Tetrahedron Parameters: fineness: [0.0,1.0] defines mesh fineness Returns: True or False """ dim = self.MeshDimension() # assign hypotheses self.RemoveGlobalHypotheses() self.Segment().AutomaticLength(fineness) if dim > 1 : self.Triangle().LengthFromEdges() pass if dim > 2 : self.Tetrahedron() pass return self.Compute() def AutomaticHexahedralization(self, fineness=0): """ Compute an hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron Parameters: fineness: [0.0, 1.0] defines mesh fineness Returns: True or False """ dim = self.MeshDimension() # assign the hypotheses self.RemoveGlobalHypotheses() self.Segment().AutomaticLength(fineness) if dim > 1 : self.Quadrangle() pass if dim > 2 : self.Hexahedron() pass return self.Compute() def AddHypothesis(self, hyp, geom=0): """ Assign a hypothesis Parameters: hyp: a hypothesis to assign geom: a subhape of mesh geometry Returns: :class:`SMESH.Hypothesis_Status` """ if isinstance( hyp, geomBuilder.GEOM._objref_GEOM_Object ): hyp, geom = geom, hyp if isinstance( hyp, Mesh_Algorithm ): hyp = hyp.GetAlgorithm() pass if not geom: geom = self.geom if not geom: geom = self.mesh.GetShapeToMesh() pass isApplicable = True if self.mesh.HasShapeToMesh(): hyp_type = hyp.GetName() lib_name = hyp.GetLibName() # checkAll = ( not geom.IsSame( self.mesh.GetShapeToMesh() )) # if checkAll and geom: # checkAll = geom.GetType() == 37 checkAll = False isApplicable = self.smeshpyD.IsApplicable(hyp_type, lib_name, geom, checkAll) if isApplicable: AssureGeomPublished( self, geom, "shape for %s" % hyp.GetName()) status = self.mesh.AddHypothesis(geom, hyp) else: status = HYP_BAD_GEOMETRY, "" hyp_name = GetName( hyp ) geom_name = "" if geom: geom_name = geom.GetName() isAlgo = hyp._narrow( SMESH_Algo ) TreatHypoStatus( status, hyp_name, geom_name, isAlgo, self ) return status def IsUsedHypothesis(self, hyp, geom): """ Return True if an algorithm or hypothesis is assigned to a given shape Parameters: hyp: an algorithm or hypothesis to check geom: a subhape of mesh geometry Returns: True of False """ if not hyp: # or not geom return False if isinstance( hyp, Mesh_Algorithm ): hyp = hyp.GetAlgorithm() pass hyps = self.GetHypothesisList(geom) for h in hyps: if h.GetId() == hyp.GetId(): return True return False def RemoveHypothesis(self, hyp, geom=0): """ Unassign a hypothesis Parameters: hyp (SMESH.SMESH_Hypothesis): a hypothesis to unassign geom (GEOM.GEOM_Object): a sub-shape of mesh geometry Returns: :class:`SMESH.Hypothesis_Status` """ if not hyp: return None if isinstance( hyp, Mesh_Algorithm ): hyp = hyp.GetAlgorithm() pass shape = geom if not shape: shape = self.geom pass if self.IsUsedHypothesis( hyp, shape ): return self.mesh.RemoveHypothesis( shape, hyp ) hypName = GetName( hyp ) geoName = GetName( shape ) print("WARNING: RemoveHypothesis() failed as '%s' is not assigned to '%s' shape" % ( hypName, geoName )) return None def GetHypothesisList(self, geom): """ Get the list of hypotheses added on a geometry Parameters: geom (GEOM.GEOM_Object): a sub-shape of mesh geometry Returns: the sequence of :class:`SMESH.SMESH_Hypothesis` """ return self.mesh.GetHypothesisList( geom ) def RemoveGlobalHypotheses(self): """ Remove all global hypotheses """ current_hyps = self.mesh.GetHypothesisList( self.geom ) for hyp in current_hyps: self.mesh.RemoveHypothesis( self.geom, hyp ) pass pass def ExportMED(self, *args, **kwargs): """ Export the mesh in a file in MED format allowing to overwrite the file if it exists or add the exported data to its contents Parameters: fileName: is the file name auto_groups (boolean): parameter for creating/not creating the groups Group_On_All_Nodes, Group_On_All_Faces, ... ; the typical use is auto_groups=False. overwrite (boolean): parameter for overwriting/not overwriting the file meshPart: a part of mesh (:class:`sub-mesh, group or filter `) to export instead of the mesh autoDimension: if *True* (default), a space dimension of a MED mesh can be either - 1D if all mesh nodes lie on OX coordinate axis, or - 2D if all mesh nodes lie on XOY coordinate plane, or - 3D in the rest cases. If *autoDimension* is *False*, the space dimension is always 3. fields: list of GEOM fields defined on the shape to mesh. geomAssocFields: each character of this string means a need to export a corresponding field; correspondence between fields and characters is following: - 'v' stands for "_vertices _" field; - 'e' stands for "_edges _" field; - 'f' stands for "_faces _" field; - 's' stands for "_solids _" field. """ # process positional arguments args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]] # backward compatibility fileName = args[0] auto_groups = args[1] if len(args) > 1 else False overwrite = args[2] if len(args) > 2 else True meshPart = args[3] if len(args) > 3 else None autoDimension = args[4] if len(args) > 4 else True fields = args[5] if len(args) > 5 else [] geomAssocFields = args[6] if len(args) > 6 else '' # process keywords arguments auto_groups = kwargs.get("auto_groups", auto_groups) overwrite = kwargs.get("overwrite", overwrite) meshPart = kwargs.get("meshPart", meshPart) autoDimension = kwargs.get("autoDimension", autoDimension) fields = kwargs.get("fields", fields) geomAssocFields = kwargs.get("geomAssocFields", geomAssocFields) # invoke engine's function if meshPart or fields or geomAssocFields: unRegister = genObjUnRegister() if isinstance( meshPart, list ): meshPart = self.GetIDSource( meshPart, SMESH.ALL ) unRegister.set( meshPart ) self.mesh.ExportPartToMED( meshPart, fileName, auto_groups, overwrite, autoDimension, fields, geomAssocFields) else: self.mesh.ExportMED(fileName, auto_groups, overwrite, autoDimension) def ExportSAUV(self, f, auto_groups=0): """ Export the mesh in a file in SAUV format Parameters: f: is the file name auto_groups: boolean parameter for creating/not creating the groups Group_On_All_Nodes, Group_On_All_Faces, ... ; the typical use is auto_groups=False. """ self.mesh.ExportSAUV(f, auto_groups) def ExportDAT(self, f, meshPart=None): """ Export the mesh in a file in DAT format Parameters: f: the file name meshPart: a part of mesh (:class:`sub-mesh, group or filter `) to export instead of the mesh """ if meshPart: unRegister = genObjUnRegister() if isinstance( meshPart, list ): meshPart = self.GetIDSource( meshPart, SMESH.ALL ) unRegister.set( meshPart ) self.mesh.ExportPartToDAT( meshPart, f ) else: self.mesh.ExportDAT(f) def ExportUNV(self, f, meshPart=None): """ Export the mesh in a file in UNV format Parameters: f: the file name meshPart: a part of mesh (:class:`sub-mesh, group or filter `) to export instead of the mesh """ if meshPart: unRegister = genObjUnRegister() if isinstance( meshPart, list ): meshPart = self.GetIDSource( meshPart, SMESH.ALL ) unRegister.set( meshPart ) self.mesh.ExportPartToUNV( meshPart, f ) else: self.mesh.ExportUNV(f) def ExportSTL(self, f, ascii=1, meshPart=None): """ Export the mesh in a file in STL format Parameters: f: the file name ascii: defines the file encoding meshPart: a part of mesh (:class:`sub-mesh, group or filter `) to export instead of the mesh """ if meshPart: unRegister = genObjUnRegister() if isinstance( meshPart, list ): meshPart = self.GetIDSource( meshPart, SMESH.ALL ) unRegister.set( meshPart ) self.mesh.ExportPartToSTL( meshPart, f, ascii ) else: self.mesh.ExportSTL(f, ascii) def ExportCGNS(self, f, overwrite=1, meshPart=None, groupElemsByType=False): """ Export the mesh in a file in CGNS format Parameters: f: is the file name overwrite: boolean parameter for overwriting/not overwriting the file meshPart: a part of mesh (:class:`sub-mesh, group or filter `) to export instead of the mesh groupElemsByType: if True all elements of same entity type are exported at ones, else elements are exported in order of their IDs which can cause creation of multiple cgns sections """ unRegister = genObjUnRegister() if isinstance( meshPart, list ): meshPart = self.GetIDSource( meshPart, SMESH.ALL ) unRegister.set( meshPart ) if isinstance( meshPart, Mesh ): meshPart = meshPart.mesh elif not meshPart: meshPart = self.mesh self.mesh.ExportCGNS(meshPart, f, overwrite, groupElemsByType) def ExportGMF(self, f, meshPart=None): """ Export the mesh in a file in GMF format. GMF files must have .mesh extension for the ASCII format and .meshb for the bynary format. Other extensions are not allowed. Parameters: f: is the file name meshPart: a part of mesh (:class:`sub-mesh, group or filter `) to export instead of the mesh """ unRegister = genObjUnRegister() if isinstance( meshPart, list ): meshPart = self.GetIDSource( meshPart, SMESH.ALL ) unRegister.set( meshPart ) if isinstance( meshPart, Mesh ): meshPart = meshPart.mesh elif not meshPart: meshPart = self.mesh self.mesh.ExportGMF(meshPart, f, True) def ExportToMED(self, *args, **kwargs): """ Deprecated, used only for compatibility! Please, use :meth:`ExportMED` method instead. Export the mesh in a file in MED format allowing to overwrite the file if it exists or add the exported data to its contents Parameters: fileName: the file name opt (boolean): parameter for creating/not creating the groups Group_On_All_Nodes, Group_On_All_Faces, ... overwrite: boolean parameter for overwriting/not overwriting the file autoDimension: if *True* (default), a space dimension of a MED mesh can be either - 1D if all mesh nodes lie on OX coordinate axis, or - 2D if all mesh nodes lie on XOY coordinate plane, or - 3D in the rest cases. If **autoDimension** is *False*, the space dimension is always 3. """ print("WARNING: ExportToMED() is deprecated, use ExportMED() instead") # process positional arguments args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]] # backward compatibility fileName = args[0] auto_groups = args[1] if len(args) > 1 else False overwrite = args[2] if len(args) > 2 else True autoDimension = args[3] if len(args) > 3 else True # process keywords arguments auto_groups = kwargs.get("opt", auto_groups) # old keyword name auto_groups = kwargs.get("auto_groups", auto_groups) # new keyword name overwrite = kwargs.get("overwrite", overwrite) autoDimension = kwargs.get("autoDimension", autoDimension) # invoke engine's function self.mesh.ExportMED(fileName, auto_groups, overwrite, autoDimension) def ExportToMEDX(self, *args, **kwargs): """ Deprecated, used only for compatibility! Please, use ExportMED() method instead. Export the mesh in a file in MED format Parameters: fileName: the file name opt (boolean): parameter for creating/not creating the groups Group_On_All_Nodes, Group_On_All_Faces, ... overwrite: boolean parameter for overwriting/not overwriting the file autoDimension: if *True* (default), a space dimension of a MED mesh can be either - 1D if all mesh nodes lie on OX coordinate axis, or - 2D if all mesh nodes lie on XOY coordinate plane, or - 3D in the rest cases. If **autoDimension** is *False*, the space dimension is always 3. """ print("WARNING: ExportToMEDX() is deprecated, use ExportMED() instead") # process positional arguments args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]] # backward compatibility fileName = args[0] auto_groups = args[1] if len(args) > 1 else False overwrite = args[2] if len(args) > 2 else True autoDimension = args[3] if len(args) > 3 else True # process keywords arguments auto_groups = kwargs.get("auto_groups", auto_groups) overwrite = kwargs.get("overwrite", overwrite) autoDimension = kwargs.get("autoDimension", autoDimension) # invoke engine's function self.mesh.ExportMED(fileName, auto_groups, overwrite, autoDimension) # Operations with groups: # ---------------------- def CreateEmptyGroup(self, elementType, name): """ Create an empty mesh group Parameters: elementType: the :class:`type ` of elements in the group; either of (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME) name: the name of the mesh group Returns: :class:`SMESH.SMESH_Group` """ return self.mesh.CreateGroup(elementType, name) def Group(self, grp, name=""): """ Create a mesh group based on the geometric object *grp* and give it a *name*. If *name* is not defined the name of the geometric group is used Note: Works like :meth:`GroupOnGeom`. Parameters: grp: a geometric group, a vertex, an edge, a face or a solid name: the name of the mesh group Returns: :class:`SMESH.SMESH_GroupOnGeom` """ return self.GroupOnGeom(grp, name) def GroupOnGeom(self, grp, name="", typ=None): """ Create a mesh group based on the geometrical object *grp* and gives a *name*. if *name* is not defined the name of the geometric group is used Parameters: grp: a geometrical group, a vertex, an edge, a face or a solid name: the name of the mesh group typ: the type of elements in the group; either of (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME). If not set, it is automatically detected by the type of the geometry Returns: :class:`SMESH.SMESH_GroupOnGeom` """ AssureGeomPublished( self, grp, name ) if name == "": name = grp.GetName() if not typ: typ = self._groupTypeFromShape( grp ) return self.mesh.CreateGroupFromGEOM(typ, name, grp) def _groupTypeFromShape( self, shape ): """ Pivate method to get a type of group on geometry """ tgeo = str(shape.GetShapeType()) if tgeo == "VERTEX": typ = NODE elif tgeo == "EDGE": typ = EDGE elif tgeo == "FACE" or tgeo == "SHELL": typ = FACE elif tgeo == "SOLID" or tgeo == "COMPSOLID": typ = VOLUME elif tgeo == "COMPOUND": sub = self.geompyD.SubShapeAll( shape, self.geompyD.ShapeType["SHAPE"]) if not sub: raise ValueError("_groupTypeFromShape(): empty geometric group or compound '%s'" % GetName(shape)) return self._groupTypeFromShape( sub[0] ) else: raise ValueError("_groupTypeFromShape(): invalid geometry '%s'" % GetName(shape)) return typ def GroupOnFilter(self, typ, name, filter): """ Create a mesh group with given *name* based on the *filter* which is a special type of group dynamically updating it's contents during mesh modification Parameters: typ: the type of elements in the group; either of (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME). name: the name of the mesh group filter (SMESH.Filter): the filter defining group contents Returns: :class:`SMESH.SMESH_GroupOnFilter` """ return self.mesh.CreateGroupFromFilter(typ, name, filter) def MakeGroupByIds(self, groupName, elementType, elemIDs): """ Create a mesh group by the given ids of elements Parameters: groupName: the name of the mesh group elementType: the type of elements in the group; either of (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME). elemIDs: either the list of ids, :class:`mesh, sub-mesh, group or filter ` Returns: :class:`SMESH.SMESH_Group` """ group = self.mesh.CreateGroup(elementType, groupName) if isinstance( elemIDs, Mesh ): elemIDs = elemIDs.GetMesh() if hasattr( elemIDs, "GetIDs" ): if hasattr( elemIDs, "SetMesh" ): elemIDs.SetMesh( self.GetMesh() ) group.AddFrom( elemIDs ) else: group.Add(elemIDs) return group def MakeGroup(self, groupName, elementType, CritType=FT_Undefined, Compare=FT_EqualTo, Threshold="", UnaryOp=FT_Undefined, Tolerance=1e-07): """ Create a mesh group by the given conditions Parameters: groupName: the name of the mesh group elementType (SMESH.ElementType): the type of elements (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME) CritType (SMESH.FunctorType): the type of criterion (SMESH.FT_Taper, SMESH.FT_Area, etc.). Note that the items starting from FT_LessThan are not suitable for CritType. Compare (SMESH.FunctorType): belongs to {SMESH.FT_LessThan, SMESH.FT_MoreThan, SMESH.FT_EqualTo} Threshold: the threshold value (range of ids as string, shape, numeric, depending on *CritType*) UnaryOp (SMESH.FunctorType): SMESH.FT_LogicalNOT or SMESH.FT_Undefined Tolerance (float): the tolerance used by SMESH.FT_BelongToGeom, SMESH.FT_BelongToSurface, SMESH.FT_LyingOnGeom, SMESH.FT_CoplanarFaces criteria Returns: :class:`SMESH.SMESH_GroupOnFilter` """ aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Threshold, UnaryOp, FT_Undefined,Tolerance) group = self.MakeGroupByCriterion(groupName, aCriterion) return group def MakeGroupByCriterion(self, groupName, Criterion): """ Create a mesh group by the given criterion Parameters: groupName: the name of the mesh group Criterion: the instance of :class:`SMESH.Filter.Criterion` class Returns: :class:`SMESH.SMESH_GroupOnFilter` See Also: :meth:`smeshBuilder.GetCriterion` """ return self.MakeGroupByCriteria( groupName, [Criterion] ) def MakeGroupByCriteria(self, groupName, theCriteria, binOp=SMESH.FT_LogicalAND): """ Create a mesh group by the given criteria (list of :class:`SMESH.Filter.Criterion`) Parameters: groupName: the name of the mesh group theCriteria: the list of :class:`SMESH.Filter.Criterion` binOp: binary operator (SMESH.FT_LogicalAND or SMESH.FT_LogicalOR ) used when binary operator of criteria is undefined Returns: :class:`SMESH.SMESH_GroupOnFilter` See Also: :meth:`smeshBuilder.GetCriterion` """ aFilter = self.smeshpyD.GetFilterFromCriteria( theCriteria, binOp ) group = self.MakeGroupByFilter(groupName, aFilter) return group def MakeGroupByFilter(self, groupName, theFilter): """ Create a mesh group by the given filter Parameters: groupName (string): the name of the mesh group theFilter (SMESH.Filter): the filter Returns: :class:`SMESH.SMESH_GroupOnFilter` See Also: :meth:`smeshBuilder.GetFilter` """ #group = self.CreateEmptyGroup(theFilter.GetElementType(), groupName) #theFilter.SetMesh( self.mesh ) #group.AddFrom( theFilter ) group = self.GroupOnFilter( theFilter.GetElementType(), groupName, theFilter ) return group def RemoveGroup(self, group): """ Remove a group Parameters: group (SMESH.SMESH_GroupBase): group to remove """ self.mesh.RemoveGroup(group) def RemoveGroupWithContents(self, group): """ Remove a group with its contents Parameters: group (SMESH.SMESH_GroupBase): group to remove """ self.mesh.RemoveGroupWithContents(group) def GetGroups(self, elemType = SMESH.ALL): """ Get the list of groups existing in the mesh in the order of creation (starting from the oldest one) Parameters: elemType (SMESH.ElementType): type of elements the groups contain; by default groups of elements of all types are returned Returns: a sequence of :class:`SMESH.SMESH_GroupBase` """ groups = self.mesh.GetGroups() if elemType == SMESH.ALL: return groups typedGroups = [] for g in groups: if g.GetType() == elemType: typedGroups.append( g ) pass pass return typedGroups def NbGroups(self): """ Get the number of groups existing in the mesh Returns: the quantity of groups as an integer value """ return self.mesh.NbGroups() def GetGroupNames(self): """ Get the list of names of groups existing in the mesh Returns: list of strings """ groups = self.GetGroups() names = [] for group in groups: names.append(group.GetName()) return names def GetGroupByName(self, name, elemType = None): """ Find groups by name and type Parameters: name (string): name of the group of interest elemType (SMESH.ElementType): type of elements the groups contain; by default one group of any type is returned; if elemType == SMESH.ALL then all groups of any type are returned Returns: a list of :class:`SMESH.SMESH_GroupBase` """ groups = [] for group in self.GetGroups(): if group.GetName() == name: if elemType is None: return [group] if ( elemType == SMESH.ALL or group.GetType() == elemType ): groups.append( group ) return groups def UnionGroups(self, group1, group2, name): """ Produce a union of two groups. A new group is created. All mesh elements that are present in the initial groups are added to the new one Parameters: group1 (SMESH.SMESH_GroupBase): a group group2 (SMESH.SMESH_GroupBase): another group Returns: instance of :class:`SMESH.SMESH_Group` """ return self.mesh.UnionGroups(group1, group2, name) def UnionListOfGroups(self, groups, name): """ Produce a union list of groups. New group is created. All mesh elements that are present in initial groups are added to the new one Parameters: groups: list of :class:`SMESH.SMESH_GroupBase` Returns: instance of :class:`SMESH.SMESH_Group` """ return self.mesh.UnionListOfGroups(groups, name) def IntersectGroups(self, group1, group2, name): """ Prodice an intersection of two groups. A new group is created. All mesh elements that are common for the two initial groups are added to the new one. Parameters: group1 (SMESH.SMESH_GroupBase): a group group2 (SMESH.SMESH_GroupBase): another group Returns: instance of :class:`SMESH.SMESH_Group` """ return self.mesh.IntersectGroups(group1, group2, name) def IntersectListOfGroups(self, groups, name): """ Produce an intersection of groups. New group is created. All mesh elements that are present in all initial groups simultaneously are added to the new one Parameters: groups: a list of :class:`SMESH.SMESH_GroupBase` Returns: instance of :class:`SMESH.SMESH_Group` """ return self.mesh.IntersectListOfGroups(groups, name) def CutGroups(self, main_group, tool_group, name): """ Produce a cut of two groups. A new group is created. All mesh elements that are present in the main group but are not present in the tool group are added to the new one Parameters: main_group (SMESH.SMESH_GroupBase): a group to cut from tool_group (SMESH.SMESH_GroupBase): a group to cut by Returns: an instance of :class:`SMESH.SMESH_Group` """ return self.mesh.CutGroups(main_group, tool_group, name) def CutListOfGroups(self, main_groups, tool_groups, name): """ Produce a cut of groups. A new group is created. All mesh elements that are present in main groups but do not present in tool groups are added to the new one Parameters: main_group: groups to cut from (list of :class:`SMESH.SMESH_GroupBase`) tool_group: groups to cut by (list of :class:`SMESH.SMESH_GroupBase`) Returns: an instance of :class:`SMESH.SMESH_Group` """ return self.mesh.CutListOfGroups(main_groups, tool_groups, name) def CreateDimGroup(self, groups, elemType, name, nbCommonNodes = SMESH.ALL_NODES, underlyingOnly = True): """ Create a standalone group of entities basing on nodes of other groups. Parameters: groups: list of reference :class:`sub-meshes, groups or filters `, of any type. elemType: a type of elements to include to the new group; either of (SMESH.NODE, SMESH.EDGE, SMESH.FACE, SMESH.VOLUME). name: a name of the new group. nbCommonNodes: a criterion of inclusion of an element to the new group basing on number of element nodes common with reference *groups*. Meaning of possible values are: - SMESH.ALL_NODES - include if all nodes are common, - SMESH.MAIN - include if all corner nodes are common (meaningful for a quadratic mesh), - SMESH.AT_LEAST_ONE - include if one or more node is common, - SMEHS.MAJORITY - include if half of nodes or more are common. underlyingOnly: if *True* (default), an element is included to the new group provided that it is based on nodes of an element of *groups*; in this case the reference *groups* are supposed to be of higher dimension than *elemType*, which can be useful for example to get all faces lying on volumes of the reference *groups*. Returns: an instance of :class:`SMESH.SMESH_Group` """ if isinstance( groups, SMESH._objref_SMESH_IDSource ): groups = [groups] return self.mesh.CreateDimGroup(groups, elemType, name, nbCommonNodes, underlyingOnly) def ConvertToStandalone(self, group): """ Convert group on geom into standalone group """ return self.mesh.ConvertToStandalone(group) # Get some info about mesh: # ------------------------ def GetLog(self, clearAfterGet): """ Return the log of nodes and elements added or removed since the previous clear of the log. Parameters: clearAfterGet: log is emptied after Get (safe if concurrents access) Returns: list of SMESH.log_block structures { commandType, number, coords, indexes } """ return self.mesh.GetLog(clearAfterGet) def ClearLog(self): """ Clear the log of nodes and elements added or removed since the previous clear. Must be used immediately after :meth:`GetLog` if clearAfterGet is false. """ self.mesh.ClearLog() def SetAutoColor(self, theAutoColor): """ Toggle auto color mode on the object. If switched on, a default color of a new group in Create Group dialog is chosen randomly. Parameters: theAutoColor (boolean): the flag which toggles auto color mode. """ self.mesh.SetAutoColor(theAutoColor) def GetAutoColor(self): """ Get flag of object auto color mode. Returns: True or False """ return self.mesh.GetAutoColor() def GetId(self): """ Get the internal ID Returns: integer value, which is the internal Id of the mesh """ return self.mesh.GetId() def HasDuplicatedGroupNamesMED(self): """ Check the group names for duplications. Consider the maximum group name length stored in MED file. Returns: True or False """ return self.mesh.HasDuplicatedGroupNamesMED() def GetMeshEditor(self): """ Obtain the mesh editor tool Returns: an instance of :class:`SMESH.SMESH_MeshEditor` """ return self.editor def GetIDSource(self, ids, elemType = SMESH.ALL): """ Wrap a list of IDs of elements or nodes into :class:`SMESH.SMESH_IDSource` which can be passed as argument to a method accepting :class:`mesh, sub-mesh, group or filter ` Parameters: ids: list of IDs elemType: type of elements; this parameter is used to distinguish IDs of nodes from IDs of elements; by default ids are treated as IDs of elements; use SMESH.NODE if ids are IDs of nodes. Returns: an instance of :class:`SMESH.SMESH_IDSource` Warning: call UnRegister() for the returned object as soon as it is no more useful:: idSrc = mesh.GetIDSource( [1,3,5], SMESH.NODE ) mesh.DoSomething( idSrc ) idSrc.UnRegister() """ if isinstance( ids, int ): ids = [ids] return self.editor.MakeIDSource(ids, elemType) # Get information about mesh contents: # ------------------------------------ def GetMeshInfo(self, obj = None): """ Get the mesh statistic. Use :meth:`smeshBuilder.EnumToLong` to get an integer from an item of :class:`SMESH.EntityType`. Returns: dictionary { :class:`SMESH.EntityType` - "count of elements" } """ if not obj: obj = self.mesh return self.smeshpyD.GetMeshInfo(obj) def NbNodes(self): """ Return the number of nodes in the mesh Returns: an integer value """ return self.mesh.NbNodes() def NbElements(self): """ Return the number of elements in the mesh Returns: an integer value """ return self.mesh.NbElements() def Nb0DElements(self): """ Return the number of 0d elements in the mesh Returns: an integer value """ return self.mesh.Nb0DElements() def NbBalls(self): """ Return the number of ball discrete elements in the mesh Returns: an integer value """ return self.mesh.NbBalls() def NbEdges(self): """ Return the number of edges in the mesh Returns: an integer value """ return self.mesh.NbEdges() def NbEdgesOfOrder(self, elementOrder): """ Return the number of edges with the given order in the mesh Parameters: elementOrder: the order of elements (SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC) Returns: an integer value """ return self.mesh.NbEdgesOfOrder(elementOrder) def NbFaces(self): """ Return the number of faces in the mesh Returns: an integer value """ return self.mesh.NbFaces() def NbFacesOfOrder(self, elementOrder): """ Return the number of faces with the given order in the mesh Parameters: elementOrder: the order of elements (SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC) Returns: an integer value """ return self.mesh.NbFacesOfOrder(elementOrder) def NbTriangles(self): """ Return the number of triangles in the mesh Returns: an integer value """ return self.mesh.NbTriangles() def NbTrianglesOfOrder(self, elementOrder): """ Return the number of triangles with the given order in the mesh Parameters: elementOrder: is the order of elements (SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC) Returns: an integer value """ return self.mesh.NbTrianglesOfOrder(elementOrder) def NbBiQuadTriangles(self): """ Return the number of biquadratic triangles in the mesh Returns: an integer value """ return self.mesh.NbBiQuadTriangles() def NbQuadrangles(self): """ Return the number of quadrangles in the mesh Returns: an integer value """ return self.mesh.NbQuadrangles() def NbQuadranglesOfOrder(self, elementOrder): """ Return the number of quadrangles with the given order in the mesh Parameters: elementOrder: the order of elements (SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC) Returns: an integer value """ return self.mesh.NbQuadranglesOfOrder(elementOrder) def NbBiQuadQuadrangles(self): """ Return the number of biquadratic quadrangles in the mesh Returns: an integer value """ return self.mesh.NbBiQuadQuadrangles() def NbPolygons(self, elementOrder = SMESH.ORDER_ANY): """ Return the number of polygons of given order in the mesh Parameters: elementOrder: the order of elements (SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC) Returns: an integer value """ return self.mesh.NbPolygonsOfOrder(elementOrder) def NbVolumes(self): """ Return the number of volumes in the mesh Returns: an integer value """ return self.mesh.NbVolumes() def NbVolumesOfOrder(self, elementOrder): """ Return the number of volumes with the given order in the mesh Parameters: elementOrder: the order of elements (SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC) Returns: an integer value """ return self.mesh.NbVolumesOfOrder(elementOrder) def NbTetras(self): """ Return the number of tetrahedrons in the mesh Returns: an integer value """ return self.mesh.NbTetras() def NbTetrasOfOrder(self, elementOrder): """ Return the number of tetrahedrons with the given order in the mesh Parameters: elementOrder: the order of elements (SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC) Returns: an integer value """ return self.mesh.NbTetrasOfOrder(elementOrder) def NbHexas(self): """ Return the number of hexahedrons in the mesh Returns: an integer value """ return self.mesh.NbHexas() def NbHexasOfOrder(self, elementOrder): """ Return the number of hexahedrons with the given order in the mesh Parameters: elementOrder: the order of elements (SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC) Returns: an integer value """ return self.mesh.NbHexasOfOrder(elementOrder) def NbTriQuadraticHexas(self): """ Return the number of triquadratic hexahedrons in the mesh Returns: an integer value """ return self.mesh.NbTriQuadraticHexas() def NbPyramids(self): """ Return the number of pyramids in the mesh Returns: an integer value """ return self.mesh.NbPyramids() def NbPyramidsOfOrder(self, elementOrder): """ Return the number of pyramids with the given order in the mesh Parameters: elementOrder: the order of elements (SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC) Returns: an integer value """ return self.mesh.NbPyramidsOfOrder(elementOrder) def NbPrisms(self): """ Return the number of prisms in the mesh Returns: an integer value """ return self.mesh.NbPrisms() def NbPrismsOfOrder(self, elementOrder): """ Return the number of prisms with the given order in the mesh Parameters: elementOrder: the order of elements (SMESH.ORDER_ANY, SMESH.ORDER_LINEAR or SMESH.ORDER_QUADRATIC) Returns: an integer value """ return self.mesh.NbPrismsOfOrder(elementOrder) def NbHexagonalPrisms(self): """ Return the number of hexagonal prisms in the mesh Returns: an integer value """ return self.mesh.NbHexagonalPrisms() def NbPolyhedrons(self): """ Return the number of polyhedrons in the mesh Returns: an integer value """ return self.mesh.NbPolyhedrons() def NbSubMesh(self): """ Return the number of submeshes in the mesh Returns: an integer value """ return self.mesh.NbSubMesh() def GetElementsId(self): """ Return the list of all mesh elements IDs Returns: the list of integer values See Also: :meth:`GetElementsByType` """ return self.mesh.GetElementsId() def GetElementsByType(self, elementType): """ Return the list of IDs of mesh elements with the given type Parameters: elementType (SMESH.ElementType): the required type of elements Returns: list of integer values """ return self.mesh.GetElementsByType(elementType) def GetNodesId(self): """ Return the list of mesh nodes IDs Returns: the list of integer values """ return self.mesh.GetNodesId() # Get the information about mesh elements: # ------------------------------------ def GetElementType(self, id, iselem=True): """ Return the type of mesh element or node Returns: the value from :class:`SMESH.ElementType` enumeration. Return SMESH.ALL if element or node with the given ID does not exist """ return self.mesh.GetElementType(id, iselem) def GetElementGeomType(self, id): """ Return the geometric type of mesh element Returns: the value from :class:`SMESH.EntityType` enumeration. """ return self.mesh.GetElementGeomType(id) def GetElementShape(self, id): """ Return the shape type of mesh element Returns: the value from :class:`SMESH.GeometryType` enumeration. """ return self.mesh.GetElementShape(id) def GetSubMeshElementsId(self, Shape): """ Return the list of sub-mesh elements IDs Parameters: Shape (GEOM.GEOM_Object): a geom object (sub-shape). *Shape* must be the sub-shape of the :meth:`main shape ` Returns: list of integer values """ if isinstance( Shape, geomBuilder.GEOM._objref_GEOM_Object): ShapeID = self.geompyD.GetSubShapeID( self.geom, Shape ) else: ShapeID = Shape return self.mesh.GetSubMeshElementsId(ShapeID) def GetSubMeshNodesId(self, Shape, all): """ Return the list of sub-mesh nodes IDs Parameters: Shape: a geom object (sub-shape). *Shape* must be the sub-shape of a :meth:`GetShape` all: If True, gives all nodes of sub-mesh elements, otherwise gives only sub-mesh nodes Returns: list of integer values """ if isinstance( Shape, geomBuilder.GEOM._objref_GEOM_Object): ShapeID = self.geompyD.GetSubShapeID( self.geom, Shape ) else: ShapeID = Shape return self.mesh.GetSubMeshNodesId(ShapeID, all) def GetSubMeshElementType(self, Shape): """ Return type of elements on given shape Parameters: Shape: a geom object (sub-shape). *Shape* must be a sub-shape of a ShapeToMesh() Returns: :class:`SMESH.ElementType` """ if isinstance( Shape, geomBuilder.GEOM._objref_GEOM_Object): ShapeID = self.geompyD.GetSubShapeID( self.geom, Shape ) else: ShapeID = Shape return self.mesh.GetSubMeshElementType(ShapeID) def Dump(self): """ Get the mesh description Returns: string value """ return self.mesh.Dump() # Get the information about nodes and elements of a mesh by its IDs: # ----------------------------------------------------------- def GetNodeXYZ(self, id): """ Get XYZ coordinates of a node. If there is no node for the given ID - return an empty list Returns: list of float values """ return self.mesh.GetNodeXYZ(id) def GetNodeInverseElements(self, id): """ Return list of IDs of inverse elements for the given node. If there is no node for the given ID - return an empty list Returns: list of integer values """ return self.mesh.GetNodeInverseElements(id) def GetNodePosition(self,NodeID): """ Return the position of a node on the shape Returns: :class:`SMESH.NodePosition` """ return self.mesh.GetNodePosition(NodeID) def GetElementPosition(self,ElemID): """ Return the position of an element on the shape Returns: :class:`SMESH.ElementPosition` """ return self.mesh.GetElementPosition(ElemID) def GetShapeID(self, id): """ Return the ID of the shape, on which the given node was generated. Returns: an integer value > 0 or -1 if there is no node for the given ID or the node is not assigned to any geometry """ return self.mesh.GetShapeID(id) def GetShapeIDForElem(self,id): """ Return the ID of the shape, on which the given element was generated. Returns: an integer value > 0 or -1 if there is no element for the given ID or the element is not assigned to any geometry """ return self.mesh.GetShapeIDForElem(id) def GetElemNbNodes(self, id): """ Return the number of nodes of the given element Returns: an integer value > 0 or -1 if there is no element for the given ID """ return self.mesh.GetElemNbNodes(id) def GetElemNode(self, id, index): """ Return the node ID the given (zero based) index for the given element. * If there is no element for the given ID - return -1. * If there is no node for the given index - return -2. Parameters: id (int): element ID index (int): node index within the element Returns: an integer value (ID) See Also: :meth:`GetElemNodes` """ return self.mesh.GetElemNode(id, index) def GetElemNodes(self, id): """ Return the IDs of nodes of the given element Returns: a list of integer values """ return self.mesh.GetElemNodes(id) def IsMediumNode(self, elementID, nodeID): """ Return true if the given node is the medium node in the given quadratic element """ return self.mesh.IsMediumNode(elementID, nodeID) def IsMediumNodeOfAnyElem(self, nodeID, elementType = SMESH.ALL ): """ Return true if the given node is the medium node in one of quadratic elements Parameters: nodeID: ID of the node elementType: the type of elements to check a state of the node, either of (SMESH.ALL, SMESH.NODE, SMESH.EDGE, SMESH.FACE or SMESH.VOLUME) """ return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType) def ElemNbEdges(self, id): """ Return the number of edges for the given element """ return self.mesh.ElemNbEdges(id) def ElemNbFaces(self, id): """ Return the number of faces for the given element """ return self.mesh.ElemNbFaces(id) def GetElemFaceNodes(self,elemId, faceIndex): """ Return nodes of given face (counted from zero) for given volumic element. """ return self.mesh.GetElemFaceNodes(elemId, faceIndex) def GetFaceNormal(self, faceId, normalized=False): """ Return three components of normal of given mesh face (or an empty array in KO case) """ return self.mesh.GetFaceNormal(faceId,normalized) def FindElementByNodes(self, nodes): """ Return an element based on all given nodes. """ return self.mesh.FindElementByNodes(nodes) def GetElementsByNodes(self, nodes, elemType=SMESH.ALL): """ Return elements including all given nodes. """ return self.mesh.GetElementsByNodes( nodes, elemType ) def IsPoly(self, id): """ Return true if the given element is a polygon """ return self.mesh.IsPoly(id) def IsQuadratic(self, id): """ Return true if the given element is quadratic """ return self.mesh.IsQuadratic(id) def GetBallDiameter(self, id): """ Return diameter of a ball discrete element or zero in case of an invalid *id* """ return self.mesh.GetBallDiameter(id) def BaryCenter(self, id): """ Return XYZ coordinates of the barycenter of the given