// SMESH SMESH : idl implementation based on 'SMESH' unit's classes // // Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org // // // // File : SMESH_MeshEditor.cxx // Created : Mon Apr 12 16:10:22 2004 // Author : Edward AGAPOV (eap) #include "SMESH_MeshEditor.hxx" #include "SMDS_FaceOfNodes.hxx" #include "SMDS_VolumeTool.hxx" #include "SMDS_EdgePosition.hxx" #include "SMDS_PolyhedralVolumeOfNodes.hxx" #include "SMDS_FacePosition.hxx" #include "SMDS_SpacePosition.hxx" #include "SMESHDS_Group.hxx" #include "SMESHDS_Mesh.hxx" #include "SMESH_subMesh.hxx" #include "SMESH_ControlsDef.hxx" #include "utilities.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace SMESH::Controls; typedef map TNodeNodeMap; typedef map > TElemOfNodeListMap; typedef map > TElemOfElemListMap; typedef map > TNodeOfNodeListMap; typedef TNodeOfNodeListMap::iterator TNodeOfNodeListMapItr; typedef map > TElemOfVecOfNnlmiMap; //======================================================================= //function : SMESH_MeshEditor //purpose : //======================================================================= SMESH_MeshEditor::SMESH_MeshEditor( SMESH_Mesh* theMesh ): myMesh( theMesh ) { } //======================================================================= //function : Remove //purpose : Remove a node or an element. // Modify a compute state of sub-meshes which become empty //======================================================================= bool SMESH_MeshEditor::Remove (const list< int >& theIDs, const bool isNodes ) { SMESHDS_Mesh* aMesh = GetMeshDS(); set< SMESH_subMesh *> smmap; list::const_iterator it = theIDs.begin(); for ( ; it != theIDs.end(); it++ ) { const SMDS_MeshElement * elem; if ( isNodes ) elem = aMesh->FindNode( *it ); else elem = aMesh->FindElement( *it ); if ( !elem ) continue; // Find sub-meshes to notify about modification SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator(); while ( nodeIt->more() ) { const SMDS_MeshNode* node = static_cast( nodeIt->next() ); const SMDS_PositionPtr& aPosition = node->GetPosition(); if ( aPosition.get() ) { int aShapeID = aPosition->GetShapeId(); if ( aShapeID ) { TopoDS_Shape aShape = aMesh->IndexToShape( aShapeID ); SMESH_subMesh * sm = GetMesh()->GetSubMeshContaining( aShape ); if ( sm ) smmap.insert( sm ); } } } // Do remove if ( isNodes ) aMesh->RemoveNode( static_cast< const SMDS_MeshNode* >( elem )); else aMesh->RemoveElement( elem ); } // Notify sub-meshes about modification if ( !smmap.empty() ) { set< SMESH_subMesh *>::iterator smIt; for ( smIt = smmap.begin(); smIt != smmap.end(); smIt++ ) (*smIt)->ComputeStateEngine( SMESH_subMesh::MESH_ENTITY_REMOVED ); } return true; } //======================================================================= //function : FindShape //purpose : Return an index of the shape theElem is on // or zero if a shape not found //======================================================================= int SMESH_MeshEditor::FindShape (const SMDS_MeshElement * theElem) { SMESHDS_Mesh * aMesh = GetMeshDS(); if ( aMesh->ShapeToMesh().IsNull() ) return 0; if ( theElem->GetType() == SMDSAbs_Node ) { const SMDS_PositionPtr& aPosition = static_cast( theElem )->GetPosition(); if ( aPosition.get() ) return aPosition->GetShapeId(); else return 0; } TopoDS_Shape aShape; // the shape a node is on SMDS_ElemIteratorPtr nodeIt = theElem->nodesIterator(); while ( nodeIt->more() ) { const SMDS_MeshNode* node = static_cast( nodeIt->next() ); const SMDS_PositionPtr& aPosition = node->GetPosition(); if ( aPosition.get() ) { int aShapeID = aPosition->GetShapeId(); SMESHDS_SubMesh * sm = aMesh->MeshElements( aShapeID ); if ( sm ) { if ( sm->Contains( theElem )) return aShapeID; if ( aShape.IsNull() ) aShape = aMesh->IndexToShape( aShapeID ); } else { //MESSAGE ( "::FindShape() No SubShape for aShapeID " << aShapeID ); } } } // None of nodes is on a proper shape, // find the shape among ancestors of aShape on which a node is if ( aShape.IsNull() ) { //MESSAGE ("::FindShape() - NONE node is on shape") return 0; } TopTools_ListIteratorOfListOfShape ancIt( GetMesh()->GetAncestors( aShape )); for ( ; ancIt.More(); ancIt.Next() ) { SMESHDS_SubMesh * sm = aMesh->MeshElements( ancIt.Value() ); if ( sm && sm->Contains( theElem )) return