// Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH_OctreeNode : Octree with Nodes set // inherites global class SMESH_Octree // // File : SMESH_OctreeNode.cxx // Created : Tue Jan 16 16:00:00 2007 // Author : Nicolas Geimer & Aurélien Motteux (OCC) // Module : SMESH #include "SMESH_OctreeNode.hxx" #include "SMDS_MeshNode.hxx" #include "SMDS_SetIterator.hxx" #include using namespace std; //=============================================================== /*! * \brief Constructor : Build all the Octree using Compute() * \param theNodes - Set of nodes, the Octree is built from this nodes * \param maxLevel - Maximum level for the leaves * \param maxNbNodes - Maximum number of nodes, a leaf can contain * \param minBoxSize - Minimal size of the Octree Box */ //================================================================ SMESH_OctreeNode::SMESH_OctreeNode (const set & theNodes, const int maxLevel, const int maxNbNodes , const double minBoxSize ) :SMESH_Octree( new SMESH_Octree::Limit( maxLevel,minBoxSize)), myMaxNbNodes(maxNbNodes), myNodes(theNodes) { compute(); } //================================================================================ /*! * \brief Constructor used to allocate a child */ //================================================================================ SMESH_OctreeNode::SMESH_OctreeNode (int maxNbNodes): SMESH_Octree(), myMaxNbNodes(maxNbNodes) { } //================================================================================== /*! * \brief Construct an empty SMESH_OctreeNode used by SMESH_Octree::buildChildren() */ //================================================================================== SMESH_Octree* SMESH_OctreeNode::allocateOctreeChild() const { return new SMESH_OctreeNode(myMaxNbNodes); } //====================================== /*! * \brief Compute the first bounding box * * We take the max/min coord of the nodes */ //====================================== Bnd_B3d* SMESH_OctreeNode::buildRootBox() { Bnd_B3d* box = new Bnd_B3d; set::iterator it = myNodes.begin(); for (; it != myNodes.end(); it++) { const SMDS_MeshNode* n1 = *it; gp_XYZ p1( n1->X(), n1->Y(), n1->Z() ); box->Add(p1); } if ( myNodes.size() <= myMaxNbNodes ) myIsLeaf = true; return box; } //==================================================================================== /*! * \brief Tells us if Node is inside the current box with the precision "precision" * \param Node - Node * \param precision - The box is enlarged with this precision * \retval bool - True if Node is in the box within precision */ //==================================================================================== const bool SMESH_OctreeNode::isInside (const SMDS_MeshNode * Node, const double precision) { gp_XYZ p (Node->X(),Node->Y(),Node->Z()); if (precision <= 0.) return !(getBox().IsOut(p)); Bnd_B3d BoxWithPrecision = getBox(); BoxWithPrecision.Enlarge(precision); return ! BoxWithPrecision.IsOut(p); } //================================================ /*! * \brief Set the data of the children * Shares the father's data with each of his child */ //================================================ void SMESH_OctreeNode::buildChildrenData() { gp_XYZ min = getBox().CornerMin(); gp_XYZ max = getBox().CornerMax(); gp_XYZ mid = (min + max)/2.; set::iterator it = myNodes.begin(); while (it != myNodes.end()) { const SMDS_MeshNode* n1 = *it; int ChildBoxNum = getChildIndex( n1->X(), n1->Y(), n1->Z(), mid ); SMESH_OctreeNode* myChild = dynamic_cast (myChildren[ChildBoxNum]); myChild->myNodes.insert(myChild->myNodes.end(),n1); myNodes.erase( it ); it = myNodes.begin(); } for (int i = 0; i < 8; i++) { SMESH_OctreeNode* myChild = dynamic_cast (myChildren[i]); if ( myChild->myNodes.size() <= myMaxNbNodes ) myChild->myIsLeaf = true; } } //=================================================================== /*! * \brief Return in Result a list of Nodes potentials to be near Node * \param Node - Node * \param precision - precision used * \param Result - list of Nodes potentials to be near Node */ //==================================================================== void SMESH_OctreeNode::NodesAround (const SMDS_MeshNode * Node, list* Result, const double precision) { if (isInside(Node,precision)) { if (isLeaf()) { Result->insert(Result->end(), myNodes.begin(), myNodes.end()); } else { for (int i = 0; i < 8; i++) { SMESH_OctreeNode* myChild = dynamic_cast (myChildren[i]); myChild->NodesAround(Node, Result, precision); } } } } //================================================================================ /*! * \brief Return in dist2Nodes nodes mapped to their square distance from Node * \param node - node to find nodes closest to * \param dist2Nodes - map of found nodes and their distances * \param precision - radius of a sphere to check nodes inside * \retval bool - true if an exact overlapping found */ //================================================================================ bool SMESH_OctreeNode::NodesAround(const SMDS_MeshNode * node, map& dist2Nodes, double precision) { if ( !dist2Nodes.empty() ) precision = min ( precision, sqrt( dist2Nodes.begin()->first )); else if ( precision == 0. ) precision = maxSize() / 2; if (isInside(node,precision)) { if (!isLeaf()) { // first check a child containing node gp_XYZ mid = (getBox().CornerMin() + getBox().CornerMax()) / 2.; int nodeChild = getChildIndex( node->X(), node->Y(), node->Z(), mid ); if ( ((SMESH_OctreeNode*) myChildren[nodeChild])->NodesAround(node, dist2Nodes, precision)) return true; for (int i = 0; i < 8; i++) if ( i != nodeChild ) if (((SMESH_OctreeNode*) myChildren[i])->NodesAround(node, dist2Nodes, precision)) return true; } else if ( NbNodes() > 0 ) { double minDist = precision * precision; gp_Pnt p1 ( node->X(), node->Y(), node->Z() ); set::iterator nIt = myNodes.begin(); for ( ; nIt != myNodes.end(); ++nIt ) { gp_Pnt p2 ( (*nIt)->X(), (*nIt)->Y(), (*nIt)->Z() ); double dist2 = p1.SquareDistance( p2 ); if ( dist2 < minDist ) dist2Nodes.insert( make_pair( minDist = dist2, *nIt )); } // if ( dist2Nodes.size() > 1 ) // leave only closest node in dist2Nodes // dist2Nodes.erase( ++dist2Nodes.begin(), dist2Nodes.end()); return ( sqrt( minDist) <= precision * 1e-12 ); } } return false; } //============================= /*! * \brief Return in theGroupsOfNodes a list of group of nodes close to each other within theTolerance * Search for all the nodes in theSetOfNodes * Static Method : no need to create an SMESH_OctreeNode * \param theSetOfNodes - set of nodes we look at, modified during research * \param theGroupsOfNodes - list of nodes closed to each other returned * \param theTolerance - Precision used, default value is 0.00001 * \param maxLevel - Maximum level for SMESH_OctreeNode constructed, default value is -1 (Infinite) * \param maxNbNodes - maximum Nodes in a Leaf of the SMESH_OctreeNode constructed, default value is 5 */ //============================= void SMESH_OctreeNode::FindCoincidentNodes (set& theSetOfNodes, list< list< const SMDS_MeshNode*> >* theGroupsOfNodes, const double theTolerance, const int maxLevel, const int maxNbNodes) { SMESH_OctreeNode theOctreeNode(theSetOfNodes, maxLevel, maxNbNodes, theTolerance); theOctreeNode.FindCoincidentNodes (&theSetOfNodes, theTolerance, theGroupsOfNodes); } //============================= /*! * \brief Return in theGroupsOfNodes a list of group of nodes close to each other within theTolerance * Search for all the nodes in theSetOfNodes * \note The Octree itself is also modified by this method * \param theSetOfNodes - set of nodes we look at, modified during research * \param theTolerance - Precision used * \param theGroupsOfNodes - list of nodes closed to each other returned */ //============================= void SMESH_OctreeNode::FindCoincidentNodes ( set* theSetOfNodes, const double theTolerance, list< list< const SMDS_MeshNode*> >* theGroupsOfNodes) { set::iterator it1 = theSetOfNodes->begin(); list::iterator it2; while (it1 != theSetOfNodes->end()) { const SMDS_MeshNode * n1 = *it1; list ListOfCoincidentNodes;// Initialize the lists via a declaration, it's enough list * groupPtr = 0; // Searching for Nodes around n1 and put them in ListofCoincidentNodes. // Found nodes are also erased from theSetOfNodes FindCoincidentNodes(n1, theSetOfNodes, &ListOfCoincidentNodes, theTolerance); // We build a list {n1 + his neigbours} and add this list in theGroupsOfNodes for (it2 = ListOfCoincidentNodes.begin(); it2 != ListOfCoincidentNodes.end(); it2++) { const SMDS_MeshNode* n2 = *it2; if ( !groupPtr ) { theGroupsOfNodes->push_back( list() ); groupPtr = & theGroupsOfNodes->back(); groupPtr->push_back( n1 ); } if (groupPtr->front() > n2) groupPtr->push_front( n2 ); else groupPtr->push_back( n2 ); } if (groupPtr != 0) groupPtr->sort(); theSetOfNodes->erase(it1); it1 = theSetOfNodes->begin(); } } //====================================================================================== /*! * \brief Return a list of nodes closed to Node and remove it from SetOfNodes * \note The Octree itself is also modified by this method * \param Node - We're searching the nodes next to him. * \param SetOfNodes - set of nodes in which we erase the found nodes * \param Result - list of nodes closed to Node * \param precision - Precision used */ //====================================================================================== void SMESH_OctreeNode::FindCoincidentNodes (const SMDS_MeshNode * Node, set* SetOfNodes, list* Result, const double precision) { bool isInsideBool = isInside(Node,precision); if (isInsideBool) { // I'm only looking in the leaves, since all the nodes are stored there. if (isLeaf()) { gp_Pnt p1 (Node->X(), Node->Y(), Node->Z()); set myNodesCopy = myNodes; set::iterator it = myNodesCopy.begin(); double tol2 = precision * precision; bool squareBool; while (it != myNodesCopy.end()) { const SMDS_MeshNode* n2 = *it; // We're only looking at nodes with a superior Id. // JFA: Why? //if (Node->GetID() < n2->GetID()) if (Node->GetID() != n2->GetID()) // JFA: for bug 0020185 { gp_Pnt p2 (n2->X(), n2->Y(), n2->Z()); // Distance optimized computation squareBool = (p1.SquareDistance( p2 ) <= tol2); // If n2 inside the SquareDistance, we add it in Result and remove it from SetOfNodes and myNodes if (squareBool) { Result->insert(Result->begin(), n2); SetOfNodes->erase( n2 ); myNodes.erase( n2 ); } } //myNodesCopy.erase( it ); //it = myNodesCopy.begin(); it++; } if (Result->size() > 0) myNodes.erase(Node); // JFA: for bug 0020185 } else { // If I'm not a leaf, I'm going to see my children ! for (int i = 0; i < 8; i++) { SMESH_OctreeNode* myChild = dynamic_cast (myChildren[i]); myChild->FindCoincidentNodes(Node, SetOfNodes, Result, precision); } } } } //================================================================================ /*! * \brief Update data according to node movement */ //================================================================================ void SMESH_OctreeNode::UpdateByMoveNode( const SMDS_MeshNode* node, const gp_Pnt& toPnt ) { if ( isLeaf() ) { set::iterator pNode = myNodes.find( node ); bool nodeInMe = ( pNode != myNodes.end() ); SMDS_MeshNode pointNode( toPnt.X(), toPnt.Y(), toPnt.Z() ); bool pointInMe = isInside( &pointNode, 1e-10 ); if ( pointInMe != nodeInMe ) { if ( pointInMe ) myNodes.insert( node ); else myNodes.erase( node ); } } else if ( myChildren ) { gp_XYZ mid = (getBox().CornerMin() + getBox().CornerMax()) / 2.; int nodeChild = getChildIndex( node->X(), node->Y(), node->Z(), mid ); int pointChild = getChildIndex( toPnt.X(), toPnt.Y(), toPnt.Z(), mid ); if ( nodeChild != pointChild ) { ((SMESH_OctreeNode*) myChildren[ nodeChild ])->UpdateByMoveNode( node, toPnt ); ((SMESH_OctreeNode*) myChildren[ pointChild ])->UpdateByMoveNode( node, toPnt ); } } } //================================================================================ /*! * \brief Return iterator over children */ //================================================================================ SMESH_OctreeNodeIteratorPtr SMESH_OctreeNode::GetChildrenIterator() { return SMESH_OctreeNodeIteratorPtr ( new SMDS_SetIterator< SMESH_OctreeNode*, SMESH_Octree** > ( myChildren, (( isLeaf() || !myChildren ) ? myChildren : &myChildren[ 8 ] ))); } //================================================================================ /*! * \brief Return nodes iterator */ //================================================================================ SMDS_NodeIteratorPtr SMESH_OctreeNode::GetNodeIterator() { return SMDS_NodeIteratorPtr ( new SMDS_SetIterator< SMDS_pNode, set< SMDS_pNode >::const_iterator > ( myNodes.begin(), myNodes.size() ? myNodes.end() : myNodes.begin())); }