// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // #include "DriverSTL_W_SMDS_Mesh.h" #ifdef WIN32 #define NOMINMAX #endif #include #include "SMDS_FaceOfNodes.hxx" #include "SMDS_IteratorOnIterators.hxx" #include "SMDS_Mesh.hxx" #include "SMDS_MeshElement.hxx" #include "SMDS_MeshNode.hxx" #include "SMDS_PolygonalFaceOfNodes.hxx" #include "SMDS_SetIterator.hxx" #include "SMDS_VolumeTool.hxx" #include "SMESH_File.hxx" #include "SMESH_TypeDefs.hxx" #include #include #include #include // definition des constantes static const int LABEL_SIZE = 80; DriverSTL_W_SMDS_Mesh::DriverSTL_W_SMDS_Mesh() { myIsAscii = false; } void DriverSTL_W_SMDS_Mesh::SetIsAscii( const bool theIsAscii ) { myIsAscii = theIsAscii; } Driver_Mesh::Status DriverSTL_W_SMDS_Mesh::Perform() { Kernel_Utils::Localizer loc; Status aResult = DRS_OK; if ( !myMesh ) { fprintf(stderr, ">> ERROR : Mesh is null \n"); return DRS_FAIL; } findVolumeTriangles(); if ( myIsAscii ) aResult = writeAscii(); else aResult = writeBinary(); return aResult; } //================================================================================ /*! * \brief Destructor deletes temporary faces */ //================================================================================ DriverSTL_W_SMDS_Mesh::~DriverSTL_W_SMDS_Mesh() { for ( unsigned i = 0; i < myVolumeFacets.size(); ++i ) delete myVolumeFacets[i]; } //================================================================================ /*! * \brief Finds free facets of volumes for which faces are missing in the mesh */ //================================================================================ void DriverSTL_W_SMDS_Mesh::findVolumeTriangles() { myNbVolumeTrias = 0; SMDS_VolumeTool theVolume; SMDS_VolumeIteratorPtr vIt = myMesh->volumesIterator(); std::vector< const SMDS_MeshNode*> nodes; while ( vIt->more() ) { theVolume.Set( vIt->next(), /*ignoreCentralNodes=*/false ); for ( int iF = 0; iF < theVolume.NbFaces(); ++iF ) if ( theVolume.IsFreeFace( iF )) { const SMDS_MeshNode** n = theVolume.GetFaceNodes(iF); int nbN = theVolume.NbFaceNodes(iF); nodes.assign( n, n+nbN ); if ( !myMesh->FindElement( nodes, SMDSAbs_Face, /*noMedium=*/false)) { if (( nbN == 9 || nbN == 7 ) && ( !theVolume.IsPoly() )) // facet is bi-quaratic { int nbTria = nbN - 1; for ( int iT = 0; iT < nbTria; ++iT ) myVolumeFacets.push_back( new SMDS_FaceOfNodes( n[8], n[0+iT], n[1+iT] )); myNbVolumeTrias += nbTria; } else { myVolumeFacets.push_back( new SMDS_PolygonalFaceOfNodes( nodes )); myNbVolumeTrias += nbN - 2; } } } } } //================================================================================ /*! * \brief Return iterator on both faces in the mesh and on temporary faces */ //================================================================================ SMDS_ElemIteratorPtr DriverSTL_W_SMDS_Mesh::getFaces() const { SMDS_ElemIteratorPtr facesIter = myMesh->elementsIterator(SMDSAbs_Face); SMDS_ElemIteratorPtr tmpTriaIter( new SMDS_ElementVectorIterator( myVolumeFacets.begin(), myVolumeFacets.end())); typedef std::vector< SMDS_ElemIteratorPtr > TElemIterVector; TElemIterVector iters(2); iters[0] = facesIter; iters[1] = tmpTriaIter; typedef SMDS_IteratorOnIterators TItersIter; return SMDS_ElemIteratorPtr( new TItersIter( iters )); } // static