aMesh->ShapeToIndex( ancIt.Value() ); } //MESSAGE ("::FindShape() - SHAPE NOT FOUND") return 0; } //======================================================================= //function : InverseDiag //purpose : Replace two neighbour triangles with ones built on the same 4 nodes // but having other common link. // Return False if args are improper //======================================================================= bool SMESH_MeshEditor::InverseDiag (const SMDS_MeshElement * theTria1, const SMDS_MeshElement * theTria2 ) { if (!theTria1 || !theTria2) return false; const SMDS_FaceOfNodes* F1 = dynamic_cast( theTria1 ); if (!F1) return false; const SMDS_FaceOfNodes* F2 = dynamic_cast( theTria2 ); if (!F2) return false; // 1 +--+ A theTria1: ( 1 A B ) A->2 ( 1 2 B ) 1 +--+ A // | /| theTria2: ( B A 2 ) B->1 ( 1 A 2 ) |\ | // |/ | | \| // B +--+ 2 B +--+ 2 // put nodes in array and find out indices of the same ones const SMDS_MeshNode* aNodes [6]; int sameInd [] = { 0, 0, 0, 0, 0, 0 }; int i = 0; SMDS_ElemIteratorPtr it = theTria1->nodesIterator(); while ( it->more() ) { aNodes[ i ] = static_cast( it->next() ); if ( i > 2 ) // theTria2 // find same node of theTria1 for ( int j = 0; j < 3; j++ ) if ( aNodes[ i ] == aNodes[ j ]) { sameInd[ j ] = i; sameInd[ i ] = j; break; } // next i++; if ( i == 3 ) { if ( it->more() ) return false; // theTria1 is not a triangle it = theTria2->nodesIterator(); } if ( i == 6 && it->more() ) return false; // theTria2 is not a triangle } // find indices of 1,2 and of A,B in theTria1 int iA = 0, iB = 0, i1 = 0, i2 = 0; for ( i = 0; i < 6; i++ ) { if ( sameInd [ i ] == 0 ) if ( i < 3 ) i1 = i; else i2 = i; else if (i < 3) if ( iA ) iB = i; else iA = i; } // nodes 1 and 2 should not be the same if ( aNodes[ i1 ] == aNodes[ i2 ] ) return false; // theTria1: A->2 aNodes[ iA ] = aNodes[ i2 ]; // theTria2: B->1 aNodes[ sameInd[ iB ]] = aNodes[ i1 ]; //MESSAGE( theTria1 << theTria2 ); GetMeshDS()->ChangeElementNodes( theTria1, aNodes, 3 ); GetMeshDS()->ChangeElementNodes( theTria2, &aNodes[ 3 ], 3 ); //MESSAGE( theTria1 << theTria2 ); return true; } //======================================================================= //function : findTriangles //purpose : find triangles sharing theNode1-theNode2 link //======================================================================= static bool findTriangles(const SMDS_MeshNode * theNode1, const SMDS_MeshNode * theNode2, const SMDS_MeshElement*& theTria1, const SMDS_MeshElement*& theTria2) { if ( !theNode1 || !theNode2 ) return false; theTria1 = theTria2 = 0; set< const SMDS_MeshElement* > emap; SMDS_ElemIteratorPtr it = theNode1->GetInverseElementIterator(); while (it->more()) { const SMDS_MeshElement* elem = it->next(); if ( elem->GetType() == SMDSAbs_Face && elem->NbNodes() == 3 ) emap.insert( elem ); } it = theNode2->GetInverseElementIterator(); while (it->more()) { const SMDS_MeshElement* elem = it->next(); if ( elem->GetType() == SMDSAbs_Face && emap.find( elem ) != emap.end() ) if ( theTria1 ) { theTria2 = elem; break; } else { theTria1 = elem; } } return ( theTria1 && theTria2 ); } //======================================================================= //function : InverseDiag //purpose : Replace two neighbour triangles sharing theNode1-theNode2 link // with ones built on the same 4 nodes but having other common link. // Return false if proper faces not found //======================================================================= bool SMESH_MeshEditor::InverseDiag (const SMDS_MeshNode * theNode1, const SMDS_MeshNode * theNode2) { MESSAGE( "::InverseDiag()" ); const SMDS_MeshElement *tr1, *tr2; if ( !findTriangles( theNode1, theNode2, tr1, tr2 )) return false; const SMDS_FaceOfNodes* F1 = dynamic_cast( tr1 ); if (!F1) return false; const SMDS_FaceOfNodes* F2 = dynamic_cast( tr2 ); if (!F2) return false; // 1 +--+ A tr1: ( 1 A B ) A->2 ( 1 2 B ) 1 +--+ A // | /| tr2: ( B A 2 ) B->1 ( 1 A 2 ) |\ | // |/ | | \| // B +--+ 2 B +--+ 2 // put nodes in array // and find indices of 1,2 and of A in tr1 and of B in tr2 int i, iA1 = 0, i1 = 0; const SMDS_MeshNode* aNodes1 [3]; SMDS_ElemIteratorPtr it; for (i = 0, it = tr1->nodesIterator(); it->more(); i++ ) { aNodes1[ i ] = static_cast( it->next() ); if ( aNodes1[ i ] == theNode1 ) iA1 = i; // node A in tr1 else