// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : SMESH_MeshEditor.hxx // Created : Mon Apr 12 14:56:19 2004 // Author : Edward AGAPOV (eap) // Module : SMESH // #ifndef SMESH_MeshEditor_HeaderFile #define SMESH_MeshEditor_HeaderFile #include "SMESH_SMESH.hxx" #include "SMESH_Controls.hxx" #include "SMESH_TypeDefs.hxx" #include "SMESH_ComputeError.hxx" #include #include #include #include #include #include class SMDS_MeshElement; class SMDS_MeshFace; class SMDS_MeshNode; class SMESHDS_Mesh; class SMESHDS_SubMesh; class SMESH_Group; class SMESH_Mesh; class SMESH_MesherHelper; class SMESH_NodeSearcher; class SMESH_subMesh; class TopoDS_Edge; class TopoDS_Shape; class TopoDS_Vertex; class gp_Ax1; class gp_Pnt; class gp_Vec; // ============================================================ /*! * \brief Editor of a mesh */ // ============================================================ class SMESH_EXPORT SMESH_MeshEditor { public: SMESH_MeshEditor( SMESH_Mesh* theMesh ); SMESH_Mesh * GetMesh() { return myMesh; } SMESHDS_Mesh * GetMeshDS(); const SMESH_SequenceOfElemPtr& GetLastCreatedNodes() const { return myLastCreatedNodes; } const SMESH_SequenceOfElemPtr& GetLastCreatedElems() const { return myLastCreatedElems; } void ClearLastCreated(); SMESH_ComputeErrorPtr & GetError() { return myError; } // -------------------------------------------------------------------------------- struct ElemFeatures //!< Features of element to create { SMDSAbs_ElementType myType; bool myIsPoly, myIsQuad; int myID; double myBallDiameter; std::vector myPolyhedQuantities; SMESH_EXPORT ElemFeatures( SMDSAbs_ElementType type=SMDSAbs_All, bool isPoly=false, bool isQuad=false ) :myType( type ), myIsPoly(isPoly), myIsQuad(isQuad), myID(-1), myBallDiameter(0) {} SMESH_EXPORT ElemFeatures& Init( SMDSAbs_ElementType type, bool isPoly=false, bool isQuad=false ) { myType = type; myIsPoly = isPoly; myIsQuad = isQuad; return *this; } SMESH_EXPORT ElemFeatures& Init( const SMDS_MeshElement* elem, bool basicOnly=true ); SMESH_EXPORT ElemFeatures& Init( double diameter ) { myType = SMDSAbs_Ball; myBallDiameter = diameter; return *this; } SMESH_EXPORT ElemFeatures& Init( std::vector& quanities, bool isQuad=false ) { myType = SMDSAbs_Volume; myIsPoly = 1; myIsQuad = isQuad; myPolyhedQuantities.swap( quanities ); return *this; } SMESH_EXPORT ElemFeatures& Init( const std::vector& quanities, bool isQuad=false ) { myType = SMDSAbs_Volume; myIsPoly = 1; myIsQuad = isQuad; myPolyhedQuantities = quanities; return *this; } SMESH_EXPORT ElemFeatures& SetPoly(bool isPoly) { myIsPoly = isPoly; return *this; } SMESH_EXPORT ElemFeatures& SetQuad(bool isQuad) { myIsQuad = isQuad; return *this; } SMESH_EXPORT ElemFeatures& SetID (int ID) { myID = ID; return *this; } }; /*! * \brief Add element */ SMDS_MeshElement* AddElement(const std::vector & nodes, const ElemFeatures& features); /*! * \brief Add element */ SMDS_MeshElement* AddElement(const std::vector & nodeIDs, const ElemFeatures& features); int Remove (const std::list< int >& theElemIDs, const bool isNodes); // Remove a node or an element. // Modify a compute state of sub-meshes which become empty void Create0DElementsOnAllNodes( const TIDSortedElemSet& elements, TIDSortedElemSet& all0DElems, const bool duplicateElements); // Create 0D elements on all nodes of the given. \a all0DElems returns // all 0D elements found or created on nodes of \a elements bool InverseDiag (const SMDS_MeshElement * theTria1, const