element. If there is no element for the given ID - return an empty list Returns: a list of three double values """ return self.mesh.BaryCenter(id) def GetIdsFromFilter(self, theFilter): """ Pass mesh elements through the given filter and return IDs of fitting elements Parameters: theFilter: :class:`SMESH.Filter` Returns: a list of ids See Also: :meth:`SMESH.Filter.GetIDs` """ theFilter.SetMesh( self.mesh ) return theFilter.GetIDs() # Get mesh measurements information: # ------------------------------------ def GetFreeBorders(self): """ Verify whether a 2D mesh element has free edges (edges connected to one face only). Return a list of special structures (borders). Returns: a list of :class:`SMESH.FreeEdges.Border` """ aFilterMgr = self.smeshpyD.CreateFilterManager() aPredicate = aFilterMgr.CreateFreeEdges() aPredicate.SetMesh(self.mesh) aBorders = aPredicate.GetBorders() aFilterMgr.UnRegister() return aBorders def MinDistance(self, id1, id2=0, isElem1=False, isElem2=False): """ Get minimum distance between two nodes, elements or distance to the origin Parameters: id1: first node/element id id2: second node/element id (if 0, distance from *id1* to the origin is computed) isElem1: *True* if *id1* is element id, *False* if it is node id isElem2: *True* if *id2* is element id, *False* if it is node id Returns: minimum distance value **GetMinDistance()** """ aMeasure = self.GetMinDistance(id1, id2, isElem1, isElem2) return aMeasure.value def GetMinDistance(self, id1, id2=0, isElem1=False, isElem2=False): """ Get :class:`SMESH.Measure` structure specifying minimum distance data between two objects Parameters: id1: first node/element id id2: second node/element id (if 0, distance from *id1* to the origin is computed) isElem1: *True* if *id1* is element id, *False* if it is node id isElem2: *True* if *id2* is element id, *False* if it is node id Returns: :class:`SMESH.Measure` structure See Also: :meth:`MinDistance` """ if isElem1: id1 = self.editor.MakeIDSource([id1], SMESH.FACE) else: id1 = self.editor.MakeIDSource([id1], SMESH.NODE) if id2 != 0: if isElem2: id2 = self.editor.MakeIDSource([id2], SMESH.FACE) else: id2 = self.editor.MakeIDSource([id2], SMESH.NODE) pass else: id2 = None aMeasurements = self.smeshpyD.CreateMeasurements() aMeasure = aMeasurements.MinDistance(id1, id2) genObjUnRegister([aMeasurements,id1, id2]) return aMeasure def BoundingBox(self, objects=None, isElem=False): """ Get bounding box of the specified object(s) Parameters: objects: single :class:`source object ` or list of source objects or list of nodes/elements IDs isElem: if *objects* is a list of IDs, *True* value in this parameters specifies that *objects* are elements, *False* specifies that *objects* are nodes Returns: tuple of six values (minX, minY, minZ, maxX, maxY, maxZ) See Also: :meth:`GetBoundingBox()` """ result = self.GetBoundingBox(objects, isElem) if result is None: result = (0.0,)*6 else: result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ) return result def GetBoundingBox(self, objects=None, isElem=False): """ Get :class:`SMESH.Measure` structure specifying bounding box data of the specified object(s) Parameters: objects: single :class:`source object ` or list of source objects or list of nodes/elements IDs isElem: if *objects* is a list of IDs, True means that *objects* are elements, False means that *objects* are nodes Returns: :class:`SMESH.Measure` structure See Also: :meth:`BoundingBox()` """ if objects is None: objects = [self.mesh] elif isinstance(objects, tuple): objects = list(objects) if not isinstance(objects, list): objects = [objects] if len(objects) > 0 and isinstance(objects[0], int): objects = [objects] srclist = [] unRegister = genObjUnRegister() for o in objects: if isinstance(o, Mesh): srclist.append(o.mesh) elif hasattr(o, "_narrow"): src = o._narrow(SMESH.SMESH_IDSource) if src: srclist.append(src) pass elif isinstance(o, list): if isElem: srclist.append(self.editor.MakeIDSource(o, SMESH.FACE)) else: srclist.append(self.editor.MakeIDSource(o, SMESH.NODE)) unRegister.set( srclist[-1] ) pass pass aMeasurements = self.smeshpyD.CreateMeasurements() unRegister.set( aMeasurements ) aMeasure = aMeasurements.BoundingBox(srclist) return aMeasure # Mesh edition (SMESH_MeshEditor functionality): # --------------------------------------------- def RemoveElements(self, IDsOfElements): """ Remove the elements from the mesh by ids Parameters: IDsOfElements: is a list of ids of elements to remove Returns: True or False """ return self.editor.RemoveElements(IDsOfElements) def RemoveNodes(self, IDsOfNodes): """ Remove nodes from mesh by ids Parameters: IDsOfNodes: is a list of ids of nodes to remove Returns: True or False """ return self.editor.RemoveNodes(IDsOfNodes) def RemoveOrphanNodes(self): """ Remove all orphan (free) nodes from mesh Returns: number of the removed nodes """ return self.editor.RemoveOrphanNodes() def AddNode(self, x, y, z): """ Add a node to the mesh by coordinates Returns: ID of the new node """ x,y,z,Parameters,hasVars = ParseParameters(x,y,z) if hasVars: self.mesh.SetParameters(Parameters) return self.editor.AddNode( x, y, z) def Add0DElement( self, IDOfNode, DuplicateElements=True ): """ Create a 0D element on a node with given number. Parameters: IDOfNode: the ID of node for creation of the element. DuplicateElements: to add one more 0D element to a node or not Returns: ID of the new 0D element """ return self.editor.Add0DElement( IDOfNode, DuplicateElements ) def Add0DElementsToAllNodes(self, theObject, theGroupName="", DuplicateElements=False): """ Create 0D elements on all nodes of the given elements except those nodes on which a 0D element already exists. Parameters: theObject: an object on whose nodes 0D elements will be created. It can be list of element IDs, :class:`mesh, sub-mesh, group or filter ` theGroupName: optional name of a group to add 0D elements created and/or found on nodes of *theObject*. DuplicateElements: to add one more 0D element to a node or not Returns: an object (a new group or a temporary :class:`SMESH.SMESH_IDSource`) holding IDs of new and/or found 0D elements. IDs of 0D elements can be retrieved from the returned object by calling :meth:`GetIDs() ` """ unRegister = genObjUnRegister() if isinstance( theObject, Mesh ): theObject = theObject.GetMesh() elif isinstance( theObject, list ): theObject = self.GetIDSource( theObject, SMESH.ALL ) unRegister.set( theObject ) return self.editor.Create0DElementsOnAllNodes( theObject, theGroupName, DuplicateElements ) def AddBall(self, IDOfNode, diameter): """ Create a ball element on a node with given ID. Parameters: IDOfNode: the ID of node for creation of the element. diameter: the bal diameter. Returns: ID of the new ball element """ return self.editor.AddBall( IDOfNode, diameter ) def AddEdge(self, IDsOfNodes): """ Create a linear or quadratic edge (this is determined by the number of given nodes). Parameters: IDsOfNodes: list of node IDs for creation of the element. The order of nodes in this list should correspond to the :ref:`connectivity convention `. Returns: ID of the new edge """ return self.editor.AddEdge(IDsOfNodes) def AddFace(self, IDsOfNodes): """ Create a linear or quadratic face (this is determined by the number of given nodes). Parameters: IDsOfNodes: list of node IDs for creation of the element. The order of nodes in this list should correspond to the :ref:`connectivity convention `. Returns: ID of the new face """ return self.editor.AddFace(IDsOfNodes) def AddPolygonalFace(self, IdsOfNodes): """ Add a polygonal face defined by a list of node IDs Parameters: IdsOfNodes: the list of node IDs for creation of the element. Returns: ID of the new face """ return self.editor.AddPolygonalFace(IdsOfNodes) def AddQuadPolygonalFace(self, IdsOfNodes): """ Add a quadratic polygonal face defined by a list of node IDs Parameters: IdsOfNodes: the list of node IDs for creation of the element; corner nodes follow first. Returns: ID of the new face """ return self.editor.AddQuadPolygonalFace(IdsOfNodes) def AddVolume(self, IDsOfNodes): """ Create both simple and quadratic volume (this is determined by the number of given nodes). Parameters: IDsOfNodes: list of node IDs for creation of the element. The order of nodes in this list should correspond to the :ref:`connectivity convention `. Returns: ID of the new volumic element """ return self.editor.AddVolume(IDsOfNodes) def AddPolyhedralVolume (self, IdsOfNodes, Quantities): """ Create a volume of many faces, giving nodes for each face. Parameters: IdsOfNodes: list of node IDs for volume creation, face by face. Quantities: list of integer values, Quantities[i] gives the quantity of nodes in face number i. Returns: ID of the new volumic element """ return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities) def AddPolyhedralVolumeByFaces (self, IdsOfFaces): """ Create a volume of many faces, giving the IDs of the existing faces. Note: The created volume will refer only to the nodes of the given faces, not to the faces themselves. Parameters: IdsOfFaces: the list of face IDs for volume creation. Returns: ID of the new volumic element """ return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces) def SetNodeOnVertex(self, NodeID, Vertex): """ Binds a node to a vertex Parameters: NodeID: a node ID Vertex: a vertex (GEOM.GEOM_Object) or vertex ID Returns: True if succeed else raises an exception """ if ( isinstance( Vertex, geomBuilder.GEOM._objref_GEOM_Object)): VertexID = self.geompyD.GetSubShapeID( self.geom, Vertex ) else: VertexID = Vertex try: self.editor.SetNodeOnVertex(NodeID, VertexID) except SALOME.SALOME_Exception as inst: raise ValueError(inst.details.text) return True def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge): """ Stores the node position on an edge Parameters: NodeID: a node ID Edge: an edge (GEOM.GEOM_Object) or edge ID paramOnEdge: a parameter on the edge where the node is located Returns: True if succeed else raises an exception """ if ( isinstance( Edge, geomBuilder.GEOM._objref_GEOM_Object)): EdgeID = self.geompyD.GetSubShapeID( self.geom, Edge ) else: EdgeID = Edge try: self.editor.SetNodeOnEdge(NodeID, EdgeID, paramOnEdge) except SALOME.SALOME_Exception as inst: raise ValueError(inst.details.text) return True def SetNodeOnFace(self, NodeID, Face, u, v): """ Stores node position on a face Parameters: NodeID: a node ID Face: a face (GEOM.GEOM_Object) or face ID u: U parameter on the face where the node is located v: V parameter on the face where the node is located Returns: True if succeed else raises an exception """ if ( isinstance( Face, geomBuilder.GEOM._objref_GEOM_Object)): FaceID = self.geompyD.GetSubShapeID( self.geom, Face ) else: FaceID = Face try: self.editor.SetNodeOnFace(NodeID, FaceID, u, v) except SALOME.SALOME_Exception as inst: raise ValueError(inst.details.text) return True def SetNodeInVolume(self, NodeID, Solid): """ Binds a node to a solid Parameters: NodeID: a node ID Solid: a solid (GEOM.GEOM_Object) or solid ID Returns: True if succeed else raises an exception """ if ( isinstance( Solid, geomBuilder.GEOM._objref_GEOM_Object)): SolidID = self.geompyD.GetSubShapeID( self.geom, Solid ) else: SolidID = Solid try: self.editor.SetNodeInVolume(NodeID, SolidID) except SALOME.SALOME_Exception as inst: raise ValueError(inst.details.text) return True def SetMeshElementOnShape(self, ElementID, Shape): """ Bind an element to a shape Parameters: ElementID: an element ID Shape: a shape (GEOM.GEOM_Object) or shape ID Returns: True if succeed else raises an exception """ if ( isinstance( Shape, geomBuilder.GEOM._objref_GEOM_Object)): ShapeID = self.geompyD.GetSubShapeID( self.geom, Shape ) else: ShapeID = Shape try: self.editor.SetMeshElementOnShape(ElementID, ShapeID) except SALOME.SALOME_Exception as inst: raise ValueError(inst.details.text) return True def MoveNode(self, NodeID, x, y, z): """ Move the node with the given id Parameters: NodeID: the id of the node x: a new X coordinate y: a new Y coordinate z: a new Z coordinate Returns: True if succeed else False """ x,y,z,Parameters,hasVars = ParseParameters(x,y,z) if hasVars: self.mesh.SetParameters(Parameters) return self.editor.MoveNode(NodeID, x, y, z) def MoveClosestNodeToPoint(self, x, y, z, NodeID): """ Find the node closest to a point and moves it to a point location Parameters: x: the X coordinate of a point y: the Y coordinate of a point z: the Z coordinate of a point NodeID: if specified (>0), the node with this ID is moved, otherwise, the node closest to point (*x*, *y*, *z*) is moved Returns: the ID of a moved node """ x,y,z,Parameters,hasVars = ParseParameters(x,y,z) if hasVars: self.mesh.SetParameters(Parameters) return self.editor.MoveClosestNodeToPoint(x, y, z, NodeID) def FindNodeClosestTo(self, x, y, z): """ Find the node closest to a point Parameters: x: the X coordinate of a point y: the Y coordinate of a point z: the Z coordinate of a point Returns: the ID of a node """ #preview = self.mesh.GetMeshEditPreviewer() #return preview.MoveClosestNodeToPoint(x, y, z, -1) return self.editor.FindNodeClosestTo(x, y, z) def FindElementsByPoint(self, x, y, z, elementType = SMESH.ALL, meshPart=None): """ Find the elements where a point lays IN or ON Parameters: x,y,z (float): coordinates of the point elementType (SMESH.ElementType): type of elements to find; SMESH.ALL type means elements of any type excluding nodes, discrete and 0D elements. meshPart: a part of mesh (:class:`sub-mesh, group or filter `) to search within Returns: list of IDs of found elements """ if meshPart: return self.editor.FindAmongElementsByPoint( meshPart, x, y, z, elementType ); else: return self.editor.FindElementsByPoint(x, y, z, elementType) def GetPointState(self, x, y, z): """ Return point state in a closed 2D mesh in terms of TopAbs_State enumeration: 0-IN, 1-OUT, 2-ON, 3-UNKNOWN. UNKNOWN state means that either mesh is wrong or the analysis fails. """ return self.editor.GetPointState(x, y, z) def IsManifold(self): """ Check if a 2D mesh is manifold """ return self.editor.IsManifold() def IsCoherentOrientation2D(self): """ Check if orientation of 2D elements is coherent """ return self.editor.IsCoherentOrientation2D() def MeshToPassThroughAPoint(self, x, y, z): """ Find the node closest to a point and moves it to a point location Parameters: x: the X coordinate of a point y: the Y coordinate of a point z: the Z coordinate of a point Returns: the ID of a moved node """ return self.editor.MoveClosestNodeToPoint(x, y, z, -1) def InverseDiag(self, NodeID1, NodeID2): """ Replace two neighbour triangles sharing Node1-Node2 link with the triangles built on the same 4 nodes but having other common link. Parameters: NodeID1: the ID of the first node NodeID2: the ID of the second node Returns: False if proper faces were not found """ return self.editor.InverseDiag(NodeID1, NodeID2) def DeleteDiag(self, NodeID1, NodeID2): """ Replace two neighbour triangles sharing *Node1-Node2* link with a quadrangle built on the same 4 nodes. Parameters: NodeID1: ID of the first node NodeID2: ID of the second node Returns: False if proper faces were not found """ return self.editor.DeleteDiag(NodeID1, NodeID2) def Reorient(self, IDsOfElements=None): """ Reorient elements by ids Parameters: IDsOfElements: if undefined reorients all mesh elements Returns: True if succeed else False """ if IDsOfElements == None: IDsOfElements = self.GetElementsId() return self.editor.Reorient(IDsOfElements) def ReorientObject(self, theObject): """ Reorient all elements of the object Parameters: theObject: :class:`mesh, sub-mesh, group or filter ` Returns: True if succeed else False """ if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() return self.editor.ReorientObject(theObject) def Reorient2D(self, the2DObject, theDirection, theFaceOrPoint ): """ Reorient faces contained in *the2DObject*. Parameters: the2DObject: is a :class:`mesh, sub-mesh, group or filter ` or list of IDs of 2D elements theDirection: is a desired direction of normal of *theFace*. It can be either a GEOM vector or a list of coordinates [x,y,z]. theFaceOrPoint: defines a face of *the2DObject* whose normal will be compared with theDirection. It can be either ID of face or a point by which the face will be found. The point can be given as either a GEOM vertex or a list of point coordinates. Returns: number of reoriented faces """ unRegister = genObjUnRegister() # check the2DObject if isinstance( the2DObject, Mesh ): the2DObject = the2DObject.GetMesh() if isinstance( the2DObject, list ): the2DObject = self.GetIDSource( the2DObject, SMESH.FACE ) unRegister.set( the2DObject ) # check theDirection if isinstance( theDirection, geomBuilder.GEOM._objref_GEOM_Object): theDirection = self.smeshpyD.GetDirStruct( theDirection ) if isinstance( theDirection, list ): theDirection = self.smeshpyD.MakeDirStruct( *theDirection ) # prepare theFace and thePoint theFace = theFaceOrPoint thePoint = PointStruct(0,0,0) if isinstance( theFaceOrPoint, geomBuilder.GEOM._objref_GEOM_Object): thePoint = self.smeshpyD.GetPointStruct( theFaceOrPoint ) theFace = -1 if isinstance( theFaceOrPoint, list ): thePoint = PointStruct( *theFaceOrPoint ) theFace = -1 if isinstance( theFaceOrPoint, PointStruct ): thePoint = theFaceOrPoint theFace = -1 return self.editor.Reorient2D( the2DObject, theDirection, theFace, thePoint ) def Reorient2DBy3D(self, the2DObject, the3DObject, theOutsideNormal=True ): """ Reorient faces according to adjacent volumes. Parameters: the2DObject: is a :class:`mesh, sub-mesh, group, filter ` or list of either IDs of faces or face groups. the3DObject: is a :class:`mesh, sub-mesh, group, filter ` or list of IDs of volumes. theOutsideNormal: to orient faces to have their normals pointing either *outside* or *inside* the adjacent volumes. Returns: number of reoriented faces. """ unRegister = genObjUnRegister() # check the2DObject if not isinstance( the2DObject, list ): the2DObject = [ the2DObject ] elif the2DObject and isinstance( the2DObject[0], int ): the2DObject = self.GetIDSource( the2DObject, SMESH.FACE ) unRegister.set( the2DObject ) the2DObject = [ the2DObject ] for i,obj2D in enumerate( the2DObject ): if isinstance( obj2D, Mesh ): the2DObject[i] = obj2D.GetMesh() if isinstance( obj2D, list ): the2DObject[i] = self.GetIDSource( obj2D, SMESH.FACE ) unRegister.set( the2DObject[i] ) # check the3DObject if isinstance( the3DObject, Mesh ): the3DObject = the3DObject.GetMesh() if isinstance( the3DObject, list ): the3DObject = self.GetIDSource( the3DObject, SMESH.VOLUME ) unRegister.set( the3DObject ) return self.editor.Reorient2DBy3D( the2DObject, the3DObject, theOutsideNormal ) def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle): """ Fuse the neighbouring triangles into quadrangles. Parameters: IDsOfElements: The triangles to be fused. theCriterion: a numerical functor, in terms of enum :class:`SMESH.FunctorType`, used to applied to possible quadrangles to choose a neighbour to fuse with. Note that not all items of :class:`SMESH.FunctorType` corresponds to numerical functors. MaxAngle: is