methods static void writeInteger( const Standard_Integer& theVal, SMESH_File& ofile ) { union { Standard_Integer i; char c[4]; } u; u.i = theVal; Standard_Integer entier; entier = u.c[0] & 0xFF; entier |= (u.c[1] & 0xFF) << 0x08; entier |= (u.c[2] & 0xFF) << 0x10; entier |= (u.c[3] & 0xFF) << 0x18; ofile.write( entier ); } static void writeFloat( const Standard_ShortReal& theVal, SMESH_File& ofile) { union { Standard_ShortReal f; char c[4]; } u; u.f = theVal; Standard_Integer entier; entier = u.c[0] & 0xFF; entier |= (u.c[1] & 0xFF) << 0x08; entier |= (u.c[2] & 0xFF) << 0x10; entier |= (u.c[3] & 0xFF) << 0x18; ofile.write( entier ); } static gp_XYZ getNormale( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3) { SMESH_TNodeXYZ xyz1( n1 ); SMESH_TNodeXYZ xyz2( n2 ); SMESH_TNodeXYZ xyz3( n3 ); gp_XYZ q1 = xyz2 - xyz1; gp_XYZ q2 = xyz3 - xyz1; gp_XYZ n = q1 ^ q2; double len = n.Modulus(); if ( len > std::numeric_limits::min() ) n /= len; return n; } namespace { /*! * \brief Vertex of a polygon. Together with 2 neighbor Vertices represents a triangle */ struct PolyVertex { SMESH_TNodeXYZ _nxyz; gp_XY _xy; PolyVertex* _prev; PolyVertex* _next; void SetNodeAndNext( const SMDS_MeshNode* n, PolyVertex& v ) { _nxyz.Set( n ); _next = &v; v._prev = this; } PolyVertex* Delete() { _prev->_next = _next; _next->_prev = _prev; return _next; } void GetTriaNodes( const SMDS_MeshNode** nodes) const { nodes[0] = _prev->_nxyz._node; nodes[1] = this->_nxyz._node; nodes[2] = _next->_nxyz._node; } inline static double Area( const PolyVertex* v0, const PolyVertex* v1, const PolyVertex* v2 ) { gp_XY vPrev = v0->_xy - v1->_xy; gp_XY vNext = v2->_xy - v1->_xy; return vNext ^ vPrev; } double TriaArea() const { return Area( _prev, this, _next ); } bool IsInsideTria( const PolyVertex* v ) { gp_XY p = _prev->_xy - v->_xy; gp_XY t = this->_xy - v->_xy; gp_XY n = _next->_xy - v->_xy; const double tol = -1e-12; return (( p ^ t ) >= tol && ( t ^ n ) >= tol && ( n ^ p ) >= tol ); // return ( Area( _prev, this, v ) > 0 && // Area( this, _next, v ) > 0 && // Area( _next, _prev, v ) > 0 ); } }; //================================================================================ /*! * \brief Triangulate a polygon. Assure correct orientation for concave polygons */ //================================================================================ bool triangulate( std::vector< const SMDS_MeshNode*>& nodes, const size_t nbNodes ) { // connect nodes into a ring std::vector< PolyVertex > pv( nbNodes ); for ( size_t i = 1; i < nbNodes; ++i ) pv[i-1].SetNodeAndNext( nodes[i-1], pv[i] ); pv[ nbNodes-1 ].SetNodeAndNext( nodes[ nbNodes-1 ], pv[0] ); // get a polygon normal gp_XYZ normal(0,0,0), p0,v01,v02; p0 = pv[0]._nxyz; v01 = pv[1]._nxyz - p0; for ( size_t i = 2; i < nbNodes; ++i ) { v02 = pv[i]._nxyz - p0; normal += v01 ^ v02; v01 = v02; } // project nodes to the found plane gp_Ax2 axes; try { axes = gp_Ax2( p0, normal, v01 ); } catch ( Standard_Failure ) { return false; } for ( size_t i = 0; i < nbNodes; ++i ) { gp_XYZ p = pv[i]._nxyz - p0; pv[i]._xy.SetX( axes.XDirection().XYZ() * p ); pv[i]._xy.SetY( axes.YDirection().XYZ() * p ); } // in a loop, find triangles with positive area and having no vertices inside int iN = 0, nbTria = nbNodes - 2; nodes.reserve( nbTria * 