SMDS_MeshElement * theTria2 ); // Replace two neighbour triangles with ones built on the same 4 nodes // but having other common link. // Return False if args are improper bool InverseDiag (const SMDS_MeshNode * theNode1, const SMDS_MeshNode * theNode2 ); // Replace two neighbour triangles sharing theNode1-theNode2 link // with ones built on the same 4 nodes but having other common link. // Return false if proper faces not found bool DeleteDiag (const SMDS_MeshNode * theNode1, const SMDS_MeshNode * theNode2 ); // Replace two neighbour triangles sharing theNode1-theNode2 link // with a quadrangle built on the same 4 nodes. // Return false if proper faces not found bool Reorient (const SMDS_MeshElement * theElement); // Reverse theElement orientation int Reorient2D (TIDSortedElemSet & theFaces, const gp_Dir& theDirection, const SMDS_MeshElement * theFace); // Reverse theFaces whose orientation to be same as that of theFace // oriented according to theDirection. Return nb of reoriented faces int Reorient2DBy3D (TIDSortedElemSet & theFaces, TIDSortedElemSet & theVolumes, const bool theOutsideNormal); // Reorient faces basing on orientation of adjacent volumes. // Return nb of reoriented faces /*! * \brief Fuse neighbour triangles into quadrangles. * \param theElems - The triangles to be fused. * \param theCriterion - Is used to choose a neighbour to fuse with. * \param theMaxAngle - Is a max angle between element normals at which fusion * is still performed; theMaxAngle is mesured in radians. * \return bool - Success or not. */ bool TriToQuad (TIDSortedElemSet & theElems, SMESH::Controls::NumericalFunctorPtr theCriterion, const double theMaxAngle); /*! * \brief Split quadrangles into triangles. * \param theElems - The faces to be splitted. * \param theCriterion - Is used to choose a diagonal for splitting. * \return bool - Success or not. */ bool QuadToTri (TIDSortedElemSet & theElems, SMESH::Controls::NumericalFunctorPtr theCriterion); /*! * \brief Split quadrangles into triangles. * \param theElems - The faces to be splitted. * \param the13Diag - Is used to choose a diagonal for splitting. * \return bool - Success or not. */ bool QuadToTri (TIDSortedElemSet & theElems, const bool the13Diag); /*! * \brief Split each of given quadrangles into 4 triangles. * \param theElems - The faces to be splitted. If empty all faces are split. */ void QuadTo4Tri (TIDSortedElemSet & theElems); /*! * \brief Find better diagonal for splitting. * \param theQuad - The face to find better splitting of. * \param theCriterion - Is used to choose a diagonal for splitting. * \return int - 1 for 1-3 diagonal, 2 for 2-4, -1 - for errors. */ int BestSplit (const SMDS_MeshElement* theQuad, SMESH::Controls::NumericalFunctorPtr theCriterion); typedef std::map < const SMDS_MeshElement*, int, TIDCompare > TFacetOfElem; //!<2nd arg of SplitVolumes() enum SplitVolumToTetraFlags { HEXA_TO_5 = 1, // split into tetrahedra HEXA_TO_6, HEXA_TO_24, HEXA_TO_2_PRISMS, // split into prisms HEXA_TO_4_PRISMS }; /*! * \brief Split volumic elements into tetrahedra or prisms. * If facet ID < 0, element is split into tetrahedra, * else a hexahedron is split into prisms so that the given facet is * split into triangles */ void SplitVolumes (const TFacetOfElem & theElems, const int theMethodFlags); /*! * \brief For hexahedra that will be split into prisms, finds facets to * split into triangles * \param [in,out] theHexas - the hexahedra * \param [in] theFacetNormal - facet normal * \param [out] theFacets - the hexahedra and found facet IDs */ void GetHexaFacetsToSplit( TIDSortedElemSet& theHexas, const gp_Ax1& theFacetNormal, TFacetOfElem & theFacets); /*! * \brief Split bi-quadratic elements into linear ones without creation of additional nodes * - bi-quadratic triangle will be split into 3 linear quadrangles; * - bi-quadratic quadrangle will be split into 4 linear quadrangles; * - tri-quadratic hexahedron will be split into 8 linear hexahedra; * Quadratic elements of lower dimension adjacent to the split bi-quadratic element * will be split in order to keep the mesh conformal. * \param elems - elements to split */ void SplitBiQuadraticIntoLinear(TIDSortedElemSet& theElems); enum SmoothMethod { LAPLACIAN = 0, CENTROIDAL }; void Smooth (TIDSortedElemSet & theElements, std::set & theFixedNodes, const SmoothMethod theSmoothMethod, const int theNbIterations, double theTgtAspectRatio = 1.0, const bool the2D = true); // Smooth theElements using theSmoothMethod during theNbIterations // or until a worst element has aspect ratio <= theTgtAspectRatio. // Aspect Ratio varies in range [1.0, inf]. // If theElements is empty, the whole mesh is smoothed. // theFixedNodes contains additionally fixed nodes. Nodes built // on edges and boundary nodes are always fixed. // If the2D, smoothing is performed using UV parameters of nodes // on geometrical faces typedef TIDTypeCompare TElemSort; typedef std::map < const SMDS_MeshElement*, std::list, TElemSort > TTElemOfElemListMap; typedef std::map > TNodeOfNodeListMap; typedef TNodeOfNodeListMap::iterator TNodeOfNodeListMapItr; typedef std::vector TVecOfNnlmiMap; typedef std::map TElemOfVecOfNnlmiMap; typedef std::auto_ptr< std::list > PGroupIDs; PGroupIDs RotationSweep (TIDSortedElemSet theElements[2], const gp_Ax1& theAxis, const double theAngle, const int theNbSteps, const double theToler, const bool theMakeGroups, const bool theMakeWalls=true); // Generate new elements by rotation of theElements around theAxis // by theAngle by theNbSteps /*! * Flags of extrusion. * BOUNDARY: create or not boundary for result of extrusion * SEW: try to use existing nodes or create new nodes in any case * GROUPS: to create groups * BY_AVG_NORMAL: step size is measured along average normal to elements, * else step size is measured along average normal of any element * USE_INPUT_ELEMS_ONLY: to use only input elements to compute extrusion direction * for ExtrusionByNormal() * SCALE_LINEAR_VARIATION: to make linear variation of scale factors */ enum ExtrusionFlags { EXTRUSION_FLAG_BOUNDARY = 0x01, EXTRUSION_FLAG_SEW = 0x02, EXTRUSION_FLAG_GROUPS = 0x04, EXTRUSION_FLAG_BY_AVG_NORMAL = 0x08, EXTRUSION_FLAG_USE_INPUT_ELEMS_ONLY = 0x10, EXTRUSION_FLAG_SCALE_LINEAR_VARIATION = 0x20 }; /*! * Generator of nodes for extrusion functionality */ class SMESH_EXPORT ExtrusParam { gp_Dir myDir; // direction of extrusion Handle(TColStd_HSequenceOfReal) mySteps; // magnitudes for each step std::vector myScales, myMediumScales;// scale factors gp_XYZ myBaseP; // scaling center SMESH_SequenceOfNode myNodes; // nodes for using in sewing int myFlags; // see ExtrusionFlags double myTolerance; // tolerance for sewing nodes const TIDSortedElemSet* myElemsToUse; // elements to use for extrusion by normal int (ExtrusParam::*myMakeNodesFun)(SMESHDS_Mesh* mesh, const SMDS_MeshNode* srcNode, std::list & newNodes, const bool makeMediumNodes); public: ExtrusParam( const