the maximum angle between element normals at which the fusion is still performed; theMaxAngle is measured in radians. Also it could be a name of variable which defines angle in degrees. Returns: True in case of success, False otherwise. """ MaxAngle,Parameters,hasVars = ParseAngles(MaxAngle) self.mesh.SetParameters(Parameters) if not IDsOfElements: IDsOfElements = self.GetElementsId() Functor = self.smeshpyD.GetFunctor(theCriterion) return self.editor.TriToQuad(IDsOfElements, Functor, MaxAngle) def TriToQuadObject (self, theObject, theCriterion, MaxAngle): """ Fuse the neighbouring triangles of the object into quadrangles Parameters: theObject: is :class:`mesh, sub-mesh, group or filter ` theCriterion: is a numerical functor, in terms of enum :class:`SMESH.FunctorType`, applied to possible quadrangles to choose a neighbour to fuse with. Note that not all items of :class:`SMESH.FunctorType` corresponds to numerical functors. MaxAngle: a max angle between element normals at which the fusion is still performed; theMaxAngle is measured in radians. Returns: True in case of success, False otherwise. """ MaxAngle,Parameters,hasVars = ParseAngles(MaxAngle) self.mesh.SetParameters(Parameters) if isinstance( theObject, Mesh ): theObject = theObject.GetMesh() Functor = self.smeshpyD.GetFunctor(theCriterion) return self.editor.TriToQuadObject(theObject, Functor, MaxAngle) def QuadToTri (self, IDsOfElements, theCriterion = None): """ Split quadrangles into triangles. Parameters: IDsOfElements: the faces to be splitted. theCriterion: is a numerical functor, in terms of enum :class:`SMESH.FunctorType`, used to choose a diagonal for splitting. If *theCriterion* is None, which is a default value, then quadrangles will be split by the smallest diagonal. Note that not all items of :class:`SMESH.FunctorType` corresponds to numerical functors. Returns: True in case of success, False otherwise. """ if IDsOfElements == []: IDsOfElements = self.GetElementsId() if theCriterion is None: theCriterion = FT_MaxElementLength2D Functor = self.smeshpyD.GetFunctor(theCriterion) return self.editor.QuadToTri(IDsOfElements, Functor) def QuadToTriObject (self, theObject, theCriterion = None): """ Split quadrangles into triangles. Parameters: theObject: the object from which the list of elements is taken, this is :class:`mesh, sub-mesh, group or filter ` theCriterion: is a numerical functor, in terms of enum :class:`SMESH.FunctorType`, used to choose a diagonal for splitting. If *theCriterion* is None, which is a default value, then quadrangles will be split by the smallest diagonal. Note that not all items of :class:`SMESH.FunctorType` corresponds to numerical functors. Returns: True in case of success, False otherwise. """ if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() if theCriterion is None: theCriterion = FT_MaxElementLength2D Functor = self.smeshpyD.GetFunctor(theCriterion) return self.editor.QuadToTriObject(theObject, Functor) def QuadTo4Tri (self, theElements=[]): """ Split each of given quadrangles into 4 triangles. A node is added at the center of a quadrangle. Parameters: theElements: the faces to be splitted. This can be either :class:`mesh, sub-mesh, group, filter ` or a list of face IDs. By default all quadrangles are split """ unRegister = genObjUnRegister() if isinstance( theElements, Mesh ): theElements = theElements.mesh elif not theElements: theElements = self.mesh elif isinstance( theElements, list ): theElements = self.GetIDSource( theElements, SMESH.FACE ) unRegister.set( theElements ) return self.editor.QuadTo4Tri( theElements ) def SplitQuad (self, IDsOfElements, Diag13): """ Split quadrangles into triangles. Parameters: IDsOfElements: the faces to be splitted Diag13: is used to choose a diagonal for splitting. Returns: True in case of success, False otherwise. """ if IDsOfElements == []: IDsOfElements = self.GetElementsId() return self.editor.SplitQuad(IDsOfElements, Diag13) def SplitQuadObject (self, theObject, Diag13): """ Split quadrangles into triangles. Parameters: theObject: the object from which the list of elements is taken, this is :class:`mesh, sub-mesh, group or filter ` Diag13: is used to choose a diagonal for splitting. Returns: True in case of success, False otherwise. """ if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() return self.editor.SplitQuadObject(theObject, Diag13) def BestSplit (self, IDOfQuad, theCriterion): """ Find a better splitting of the given quadrangle. Parameters: IDOfQuad: the ID of the quadrangle to be splitted. theCriterion: is a numerical functor, in terms of enum :class:`SMESH.FunctorType`, used to choose a diagonal for splitting. Note that not all items of :class:`SMESH.FunctorType` corresponds to numerical functors. Returns: * 1 if 1-3 diagonal is better, * 2 if 2-4 diagonal is better, * 0 if error occurs. """ return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion)) def SplitVolumesIntoTetra(self, elems, method=smeshBuilder.Hex_5Tet ): """ Split volumic elements into tetrahedrons Parameters: elems: either a list of elements or a :class:`mesh, sub-mesh, group or filter ` method: flags passing splitting method: smesh.Hex_5Tet, smesh.Hex_6Tet, smesh.Hex_24Tet. smesh.Hex_5Tet - to split the hexahedron into 5 tetrahedrons, etc. """ unRegister = genObjUnRegister() if isinstance( elems, Mesh ): elems = elems.GetMesh() if ( isinstance( elems, list )): elems = self.editor.MakeIDSource(elems, SMESH.VOLUME) unRegister.set( elems ) self.editor.SplitVolumesIntoTetra(elems, method) return def SplitBiQuadraticIntoLinear(self, elems=None): """ Split bi-quadratic elements into linear ones without creation of additional nodes: - bi-quadratic triangle will be split into 3 linear quadrangles; - bi-quadratic quadrangle will be split into 4 linear quadrangles; - tri-quadratic hexahedron will be split into 8 linear hexahedra. Quadratic elements of lower dimension adjacent to the split bi-quadratic element will be split in order to keep the mesh conformal. Parameters: elems: elements to split\: :class:`mesh, sub-mesh, group, filter ` or element IDs; if None (default), all bi-quadratic elements will be split """ unRegister = genObjUnRegister() if elems and isinstance( elems, list ) and isinstance( elems[0], int ): elems = self.editor.MakeIDSource(elems, SMESH.ALL) unRegister.set( elems ) if elems is None: elems = [ self.GetMesh() ] if isinstance( elems, Mesh ): elems = [ elems.GetMesh() ] if not isinstance( elems, list ): elems = [elems] self.editor.SplitBiQuadraticIntoLinear( elems ) def SplitHexahedraIntoPrisms(self, elems, startHexPoint, facetNormal, method=smeshBuilder.Hex_2Prisms, allDomains=False ): """ Split hexahedra into prisms Parameters: elems: either a list of elements or a :class:`mesh, sub-mesh, group or filter ` startHexPoint: a point used to find a hexahedron for which *facetNormal* gives a normal vector defining facets to split into triangles. *startHexPoint* can be either a triple of coordinates or a vertex. facetNormal: a normal to a facet to split into triangles of a hexahedron found by *startHexPoint*. *facetNormal* can be either a triple of coordinates or an edge. method: flags passing splitting method: smesh.Hex_2Prisms, smesh.Hex_4Prisms. smesh.Hex_2Prisms - to split the hexahedron into 2 prisms, etc. allDomains: if :code:`False`, only hexahedra adjacent to one closest to *startHexPoint* are split, else *startHexPoint* is used to find the facet to split in all domains present in *elems*. """ # IDSource unRegister = genObjUnRegister() if isinstance( elems, Mesh ): elems = elems.GetMesh() if ( isinstance( elems, list )): elems = self.editor.MakeIDSource(elems, SMESH.VOLUME) unRegister.set( elems ) pass # axis if isinstance( startHexPoint, geomBuilder.GEOM._objref_GEOM_Object): startHexPoint = self.smeshpyD.GetPointStruct( startHexPoint ) elif isinstance( startHexPoint, list ): startHexPoint = SMESH.PointStruct( startHexPoint[0], startHexPoint[1], startHexPoint[2]) if isinstance( facetNormal, geomBuilder.GEOM._objref_GEOM_Object): facetNormal = self.smeshpyD.GetDirStruct( facetNormal ) elif isinstance( facetNormal, list ): facetNormal = self.smeshpyD.MakeDirStruct( facetNormal[0], facetNormal[1], facetNormal[2]) self.mesh.SetParameters( startHexPoint.parameters + facetNormal.PS.parameters ) self.editor.SplitHexahedraIntoPrisms(elems, startHexPoint, facetNormal, method, allDomains) def SplitQuadsNearTriangularFacets(self): """ Split quadrangle faces near triangular facets of volumes """ faces_array = self.GetElementsByType(SMESH.FACE) for face_id in faces_array: if self.GetElemNbNodes(face_id) == 4: # quadrangle quad_nodes = self.mesh.GetElemNodes(face_id) node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1]) isVolumeFound = False for node1_elem in node1_elems: if not isVolumeFound: if self.GetElementType(node1_elem, True) == SMESH.VOLUME: nb_nodes = self.GetElemNbNodes(node1_elem) if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism volume_elem = node1_elem volume_nodes = self.mesh.GetElemNodes(volume_elem) if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2 if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4 isVolumeFound = True if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3 self.SplitQuad([face_id], False) # diagonal 2-4 elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4 isVolumeFound = True self.SplitQuad([face_id], True) # diagonal 1-3 elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2 if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2 isVolumeFound = True self.SplitQuad([face_id], True) # diagonal 1-3 def SplitHexaToTetras (self, theObject, theNode000, theNode001): """ Split hexahedrons into tetrahedrons. This operation uses :doc:`pattern_mapping` functionality for splitting. Parameters: theObject: the object from which the list of hexahedrons is taken; this is :class:`mesh, sub-mesh, group or filter ` theNode000,theNode001: within the range [0,7]; gives the orientation of the pattern relatively each hexahedron: the (0,0,0) key-point of the pattern will be mapped into *theNode000*-th node of each volume, the (0,0,1) key-point will be mapped into *theNode001*-th node of each volume. The (0,0,0) key-point of the used pattern corresponds to a non-split corner. Returns: True in case of success, False otherwise. """ # Pattern: # 5.---------.6 # /|#* /| # / | #* / | # / | # * / | # / | # /* | # (0,0,1) 4.---------.7 * | # |#* |1 | # *| # | # *.----|---#.2 # | #/ * | / # | /# * | / # | / # * | / # |/ #*|/ # (0,0,0) 0.---------.3 pattern_tetra = "!!! Nb of points: \n 8 \n\ !!! Points: \n\ 0 0 0 !- 0 \n\ 0 1 0 !- 1 \n\ 1 1 0 !- 2 \n\ 1 0 0 !- 3 \n\ 0 0 1 !- 4 \n\ 0 1 1 !- 5 \n\ 1 1 1 !- 6 \n\ 1 0 1 !- 7 \n\ !!! Indices of points of 6 tetras: \n\ 0 3 4 1 \n\ 7 4 3 1 \n\ 4 7 5 1 \n\ 6 2 5 7 \n\ 1 5 2 7 \n\ 2 3 1 7 \n" pattern = self.smeshpyD.GetPattern() isDone = pattern.LoadFromFile(pattern_tetra) if not isDone: print('Pattern.LoadFromFile :', pattern.GetErrorCode()) return isDone pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001) isDone = pattern.MakeMesh(self.mesh, False, False) if not isDone: print('Pattern.MakeMesh :', pattern.GetErrorCode()) # split quafrangle faces near triangular facets of volumes self.SplitQuadsNearTriangularFacets() return isDone def SplitHexaToPrisms (self, theObject, theNode000, theNode001): """ Split hexahedrons into prisms. Uses the :doc:`pattern_mapping` functionality for splitting. Parameters: theObject: the object (:class:`mesh, sub-mesh, group or filter `) from where the list of hexahedrons is taken; theNode000,theNode001: (within the range [0,7]) gives the orientation of the pattern relatively each hexahedron: keypoint (0,0,0) of the pattern will be mapped into the *theNode000* -th node of each volume, keypoint (0,0,1) will be mapped into the *theNode001* -th node of each volume. Edge (0,0,0)-(0,0,1) of used pattern connects two not split corners. Returns: True in case of success, False otherwise. """ # Pattern: 5.---------.6 # /|# /| # / | # / | # / | # / | # / | # / | # (0,0,1) 4.---------.7 | # | | | | # | 1.----|----.2 # | / * | / # | / * | / # | / * | / # |/ *|/ # (0,0,0) 0.---------.3 pattern_prism = "!!! Nb of points: \n 8 \n\ !!! Points: \n\ 0 0 0 !- 0 \n\ 0 1 0 !- 1 \n\ 1 1 0 !- 2 \n\ 1 0 0 !- 3 \n\ 0 0 1 !- 4 \n\ 0 1 1 !- 5 \n\ 1 1 1 !- 6 \n\ 1 0 1 !- 7 \n\ !!! Indices of points of 2 prisms: \n\ 0 1 3 4 5 7 \n\ 2 3 1 6 7 5 \n" pattern = self.smeshpyD.GetPattern() isDone = pattern.LoadFromFile(pattern_prism) if not isDone: print('Pattern.LoadFromFile :', pattern.GetErrorCode()) return isDone pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001) isDone = pattern.MakeMesh(self.mesh, False, False) if not isDone: print('Pattern.MakeMesh :', pattern.GetErrorCode()) # Split quafrangle faces near triangular facets of volumes self.SplitQuadsNearTriangularFacets() return isDone def Smooth(self, IDsOfElements, IDsOfFixedNodes, MaxNbOfIterations, MaxAspectRatio, Method): """ Smooth elements Parameters: IDsOfElements: the list if ids of elements to smooth IDsOfFixedNodes: the list of ids of fixed nodes. Note that nodes built on edges and boundary nodes are always fixed. MaxNbOfIterations: the maximum number of iterations MaxAspectRatio: varies in range [1.0, inf] Method: is either Laplacian (smesh.LAPLACIAN_SMOOTH) or Centroidal (smesh.CENTROIDAL_SMOOTH) Returns: True in case of success, False otherwise. """ if IDsOfElements == []: IDsOfElements = self.GetElementsId() MaxNbOfIterations,MaxAspectRatio,Parameters,hasVars = ParseParameters(MaxNbOfIterations,MaxAspectRatio) self.mesh.SetParameters(Parameters) return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes, MaxNbOfIterations, MaxAspectRatio, Method) def SmoothObject(self, theObject, IDsOfFixedNodes, MaxNbOfIterations, MaxAspectRatio, Method): """ Smooth elements which belong to the given object Parameters: theObject: the object to smooth IDsOfFixedNodes: the list of ids of fixed nodes. Note that nodes built on edges and boundary nodes are always fixed. MaxNbOfIterations: the maximum number of iterations MaxAspectRatio: varies in range [1.0, inf] Method: is either Laplacian (smesh.LAPLACIAN_SMOOTH) or Centroidal (smesh.CENTROIDAL_SMOOTH) Returns: True in case of success, False otherwise. """ if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() return self.editor.SmoothObject(theObject, IDsOfFixedNodes, MaxNbOfIterations, MaxAspectRatio, Method) def SmoothParametric(self, IDsOfElements, IDsOfFixedNodes, MaxNbOfIterations, MaxAspectRatio, Method): """ Parametrically smooth the given elements Parameters: IDsOfElements: the list if ids of elements to smooth IDsOfFixedNodes: the list of ids of fixed nodes. Note that nodes built on edges and boundary nodes are always fixed. MaxNbOfIterations: the maximum number of iterations MaxAspectRatio: varies in range [1.0, inf] Method: is either Laplacian (smesh.LAPLACIAN_SMOOTH) or Centroidal (smesh.CENTROIDAL_SMOOTH) Returns: True in case of success, False otherwise. """ if IDsOfElements == []: IDsOfElements = self.GetElementsId() MaxNbOfIterations,MaxAspectRatio,Parameters,hasVars = ParseParameters(MaxNbOfIterations,MaxAspectRatio) self.mesh.SetParameters(Parameters) return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes, MaxNbOfIterations, MaxAspectRatio, Method) def SmoothParametricObject(self, theObject, IDsOfFixedNodes, MaxNbOfIterations, MaxAspectRatio, Method): """ Parametrically smooth the elements which belong to the given object Parameters: theObject: the object to smooth IDsOfFixedNodes: the list of ids of fixed nodes. Note that nodes built on edges and boundary nodes are always fixed. MaxNbOfIterations: the maximum number of iterations MaxAspectRatio: varies in range [1.0, inf] Method: is either Laplacian (smesh.LAPLACIAN_SMOOTH) or Centroidal (smesh.CENTROIDAL_SMOOTH) Returns: True in case of success, False otherwise. """ if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes, MaxNbOfIterations, MaxAspectRatio, Method) def ConvertToQuadratic(self, theForce3d=False, theSubMesh=None, theToBiQuad=False): """ Convert the mesh to quadratic or bi-quadratic, deletes old elements, replacing them with quadratic with the same id. Parameters: theForce3d: method of new node creation: * False - the medium node lies at the geometrical entity from which the mesh element is built * True - the medium node lies at the middle of the line segments connecting two nodes of a mesh element theSubMesh: a :class:`sub-mesh, group or filter ` to convert theToBiQuad: If True, converts the mesh to bi-quadratic Returns: :class:`SMESH.ComputeError` which can hold a warning Warning: If *theSubMesh* is provided, the mesh can become non-conformal """ if isinstance( theSubMesh, Mesh ): theSubMesh = theSubMesh.mesh if theToBiQuad: self.editor.ConvertToBiQuadratic(theForce3d,theSubMesh) else: if theSubMesh: self.editor.ConvertToQuadraticObject(theForce3d,theSubMesh) else: self.editor.ConvertToQuadratic(theForce3d) error = self.editor.GetLastError() if error and error.comment: print(error.comment) return error def ConvertFromQuadratic(self, theSubMesh=None): """ Convert the mesh from quadratic to ordinary, deletes old quadratic elements, replacing them with ordinary mesh elements with the same id. Parameters: theSubMesh: a :class:`sub-mesh, group or filter ` to convert Warning: If *theSubMesh* is provided, the mesh can become non-conformal """ if theSubMesh: self.editor.ConvertFromQuadraticObject(theSubMesh) else: return self.editor.ConvertFromQuadratic() def Make2DMeshFrom3D(self): """ Create 2D mesh as skin on boundary faces of a 3D mesh Returns: True if operation has been completed successfully, False otherwise """ return self.editor.Make2DMeshFrom3D() def MakeBoundaryMesh(self, elements, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="", toCopyElements=False, toCopyExistingBondary=False): """ Create missing boundary elements Parameters: elements: elements whose boundary is to be checked: :class:`mesh, sub-mesh, group, filter ` or list of elements. If *elements* is mesh, it must be the mesh whose MakeBoundaryMesh() is called dimension: defines type of boundary elements to create, either of { SMESH.BND_2DFROM3D, SMESH.BND_1DFROM3D, SMESH.BND_1DFROM2D }. SMESH.BND_1DFROM3D create mesh edges on all borders of free facets of 3D cells groupName: a name of group to store created boundary elements in, "" means not to create the group meshName: a name of new mesh to store created boundary elements in, "" means not to create the new mesh toCopyElements: if True, the checked elements will be copied into the new mesh else only boundary elements will be copied into the new mesh toCopyExistingBondary: if True, not only new but also pre-existing boundary elements will be copied into the new mesh Returns: tuple (:class:`Mesh`, :class:`group `) where boundary elements were added to """ unRegister = genObjUnRegister() if isinstance( elements, Mesh ): elements = elements.GetMesh() if ( isinstance( elements, list )): elemType = SMESH.ALL if elements: elemType = self.GetElementType( elements[0], iselem=True) elements = self.editor.MakeIDSource(elements, elemType) unRegister.set( elements ) mesh, group = self.editor.MakeBoundaryMesh(elements,dimension,groupName,meshName, toCopyElements,toCopyExistingBondary) if mesh: mesh = self.smeshpyD.Mesh(mesh) return mesh, group def MakeBoundaryElements(self, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="", toCopyAll=False, groups=[]): """ Create missing boundary elements around either the whole mesh or groups of elements Parameters: dimension: defines type of boundary elements to create, either of { SMESH.BND_2DFROM3D, SMESH.BND_1DFROM3D, SMESH.BND_1DFROM2D } groupName: a name of group to store all boundary elements in, "" means not to create the group meshName: a name of a new mesh, which is a copy of the initial mesh + created boundary elements; "" means not to create the new mesh toCopyAll: if True, the whole initial mesh will be copied into the new mesh else only boundary elements will be copied into the new mesh groups: list of :class:`sub-meshes, groups or filters ` of elements to make boundary around Returns: tuple( long, mesh, groups ) - long - number of added boundary elements - mesh - the :class:`Mesh` where elements were added to - group - the :class:`group ` of boundary elements or None """ nb, mesh, group = self.editor.MakeBoundaryElements(dimension,groupName,meshName, toCopyAll,groups) if mesh: mesh = self.smeshpyD.Mesh(mesh) return nb, mesh, group def RenumberNodes(self): """ Renumber mesh nodes to remove unused node IDs """ self.editor.RenumberNodes() def RenumberElements(self): """ Renumber mesh elements to remove unused element IDs """ self.editor.RenumberElements() def _getIdSourceList(self, arg, idType, unRegister): """ Private method converting *arg* into a list of :class:`SMESH.SMESH_IDSource` """ if arg and isinstance( arg, list ): if isinstance( arg[0], int ): arg = self.GetIDSource( arg, idType ) unRegister.set( arg ) elif isinstance( arg[0], Mesh ): arg[0] = arg[0].GetMesh() elif isinstance( arg, Mesh ): arg = arg.GetMesh() if arg and isinstance( arg, SMESH._objref_SMESH_IDSource ): arg = [arg] return arg def RotationSweepObjects(self, nodes, edges, faces, Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False, TotalAngle=False): """ Generate new elements by rotation of the given elements and nodes around the axis Parameters: nodes: nodes to revolve: a list including ids, :class:`a mesh, sub-meshes, groups or filters ` edges: edges to revolve: a list including ids, :class:`a mesh, sub-meshes, groups or filters ` faces: faces to revolve: a list including ids, :class:`a mesh, sub-meshes, groups or filters ` Axis: the axis of rotation: :class:`SMESH.AxisStruct`, line (geom object) or [x,y,z,dx,dy,dz] AngleInRadians: the angle of Rotation (in radians) or a name of variable which defines angle in degrees NbOfSteps: the number of steps Tolerance: tolerance MakeGroups: forces the generation of new groups from existing ones TotalAngle: gives meaning of AngleInRadians: if True then it is an angular size of all steps, else - size of each step Returns: the list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise """ unRegister = genObjUnRegister() nodes = self._getIdSourceList( nodes, SMESH.NODE, unRegister ) edges = self._getIdSourceList( edges, SMESH.EDGE, unRegister ) faces = self._getIdSourceList( faces, SMESH.FACE, unRegister ) if isinstance( Axis, geomBuilder.GEOM._objref_GEOM_Object): Axis = self.smeshpyD.GetAxisStruct( Axis ) if isinstance( Axis, list ): Axis = SMESH.AxisStruct( *Axis ) AngleInRadians,AngleParameters,hasVars = ParseAngles(AngleInRadians) NbOfSteps,Tolerance,Parameters,hasVars = ParseParameters(NbOfSteps,Tolerance) Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters self.mesh.SetParameters(Parameters) if TotalAngle and NbOfSteps: AngleInRadians /= NbOfSteps return self.editor.RotationSweepObjects( nodes, edges, faces, Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups) def RotationSweep(self, IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False, TotalAngle=False): """ Generate new elements by rotation of the elements around the axis Parameters: IDsOfElements: the list of ids of elements to sweep Axis: the axis of rotation, :class:`SMESH.AxisStruct` or line(geom object) AngleInRadians: the angle of Rotation (in radians) or a name of variable which defines angle in degrees NbOfSteps: the number of steps Tolerance: tolerance MakeGroups: forces the generation of new groups from existing ones TotalAngle: gives meaning of AngleInRadians: if True then it is an angular size of all steps, else - size of each step Returns: the list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise """ return self.RotationSweepObjects([], IDsOfElements, IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups, TotalAngle) def RotationSweepObject(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False, TotalAngle=False): """ Generate new elements by rotation of the elements of object around the axis theObject object which elements should be sweeped. It can be a mesh, a sub mesh or a group. Parameters: Axis: the axis of rotation, :class:`SMESH.AxisStruct` or line(geom object) AngleInRadians: the angle of Rotation NbOfSteps: number of steps Tolerance: tolerance MakeGroups: forces the generation of new groups from existing ones TotalAngle: gives meaning of AngleInRadians: if True then it is an angular size of all steps, else - size of each step Returns: the list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise """ return self.RotationSweepObjects( [], theObject, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups, TotalAngle ) def RotationSweepObject1D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False, TotalAngle=False): """ Generate new elements by rotation of the elements of object around the axis theObject object which elements should be sweeped. It can be a mesh, a sub mesh or a group. Parameters: Axis: the axis of rotation, :class:`SMESH.AxisStruct` or line(geom object) AngleInRadians: the angle of Rotation NbOfSteps: number of steps Tolerance: tolerance MakeGroups: forces the generation of new groups from existing ones TotalAngle: gives meaning of AngleInRadians: if True then it is an angular size of all steps, else - size of each step Returns: the list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise """ return self.RotationSweepObjects([],theObject,[], Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups, TotalAngle) def RotationSweepObject2D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False, TotalAngle=False): """ Generate new elements by rotation of the elements of object around the axis theObject object which elements should be sweeped. It can be a mesh, a sub mesh or a group. Parameters: Axis: the axis of rotation, :class:`SMESH.AxisStruct` or line(geom object) AngleInRadians: the angle of Rotation NbOfSteps: number of steps Tolerance: tolerance MakeGroups: forces the generation of new groups from existing ones TotalAngle: gives meaning of AngleInRadians: if True then it is an angular size of all steps, else - size of each step Returns: the list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise """ return self.RotationSweepObjects([],[],theObject, Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups, TotalAngle) def ExtrusionSweepObjects(self, nodes, edges, faces, StepVector, NbOfSteps, MakeGroups=False, scaleFactors=[], linearVariation=False, basePoint=[] ): """ Generate new elements by extrusion of the given elements and nodes Parameters: nodes: nodes to extrude: a list including ids, :class:`a mesh, sub-meshes, groups or filters ` edges: edges to extrude: a list including ids, :class:`a mesh, sub-meshes, groups or filters ` faces: faces to extrude: a list including ids, :class:`a mesh, sub-meshes, groups or filters ` StepVector: vector or :class:`SMESH.DirStruct` or 3 vector components, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||) NbOfSteps: the number of steps MakeGroups: forces the generation of new groups from existing ones scaleFactors: optional scale factors to apply during extrusion linearVariation: if *True*, scaleFactors are spread over all *scaleFactors*, else scaleFactors[i] is applied to nodes at the i-th extrusion step basePoint: optional scaling center; if not provided, a gravity center of nodes and elements being extruded is used as the scaling center. It can be either - a list of tree components of the point or - a node ID or - a GEOM point Returns: the list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise Example: :ref:`tui_extrusion` """ unRegister = genObjUnRegister() nodes = self._getIdSourceList( nodes, SMESH.NODE, unRegister ) edges = self._getIdSourceList( edges, SMESH.EDGE, unRegister ) faces = self._getIdSourceList( faces, SMESH.FACE, unRegister ) if isinstance( StepVector, geomBuilder.GEOM._objref_GEOM_Object): StepVector = self.smeshpyD.GetDirStruct(StepVector) if isinstance( StepVector, list ): StepVector = self.smeshpyD.MakeDirStruct(*StepVector) if isinstance( basePoint, int): xyz = self.GetNodeXYZ( basePoint ) if not xyz: raise RuntimeError("Invalid node ID: %s" % basePoint) basePoint = xyz if isinstance( basePoint, geomBuilder.GEOM._objref_GEOM_Object ): basePoint = self.geompyD.PointCoordinates( basePoint ) NbOfSteps,Parameters,hasVars = ParseParameters(NbOfSteps) Parameters = StepVector.PS.parameters + var_separator + Parameters self.mesh.SetParameters(Parameters) return self.editor.ExtrusionSweepObjects( nodes, edges, faces, StepVector, NbOfSteps, scaleFactors, linearVariation, basePoint, MakeGroups) def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False, IsNodes = False): """ Generate new elements by extrusion of the elements with given ids Parameters: IDsOfElements: the list of ids of elements or nodes for extrusion StepVector: vector or :class:`SMESH.DirStruct` or 3 vector components, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||) NbOfSteps: the number of steps MakeGroups: forces the generation of new groups from existing ones IsNodes: is True if elements with given ids are nodes Returns: the list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise Example: :ref:`tui_extrusion` """ n,e,f = [],[],[] if IsNodes: n = IDsOfElements else : e,f, = IDsOfElements,IDsOfElements return self.ExtrusionSweepObjects(n,e,f, StepVector, NbOfSteps, MakeGroups) def ExtrusionByNormal(self, Elements, StepSize, NbOfSteps, ByAverageNormal=False, UseInputElemsOnly=True, MakeGroups=False, Dim = 2): """ Generate new elements by extrusion along the normal to a discretized surface or wire Parameters: Elements: elements to extrude - a list including ids, :class:`a mesh, sub-meshes, groups or filters `. Only faces can be extruded so far. A sub-mesh should be a sub-mesh on geom faces. StepSize: length of one extrusion step (the total extrusion length will be *NbOfSteps* *StepSize*). NbOfSteps: number of extrusion steps. ByAverageNormal: if True each node is translated by *StepSize* along the average of the normal vectors to the faces sharing the node; else each node is translated along the same average normal till intersection with the plane got by translation of the face sharing the node along its own normal by *StepSize*. UseInputElemsOnly: to use only *Elements* when computing extrusion direction for every node of *Elements*. MakeGroups: forces generation of new groups from existing ones. Dim: dimension of elements to extrude: 2 - faces or 1 - edges. Extrusion of edges is not yet implemented. This parameter is used if *Elements* contains both faces and edges, i.e. *Elements* is a Mesh. Returns: the list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise. Example: :ref:`tui_extrusion` """ unRegister = genObjUnRegister() if isinstance( Elements, Mesh ): Elements = [ Elements.GetMesh() ] if isinstance( Elements, list ): if not Elements: raise RuntimeError("Elements empty!") if isinstance( Elements[0], int ): Elements = self.GetIDSource( Elements, SMESH.ALL ) unRegister.set( Elements ) if not isinstance( Elements, list ): Elements = [ Elements ] StepSize,NbOfSteps,Parameters,hasVars = ParseParameters(StepSize,NbOfSteps) self.mesh.SetParameters(Parameters) return self.editor.ExtrusionByNormal(Elements, StepSize, NbOfSteps, ByAverageNormal, UseInputElemsOnly, MakeGroups, Dim) def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False, IsNodes=False): """ Generate new elements by extrusion of the elements or nodes which belong to the object Parameters: theObject: the object whose elements or nodes should be processed. It can be a :class:`mesh, sub-mesh, group or filter `. StepVector: vector or :class:`SMESH.DirStruct` or 3 vector components, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||) NbOfSteps: the number of steps MakeGroups: forces the generation of new groups from existing ones IsNodes: is True if elements to extrude are nodes Returns: list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise Example: :ref:`tui_extrusion` """ n,e,f = [],[],[] if IsNodes: n = theObject else : e,f, = theObject,theObject return self.ExtrusionSweepObjects(n,e,f, StepVector, NbOfSteps, MakeGroups) def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps, MakeGroups=False): """ Generate new elements by extrusion of edges which belong to the object Parameters: theObject: object whose 1D elements should be processed. It can be a :class:`mesh, sub-mesh, group or filter `. StepVector: vector or :class:`SMESH.DirStruct` or 3 vector components, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||) NbOfSteps: the number of steps MakeGroups: to generate new groups from existing ones Returns: list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise Example: :ref:`tui_extrusion` """ return self.ExtrusionSweepObjects([],theObject,[], StepVector, NbOfSteps, MakeGroups) def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False): """ Generate new elements by extrusion of faces which belong to the object Parameters: theObject: object whose 2D elements should be processed. It can be a :class:`mesh, sub-mesh, group or filter `. StepVector: vector or :class:`SMESH.DirStruct` or 3 vector components, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||) NbOfSteps: the number of steps MakeGroups: forces the generation of new groups from existing ones Returns: list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise Example: :ref:`tui_extrusion` """ return self.ExtrusionSweepObjects([],[],theObject, StepVector, NbOfSteps, MakeGroups) def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance, MakeGroups=False): """ Generate new elements by extrusion of the elements with given ids Parameters: IDsOfElements: is ids of elements StepVector: vector or :class:`SMESH.DirStruct` or 3 vector components, defining the direction and value of extrusion for one step (the total extrusion length will be NbOfSteps * ||StepVector||) NbOfSteps: the number of steps ExtrFlags: sets flags for extrusion SewTolerance: uses for comparing locations of nodes if flag EXTRUSION_FLAG_SEW is set MakeGroups: forces the generation of new groups from existing ones Returns: list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise """ if isinstance( StepVector, geomBuilder.GEOM._objref_GEOM_Object): StepVector = self.smeshpyD.GetDirStruct(StepVector) if isinstance( StepVector, list ): StepVector = self.smeshpyD.MakeDirStruct(*StepVector) return self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance, MakeGroups) def ExtrusionAlongPathObjects(self, Nodes, Edges, Faces, PathMesh, PathShape=None, NodeStart=1, HasAngles=False, Angles=[], LinearVariation=False, HasRefPoint=False, RefPoint=[0,0,0], MakeGroups=False): """ Generate new elements by extrusion of the given elements and nodes along the path. The path of extrusion must be a meshed edge. Parameters: Nodes: nodes to extrude: a list including ids, :class:`a mesh, sub-meshes, groups or filters ` Edges: edges to extrude: a list including ids, :class:`a mesh, sub-meshes, groups or filters ` Faces: faces to extrude: a list including ids, :class:`a mesh, sub-meshes, groups or filters ` PathMesh: 1D mesh or 1D sub-mesh, along which proceeds the extrusion PathShape: shape (edge) defines the sub-mesh of PathMesh if PathMesh contains not only path segments, else it can be None NodeStart: the first or the last node on the path. Defines the direction of extrusion HasAngles: allows the shape to be rotated around the path to get the resulting mesh in a helical fashion Angles: list of angles LinearVariation: forces the computation of rotation angles as linear variation of the given Angles along path steps HasRefPoint: allows using the reference point RefPoint: the reference point around which the shape is rotated (the mass center of the shape by default). The User can specify any point as the Reference Point. *RefPoint* can be either GEOM Vertex, [x,y,z] or :class:`SMESH.PointStruct` MakeGroups: forces the generation of new groups from existing ones Returns: list of created :class:`groups ` and :class:`error code ` Example: :ref:`tui_extrusion_along_path` """ unRegister = genObjUnRegister() Nodes = self._getIdSourceList( Nodes, SMESH.NODE, unRegister ) Edges = self._getIdSourceList( Edges, SMESH.EDGE, unRegister ) Faces = self._getIdSourceList( Faces, SMESH.FACE, unRegister ) if isinstance( RefPoint, geomBuilder.GEOM._objref_GEOM_Object): RefPoint = self.smeshpyD.GetPointStruct(RefPoint) if isinstance( RefPoint, list ): if not RefPoint: RefPoint = [0,0,0] RefPoint = SMESH.PointStruct( *RefPoint ) if isinstance( PathMesh, Mesh ): PathMesh = PathMesh.GetMesh() Angles,AnglesParameters,hasVars = ParseAngles(Angles) Parameters = AnglesParameters + var_separator + RefPoint.parameters self.mesh.SetParameters(Parameters) return self.editor.ExtrusionAlongPathObjects(Nodes, Edges, Faces, PathMesh, PathShape, NodeStart, HasAngles, Angles, LinearVariation, HasRefPoint, RefPoint, MakeGroups) def ExtrusionAlongPathX(self, Base, Path, NodeStart, HasAngles=False, Angles=[], LinearVariation=False, HasRefPoint=False, RefPoint=[0,0,0], MakeGroups=False, ElemType=SMESH.FACE): """ Generate new elements by extrusion of the given elements. The path of extrusion must be a meshed edge. Parameters: Base: :class:`mesh, sub-mesh, group, filter `, or list of ids of elements for extrusion Path: 1D mesh or 1D sub-mesh, along which proceeds the extrusion NodeStart: the start node from Path. Defines the direction of extrusion HasAngles: allows the shape to be rotated around the path to get the resulting mesh in a helical fashion Angles: list of angles in radians LinearVariation: forces the computation of rotation angles as linear variation of the given Angles along path steps HasRefPoint: allows using the reference point RefPoint: the reference point around which the elements are rotated (the mass center of the elements by default). The User can specify any point as the Reference Point. *RefPoint* can be either GEOM Vertex, [x,y,z] or :class:`SMESH.PointStruct` MakeGroups: forces the generation of new groups from existing ones ElemType: type of elements for extrusion (if param Base is a mesh) Returns: list