3 ); const double minArea = 1e-6; PolyVertex* v = &pv[0], *vi; int nbVertices = nbNodes, nbBadTria = 0, isGoodTria; while ( nbBadTria < nbVertices ) { if (( isGoodTria = v->TriaArea() > minArea )) { for ( vi = v->_next->_next; vi != v->_prev; vi = vi->_next ) { if ( v->IsInsideTria( vi )) break; } isGoodTria = ( vi == v->_prev ); } if ( isGoodTria ) { v->GetTriaNodes( &nodes[ iN ] ); iN += 3; v = v->Delete(); if ( --nbVertices == 3 ) { // last triangle remains v->GetTriaNodes( &nodes[ iN ] ); return true; } nbBadTria = 0; } else { v = v->_next; ++nbBadTria; } } // the polygon is invalid; add triangles with positive area nbBadTria = 0; while ( nbBadTria < nbVertices ) { isGoodTria = v->TriaArea() > minArea; if ( isGoodTria ) { v->GetTriaNodes( &nodes[ iN ] ); iN += 3; v = v->Delete(); if ( --nbVertices == 3 ) { // last triangle remains v->GetTriaNodes( &nodes[ iN ] ); return true; } nbBadTria = 0; } else { v = v->_next; ++nbBadTria; } } // add all the rest triangles while ( nbVertices >= 3 ) { v->GetTriaNodes( &nodes[ iN ] ); iN += 3; v = v->Delete(); --nbVertices; } return true; } // triangulate() } // namespace //================================================================================ /*! * \brief Return nb triangles in a decomposed mesh face * \retval int - number of triangles */ //================================================================================ static int getNbTriangles( const SMDS_MeshElement* face) { // WARNING: counting triangles must be coherent with getTriangles() switch ( face->GetEntityType() ) { case SMDSEntity_BiQuad_Triangle: case SMDSEntity_BiQuad_Quadrangle: return face->NbNodes() - 1; // case SMDSEntity_Triangle: // case SMDSEntity_Quad_Triangle: // case SMDSEntity_Quadrangle: // case SMDSEntity_Quad_Quadrangle: // case SMDSEntity_Polygon: // case SMDSEntity_Quad_Polygon: default: return face->NbNodes() - 2; } return 0; } //================================================================================ /*! * \brief Decompose a mesh face into triangles * \retval int - number of triangles */ //================================================================================ static int getTriangles( const SMDS_MeshElement* face, std::vector< const SMDS_MeshNode*>& nodes) { // WARNING: decomposing into triangles must be coherent with getNbTriangles() int nbTria, i = 0, nbNodes = face->NbNodes(); SMDS_NodeIteratorPtr nIt = face->interlacedNodesIterator(); nodes.resize( nbNodes * 3 ); nodes[ i++ ] = nIt->next(); nodes[ i++ ] = nIt->next(); const SMDSAbs_EntityType type = face->GetEntityType(); switch ( type ) { case SMDSEntity_BiQuad_Triangle: case SMDSEntity_BiQuad_Quadrangle: nbTria = ( type == SMDSEntity_BiQuad_Triangle ) ? 6 : 8; nodes[ i++ ] = face->GetNode( nbTria ); for ( i = 3; i < 3*(nbTria-1); i += 3 ) { nodes[ i+0 ] = nodes[ i-2 ]; nodes[ i+1 ] = nIt->next(); nodes[ i+2 ] = nodes[ 2 ]; } nodes[ i+0 ] = nodes[ i-2 ]; nodes[ i+1 ] = nodes[ 0 ]; nodes[ i+2 ] = nodes[ 2 ]; break; case SMDSEntity_Triangle: nbTria = 1; nodes[ i++ ] = nIt->next(); break; default: // case SMDSEntity_Quad_Triangle: // case SMDSEntity_Quadrangle: // case SMDSEntity_Quad_Quadrangle: // case SMDSEntity_Polygon: // case SMDSEntity_Quad_Polygon: nbTria = nbNodes - 2; while ( nIt->more() ) nodes[ i++ ] = nIt->next(); if ( !triangulate( nodes, nbNodes )) { nIt = face->interlacedNodesIterator(); nodes[ 0 ] = nIt->next(); nodes[ 1 ] = nIt->next(); nodes[ 2 ] = nIt->next(); for ( i = 3; i < 3*nbTria; i += 3 ) { nodes[ i+0 ] = nodes[ 0 ]; nodes[ i+1 ] = nodes[ i-1 ]; nodes[ i+2 ] = nIt->next(); } } break; } return nbTria; } // private methods Driver_Mesh::Status DriverSTL_W_SMDS_Mesh::writeAscii() const { Status aResult = DRS_OK; if ( myFile.empty() ) { fprintf(stderr, ">> ERREOR : invalid file name \n"); return DRS_FAIL; } SMESH_File aFile( myFile, /*openForReading=*/false ); aFile.openForWriting(); std::string buf("solid "); buf += myName + "\n"; aFile.writeRaw( buf.c_str(), buf.size() ); char sval[128]; std::vector< const SMDS_MeshNode* > triaNodes; SMDS_ElemIteratorPtr itFaces = getFaces(); while ( itFaces->more() ) { const SMDS_MeshElement* aFace = itFaces->next(); int nbTria = getTriangles( aFace, triaNodes ); for ( int iT = 0, iN = 0; iT < nbTria; ++iT ) { gp_XYZ normale = getNormale( triaNodes[iN], triaNodes[iN+1], triaNodes[iN+2] ); sprintf (sval, " facet normal % 12e % 12e % 12e\n" " outer loop\n" , normale.X(), normale.Y(), normale.Z()); aFile.writeRaw ( sval, 70 + strlen( sval + 70 )); // at least 70 but can be more (WIN) for ( int jN = 0; jN < 3; ++jN, ++iN ) { SMESH_TNodeXYZ node = triaNodes[iN]; sprintf (sval, " vertex % 12e % 12e % 12e\n", node.X(), node.Y(), node.Z() ); aFile.writeRaw ( sval, 54 + strlen( sval + 54 )); } aFile.writeRaw (" endloop\n" " endfacet\n", 21 ); } } buf = "endsolid " + myName + "\n"; aFile.writeRaw( buf.c_str(), buf.size() ); return aResult; } //================================================================================ /*! * \brief Writes all triangles in binary format * \return Driver_Mesh::Status - DRS_FAIL if no file name is provided */ //================================================================================ Driver_Mesh::Status DriverSTL_W_SMDS_Mesh::writeBinary() const { Status aResult = DRS_OK; if ( myFile.empty() ) { fprintf(stderr, ">> ERREOR : invalid filename \n"); return DRS_FAIL; } SMESH_File aFile( myFile ); aFile.openForWriting(); // we first count the number of triangles int nbTri = myNbVolumeTrias; { SMDS_FaceIteratorPtr itFaces = myMesh->facesIterator(); while ( itFaces->more() ) { const SMDS_MeshElement* aFace = itFaces->next(); nbTri += getNbTriangles( aFace ); } } std::string sval( LABEL_SIZE, ' ' ); if ( !myName.empty() ) { sval = "name: " + myName; sval.resize( LABEL_SIZE, ' ' ); } aFile.write( sval.c_str(), LABEL_SIZE ); // write number of triangles writeInteger( nbTri, aFile ); // Loop writing nodes int dum=0; std::vector< const SMDS_MeshNode* > triaNodes; SMDS_ElemIteratorPtr itFaces = getFaces(); while ( itFaces->more() ) { const SMDS_MeshElement* aFace = itFaces->next(); int nbTria = getTriangles( aFace, triaNodes ); for ( int iT = 0, iN = 0; iT < nbTria; ++iT ) { gp_XYZ normale = getNormale( triaNodes[iN], triaNodes[iN+1], triaNodes[iN+2] ); writeFloat(normale.X(),aFile); writeFloat(normale.Y(),aFile); writeFloat(normale.Z(),aFile); for ( int jN = 0; jN < 3; ++jN, ++iN ) { const SMDS_MeshNode* node = triaNodes[iN]; writeFloat(node->X(),aFile); writeFloat(node->Y(),aFile); writeFloat(node->Z(),aFile); } aFile.writeRaw ( &dum, 2 ); } } return aResult; }