gp_Vec& theStep, const int theNbSteps, const std::list& theScales, const gp_XYZ* theBaseP, const int theFlags = 0, const double theTolerance = 1e-6); ExtrusParam( const gp_Dir& theDir, Handle(TColStd_HSequenceOfReal) theSteps, const int theFlags = 0, const double theTolerance = 1e-6); ExtrusParam( const double theStep, const int theNbSteps, const int theFlags, const int theDim); // for extrusion by normal SMESH_SequenceOfNode& ChangeNodes() { return myNodes; } int& Flags() { return myFlags; } bool ToMakeBoundary() const { return myFlags & EXTRUSION_FLAG_BOUNDARY; } bool ToMakeGroups() const { return myFlags & EXTRUSION_FLAG_GROUPS; } bool ToUseInpElemsOnly() const { return myFlags & EXTRUSION_FLAG_USE_INPUT_ELEMS_ONLY; } bool IsLinearVariation() const { return myFlags & EXTRUSION_FLAG_SCALE_LINEAR_VARIATION; } int NbSteps() const { return mySteps->Length(); } // stores elements to use for extrusion by normal, depending on // state of EXTRUSION_FLAG_USE_INPUT_ELEMS_ONLY flag; // define myBaseP for scaling void SetElementsToUse( const TIDSortedElemSet& elems, const TIDSortedElemSet& nodes ); // creates nodes and returns number of nodes added in \a newNodes int MakeNodes( SMESHDS_Mesh* mesh, const SMDS_MeshNode* srcNode, std::list & newNodes, const bool makeMediumNodes) { return (this->*myMakeNodesFun)( mesh, srcNode, newNodes, makeMediumNodes ); } private: int makeNodesByDir( SMESHDS_Mesh* mesh, const SMDS_MeshNode* srcNode, std::list & newNodes, const bool makeMediumNodes); int makeNodesByDirAndSew( SMESHDS_Mesh* mesh, const SMDS_MeshNode* srcNode, std::list & newNodes, const bool makeMediumNodes); int makeNodesByNormal2D( SMESHDS_Mesh* mesh, const SMDS_MeshNode* srcNode, std::list & newNodes, const bool makeMediumNodes); int makeNodesByNormal1D( SMESHDS_Mesh* mesh, const SMDS_MeshNode* srcNode, std::list & newNodes, const bool makeMediumNodes); // step iteration void beginStepIter( bool withMediumNodes ); bool moreSteps(); double nextStep(); std::vector< double > myCurSteps; bool myWithMediumNodes; int myNextStep; }; /*! * Generate new elements by extrusion of theElements * It is a method used in .idl file. All functionality * is implemented in the next method (see below) which * is used in the current method. * @param theElems - list of elements for extrusion * @param newElemsMap returns history of extrusion * @param theFlags set flags for performing extrusion (see description * of enum ExtrusionFlags for additional information) * @param theTolerance - uses for comparing locations of nodes if flag * EXTRUSION_FLAG_SEW is set */ PGroupIDs ExtrusionSweep (TIDSortedElemSet theElems[2], const gp_Vec& theStep, const int theNbSteps, TTElemOfElemListMap& newElemsMap, const int theFlags, const double theTolerance = 1.e-6); /*! * Generate new elements by extrusion of theElements * @param theElems - list of elements for extrusion * @param newElemsMap returns history of extrusion * @param theFlags set flags for performing extrusion (see description * of enum ExtrusionFlags for additional information) * @param theTolerance - uses for comparing locations of nodes if flag * EXTRUSION_FLAG_SEW is set * @param theParams - special structure for manage of extrusion */ PGroupIDs ExtrusionSweep (TIDSortedElemSet theElems[2], ExtrusParam& theParams, TTElemOfElemListMap& newElemsMap); // Generate new elements by extrusion of theElements // by theStep by theNbSteps enum Extrusion_Error { EXTR_OK, EXTR_NO_ELEMENTS, EXTR_PATH_NOT_EDGE, EXTR_BAD_PATH_SHAPE, EXTR_BAD_STARTING_NODE, EXTR_BAD_ANGLES_NUMBER, EXTR_CANT_GET_TANGENT }; Extrusion_Error ExtrusionAlongTrack (TIDSortedElemSet theElements[2], SMESH_subMesh* theTrackPattern, const SMDS_MeshNode* theNodeStart, const bool theHasAngles, std::list& theAngles, const bool theLinearVariation, const bool theHasRefPoint, const gp_Pnt& theRefPoint, const bool theMakeGroups); Extrusion_Error ExtrusionAlongTrack (TIDSortedElemSet theElements[2], SMESH_Mesh* theTrackPattern, const SMDS_MeshNode* theNodeStart, const bool theHasAngles, std::list& theAngles, const bool theLinearVariation, const bool theHasRefPoint, const gp_Pnt& theRefPoint, const bool theMakeGroups); // Generate new elements by extrusion of theElements along path given by theTrackPattern, // theHasAngles are the rotation angles, base point can be given by theRefPoint PGroupIDs Transform (TIDSortedElemSet & theElements, const gp_Trsf& theTrsf, const bool theCopy, const bool theMakeGroups, SMESH_Mesh* theTargetMesh=0); // Move or copy theElements applying theTrsf to their nodes typedef std::list< std::list< const SMDS_MeshNode* > > TListOfListOfNodes; void FindCoincidentNodes (TIDSortedNodeSet & theNodes, const double theTolerance, TListOfListOfNodes & theGroupsOfNodes, bool theSeparateCornersAndMedium); // Return list of group of nodes close to each other within theTolerance. // Search among theNodes or in the whole mesh if theNodes is empty. void MergeNodes (TListOfListOfNodes & theNodeGroups); // In each group, the cdr of nodes are substituted by the first one // in all elements. typedef std::list< std::list< int > > TListOfListOfElementsID; void FindEqualElements(TIDSortedElemSet & theElements, TListOfListOfElementsID & theGroupsOfElementsID); // Return list of group of elements build on the same nodes. // Search among theElements or in the whole mesh if theElements is empty. void MergeElements(TListOfListOfElementsID & theGroupsOfElementsID); // In each group remove all but first of elements. void MergeEqualElements(); // Remove all but one of elements built on the same nodes. // Return nb of successfully merged groups. int SimplifyFace (const std::vector& faceNodes, std::vector& poly_nodes, std::vector& quantities) const; // Split face, defined by , into several faces by repeating nodes. // Is used by MergeNodes() static bool CheckFreeBorderNodes(const SMDS_MeshNode* theNode1, const SMDS_MeshNode* theNode2, const SMDS_MeshNode* theNode3 = 0); // Return true if the three nodes are on a free border static bool FindFreeBorder (const SMDS_MeshNode* theFirstNode, const SMDS_MeshNode* theSecondNode, const SMDS_MeshNode* theLastNode, std::list< const SMDS_MeshNode* > & theNodes, std::list< const SMDS_MeshElement* >& theFaces); // Return nodes and faces of a free border if found enum Sew_Error { SEW_OK, // for SewFreeBorder() SEW_BORDER1_NOT_FOUND, SEW_BORDER2_NOT_FOUND, SEW_BOTH_BORDERS_NOT_FOUND, SEW_BAD_SIDE_NODES, SEW_VOLUMES_TO_SPLIT, // for SewSideElements() SEW_DIFF_NB_OF_ELEMENTS, SEW_TOPO_DIFF_SETS_OF_ELEMENTS, SEW_BAD_SIDE1_NODES, SEW_BAD_SIDE2_NODES, SEW_INTERNAL_ERROR }; Sew_Error SewFreeBorder (const SMDS_MeshNode* theBorderFirstNode, const SMDS_MeshNode* theBorderSecondNode, const SMDS_MeshNode* theBorderLastNode, const SMDS_MeshNode* theSide2FirstNode, const SMDS_MeshNode* theSide2SecondNode, const SMDS_MeshNode* theSide2ThirdNode = 0, const bool theSide2IsFreeBorder = true, const bool toCreatePolygons = false, const bool