of created :class:`groups ` and :class:`error code ` if *MakeGroups* == True, only :class:`error code ` otherwise Example: :ref:`tui_extrusion_along_path` """ n,e,f = [],[],[] if ElemType == SMESH.NODE: n = Base if ElemType == SMESH.EDGE: e = Base if ElemType == SMESH.FACE: f = Base gr,er = self.ExtrusionAlongPathObjects(n,e,f, Path, None, NodeStart, HasAngles, Angles, LinearVariation, HasRefPoint, RefPoint, MakeGroups) if MakeGroups: return gr,er return er def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart, HasAngles=False, Angles=[], HasRefPoint=False, RefPoint=[], MakeGroups=False, LinearVariation=False): """ Generate new elements by extrusion of the given elements. The path of extrusion must be a meshed edge. Parameters: IDsOfElements: ids of elements PathMesh: mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion PathShape: shape (edge) defines the sub-mesh for the path NodeStart: the first or the last node on the edge. Defines the direction of extrusion HasAngles: allows the shape to be rotated around the path to get the resulting mesh in a helical fashion Angles: list of angles in radians HasRefPoint: allows using the reference point RefPoint: the reference point around which the shape is rotated (the mass center of the shape by default). The User can specify any point as the Reference Point. *RefPoint* can be either GEOM Vertex, [x,y,z] or :class:`SMESH.PointStruct` MakeGroups: forces the generation of new groups from existing ones LinearVariation: forces the computation of rotation angles as linear variation of the given Angles along path steps Returns: list of created :class:`groups ` and :class:`error code ` if *MakeGroups* == True, only :class:`error code ` otherwise Example: :ref:`tui_extrusion_along_path` """ n,e,f = [],IDsOfElements,IDsOfElements gr,er = self.ExtrusionAlongPathObjects(n,e,f, PathMesh, PathShape, NodeStart, HasAngles, Angles, LinearVariation, HasRefPoint, RefPoint, MakeGroups) if MakeGroups: return gr,er return er def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart, HasAngles=False, Angles=[], HasRefPoint=False, RefPoint=[], MakeGroups=False, LinearVariation=False): """ Generate new elements by extrusion of the elements which belong to the object. The path of extrusion must be a meshed edge. Parameters: theObject: the object whose elements should be processed. It can be a :class:`mesh, sub-mesh, group or filter `. PathMesh: mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds PathShape: shape (edge) defines the sub-mesh for the path NodeStart: the first or the last node on the edge. Defines the direction of extrusion HasAngles: allows the shape to be rotated around the path to get the resulting mesh in a helical fashion Angles: list of angles HasRefPoint: allows using the reference point RefPoint: the reference point around which the shape is rotated (the mass center of the shape by default). The User can specify any point as the Reference Point. *RefPoint* can be either GEOM Vertex, [x,y,z] or :class:`SMESH.PointStruct` MakeGroups: forces the generation of new groups from existing ones LinearVariation: forces the computation of rotation angles as linear variation of the given Angles along path steps Returns: list of created :class:`groups ` and :class:`error code ` if *MakeGroups* == True, only :class:`error code ` otherwise Example: :ref:`tui_extrusion_along_path` """ n,e,f = [],theObject,theObject gr,er = self.ExtrusionAlongPathObjects(n,e,f, PathMesh, PathShape, NodeStart, HasAngles, Angles, LinearVariation, HasRefPoint, RefPoint, MakeGroups) if MakeGroups: return gr,er return er def ExtrusionAlongPathObject1D(self, theObject, PathMesh, PathShape, NodeStart, HasAngles=False, Angles=[], HasRefPoint=False, RefPoint=[], MakeGroups=False, LinearVariation=False): """ Generate new elements by extrusion of mesh segments which belong to the object. The path of extrusion must be a meshed edge. Parameters: theObject: the object whose 1D elements should be processed. It can be a :class:`mesh, sub-mesh, group or filter `. PathMesh: mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds PathShape: shape (edge) defines the sub-mesh for the path NodeStart: the first or the last node on the edge. Defines the direction of extrusion HasAngles: allows the shape to be rotated around the path to get the resulting mesh in a helical fashion Angles: list of angles HasRefPoint: allows using the reference point RefPoint: the reference point around which the shape is rotated (the mass center of the shape by default). The User can specify any point as the Reference Point. *RefPoint* can be either GEOM Vertex, [x,y,z] or :class:`SMESH.PointStruct` MakeGroups: forces the generation of new groups from existing ones LinearVariation: forces the computation of rotation angles as linear variation of the given Angles along path steps Returns: list of created :class:`groups ` and :class:`error code ` if *MakeGroups* == True, only :class:`error code ` otherwise Example: :ref:`tui_extrusion_along_path` """ n,e,f = [],theObject,[] gr,er = self.ExtrusionAlongPathObjects(n,e,f, PathMesh, PathShape, NodeStart, HasAngles, Angles, LinearVariation, HasRefPoint, RefPoint, MakeGroups) if MakeGroups: return gr,er return er def ExtrusionAlongPathObject2D(self, theObject, PathMesh, PathShape, NodeStart, HasAngles=False, Angles=[], HasRefPoint=False, RefPoint=[], MakeGroups=False, LinearVariation=False): """ Generate new elements by extrusion of faces which belong to the object. The path of extrusion must be a meshed edge. Parameters: theObject: the object whose 2D elements should be processed. It can be a :class:`mesh, sub-mesh, group or filter `. PathMesh: mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds PathShape: shape (edge) defines the sub-mesh for the path NodeStart: the first or the last node on the edge. Defines the direction of extrusion HasAngles: allows the shape to be rotated around the path to get the resulting mesh in a helical fashion Angles: list of angles HasRefPoint: allows using the reference point RefPoint: the reference point around which the shape is rotated (the mass center of the shape by default). The User can specify any point as the Reference Point. *RefPoint* can be either GEOM Vertex, [x,y,z] or :class:`SMESH.PointStruct` MakeGroups: forces the generation of new groups from existing ones LinearVariation: forces the computation of rotation angles as linear variation of the given Angles along path steps Returns: list of created :class:`groups ` and :class:`error code ` if *MakeGroups* == True, only :class:`error code ` otherwise Example: :ref:`tui_extrusion_along_path` """ n,e,f = [],[],theObject gr,er = self.ExtrusionAlongPathObjects(n,e,f, PathMesh, PathShape, NodeStart, HasAngles, Angles, LinearVariation, HasRefPoint, RefPoint, MakeGroups) if MakeGroups: return gr,er return er def Mirror(self, IDsOfElements, Mirror, theMirrorType=None, Copy=0, MakeGroups=False): """ Create a symmetrical copy of mesh elements Parameters: IDsOfElements: list of elements ids Mirror: is :class:`SMESH.AxisStruct` or geom object (point, line, plane) theMirrorType: smeshBuilder.POINT, smeshBuilder.AXIS or smeshBuilder.PLANE. If the *Mirror* is a geom object this parameter is unnecessary Copy: allows to copy element (Copy is 1) or to replace with its mirroring (Copy is 0) MakeGroups: forces the generation of new groups from existing ones (if Copy) Returns: list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise """ if IDsOfElements == []: IDsOfElements = self.GetElementsId() if ( isinstance( Mirror, geomBuilder.GEOM._objref_GEOM_Object)): Mirror = self.smeshpyD.GetAxisStruct(Mirror) theMirrorType = Mirror._mirrorType else: self.mesh.SetParameters(Mirror.parameters) if Copy and MakeGroups: return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType) self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy) return [] def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType=0, MakeGroups=0, NewMeshName=""): """ Create a new mesh by a symmetrical copy of mesh elements Parameters: IDsOfElements: the list of elements ids Mirror: is :class:`SMESH.AxisStruct` or geom object (point, line, plane) theMirrorType: smeshBuilder.POINT, smeshBuilder.AXIS or smeshBuilder.PLANE. If the *Mirror* is a geom object this parameter is unnecessary MakeGroups: to generate new groups from existing ones NewMeshName: a name of the new mesh to create Returns: instance of class :class:`Mesh` """ if IDsOfElements == []: IDsOfElements = self.GetElementsId() if ( isinstance( Mirror, geomBuilder.GEOM._objref_GEOM_Object)): Mirror = self.smeshpyD.GetAxisStruct(Mirror) theMirrorType = Mirror._mirrorType else: self.mesh.SetParameters(Mirror.parameters) mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType, MakeGroups, NewMeshName) return Mesh(self.smeshpyD,self.geompyD,mesh) def MirrorObject (self, theObject, Mirror, theMirrorType=None, Copy=0, MakeGroups=False): """ Create a symmetrical copy of the object Parameters: theObject: :class:`mesh, sub-mesh, group or filter ` Mirror: :class:`SMESH.AxisStruct` or geom object (point, line, plane) theMirrorType: smeshBuilder.POINT, smeshBuilder.AXIS or smeshBuilder.PLANE. If the *Mirror* is a geom object this parameter is unnecessary Copy: allows copying the element (Copy==True) or replacing it with its mirror (Copy==False) MakeGroups: forces the generation of new groups from existing ones (if Copy) Returns: list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise """ if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() if ( isinstance( Mirror, geomBuilder.GEOM._objref_GEOM_Object)): Mirror = self.smeshpyD.GetAxisStruct(Mirror) theMirrorType = Mirror._mirrorType else: self.mesh.SetParameters(Mirror.parameters) if Copy and MakeGroups: return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType) self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy) return [] def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType=0,MakeGroups=0,NewMeshName=""): """ Create a new mesh by a symmetrical copy of the object Parameters: theObject: :class:`mesh, sub-mesh, group or filter ` Mirror: :class:`SMESH.AxisStruct` or geom object (point, line, plane) theMirrorType: smeshBuilder.POINT, smeshBuilder.AXIS or smeshBuilder.PLANE. If the *Mirror* is a geom object this parameter is unnecessary MakeGroups: forces the generation of new groups from existing ones NewMeshName: the name of the new mesh to create Returns: instance of class :class:`Mesh` """ if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() if ( isinstance( Mirror, geomBuilder.GEOM._objref_GEOM_Object)): Mirror = self.smeshpyD.GetAxisStruct(Mirror) theMirrorType = Mirror._mirrorType else: self.mesh.SetParameters(Mirror.parameters) mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType, MakeGroups, NewMeshName) return Mesh( self.smeshpyD,self.geompyD,mesh ) def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False): """ Translate the elements Parameters: IDsOfElements: list of elements ids Vector: the direction of translation (:class:`SMESH.DirStruct` or vector or 3 vector components) Copy: allows copying the translated elements MakeGroups: forces the generation of new groups from existing ones (if Copy) Returns: list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise """ if IDsOfElements == []: IDsOfElements = self.GetElementsId() if ( isinstance( Vector, geomBuilder.GEOM._objref_GEOM_Object)): Vector = self.smeshpyD.GetDirStruct(Vector) if isinstance( Vector, list ): Vector = self.smeshpyD.MakeDirStruct(*Vector) self.mesh.SetParameters(Vector.PS.parameters) if Copy and MakeGroups: return self.editor.TranslateMakeGroups(IDsOfElements, Vector) self.editor.Translate(IDsOfElements, Vector, Copy) return [] def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""): """ Create a new mesh of translated elements Parameters: IDsOfElements: list of elements ids Vector: the direction of translation (:class:`SMESH.DirStruct` or vector or 3 vector components) MakeGroups: forces the generation of new groups from existing ones NewMeshName: the name of the newly created mesh Returns: instance of class :class:`Mesh` """ if IDsOfElements == []: IDsOfElements = self.GetElementsId() if ( isinstance( Vector, geomBuilder.GEOM._objref_GEOM_Object)): Vector = self.smeshpyD.GetDirStruct(Vector) if isinstance( Vector, list ): Vector = self.smeshpyD.MakeDirStruct(*Vector) self.mesh.SetParameters(Vector.PS.parameters) mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName) return Mesh ( self.smeshpyD, self.geompyD, mesh ) def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False): """ Translate the object Parameters: theObject: the object to translate (:class:`mesh, sub-mesh, group or filter `) Vector: direction of translation (:class:`SMESH.DirStruct` or geom vector or 3 vector components) Copy: allows copying the translated elements MakeGroups: forces the generation of new groups from existing ones (if Copy) Returns: list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise """ if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() if ( isinstance( Vector, geomBuilder.GEOM._objref_GEOM_Object)): Vector = self.smeshpyD.GetDirStruct(Vector) if isinstance( Vector, list ): Vector = self.smeshpyD.MakeDirStruct(*Vector) self.mesh.SetParameters(Vector.PS.parameters) if Copy and MakeGroups: return self.editor.TranslateObjectMakeGroups(theObject, Vector) self.editor.TranslateObject(theObject, Vector, Copy) return [] def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""): """ Create a new mesh from the translated object Parameters: theObject: the object to translate (:class:`mesh, sub-mesh, group or filter `) Vector: the direction of translation (:class:`SMESH.DirStruct` or geom vector or 3 vector components) MakeGroups: forces the generation of new groups from existing ones NewMeshName: the name of the newly created mesh Returns: instance of class :class:`Mesh` """ if isinstance( theObject, Mesh ): theObject = theObject.GetMesh() if isinstance( Vector, geomBuilder.GEOM._objref_GEOM_Object ): Vector = self.smeshpyD.GetDirStruct(Vector) if isinstance( Vector, list ): Vector = self.smeshpyD.MakeDirStruct(*Vector) self.mesh.SetParameters(Vector.PS.parameters) mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName) return Mesh( self.smeshpyD, self.geompyD, mesh ) def Scale(self, theObject, thePoint, theScaleFact, Copy, MakeGroups=False): """ Scale the object Parameters: theObject: the object to translate (:class:`mesh, sub-mesh, group or filter `) thePoint: base point for scale (:class:`SMESH.PointStruct` or list of 3 coordinates) theScaleFact: list of 1-3 scale factors for axises Copy: allows copying the translated elements MakeGroups: forces the generation of new groups from existing ones (if Copy) Returns: list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise """ unRegister = genObjUnRegister() if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() if ( isinstance( theObject, list )): theObject = self.GetIDSource(theObject, SMESH.ALL) unRegister.set( theObject ) if ( isinstance( thePoint, list )): thePoint = PointStruct( thePoint[0], thePoint[1], thePoint[2] ) if ( isinstance( theScaleFact, float )): theScaleFact = [theScaleFact] if ( isinstance( theScaleFact, int )): theScaleFact = [ float(theScaleFact)] self.mesh.SetParameters(thePoint.parameters) if Copy and MakeGroups: return self.editor.ScaleMakeGroups(theObject, thePoint, theScaleFact) self.editor.Scale(theObject, thePoint, theScaleFact, Copy) return [] def ScaleMakeMesh(self, theObject, thePoint, theScaleFact, MakeGroups=False, NewMeshName=""): """ Create a new mesh from the translated object Parameters: theObject: the object to translate (:class:`mesh, sub-mesh, group or filter `) thePoint: base point for scale (:class:`SMESH.PointStruct` or list of 3 coordinates) theScaleFact: list of 1-3 scale factors for axises MakeGroups: forces the generation of new groups from existing ones NewMeshName: the name of the newly created mesh Returns: instance of class :class:`Mesh` """ unRegister = genObjUnRegister() if (isinstance(theObject, Mesh)): theObject = theObject.GetMesh() if ( isinstance( theObject, list )): theObject = self.GetIDSource(theObject,SMESH.ALL) unRegister.set( theObject ) if ( isinstance( thePoint, list )): thePoint = PointStruct( thePoint[0], thePoint[1], thePoint[2] ) if ( isinstance( theScaleFact, float )): theScaleFact = [theScaleFact] if ( isinstance( theScaleFact, int )): theScaleFact = [ float(theScaleFact)] self.mesh.SetParameters(thePoint.parameters) mesh = self.editor.ScaleMakeMesh(theObject, thePoint, theScaleFact, MakeGroups, NewMeshName) return Mesh( self.smeshpyD, self.geompyD, mesh ) def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False): """ Rotate the elements Parameters: IDsOfElements: list of elements ids Axis: the axis of rotation (:class:`SMESH.AxisStruct` or geom line) AngleInRadians: the angle of rotation (in radians) or a name of variable which defines angle in degrees Copy: allows copying the rotated elements MakeGroups: forces the generation of new groups from existing ones (if Copy) Returns: list of created :class:`groups ` if *MakeGroups* == True, empty list otherwise """ if IDsOfElements == []: IDsOfElements = self.GetElementsId() if ( isinstance( Axis, geomBuilder.GEOM._objref_GEOM_Object)): Axis = self.smeshpyD.GetAxisStruct(Axis) AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians) Parameters = Axis.parameters + var_separator + Parameters self.mesh.SetParameters(Parameters) if Copy and MakeGroups: return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians) self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy) return [] def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""): """ Create a new mesh of rotated elements Parameters: IDsOfElements: list of element ids Axis: the axis of rotation (:class:`SMESH.AxisStruct` or geom line) AngleInRadians: the angle of rotation (in radians) or a name of variable which defines angle in degrees MakeGroups: forces the generation of new groups from existing ones NewMeshName: the name of the newly created mesh Returns: instance of class :class:`Mesh` """ if IDsOfElements == []: IDsOfElements = self.GetElementsId() if ( isinstance( Axis, geomBuilder.GEOM._objref_GEOM_Object)): Axis = self.smeshpyD.GetAxisStruct(Axis) AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians) Parameters = Axis.parameters + var_separator + Parameters self.mesh.SetParameters(Parameters) mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians, MakeGroups, NewMeshName) return Mesh( self.smeshpyD, self.geompyD, mesh ) def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False): """ Rotate the object Parameters: theObject: the object to rotate (:class:`mesh, sub-mesh, group or filter `) Axis: the axis of rotation (:class:`SMESH.AxisStruct` or geom line) AngleInRadians: the angle of rotation (in radians) or a name of variable which defines angle in degrees Copy: allows copying the rotated elements MakeGroups: forces the generation of new groups from existing ones (if Copy) Returns: list of created :class:`groups ` if MakeGroups==True, empty list otherwise """ if (isinstance(theObject, Mesh)): theObject = theObject.GetMesh() if (isinstance(Axis, geomBuilder.GEOM._objref_GEOM_Object)): Axis = self.smeshpyD.GetAxisStruct(Axis) AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians) Parameters = Axis.parameters + ":" + Parameters self.mesh.SetParameters(Parameters) if Copy and MakeGroups: return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians) self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy) return [] def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""): """ Create a new mesh from the rotated object Parameters: theObject: the object to rotate (:class:`mesh, sub-mesh, group or filter `) Axis: the axis of rotation (:class:`SMESH.AxisStruct` or geom line) AngleInRadians: the angle of rotation (in radians) or a name of variable which defines angle in degrees MakeGroups: forces the generation of new groups from existing ones NewMeshName: the name of the newly created mesh Returns: instance of class :class:`Mesh` """ if (isinstance( theObject, Mesh )): theObject = theObject.GetMesh() if (isinstance(Axis, geomBuilder.GEOM._objref_GEOM_Object)): Axis = self.smeshpyD.GetAxisStruct(Axis) AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians) Parameters = Axis.parameters + ":" + Parameters mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians, MakeGroups, NewMeshName) self.mesh.SetParameters(Parameters) return Mesh( self.smeshpyD, self.geompyD, mesh ) def Offset(self, theObject, Value, MakeGroups=False, CopyElements=False, NewMeshName=''): """ Create an offset mesh from the given 2D object Parameters: theObject (SMESH.SMESH_IDSource): the source object (mesh, sub-mesh, group or filter) theValue (float): signed offset size MakeGroups (boolean): forces the generation of new groups from existing ones CopyElements (boolean): if *NewMeshName* is empty, True means to keep original elements, False means to remove original elements. NewMeshName (string): the name of a mesh to create. If empty, offset elements are added to this mesh Returns: A tuple (:class:`Mesh`, list of :class:`groups `) """ if isinstance( theObject, Mesh ): theObject = theObject.GetMesh() theValue,Parameters,hasVars = ParseParameters(Value) mesh_groups = self.editor.Offset(theObject, Value, MakeGroups, CopyElements, NewMeshName) self.mesh.SetParameters(Parameters) # if mesh_groups[0]: # return Mesh( self.smeshpyD, self.geompyD, mesh_groups[0] ), mesh_groups[1] return mesh_groups def FindCoincidentNodes (self, Tolerance, SeparateCornerAndMediumNodes=False): """ Find groups of adjacent nodes within Tolerance. Parameters: Tolerance (float): the value of tolerance SeparateCornerAndMediumNodes (boolean): if *True*, in quadratic mesh puts corner and medium nodes in separate groups thus preventing their further merge. Returns: the list of groups of nodes IDs (e.g. [[1,12,13],[4,25]]) """ return self.editor.FindCoincidentNodes( Tolerance, SeparateCornerAndMediumNodes ) def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance, exceptNodes=[], SeparateCornerAndMediumNodes=False): """ Find groups of adjacent nodes within Tolerance. Parameters: Tolerance: the value of tolerance SubMeshOrGroup: :class:`sub-mesh, group or filter ` exceptNodes: list of either SubMeshes, Groups or node IDs to exclude from search SeparateCornerAndMediumNodes: if *True*, in quadratic mesh puts corner and medium nodes in separate groups thus preventing their further merge. Returns: the list of groups of nodes IDs (e.g. [[1,12,13],[4,25]]) """ unRegister = genObjUnRegister() if (isinstance( SubMeshOrGroup, Mesh )): SubMeshOrGroup = SubMeshOrGroup.GetMesh() if not isinstance( exceptNodes, list ): exceptNodes = [ exceptNodes ] if exceptNodes and isinstance( exceptNodes[0], int ): exceptNodes = [ self.GetIDSource( exceptNodes, SMESH.NODE )] unRegister.set( exceptNodes ) return self.editor.FindCoincidentNodesOnPartBut(SubMeshOrGroup, Tolerance, exceptNodes, SeparateCornerAndMediumNodes) def MergeNodes (self, GroupsOfNodes, NodesToKeep=[], AvoidMakingHoles=False): """ Merge nodes Parameters: GroupsOfNodes: a list of groups of nodes IDs for merging. E.g. [[1,12,13],[25,4]] means that nodes 12, 13 and 4 will be removed and replaced in all elements and groups by nodes 1 and 25 correspondingly NodesToKeep: nodes to keep in the mesh: a list of groups, sub-meshes or node IDs. If *NodesToKeep* does not include a node to keep for some group to merge, then the first node in the group is kept. AvoidMakingHoles: prevent merging nodes which cause removal of elements becoming invalid """ # NodesToKeep are converted to SMESH.SMESH_IDSource in meshEditor.MergeNodes() self.editor.MergeNodes( GroupsOfNodes, NodesToKeep, AvoidMakingHoles ) def FindEqualElements (self, MeshOrSubMeshOrGroup=None): """ Find the elements built on the same nodes. Parameters: MeshOrSubMeshOrGroup: :class:`mesh, sub-mesh, group or filter ` Returns: the list of groups of equal elements IDs (e.g. [[1,12,13],[4,25]]) """ if not MeshOrSubMeshOrGroup: MeshOrSubMeshOrGroup=self.mesh elif isinstance( MeshOrSubMeshOrGroup, Mesh ): MeshOrSubMeshOrGroup = MeshOrSubMeshOrGroup.GetMesh() return self.editor.FindEqualElements( MeshOrSubMeshOrGroup ) def MergeElements(self, GroupsOfElementsID): """ Merge elements in each given group. Parameters: GroupsOfElementsID: a list of groups (lists) of elements IDs for merging (e.g. [[1,12,13],[25,4]] means that elements 12, 13 and 4 will be removed and replaced in all groups by elements 1 and 25) """ self.editor.MergeElements(GroupsOfElementsID) def MergeEqualElements(self): """ Leave one element and remove all other elements built on the same nodes. """ self.editor.MergeEqualElements() def FindFreeBorders(self, ClosedOnly=True): """ Returns all or only closed free borders Returns: list of SMESH.FreeBorder's """ return self.editor.FindFreeBorders( ClosedOnly ) def FillHole(self, holeNodes): """ Fill with 2D elements a hole defined by a SMESH.FreeBorder. Parameters: FreeBorder: either a SMESH.FreeBorder or a list on node IDs. These nodes must describe all sequential nodes of the hole border. The first and the last nodes must be the same. Use :meth:`FindFreeBorders` to get nodes of holes. """ if holeNodes and isinstance( holeNodes, list ) and isinstance( holeNodes[0], int ): holeNodes = SMESH.FreeBorder(nodeIDs=holeNodes) if not isinstance( holeNodes, SMESH.FreeBorder ): raise TypeError("holeNodes must be either SMESH.FreeBorder or list of integer and not %s" % holeNodes) self.editor.FillHole( holeNodes ) def FindCoincidentFreeBorders (self, tolerance=0.): """ Return groups of FreeBorder's coincident within the given tolerance. Parameters: tolerance: the tolerance. If the tolerance <= 0.0 then one tenth of an average size of elements adjacent to free borders being compared is used. Returns: SMESH.CoincidentFreeBorders structure """ return self.editor.FindCoincidentFreeBorders( tolerance ) def SewCoincidentFreeBorders (self, freeBorders, createPolygons=False, createPolyhedra=False): """ Sew FreeBorder's of each group Parameters: freeBorders: either a SMESH.CoincidentFreeBorders structure or a list of lists where each enclosed list contains node IDs of a group of coincident free borders such that each consequent triple of IDs within a group describes a free border in a usual way: n1, n2, nLast - i.e. 1st node, 2nd node and last node of a border. For example [[1, 2, 10, 20, 21, 40], [11, 12, 15, 55, 54, 41]] describes two groups of coincident free borders, each group including two borders. createPolygons: if :code:`True` faces adjacent to free borders are converted to polygons if a node of opposite border falls on a face edge, else such faces are split into several ones. createPolyhedra: if :code:`True` volumes adjacent to free borders are converted to polyhedra if a node of opposite border falls on a volume edge, else such volumes, if any, remain intact and the mesh becomes non-conformal. Returns: a number of successfully sewed groups """ if freeBorders and isinstance( freeBorders, list ): # construct SMESH.CoincidentFreeBorders if isinstance( freeBorders[0], int ): freeBorders = [freeBorders] borders = [] coincidentGroups = [] for nodeList in freeBorders: if not nodeList or len( nodeList ) % 3: raise ValueError("Wrong number of nodes in this group: %s" % nodeList) group = [] while nodeList: group.append ( SMESH.FreeBorderPart( len(borders), 0, 1, 2 )) borders.append( SMESH.FreeBorder( nodeList[:3] )) nodeList = nodeList[3:] pass coincidentGroups.append( group ) pass freeBorders = SMESH.CoincidentFreeBorders( borders, coincidentGroups ) return self.editor.SewCoincidentFreeBorders( freeBorders, createPolygons, createPolyhedra ) def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1, FirstNodeID2, SecondNodeID2, LastNodeID2, CreatePolygons, CreatePolyedrs): """ Sew free borders Returns: :class:`error code ` """ return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1, FirstNodeID2, SecondNodeID2, LastNodeID2, CreatePolygons, CreatePolyedrs) def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1, FirstNodeID2, SecondNodeID2): """ Sew conform free borders Returns: :class:`error code ` """ return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1, FirstNodeID2, SecondNodeID2) def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder, FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs): """ Sew border to side Returns: :class:`error code ` """ return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder, FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs) def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements, NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge, NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge): """ Sew two sides of a mesh. The nodes belonging to Side1 are merged with the nodes of elements of Side2. The number of elements in theSide1 and in theSide2 must be equal and they should have similar nodal connectivity. The nodes to merge should belong to side borders and the first node should be linked to the second. Returns: :class:`error code ` """ return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements, NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge, NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge) def ChangeElemNodes(self, ide, newIDs): """ Set new nodes for the given element. Parameters: ide: the element ID newIDs: nodes IDs Returns: False if the number of nodes does not correspond to the type of element """ return self.editor.ChangeElemNodes(ide, newIDs) def GetLastCreatedNodes(self): """ If during the last operation of :class:`SMESH.SMESH_MeshEditor` some nodes were created, this method return the list of their IDs. If new nodes were not created - return empty list Returns: the list of integer values (can be empty) """ return self.editor.GetLastCreatedNodes() def GetLastCreatedElems(self): """ If during the last operation of :class:`SMESH.SMESH_MeshEditor` some elements were created this method return the list of their IDs. If new elements were not created - return empty list Returns: the list of integer values (can be empty) """ return self.editor.GetLastCreatedElems() def ClearLastCreated(self): """ Forget what nodes and elements were created by the last mesh edition operation """ self.editor.ClearLastCreated() def DoubleElements(self, theElements, theGroupName=""): """ Create duplicates of given elements, i.e. create new elements based on the same nodes as the given ones. Parameters: theElements: container of elements to duplicate. It can be a :class:`mesh, sub-mesh, group, filter ` or a list of element IDs. If *theElements* is a :class:`Mesh`, elements of highest dimension are duplicated theGroupName: a name of group to contain the generated elements. If a group with such a name already exists, the new elements are added to the existing group, else a new group is created. If *theGroupName* is empty, new elements are not added in any group. Returns: a :class:`group ` where the new elements are added. None if *theGroupName* == "". """ unRegister = genObjUnRegister() if isinstance( theElements, Mesh ): theElements = theElements.mesh elif isinstance( theElements, list ): theElements = self.GetIDSource( theElements, SMESH.ALL ) unRegister.set( theElements ) return self.editor.DoubleElements(theElements, theGroupName) def DoubleNodes(self, theNodes, theModifiedElems): """ Create a hole in a mesh by doubling the nodes of some particular elements Parameters: theNodes: IDs of nodes to be doubled theModifiedElems: IDs of elements to be updated by the new (doubled) nodes. If list of element identifiers is empty then nodes are doubled but they not assigned to elements Returns: True if operation has been completed successfully, False otherwise """ return self.editor.DoubleNodes(theNodes, theModifiedElems) def DoubleNode(self, theNodeId, theModifiedElems): """ Create a hole in a mesh by doubling the nodes of some particular elements. This method provided for convenience works as :meth:`DoubleNodes`. Parameters: theNodeId: IDs of node to double theModifiedElems: IDs of elements to update Returns: True if operation has been completed successfully, False otherwise """ return self.editor.DoubleNode(theNodeId, theModifiedElems) def DoubleNodeGroup(self, theNodes, theModifiedElems, theMakeGroup=False): """ Create a hole in a mesh by doubling the nodes of some particular elements. This method provided for convenience works as :meth:`DoubleNodes`. Parameters: theNodes: group of nodes to double. theModifiedElems: group of elements to update. theMakeGroup: forces the generation of a group containing new nodes. Returns: True or a created group if operation has been completed successfully, False or None otherwise """ if theMakeGroup: return self.editor.DoubleNodeGroupNew(theNodes, theModifiedElems) return self.editor.DoubleNodeGroup(theNodes, theModifiedElems) def DoubleNodeGroups(self, theNodes, theModifiedElems, theMakeGroup=False): """ Create a hole in a mesh by doubling the nodes of some particular elements. This method provided for convenience works as :meth:`DoubleNodes`. Parameters: theNodes: list of groups of nodes to double. theModifiedElems: list of groups of elements to update. theMakeGroup: forces the generation of a group containing new nodes. Returns: True if operation has been completed successfully, False otherwise """ if theMakeGroup: return self.editor.DoubleNodeGroupsNew(theNodes, theModifiedElems) return self.editor.DoubleNodeGroups(theNodes, theModifiedElems) def DoubleNodeElem(self, theElems, theNodesNot, theAffectedElems): """ Create a hole in a mesh by doubling the nodes of some particular elements Parameters: theElems: the list of elements (edges or faces) to replicate. The nodes for duplication could be found from these elements theNodesNot: list of nodes NOT to replicate theAffectedElems: the list of elements (cells and edges) to which the replicated nodes should be associated to Returns: True if operation has been completed successfully, False otherwise """ return self.editor.DoubleNodeElem(theElems, theNodesNot, theAffectedElems) def DoubleNodeElemInRegion(self, theElems, theNodesNot, theShape): """ Create a hole in a mesh by doubling the nodes of some particular elements Parameters: theElems: the list of elements (edges or faces) to replicate. The nodes for duplication could be found from these elements theNodesNot: list of nodes NOT to replicate theShape: shape to detect affected elements (element which geometric center located on or inside shape). The replicated nodes should be associated to affected elements. Returns: True if operation has been completed successfully, False otherwise """ return self.editor.DoubleNodeElemInRegion(theElems, theNodesNot, theShape) def DoubleNodeElemGroup(self, theElems, theNodesNot, theAffectedElems, theMakeGroup=False, theMakeNodeGroup=False): """ Create a hole in a mesh by doubling the nodes of some particular elements. This method provided for convenience works as :meth:`DoubleNodes`. Parameters: theElems: group of of elements (edges or faces) to replicate. theNodesNot: group of nodes NOT to replicate. theAffectedElems: group of elements to which the replicated nodes should be associated to. theMakeGroup: forces the generation of a group containing new elements. theMakeNodeGroup: forces the generation of a group containing new nodes. Returns: True or created groups (one or two) if operation has been completed successfully, False or None otherwise """ if theMakeGroup or theMakeNodeGroup: twoGroups = self.editor.DoubleNodeElemGroup2New(theElems, theNodesNot, theAffectedElems, theMakeGroup, theMakeNodeGroup) if theMakeGroup and theMakeNodeGroup: return twoGroups else: return twoGroups[ int(theMakeNodeGroup) ] return self.editor.DoubleNodeElemGroup(theElems, theNodesNot, theAffectedElems) def DoubleNodeElemGroupInRegion(self, theElems, theNodesNot, theShape): """ Create a hole in a mesh by doubling the nodes of some particular elements. This method provided for convenience works as :meth:`DoubleNodes`. Parameters: theElems: group of of elements (edges or faces) to replicate theNodesNot: group of nodes not to replicate theShape: shape to detect affected elements (element which geometric center located on or inside shape). The replicated nodes should be associated to affected elements """ return self.editor.DoubleNodeElemGroupInRegion(theElems, theNodesNot, theShape) def DoubleNodeElemGroups(self, theElems, theNodesNot, theAffectedElems, theMakeGroup=False, theMakeNodeGroup=False): """ Create a hole in a mesh by doubling the nodes of some particular elements. This method provided for convenience works as :meth:`DoubleNodes`. Parameters: theElems: list of groups of elements (edges or faces) to replicate theNodesNot: list of groups of nodes NOT to replicate theAffectedElems: group of elements to which the replicated nodes should be associated to theMakeGroup: forces generation of a group containing new elements. theMakeNodeGroup: forces generation of a group containing new nodes Returns: True or created groups (one or two) if operation has been completed successfully, False or None otherwise """ if theMakeGroup or theMakeNodeGroup: twoGroups = self.editor.DoubleNodeElemGroups2New(theElems, theNodesNot, theAffectedElems, theMakeGroup, theMakeNodeGroup) if theMakeGroup and theMakeNodeGroup: return twoGroups else: return twoGroups[ int(theMakeNodeGroup) ] return self.editor.DoubleNodeElemGroups(theElems, theNodesNot, theAffectedElems) def DoubleNodeElemGroupsInRegion(self, theElems, theNodesNot, theShape): """ Create a hole in a mesh by doubling the nodes of some particular elements. This method provided for convenience works as :meth:`DoubleNodes`. Parameters: theElems: list of groups of elements (edges or faces) to replicate theNodesNot: list of groups of nodes NOT to replicate theShape: shape to detect affected elements (element which geometric center located on or inside shape). The replicated nodes should be associated to affected elements Returns: True if