if ( aNodes1[ i ] != theNode2 ) i1 = i; // node 1 } int iB2 = 0, i2 = 0; const SMDS_MeshNode* aNodes2 [3]; for (i = 0, it = tr2->nodesIterator(); it->more(); i++ ) { aNodes2[ i ] = static_cast( it->next() ); if ( aNodes2[ i ] == theNode2 ) iB2 = i; // node B in tr2 else if ( aNodes2[ i ] != theNode1 ) i2 = i; // node 2 } // nodes 1 and 2 should not be the same if ( aNodes1[ i1 ] == aNodes2[ i2 ] ) return false; // tr1: A->2 aNodes1[ iA1 ] = aNodes2[ i2 ]; // tr2: B->1 aNodes2[ iB2 ] = aNodes1[ i1 ]; //MESSAGE( tr1 << tr2 ); GetMeshDS()->ChangeElementNodes( tr1, aNodes1, 3 ); GetMeshDS()->ChangeElementNodes( tr2, aNodes2, 3 ); //MESSAGE( tr1 << tr2 ); return true; } //======================================================================= //function : getQuadrangleNodes //purpose : fill theQuadNodes - nodes of a quadrangle resulting from // fusion of triangles tr1 and tr2 having shared link on // theNode1 and theNode2 //======================================================================= bool getQuadrangleNodes(const SMDS_MeshNode * theQuadNodes [], const SMDS_MeshNode * theNode1, const SMDS_MeshNode * theNode2, const SMDS_MeshElement * tr1, const SMDS_MeshElement * tr2 ) { // find the 4-th node to insert into tr1 const SMDS_MeshNode* n4 = 0; SMDS_ElemIteratorPtr it = tr2->nodesIterator(); while ( !n4 && it->more() ) { const SMDS_MeshNode * n = static_cast( it->next() ); bool isDiag = ( n == theNode1 || n == theNode2 ); if ( !isDiag ) n4 = n; } // Make an array of nodes to be in a quadrangle int iNode = 0, iFirstDiag = -1; it = tr1->nodesIterator(); while ( it->more() ) { const SMDS_MeshNode * n = static_cast( it->next() ); bool isDiag = ( n == theNode1 || n == theNode2 ); if ( isDiag ) { if ( iFirstDiag < 0 ) iFirstDiag = iNode; else if ( iNode - iFirstDiag == 1 ) theQuadNodes[ iNode++ ] = n4; // insert the 4-th node between diagonal nodes } else if ( n == n4 ) { return false; // tr1 and tr2 should not have all the same nodes } theQuadNodes[ iNode++ ] = n; } if ( iNode == 3 ) // diagonal nodes have 0 and 2 indices theQuadNodes[ iNode ] = n4; return true; } //======================================================================= //function : DeleteDiag //purpose : Replace two neighbour triangles sharing theNode1-theNode2 link // with a quadrangle built on the same 4 nodes. // Return false if proper faces not found //======================================================================= bool SMESH_MeshEditor::DeleteDiag (const SMDS_MeshNode * theNode1, const SMDS_MeshNode * theNode2) { MESSAGE( "::DeleteDiag()" ); const SMDS_MeshElement *tr1, *tr2; if ( !findTriangles( theNode1, theNode2, tr1, tr2 )) return false; const SMDS_FaceOfNodes* F1 = dynamic_cast( tr1 ); if (!F1) return false; const SMDS_FaceOfNodes* F2 = dynamic_cast( tr2 ); if (!F2) return false; const SMDS_MeshNode* aNodes [ 4 ]; if ( ! getQuadrangleNodes( aNodes, theNode1, theNode2, tr1, tr2 )) return false; //MESSAGE( endl << tr1 << tr2 ); GetMeshDS()->ChangeElementNodes( tr1, aNodes, 4 ); GetMeshDS()->RemoveElement( tr2 ); //MESSAGE( endl << tr1 ); return true; } //======================================================================= //function : Reorient //purpose : Reverse theElement orientation //======================================================================= bool SMESH_MeshEditor::Reorient (const SMDS_MeshElement * theElem) { if (!theElem) return false; SMDS_ElemIteratorPtr it = theElem->nodesIterator(); if ( !it || !it->more() ) return false; switch ( theElem->GetType() ) { case SMDSAbs_Edge: case SMDSAbs_Face: { int i = theElem->NbNodes(); vector aNodes( i ); while ( it->more() ) aNodes[ --i ]= static_cast( it->next() ); return GetMeshDS()->ChangeElementNodes( theElem, &aNodes[0], theElem->NbNodes() ); } case SMDSAbs_Volume: { if (theElem->IsPoly()) { const SMDS_PolyhedralVolumeOfNodes* aPolyedre = static_cast( theElem ); if (!aPolyedre) { MESSAGE("Warning: bad volumic element"); return false; } int nbFaces = aPolyedre->NbFaces(); vector poly_nodes; vector quantities (nbFaces); // reverse each face of the polyedre for (int iface = 1; iface <= nbFaces; iface++) { int inode, nbFaceNodes = aPolyedre->NbFaceNodes(iface); quantities[iface - 1] = nbFaceNodes; for (inode = nbFaceNodes; inode >= 1; inode--) { const SMDS_MeshNode* curNode = aPolyedre->GetFaceNode(iface, inode); poly_nodes.push_back(curNode); } } return GetMeshDS()->ChangePolyhedronNodes( theElem, poly_nodes, quantities ); } else { SMDS_VolumeTool vTool; if ( !vTool.Set( theElem )) return false; vTool.Inverse(); return GetMeshDS()->ChangeElementNodes( theElem, vTool.GetNodes(), vTool.NbNodes() ); } } default:; } return false; } //======================================================================= //function : getBadRate //purpose : //======================================================================= static double getBadRate (const SMDS_MeshElement* theElem, SMESH::Controls::NumericalFunctorPtr& theCrit) { SMESH::Controls::TSequenceOfXYZ P; if ( !theElem || !theCrit->GetPoints( theElem, P )) return 1e100; return theCrit->GetBadRate( theCrit->GetValue( P ), theElem->NbNodes() ); //return theCrit->GetBadRate( theCrit->GetValue( theElem->GetID() ), theElem->NbNodes() ); } //======================================================================= //function : QuadToTri //purpose : Cut quadrangles into triangles. // theCrit is used to select a diagonal to cut //======================================================================= bool SMESH_MeshEditor::QuadToTri (set & theElems, SMESH::Controls::NumericalFunctorPtr theCrit) { MESSAGE( "::QuadToTri()" ); if ( !theCrit.get() ) return false; SMESHDS_Mesh * aMesh = GetMeshDS(); set< const SMDS_MeshElement * >::iterator itElem; for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { const SMDS_MeshElement* elem = (*itElem); if ( !elem || elem->GetType() != SMDSAbs_Face || elem->NbNodes() != 4 ) continue; // retrieve element nodes const SMDS_MeshNode* aNodes [4]; SMDS_ElemIteratorPtr itN = elem->nodesIterator(); int i = 0; while ( itN->more() ) aNodes[ i++ ] = static_cast( itN->next() ); // compare two sets of possible triangles double aBadRate1, aBadRate2; // to what extent a set is bad SMDS_FaceOfNodes tr1 ( aNodes[0], aNodes[1], aNodes[2] ); SMDS_FaceOfNodes tr2 ( aNodes[2], aNodes[3], aNodes[0] ); aBadRate1 = getBadRate( &tr1, theCrit ) + getBadRate( &tr2, theCrit ); SMDS_FaceOfNodes tr3 ( aNodes[1], aNodes[2], aNodes[3] ); SMDS_FaceOfNodes tr4 ( aNodes[3], aNodes[0], aNodes[1] ); aBadRate2 = getBadRate( &tr3, theCrit ) + getBadRate( &tr4, theCrit ); int aShapeId = FindShape( elem ); //MESSAGE( "aBadRate1 = " << aBadRate1 << "; aBadRate2 = " << aBadRate2 // << " ShapeID = " << aShapeId << endl << elem ); if ( aBadRate1 <= aBadRate2 ) { // tr1 + tr2 is better aMesh->ChangeElementNodes( elem, aNodes, 3 ); //MESSAGE( endl << elem ); elem = aMesh->AddFace( aNodes[2], aNodes[3], aNodes[0] ); } else { // tr3 + tr4 is better aMesh->ChangeElementNodes( elem, &aNodes[1], 3 ); //MESSAGE( endl << elem ); elem = aMesh->AddFace( aNodes[3], aNodes[0], aNodes[1] ); } //MESSAGE( endl << elem ); // put a new triangle on the same shape if ( aShapeId ) aMesh->SetMeshElementOnShape( elem, aShapeId ); } return true; } //======================================================================= //function : BestSplit //purpose : Find better diagonal for cutting. //======================================================================= int SMESH_MeshEditor::BestSplit (const SMDS_MeshElement* theQuad, SMESH::Controls::NumericalFunctorPtr theCrit) { if (!theCrit.get()) return -1; if (!theQuad || theQuad->GetType() != SMDSAbs_Face || theQuad->NbNodes() != 4) return -1; // retrieve element nodes const SMDS_MeshNode* aNodes [4]; SMDS_ElemIteratorPtr itN = theQuad->nodesIterator(); int i = 0; while (itN->more()) aNodes[ i++ ] = static_cast( itN->next() ); // compare two sets of possible triangles double aBadRate1, aBadRate2; // to what extent a set is bad SMDS_FaceOfNodes tr1 ( aNodes[0], aNodes[1], aNodes[2] ); SMDS_FaceOfNodes tr2 ( aNodes[2], aNodes[3], aNodes[0] ); aBadRate1 = getBadRate( &tr1, theCrit ) + getBadRate( &tr2, theCrit ); SMDS_FaceOfNodes tr3 ( aNodes[1], aNodes[2], aNodes[3] ); SMDS_FaceOfNodes tr4 ( aNodes[3], aNodes[0], aNodes[1] ); aBadRate2 = getBadRate( &tr3, theCrit ) + getBadRate( &tr4, theCrit ); if (aBadRate1 <= aBadRate2) // tr1 + tr2 is better return 1; // diagonal 1-3 return 2; // diagonal 2-4 } //======================================================================= //function : AddToSameGroups //purpose : add elemToAdd