toCreatePolyedrs = false); // Sew the free border to the side2 by replacing nodes in // elements on the free border with nodes of the elements // of the side 2. If nb of links in the free border and // between theSide2FirstNode and theSide2LastNode are different, // additional nodes are inserted on a link provided that no // volume elements share the splitted link. // The side 2 is a free border if theSide2IsFreeBorder == true. // Sewing is peformed between the given first, second and last // nodes on the sides. // theBorderFirstNode is merged with theSide2FirstNode. // if (!theSide2IsFreeBorder) then theSide2SecondNode gives // the last node on the side 2, which will be merged with // theBorderLastNode. // if (theSide2IsFreeBorder) then theSide2SecondNode will // be merged with theBorderSecondNode. // if (theSide2IsFreeBorder && theSide2ThirdNode == 0) then // the 2 free borders are sewn link by link and no additional // nodes are inserted. // Return false, if sewing failed. Sew_Error SewSideElements (TIDSortedElemSet& theSide1, TIDSortedElemSet& theSide2, const SMDS_MeshNode* theFirstNode1ToMerge, const SMDS_MeshNode* theFirstNode2ToMerge, const SMDS_MeshNode* theSecondNode1ToMerge, const SMDS_MeshNode* theSecondNode2ToMerge); // Sew two sides of a mesh. Nodes belonging to theSide1 are // merged with nodes of elements of theSide2. // Number of elements in theSide1 and in theSide2 must be // equal and they should have similar node connectivity. // The nodes to merge should belong to side s borders and // the first node should be linked to the second. void InsertNodesIntoLink(const SMDS_MeshElement* theFace, const SMDS_MeshNode* theBetweenNode1, const SMDS_MeshNode* theBetweenNode2, std::list& theNodesToInsert, const bool toCreatePoly = false); // insert theNodesToInsert into theFace between theBetweenNode1 and theBetweenNode2. // If toCreatePoly is true, replace theFace by polygon, else split theFace. void UpdateVolumes (const SMDS_MeshNode* theBetweenNode1, const SMDS_MeshNode* theBetweenNode2, std::list& theNodesToInsert); // insert theNodesToInsert into all volumes, containing link // theBetweenNode1 - theBetweenNode2, between theBetweenNode1 and theBetweenNode2. void ConvertToQuadratic(const bool theForce3d, const bool theToBiQuad); void ConvertToQuadratic(const bool theForce3d, TIDSortedElemSet& theElements, const bool theToBiQuad); // Converts all mesh to quadratic or bi-quadratic one, deletes old elements, // replacing them with quadratic or bi-quadratic ones with the same id. // If theForce3d = 1; this results in the medium node lying at the // middle of the line segments connecting start and end node of a mesh element. // If theForce3d = 0; this results in the medium node lying at the // geometrical edge from which the mesh element is built. bool ConvertFromQuadratic(); void ConvertFromQuadratic(TIDSortedElemSet& theElements); // Converts all mesh from quadratic to ordinary ones, deletes old quadratic elements, replacing // them with ordinary mesh elements with the same id. // Returns true in case of success, false otherwise. static void AddToSameGroups (const SMDS_MeshElement* elemToAdd, const SMDS_MeshElement* elemInGroups, SMESHDS_Mesh * aMesh); // Add elemToAdd to the all groups the elemInGroups belongs to static void RemoveElemFromGroups (const SMDS_MeshElement* element, SMESHDS_Mesh * aMesh); // remove element from the all groups static void ReplaceElemInGroups (const SMDS_MeshElement* elemToRm, const