operation has been completed successfully, False otherwise """ return self.editor.DoubleNodeElemGroupsInRegion(theElems, theNodesNot, theShape) def AffectedElemGroupsInRegion(self, theElems, theNodesNot, theShape): """ Identify the elements that will be affected by node duplication (actual duplication is not performed). This method is the first step of :meth:`DoubleNodeElemGroupsInRegion`. Parameters: theElems: list of groups of nodes or elements (edges or faces) to replicate theNodesNot: list of groups of nodes NOT to replicate theShape: shape to detect affected elements (element which geometric center located on or inside shape). The replicated nodes should be associated to affected elements Returns: groups of affected elements in order: volumes, faces, edges """ return self.editor.AffectedElemGroupsInRegion(theElems, theNodesNot, theShape) def DoubleNodesOnGroupBoundaries(self, theDomains, createJointElems, onAllBoundaries=False ): """ Double nodes on shared faces between groups of volumes and create flat elements on demand. The list of groups must describe a partition of the mesh volumes. The nodes of the internal faces at the boundaries of the groups are doubled. In option, the internal faces are replaced by flat elements. Triangles are transformed to prisms, and quadrangles to hexahedrons. Parameters: theDomains: list of groups of volumes createJointElems: if True, create the elements onAllBoundaries: if True, the nodes and elements are also created on the boundary between *theDomains* and the rest mesh Returns: True if operation has been completed successfully, False otherwise """ return self.editor.DoubleNodesOnGroupBoundaries( theDomains, createJointElems, onAllBoundaries ) def CreateFlatElementsOnFacesGroups(self, theGroupsOfFaces ): """ Double nodes on some external faces and create flat elements. Flat elements are mainly used by some types of mechanic calculations. Each group of the list must be constituted of faces. Triangles are transformed in prisms, and quadrangles in hexahedrons. Parameters: theGroupsOfFaces: list of groups of faces Returns: True if operation has been completed successfully, False otherwise """ return self.editor.CreateFlatElementsOnFacesGroups( theGroupsOfFaces ) def CreateHoleSkin(self, radius, theShape, groupName, theNodesCoords): """ Identify all the elements around a geom shape, get the faces delimiting the hole """ return self.editor.CreateHoleSkin( radius, theShape, groupName, theNodesCoords ) def MakePolyLine(self, segments, groupName='', isPreview=False ): """ Create a polyline consisting of 1D mesh elements each lying on a 2D element of the initial mesh. Positions of new nodes are found by cutting the mesh by the plane passing through pairs of points specified by each :class:`SMESH.PolySegment` structure. If there are several paths connecting a pair of points, the shortest path is selected by the module. Position of the cutting plane is defined by the two points and an optional vector lying on the plane specified by a PolySegment. By default the vector is defined by Mesh module as following. A middle point of the two given points is computed. The middle point is projected to the mesh. The vector goes from the middle point to the projection point. In case of planar mesh, the vector is normal to the mesh. *segments* [i].vector returns the used vector which goes from the middle point to its projection. Parameters: segments: list of :class:`SMESH.PolySegment` defining positions of cutting planes. groupName: optional name of a group where created mesh segments will be added. """ editor = self.editor if isPreview: editor = self.mesh.GetMeshEditPreviewer() segmentsRes = editor.MakePolyLine( segments, groupName ) for i, seg in enumerate( segmentsRes ): segments[i].vector = seg.vector if isPreview: return editor.GetPreviewData() return None def GetFunctor(self, funcType ): """ Return a cached numerical functor by its type. Parameters: funcType: functor type: an item of :class:`SMESH.FunctorType` enumeration. Note that not all items correspond to numerical functors. Returns: :class:`SMESH.NumericalFunctor`. The functor is already initialized with a mesh """ fn = self.functors[ funcType._v ] if not fn: fn = self.smeshpyD.GetFunctor(funcType) fn.SetMesh(self.mesh) self.functors[ funcType._v ] = fn return fn def FunctorValue(self, funcType, elemId, isElem=True): """ Return value of a functor for a given element Parameters: funcType: an item of :class:`SMESH.FunctorType` enum. elemId: element or node ID isElem: *elemId* is ID of element or node Returns: the functor value or zero in case of invalid arguments """ fn = self.GetFunctor( funcType ) if fn.GetElementType() == self.GetElementType(elemId, isElem): val = fn.GetValue(elemId) else: val = 0 return val def GetLength(self, elemId=None): """ Get length of 1D element or sum of lengths of all 1D mesh elements Parameters: elemId: mesh element ID (if not defined - sum of length of all 1D elements will be calculated) Returns: element's length value if *elemId* is specified or sum of all 1D mesh elements' lengths otherwise """ length = 0 if elemId == None: length = self.smeshpyD.GetLength(self) else: length = self.FunctorValue(SMESH.FT_Length, elemId) return length def GetArea(self, elemId=None): """ Get area of 2D element or sum of areas of all 2D mesh elements elemId mesh element ID (if not defined - sum of areas of all 2D elements will be calculated) Returns: element's area value if *elemId* is specified or sum of all 2D mesh elements' areas otherwise """ area = 0 if elemId == None: area = self.smeshpyD.GetArea(self) else: area = self.FunctorValue(SMESH.FT_Area, elemId) return area def GetVolume(self, elemId=None): """ Get volume of 3D element or sum of volumes of all 3D mesh elements Parameters: elemId: mesh element ID (if not defined - sum of volumes of all 3D elements will be calculated) Returns: element's volume value if *elemId* is specified or sum of all 3D mesh elements' volumes otherwise """ volume = 0 if elemId == None: volume = self.smeshpyD.GetVolume(self) else: volume = self.FunctorValue(SMESH.FT_Volume3D, elemId) return volume def GetMaxElementLength(self, elemId): """ Get maximum element length. Parameters: elemId: mesh element ID Returns: element's maximum length value """ if self.GetElementType(elemId, True) == SMESH.VOLUME: ftype = SMESH.FT_MaxElementLength3D else: ftype = SMESH.FT_MaxElementLength2D return self.FunctorValue(ftype, elemId) def GetAspectRatio(self, elemId): """ Get aspect ratio of 2D or 3D element. Parameters: elemId: mesh element ID Returns: element's aspect ratio value """ if self.GetElementType(elemId, True) == SMESH.VOLUME: ftype = SMESH.FT_AspectRatio3D else: ftype = SMESH.FT_AspectRatio return self.FunctorValue(ftype, elemId) def GetWarping(self, elemId): """ Get warping angle of 2D element. Parameters: elemId: mesh element ID Returns: element's warping angle value """ return self.FunctorValue(SMESH.FT_Warping, elemId) def GetMinimumAngle(self, elemId): """ Get minimum angle of 2D element. Parameters: elemId: mesh element ID Returns: element's minimum angle value """ return self.FunctorValue(SMESH.FT_MinimumAngle, elemId) def GetTaper(self, elemId): """ Get taper of 2D element. Parameters: elemId: mesh element ID Returns: element's taper value """ return self.FunctorValue(SMESH.FT_Taper, elemId) def GetSkew(self, elemId): """ Get skew of 2D element. Parameters: elemId: mesh element ID Returns: element's skew value """ return self.FunctorValue(SMESH.FT_Skew, elemId) def GetMinMax(self, funType, meshPart=None): """ Return minimal and maximal value of a given functor. Parameters: funType (SMESH.FunctorType): a functor type. Note that not all items of :class:`SMESH.FunctorType` corresponds to numerical functors. meshPart: a part of mesh (:class:`sub-mesh, group or filter `) to treat Returns: tuple (min,max) """ unRegister = genObjUnRegister() if isinstance( meshPart, list ): meshPart = self.GetIDSource( meshPart, SMESH.ALL ) unRegister.set( meshPart ) if isinstance( meshPart, Mesh ): meshPart = meshPart.mesh fun = self.GetFunctor( funType ) if fun: if meshPart: if hasattr( meshPart, "SetMesh" ): meshPart.SetMesh( self.mesh ) # set mesh to filter hist = fun.GetLocalHistogram( 1, False, meshPart ) else: hist = fun.GetHistogram( 1, False ) if hist: return hist[0].min, hist[0].max return None pass # end of Mesh class class meshProxy(SMESH._objref_SMESH_Mesh): """ Private class used to compensate change of CORBA API of SMESH_Mesh for backward compatibility with old dump scripts which call SMESH_Mesh directly and not via smeshBuilder.Mesh """ def __init__(self,*args): SMESH._objref_SMESH_Mesh.__init__(self,*args) def __deepcopy__(self, memo=None): new = self.__class__(self) return new def CreateDimGroup(self,*args): # 2 args added: nbCommonNodes, underlyingOnly if len( args ) == 3: args += SMESH.ALL_NODES, True return SMESH._objref_SMESH_Mesh.CreateDimGroup(self, *args) def ExportToMEDX(self, *args): # function removed print("WARNING: ExportToMEDX() is deprecated, use ExportMED() instead") args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]] SMESH._objref_SMESH_Mesh.ExportMED(self, *args) def ExportToMED(self, *args): # function removed print("WARNING: ExportToMED() is deprecated, use ExportMED() instead") args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]] while len(args) < 4: # !!!! nb of parameters for ExportToMED IDL's method args.append(True) SMESH._objref_SMESH_Mesh.ExportMED(self, *args) def ExportPartToMED(self, *args): # 'version' parameter removed args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]] SMESH._objref_SMESH_Mesh.ExportPartToMED(self, *args) def ExportMED(self, *args): # signature of method changed args = [i for i in args if i not in [SMESH.MED_V2_1, SMESH.MED_V2_2]] while len(args) < 4: # !!!! nb of parameters for ExportToMED IDL's method args.append(True) SMESH._objref_SMESH_Mesh.ExportMED(self, *args) pass omniORB.registerObjref(SMESH._objref_SMESH_Mesh._NP_RepositoryId, meshProxy) class submeshProxy(SMESH._objref_SMESH_subMesh): """ Private class wrapping SMESH.SMESH_SubMesh in order to add Compute() """ def __init__(self,*args): SMESH._objref_SMESH_subMesh.__init__(self,*args) self.mesh = None def __deepcopy__(self, memo=None): new = self.__class__(self) return new def Compute(self,refresh=False): """ Compute the sub-mesh and return the status of the computation Parameters: refresh: if *True*, Object Browser is automatically updated (when running in GUI) Returns: True or False This is a method of SMESH.SMESH_submesh that can be obtained via Mesh.GetSubMesh() or :meth:`smeshBuilder.Mesh.GetSubMesh`. """ if not self.mesh: self.mesh = Mesh( smeshBuilder(), None, self.GetMesh()) ok = self.mesh.Compute( self.GetSubShape(),refresh=[] ) if salome.sg.hasDesktop(): smeshgui = salome.ImportComponentGUI("SMESH") smeshgui.Init() smeshgui.SetMeshIcon( salome.ObjectToID( self ), ok, (self.GetNumberOfElements()==0) ) if refresh: salome.sg.updateObjBrowser() pass return ok pass omniORB.registerObjref(SMESH._objref_SMESH_subMesh._NP_RepositoryId, submeshProxy) class meshEditor(SMESH._objref_SMESH_MeshEditor): """ Private class used to compensate change of CORBA API of SMESH_MeshEditor for backward compatibility with old dump scripts which call SMESH_MeshEditor directly and not via smeshBuilder.Mesh """ def __init__(self,*args): SMESH._objref_SMESH_MeshEditor.__init__( self, *args) self.mesh = None def __getattr__(self, name ): # method called if an attribute not found if not self.mesh: # look for name() method in Mesh class self.mesh = Mesh( None, None, SMESH._objref_SMESH_MeshEditor.GetMesh(self)) if hasattr( self.mesh, name ): return getattr( self.mesh, name ) if name == "ExtrusionAlongPathObjX": return getattr( self.mesh, "ExtrusionAlongPathX" ) # other method name print("meshEditor: attribute '%s' NOT FOUND" % name) return None def __deepcopy__(self, memo=None): new = self.__class__(self) return new def FindCoincidentNodes(self,*args): # a 2nd arg added (SeparateCornerAndMediumNodes) if len( args ) == 1: args += False, return SMESH._objref_SMESH_MeshEditor.FindCoincidentNodes( self, *args ) def FindCoincidentNodesOnPart(self,*args): # a 3d arg added (SeparateCornerAndMediumNodes) if len( args ) == 2: args += False, return SMESH._objref_SMESH_MeshEditor.FindCoincidentNodesOnPart( self, *args ) def MergeNodes(self,*args): # 2 args added (NodesToKeep,AvoidMakingHoles) if len( args ) == 1: return SMESH._objref_SMESH_MeshEditor.MergeNodes( self, args[0], [], False ) NodesToKeep = args[1] AvoidMakingHoles = args[2] if len( args ) == 3 else False unRegister = genObjUnRegister() if NodesToKeep: if isinstance( NodesToKeep, list ) and isinstance( NodesToKeep[0], int ): NodesToKeep = self.MakeIDSource( NodesToKeep, SMESH.NODE ) if not isinstance( NodesToKeep, list ): NodesToKeep = [ NodesToKeep ] return SMESH._objref_SMESH_MeshEditor.MergeNodes( self, args[0], NodesToKeep, AvoidMakingHoles ) pass omniORB.registerObjref(SMESH._objref_SMESH_MeshEditor._NP_RepositoryId, meshEditor) class Pattern(SMESH._objref_SMESH_Pattern): """ Private class wrapping SMESH.SMESH_Pattern CORBA class in order to treat Notebook variables in some methods """ def LoadFromFile(self, patternTextOrFile ): text = patternTextOrFile if os.path.exists( text ): text = open( patternTextOrFile ).read() pass return SMESH._objref_SMESH_Pattern.LoadFromFile( self, text ) def ApplyToMeshFaces(self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse): decrFun = lambda i: i-1 theNodeIndexOnKeyPoint1,Parameters,hasVars = ParseParameters(theNodeIndexOnKeyPoint1, decrFun) theMesh.SetParameters(Parameters) return SMESH._objref_SMESH_Pattern.ApplyToMeshFaces( self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse ) def ApplyToHexahedrons(self, theMesh, theVolumesIDs, theNode000Index, theNode001Index): decrFun = lambda i: i-1 theNode000Index,theNode001Index,Parameters,hasVars = ParseParameters(theNode000Index,theNode001Index, decrFun) theMesh.SetParameters(Parameters) return SMESH._objref_SMESH_Pattern.ApplyToHexahedrons( self, theMesh, theVolumesIDs, theNode000Index, theNode001Index ) def MakeMesh(self, mesh, CreatePolygons=False, CreatePolyhedra=False): if isinstance( mesh, Mesh ): mesh = mesh.GetMesh() return SMESH._objref_SMESH_Pattern.MakeMesh( self, mesh, CreatePolygons, CreatePolyhedra ) omniORB.registerObjref(SMESH._objref_SMESH_Pattern._NP_RepositoryId, Pattern) """ Registering the new proxy for Pattern """ class algoCreator: """ Private class used to bind methods creating algorithms to the class Mesh """ def __init__(self, method): self.mesh = None self.defaultAlgoType = "" self.algoTypeToClass = {} self.method = method def add(self, algoClass): """ Store a python class of algorithm """ if inspect.isclass(algoClass) and \ hasattr( algoClass, "algoType"): self.algoTypeToClass[ algoClass.algoType ] = algoClass if not self.defaultAlgoType and \ hasattr( algoClass, "isDefault") and algoClass.isDefault: self.defaultAlgoType = algoClass.algoType #print("Add",algoClass.algoType, "dflt",self.defaultAlgoType) def copy(self, mesh): """ Create a copy of self and assign mesh to the copy """ other = algoCreator( self.method ) other.defaultAlgoType = self.defaultAlgoType other.algoTypeToClass = self.algoTypeToClass other.mesh = mesh return other def __call__(self,algo="",geom=0,*args): """ Create an instance of algorithm """ algoType = "" shape = 0 if isinstance( algo, str ): algoType = algo elif ( isinstance( algo, geomBuilder.GEOM._objref_GEOM_Object ) and \ not isinstance( geom, geomBuilder.GEOM._objref_GEOM_Object )): shape = algo elif algo: args += (algo,) if isinstance( geom, geomBuilder.GEOM._objref_GEOM_Object ): shape = geom elif not algoType and isinstance( geom, str ): algoType = geom elif geom: args += (geom,) for arg in args: if isinstance( arg, geomBuilder.GEOM._objref_GEOM_Object ) and not shape: shape = arg elif isinstance( arg, str ) and not algoType: algoType = arg else: import traceback, sys msg = "Warning. Unexpected argument in mesh.%s() ---> %s" % ( self.method, arg ) sys.stderr.write( msg + '\n' ) tb = traceback.extract_stack(None,2) traceback.print_list( [tb[0]] ) if not algoType: algoType = self.defaultAlgoType if not algoType and self.algoTypeToClass: algoType = sorted( self.algoTypeToClass.keys() )[0] if algoType in self.algoTypeToClass: #print("Create algo",algoType) return self.algoTypeToClass[ algoType ]( self.mesh, shape ) raise RuntimeError( "No class found for algo type %s" % algoType) return None class hypMethodWrapper: """ Private class used to substitute and store variable parameters of hypotheses. """ def __init__(self, hyp, method): self.hyp = hyp self.method = method #print("REBIND:", method.__name__) return def __call__(self,*args): """ call a method of hypothesis with calling SetVarParameter() before """ if not args: return self.method( self.hyp, *args ) # hypothesis method with no args #print("MethWrapper.__call__", self.method.__name__, args) try: parsed = ParseParameters(*args) # replace variables with their values self.hyp.SetVarParameter( parsed[-2], self.method.__name__ ) result = self.method( self.hyp, *parsed[:-2] ) # call hypothesis method except omniORB.CORBA.BAD_PARAM: # raised by hypothesis method call # maybe there is a replaced string arg which is not variable result = self.method( self.hyp, *args ) except ValueError as detail: # raised by ParseParameters() try: result = self.method( self.hyp, *args ) except omniORB.CORBA.BAD_PARAM: raise ValueError(detail) # wrong variable name return result pass class genObjUnRegister: """ A helper class that calls UnRegister() of SALOME.GenericObj'es stored in it """ def __init__(self, genObj=None): self.genObjList = [] self.set( genObj ) return def set(self, genObj): "Store one or a list of of SALOME.GenericObj'es" if isinstance( genObj, list ): self.genObjList.extend( genObj ) else: self.genObjList.append( genObj ) return def __del__(self): for genObj in self.genObjList: if genObj and hasattr( genObj, "UnRegister" ): genObj.UnRegister() for pluginName in os.environ[ "SMESH_MeshersList" ].split( ":" ): """ Bind methods creating mesher plug-ins to the Mesh class """ # print("pluginName: ", pluginName) pluginBuilderName = pluginName + "Builder" try: exec( "from salome.%s.%s import *" % (pluginName, pluginBuilderName)) except Exception as e: from salome_utils import verbose if verbose(): print("Exception while loading %s: %s" % ( pluginBuilderName, e )) continue exec( "from salome.%s import %s" % (pluginName, pluginBuilderName)) plugin = eval( pluginBuilderName ) # print(" plugin:" , str(plugin)) # add methods creating algorithms to Mesh for k in dir( plugin ): if k[0] == '_': continue algo = getattr( plugin, k ) #print(" algo:", str(algo)) if inspect.isclass(algo) and hasattr(algo, "meshMethod"): #print(" meshMethod:" , str(algo.meshMethod)) if not hasattr( Mesh, algo.meshMethod ): setattr( Mesh, algo.meshMethod, algoCreator( algo.meshMethod )) pass _mmethod = getattr( Mesh, algo.meshMethod ) if hasattr( _mmethod, "add" ): _mmethod.add(algo) pass pass pass del pluginName