to the groups the elemInGroups belongs to //======================================================================= void SMESH_MeshEditor::AddToSameGroups (const SMDS_MeshElement* elemToAdd, const SMDS_MeshElement* elemInGroups, SMESHDS_Mesh * aMesh) { const set& groups = aMesh->GetGroups(); set::const_iterator grIt = groups.begin(); for ( ; grIt != groups.end(); grIt++ ) { SMESHDS_Group* group = dynamic_cast( *grIt ); if ( group && group->SMDSGroup().Contains( elemInGroups )) group->SMDSGroup().Add( elemToAdd ); } } //======================================================================= //function : QuadToTri //purpose : Cut quadrangles into triangles. // theCrit is used to select a diagonal to cut //======================================================================= bool SMESH_MeshEditor::QuadToTri (std::set & theElems, const bool the13Diag) { MESSAGE( "::QuadToTri()" ); SMESHDS_Mesh * aMesh = GetMeshDS(); set< const SMDS_MeshElement * >::iterator itElem; for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { const SMDS_MeshElement* elem = (*itElem); if ( !elem || elem->GetType() != SMDSAbs_Face || elem->NbNodes() != 4 ) continue; // retrieve element nodes const SMDS_MeshNode* aNodes [4]; SMDS_ElemIteratorPtr itN = elem->nodesIterator(); int i = 0; while ( itN->more() ) aNodes[ i++ ] = static_cast( itN->next() ); int aShapeId = FindShape( elem ); const SMDS_MeshElement* newElem = 0; if ( the13Diag ) { aMesh->ChangeElementNodes( elem, aNodes, 3 ); newElem = aMesh->AddFace( aNodes[2], aNodes[3], aNodes[0] ); } else { aMesh->ChangeElementNodes( elem, &aNodes[1], 3 ); newElem = aMesh->AddFace( aNodes[3], aNodes[0], aNodes[1] ); } // put a new triangle on the same shape and add to the same groups if ( aShapeId ) aMesh->SetMeshElementOnShape( newElem, aShapeId ); AddToSameGroups( newElem, elem, aMesh ); } return true; } //======================================================================= //function : getAngle //purpose : //======================================================================= double getAngle(const SMDS_MeshElement * tr1, const SMDS_MeshElement * tr2, const SMDS_MeshNode * n1, const SMDS_MeshNode * n2) { double angle = 2*PI; // bad angle // get normals SMESH::Controls::TSequenceOfXYZ P1, P2; if ( !SMESH::Controls::NumericalFunctor::GetPoints( tr1, P1 ) || !SMESH::Controls::NumericalFunctor::GetPoints( tr2, P2 )) return angle; gp_Vec N1 = gp_Vec( P1(2) - P1(1) ) ^ gp_Vec( P1(3) - P1(1) ); if ( N1.SquareMagnitude() <= gp::Resolution() ) return angle; gp_Vec N2 = gp_Vec( P2(2) - P2(1) ) ^ gp_Vec( P2(3) - P2(1) ); if ( N2.SquareMagnitude() <= gp::Resolution() ) return angle; // find the first diagonal node n1 in the triangles: // take in account a diagonal link orientation const SMDS_MeshElement *nFirst[2], *tr[] = { tr1, tr2 }; for ( int t = 0; t < 2; t++ ) { SMDS_ElemIteratorPtr it = tr[ t ]->nodesIterator(); int i = 0, iDiag = -1; while ( it->more()) { const SMDS_MeshElement *n = it->next(); if ( n == n1 || n == n2 ) if ( iDiag < 0) iDiag = i; else { if ( i - iDiag == 1 ) nFirst[ t ] = ( n == n1 ? n2 : n1 ); else nFirst[ t ] = n; break; } i++; } } if ( nFirst[ 0 ] == nFirst[ 1 ] ) N2.Reverse(); angle = N1.Angle( N2 ); //SCRUTE( angle ); return angle; } // ================================================= // class generating a unique ID for a pair of nodes // and able to return nodes by that ID // ================================================= class LinkID_Gen { public: LinkID_Gen( const SMESHDS_Mesh* theMesh ) :myMesh( theMesh ), myMaxID( theMesh->MaxNodeID() + 1) {} long GetLinkID (const SMDS_MeshNode * n1, const SMDS_MeshNode * n2) const { return ( Min(n1->GetID(),n2->GetID()) * myMaxID + Max(n1->GetID(),n2->GetID())); } bool GetNodes (const long theLinkID, const SMDS_MeshNode* & theNode1, const SMDS_MeshNode* & theNode2) const { theNode1 = myMesh->FindNode( theLinkID / myMaxID ); if ( !theNode1 ) return false; theNode2 = myMesh->FindNode( theLinkID % myMaxID ); if ( !theNode2 ) return false; return true; } private: LinkID_Gen(); const SMESHDS_Mesh* myMesh; long myMaxID; }; //======================================================================= //function : TriToQuad //purpose : Fuse neighbour triangles into quadrangles. // theCrit is used to select a neighbour to fuse