SMDS_MeshElement* elemToAdd, SMESHDS_Mesh * aMesh); // replace elemToRm by elemToAdd in the all groups static void ReplaceElemInGroups (const SMDS_MeshElement* elemToRm, const std::vector& elemToAdd, SMESHDS_Mesh * aMesh); // replace elemToRm by elemToAdd in the all groups /*! * \brief Return nodes linked to the given one in elements of the type */ static void GetLinkedNodes( const SMDS_MeshNode* node, TIDSortedElemSet & linkedNodes, SMDSAbs_ElementType type = SMDSAbs_All ); /*! * \brief Find corresponding nodes in two sets of faces * \param theSide1 - first face set * \param theSide2 - second first face * \param theFirstNode1 - a boundary node of set 1 * \param theFirstNode2 - a node of set 2 corresponding to theFirstNode1 * \param theSecondNode1 - a boundary node of set 1 linked with theFirstNode1 * \param theSecondNode2 - a node of set 2 corresponding to theSecondNode1 * \param nReplaceMap - output map of corresponding nodes * \return Sew_Error - is a success or not */ static Sew_Error FindMatchingNodes(std::set& theSide1, std::set& theSide2, const SMDS_MeshNode* theFirstNode1, const SMDS_MeshNode* theFirstNode2, const SMDS_MeshNode* theSecondNode1, const SMDS_MeshNode* theSecondNode2, TNodeNodeMap & theNodeReplaceMap); /*! * \brief Returns true if given node is medium * \param n - node to check * \param typeToCheck - type of elements containing the node to ask about node status * \return bool - check result */ static bool IsMedium(const SMDS_MeshNode* node, const SMDSAbs_ElementType typeToCheck = SMDSAbs_All); int FindShape (const SMDS_MeshElement * theElem); // Return an index of the shape theElem is on // or zero if a shape not found void DoubleElements( const TIDSortedElemSet& theElements ); bool DoubleNodes( const std::list< int >& theListOfNodes, const std::list< int >& theListOfModifiedElems ); bool DoubleNodes( const TIDSortedElemSet& theElems, const TIDSortedElemSet& theNodesNot, const TIDSortedElemSet& theAffectedElems ); bool AffectedElemGroupsInRegion( const TIDSortedElemSet& theElems, const TIDSortedElemSet& theNodesNot, const TopoDS_Shape& theShape, TIDSortedElemSet& theAffectedElems); bool DoubleNodesInRegion( const TIDSortedElemSet& theElems, const TIDSortedElemSet& theNodesNot, const TopoDS_Shape& theShape ); double OrientedAngle(const gp_Pnt& p0, const gp_Pnt& p1, const gp_Pnt& g1, const gp_Pnt& g2); bool DoubleNodesOnGroupBoundaries( const std::vector& theElems, bool createJointElems, bool onAllBoundaries); bool CreateFlatElementsOnFacesGroups( const std::vector& theElems ); void CreateHoleSkin(double radius, const TopoDS_Shape& theShape, SMESH_NodeSearcher* theNodeSearcher, const char* groupName, std::vector& nodesCoords, std::vector >& listOfListOfNodes); /*! * \brief Generated skin mesh (containing 2D cells) from 3D mesh * The created 2D mesh elements based on nodes of free faces of boundary volumes * \return TRUE if operation has been completed successfully, FALSE otherwise */ bool Make2DMeshFrom3D(); enum Bnd_Dimension { BND_2DFROM3D, BND_1DFROM3D, BND_1DFROM2D }; int MakeBoundaryMesh(const TIDSortedElemSet& elements, Bnd_Dimension dimension, SMESH_Group* group = 0, SMESH_Mesh* targetMesh = 0, bool toCopyElements = false, bool toCopyExistingBondary = false, bool toAddExistingBondary = false, bool aroundElements = false); private: /*! * \brief Convert elements contained in a submesh to quadratic * \return int - nb of checked elements */ int convertElemToQuadratic(SMESHDS_SubMesh * theSm, SMESH_MesherHelper& theHelper, const bool theForce3d); /*! * \brief Convert quadratic elements to linear ones and remove quadratic nodes * \return nb of checked elements */ int removeQuadElem( SMESHDS_SubMesh * theSm, SMDS_ElemIteratorPtr theItr, const int theShapeID); /*! * \brief Create groups of elements made during transformation * \param nodeGens - nodes making corresponding myLastCreatedNodes * \param elemGens - elements making corresponding myLastCreatedElems * \param postfix - to append to names of new groups * \param targetMesh - mesh to create groups in * \param topPresent - is there "top" elements that are created by sweeping */ PGroupIDs generateGroups(const SMESH_SequenceOfElemPtr& nodeGens, const SMESH_SequenceOfElemPtr& elemGens, const std::string& postfix, SMESH_Mesh* targetMesh=0, const bool topPresent=true); /*! * \brief Create elements by sweeping an element * \param elem - element to sweep * \param newNodesItVec - nodes generated from each node of the element * \param newElems - generated elements * \param nbSteps - number of sweeping steps * \param srcElements - to append elem for each generated element */ void sweepElement(const SMDS_MeshElement* elem, const std::vector & newNodesItVec, std::list& newElems, const size_t nbSteps, SMESH_SequenceOfElemPtr& srcElements); /*! * \brief Create 1D and 2D elements around swept elements * \param mapNewNodes - source nodes and ones generated from them * \param newElemsMap - source elements and ones generated from them * \param elemNewNodesMap - nodes generated from each node of each element * \param elemSet - all swept elements * \param nbSteps - number of sweeping steps * \param srcElements - to append elem for each generated element */ void makeWalls (TNodeOfNodeListMap & mapNewNodes, TTElemOfElemListMap & newElemsMap, TElemOfVecOfNnlmiMap & elemNewNodesMap, TIDSortedElemSet& elemSet, const int nbSteps, SMESH_SequenceOfElemPtr& srcElements); struct SMESH_MeshEditor_PathPoint { gp_Pnt myPnt; gp_Dir myTgt; double myAngle, myPrm; SMESH_MeshEditor_PathPoint(): myPnt(99., 99., 99.), myTgt(1.,0.,0.), myAngle(0), myPrm(0) {} void SetPnt (const gp_Pnt& aP3D) { myPnt =aP3D; } void SetTangent (const gp_Dir& aTgt) { myTgt =aTgt; } void SetAngle (const double& aBeta) { myAngle=aBeta; } void SetParameter(const double& aPrm) { myPrm =aPrm; } const gp_Pnt& Pnt ()const { return myPnt; } const gp_Dir& Tangent ()const { return myTgt; } double Angle ()const { return myAngle; } double Parameter ()const { return myPrm; } }; Extrusion_Error MakeEdgePathPoints(std::list& aPrms, const TopoDS_Edge& aTrackEdge, bool aFirstIsStart, std::list& aLPP); Extrusion_Error MakeExtrElements(TIDSortedElemSet theElements[2], std::list& theFullList, const bool theHasAngles, std::list& theAngles, const bool theLinearVariation, const bool theHasRefPoint, const gp_Pnt& theRefPoint, const bool theMakeGroups); static void LinearAngleVariation(const int NbSteps, std::list& theAngles); bool doubleNodes( SMESHDS_Mesh* theMeshDS, const TIDSortedElemSet& theElems, const TIDSortedElemSet& theNodesNot, TNodeNodeMap& theNodeNodeMap, const bool theIsDoubleElem ); void copyPosition( const SMDS_MeshNode* from, const SMDS_MeshNode* to ); private: SMESH_Mesh * myMesh; // Nodes and elements created during last operation SMESH_SequenceOfElemPtr myLastCreatedNodes, myLastCreatedElems; // Description of error/warning occured during last operation SMESH_ComputeErrorPtr myError; }; #endif