with. // theMaxAngle is a max angle between element normals at which // fusion is still performed. //======================================================================= bool SMESH_MeshEditor::TriToQuad (set & theElems, SMESH::Controls::NumericalFunctorPtr theCrit, const double theMaxAngle) { MESSAGE( "::TriToQuad()" ); if ( !theCrit.get() ) return false; SMESHDS_Mesh * aMesh = GetMeshDS(); LinkID_Gen aLinkID_Gen( aMesh ); // Prepare data for algo: build // 1. map of elements with their linkIDs // 2. map of linkIDs with their elements map< long, list< const SMDS_MeshElement* > > mapLi_listEl; map< long, list< const SMDS_MeshElement* > >::iterator itLE; map< const SMDS_MeshElement*, set< long > > mapEl_setLi; map< const SMDS_MeshElement*, set< long > >::iterator itEL; set::iterator itElem; for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { const SMDS_MeshElement* elem = (*itElem); if ( !elem || elem->NbNodes() != 3 ) continue; // retrieve element nodes const SMDS_MeshNode* aNodes [4]; SMDS_ElemIteratorPtr itN = elem->nodesIterator(); int i = 0; while ( itN->more() ) aNodes[ i++ ] = static_cast( itN->next() ); ASSERT( i == 3 ); aNodes[ 3 ] = aNodes[ 0 ]; // fill maps for ( i = 0; i < 3; i++ ) { long linkID = aLinkID_Gen.GetLinkID( aNodes[ i ], aNodes[ i+1 ] ); // check if elements sharing a link can be fused itLE = mapLi_listEl.find( linkID ); if ( itLE != mapLi_listEl.end() ) { if ((*itLE).second.size() > 1 ) // consider only 2 elems adjacent by a link continue; const SMDS_MeshElement* elem2 = (*itLE).second.front(); // if ( FindShape( elem ) != FindShape( elem2 )) // continue; // do not fuse triangles laying on different shapes if ( getAngle( elem, elem2, aNodes[i], aNodes[i+1] ) > theMaxAngle ) continue; // avoid making badly shaped quads (*itLE).second.push_back( elem ); } else mapLi_listEl[ linkID ].push_back( elem ); mapEl_setLi [ elem ].insert( linkID ); } } // Clean the maps from the links shared by a sole element, ie // links to which only one element is bound in mapLi_listEl for ( itLE = mapLi_listEl.begin(); itLE != mapLi_listEl.end(); itLE++ ) { int nbElems = (*itLE).second.size(); if ( nbElems < 2 ) { const SMDS_MeshElement* elem = (*itLE).second.front(); long link = (*itLE).first; mapEl_setLi[ elem ].erase( link ); if ( mapEl_setLi[ elem ].empty() ) mapEl_setLi.erase( elem ); } } // Algo: fuse triangles into quadrangles while ( ! mapEl_setLi.empty() ) { // Look for the start element: // the element having the least nb of shared links const SMDS_MeshElement* startElem = 0; int minNbLinks = 4; for ( itEL = mapEl_setLi.begin(); itEL != mapEl_setLi.end(); itEL++ ) { int nbLinks = (*itEL).second.size(); if ( nbLinks < minNbLinks ) { startElem = (*itEL).first; minNbLinks = nbLinks; if ( minNbLinks == 1 ) break; } } // search elements to fuse starting from startElem or links of elements // fused earlyer - startLinks list< long > startLinks; while ( startElem || !startLinks.empty() ) { while ( !startElem && !startLinks.empty() ) { // Get an element to start, by a link long linkId = startLinks.front(); startLinks.pop_front(); itLE = mapLi_listEl.find( linkId ); if ( itLE != mapLi_listEl.end() ) { list< const SMDS_MeshElement* > & listElem = (*itLE).second; list< const SMDS_MeshElement* >::iterator itE = listElem.begin(); for ( ; itE != listElem.end() ; itE++ ) if ( mapEl_setLi.find( (*itE) ) != mapEl_setLi.end() ) startElem = (*itE); mapLi_listEl.erase( itLE ); } } if ( startElem ) { // Get candidates to be fused const SMDS_MeshElement *tr1 = startElem, *tr2 = 0, *tr3 = 0; long link12, link13; startElem = 0; ASSERT( mapEl_setLi.find( tr1 ) != mapEl_setLi.end() ); set< long >& setLi = mapEl_setLi[ tr1 ]; ASSERT( !setLi.empty() ); set< long >::iterator itLi; for ( itLi = setLi.begin(); itLi != setLi.end(); itLi++ ) { long linkID = (*itLi); itLE = mapLi_listEl.find( linkID ); if ( itLE == mapLi_listEl.end() ) continue; const SMDS_MeshElement* elem = (*itLE).second.front(); if ( elem == tr1 ) elem = (*itLE).second.back(); mapLi_listEl.erase( itLE ); if ( mapEl_setLi.find( elem ) == mapEl_setLi.end()) continue; if ( tr2 ) { tr3 = elem; link13 = linkID; } else { tr2 = elem; link12 = linkID; } // add other links of elem to list of links to re-start from set< long >& links = mapEl_setLi[ elem ]; set< long >::iterator it; for ( it = links.begin(); it != links.end(); it++ ) { long linkID2 = (*it); if ( linkID2 != linkID ) startLinks.push_back( linkID2 ); } } // Get nodes of possible quadrangles const SMDS_MeshNode *n12 [4], *n13 [4]; bool Ok12 = false, Ok13 = false; const SMDS_MeshNode *linkNode1, *linkNode2; if ( tr2 && aLinkID_Gen.GetNodes( link12, linkNode1, linkNode2 ) && getQuadrangleNodes( n12, linkNode1, linkNode2, tr1, tr2 )) Ok12 = true; if ( tr3 && aLinkID_Gen.GetNodes( link13, linkNode1, linkNode2 ) && getQuadrangleNodes( n13, linkNode1, linkNode2, tr1, tr3 )) Ok13 = true; // Choose a pair to fuse if ( Ok12 && Ok13 ) { SMDS_FaceOfNodes quad12 ( n12[ 0 ], n12[ 1 ], n12[ 2 ], n12[ 3 ] ); SMDS_FaceOfNodes quad13 ( n13[ 0 ], n13[ 1 ], n13[ 2 ], n13[ 3 ] ); double aBadRate12 = getBadRate( &quad12, theCrit ); double aBadRate13 = getBadRate( &quad13, theCrit ); if ( aBadRate13 < aBadRate12 ) Ok12 = false; else Ok13 = false; } // Make quadrangles // and remove fused elems and removed links from the maps mapEl_setLi.erase( tr1 ); if ( Ok12 ) { mapEl_setLi.erase( tr2 ); mapLi_listEl.erase( link12 ); aMesh->ChangeElementNodes( tr1, n12, 4 ); aMesh->RemoveElement( tr2 ); } else if ( Ok13 ) { mapEl_setLi.erase( tr3 ); mapLi_listEl.erase( link13 ); aMesh->ChangeElementNodes( tr1, n13, 4 ); aMesh->RemoveElement( tr3 ); } // Next element to fuse: the rejected one if ( tr3 ) startElem = Ok12 ? tr3 : tr2; } // if ( startElem ) } // while ( startElem || !startLinks.empty() ) } // while ( ! mapEl_setLi.empty() ) return true; } /*#define DUMPSO(txt) \ // cout << txt << endl; //============================================================================= // // // //============================================================================= static void swap( int i1, int i2, int idNodes[], gp_Pnt P[] ) { if ( i1 == i2 ) return; int tmp = idNodes[ i1 ]; idNodes[ i1 ] = idNodes[ i2 ]; idNodes[ i2 ] = tmp; gp_Pnt Ptmp = P[ i1 ]; P[ i1 ] = P[ i2 ]; P[ i2 ] = Ptmp; DUMPSO( i1 << "(" << idNodes[ i2 ] << ") <-> " << i2 << "(" << idNodes[ i1 ] << ")"); } //======================================================================= //function : SortQuadNodes //purpose : Set 4 nodes of a quadrangle face in a good order. // Swap 1<->2 or 2<->3 nodes and correspondingly return // 1 or 2 else 0. //======================================================================= int SMESH_MeshEditor::SortQuadNodes (const SMDS_Mesh * theMesh, int idNodes[] ) { gp_Pnt P[4]; int i; for ( i = 0; i < 4; i++ ) { const SMDS_MeshNode *n = theMesh->FindNode( idNodes[i] ); if ( !n ) return 0; P[ i ].SetCoord( n->X(), n->Y(), n->Z() ); } gp_Vec V1(P[0], P[1]); gp_Vec V2(P[0], P[2]); gp_Vec V3(P[0], P[3]); gp_Vec Cross1 = V1 ^ V2; gp_Vec Cross2 = V2 ^ V3; i = 0; if (Cross1.Dot(Cross2) < 0) { Cross1 = V2 ^ V1; Cross2 = V1 ^ V3; if (Cross1.Dot(Cross2) < 0) i = 2; else i = 1; swap ( i, i + 1, idNodes, P ); // for ( int ii = 0; ii < 4; ii++ ) { // const SMDS_MeshNode *n = theMesh->FindNode( idNodes[ii] ); // DUMPSO( ii << "(" << idNodes[ii] <<") : "<X()<<" "<Y()<<" "<Z()); // } } return i; } //======================================================================= //function : SortHexaNodes //purpose : Set 8 nodes of a hexahedron in a good order. // Return success status //======================================================================= bool SMESH_MeshEditor::SortHexaNodes (const SMDS_Mesh * theMesh, int idNodes[] ) { gp_Pnt P[8]; int i; DUMPSO( "INPUT: ========================================"); for ( i = 0; i < 8; i++ ) { const SMDS_MeshNode *n = theMesh->FindNode( idNodes[i] ); if ( !n ) return false; P[ i ].SetCoord( n->X(), n->Y(), n->Z() ); DUMPSO( i << "(" << idNodes[i] <<") : "<X()<<" "<Y()<<" "<Z()); } DUMPSO( "========================================"); set faceNodes; // ids of bottom face nodes, to be found set checkedId1; // ids of tried 2-nd nodes Standard_Real leastDist = DBL_MAX; // dist of the 4-th node from 123 plane const Standard_Real tol = 1.e-6; // tolerance to find nodes in plane int iMin, iLoop1 = 0; // Loop to try the 2-nd nodes while ( leastDist > DBL_MIN && ++iLoop1 < 8 ) { // Find not checked 2-nd node for ( i = 1; i < 8; i++ ) if ( checkedId1.find( idNodes[i] ) == checkedId1.end() ) { int id1 = idNodes[i]; swap ( 1, i, idNodes, P ); checkedId1.insert ( id1 ); break; } // Find the 3-d node so that 1-2-3 triangle to be on a hexa face, // ie that all but meybe one (id3 which is on the same face) nodes // lay on the same side from the triangle plane. bool manyInPlane = false; // more than 4 nodes lay in plane int iLoop2 = 0; while ( ++iLoop2 < 6 ) { // get 1-2-3 plane coeffs Standard_Real A, B, C, D; gp_Vec N = gp_Vec (P[0], P[1]).Crossed( gp_Vec (P[0], P[2]) ); if ( N.SquareMagnitude() > gp::Resolution() ) { gp_Pln pln ( P[0], N ); pln.Coefficients( A, B, C, D ); // find the node (iMin) closest to pln Standard_Real dist[ 8 ], minDist = DBL_MAX; set idInPln; for ( i = 3; i < 8; i++ ) { dist[i] = A * P[i].X() + B * P[i].Y() + C * P[i].Z() + D; if ( fabs( dist[i] ) < minDist ) { minDist = fabs( dist[i] ); iMin = i; } if ( fabs( dist[i] ) <= tol ) idInPln.insert( idNodes[i] ); } // there should not be more than 4 nodes in bottom plane if ( idInPln.size() > 1 ) { DUMPSO( "### idInPln.size() = " << idInPln.size()); // idInPlane does not contain the first 3 nodes if ( manyInPlane || idInPln.size() == 5) return false; // all nodes in one plane manyInPlane = true; // set the 1-st node to be not in plane for ( i = 3; i < 8; i++ ) { if ( idInPln.find( idNodes[ i ] ) == idInPln.end() ) { DUMPSO( "### Reset 0-th node"); swap( 0, i, idNodes, P ); break; } } // reset to re-check second nodes leastDist = DBL_MAX; faceNodes.clear(); checkedId1.clear(); iLoop1 = 0; break; // from iLoop2; } // check that the other 4 nodes are on the same side bool sameSide = true; bool isNeg = dist[ iMin == 3 ? 4 : 3 ] <= 0.; for ( i = 3; sameSide && i < 8; i++ ) { if ( i != iMin ) sameSide = ( isNeg == dist[i] <= 0.); } // keep best solution if ( sameSide && minDist < leastDist ) { leastDist = minDist; faceNodes.clear(); faceNodes.insert( idNodes[ 1 ] ); faceNodes.insert( idNodes[ 2 ] ); faceNodes.insert( idNodes[ iMin ] ); DUMPSO( "loop " << iLoop2 << " id2 " << idNodes[ 1 ] << " id3 " << idNodes[ 2 ] << " leastDist = " << leastDist); if ( leastDist <= DBL_MIN ) break; } } // set next 3-d node to check int iNext = 2 + iLoop2; if ( iNext < 8 ) { DUMPSO( "Try 2-nd"); swap ( 2, iNext, idNodes, P ); } } // while ( iLoop2 < 6 ) } // iLoop1 if ( faceNodes.empty() ) return false; // Put the faceNodes in proper places for ( i = 4; i < 8; i++ ) { if ( faceNodes.find( idNodes[ i ] ) != faceNodes.end() ) { // find a place to put int iTo = 1; while ( faceNodes.find( idNodes[ iTo ] ) != faceNodes.end() ) iTo++; DUMPSO( "Set faceNodes"); swap ( iTo, i, idNodes, P ); } } // Set nodes of the found bottom face in good order DUMPSO( " Found bottom face: "); i = SortQuadNodes( theMesh, idNodes ); if ( i ) { gp_Pnt Ptmp = P[ i ]; P[ i ] = P[ i+1 ]; P[ i+1 ] = Ptmp; } // else // for ( int ii = 0; ii < 4; ii++ ) { // const SMDS_MeshNode *n = theMesh->FindNode( idNodes[ii] ); // DUMPSO( ii << "(" << idNodes[ii] <<") : "<X()<<" "<Y()<<" "<Z()); // } // Gravity center of the top and bottom faces gp_Pnt aGCb = ( P[0].XYZ() + P[1].XYZ() + P[2].XYZ() + P[3].XYZ() ) / 4.; gp_Pnt aGCt = ( P[4].XYZ() + P[5].XYZ() + P[6].XYZ() + P[7].XYZ() ) / 4.; // Get direction from the bottom to the top face gp_Vec upDir ( aGCb, aGCt ); Standard_Real upDirSize = upDir.Magnitude(); if ( upDirSize <= gp::Resolution() ) return false; upDir / upDirSize; // Assure that the bottom face normal points up gp_Vec Nb = gp_Vec (P[0], P[1]).Crossed( gp_Vec (P[0], P[2]) ); Nb += gp_Vec (P[0], P[2]).Crossed( gp_Vec (P[0], P[3]) ); if ( Nb.Dot( upDir ) < 0 ) { DUMPSO( "Reverse bottom face"); swap( 1, 3, idNodes, P ); } // Find 5-th node - the one closest to the 1-st among the last 4 nodes. Standard_Real minDist = DBL_MAX; for ( i = 4; i < 8; i++ ) { // projection of P[i] to the plane defined by P[0] and upDir gp_Pnt Pp = P[i].Translated( upDir * ( upDir.Dot( gp_Vec( P[i], P[0] )))); Standard_Real sqDist = P[0].SquareDistance( Pp ); if ( sqDist < minDist ) { minDist = sqDist; iMin = i; } } DUMPSO( "Set 4-th"); swap ( 4, iMin, idNodes, P ); // Set nodes of the top face in good order DUMPSO( "Sort top face"); i = SortQuadNodes( theMesh, &idNodes[4] ); if ( i ) { i += 4; gp_Pnt Ptmp = P[ i ]; P[ i ] = P[ i+1 ]; P[ i+1 ] = Ptmp; } // Assure that direction of the top face normal is from the bottom face gp_Vec Nt = gp_Vec (P[4], P[5]).Crossed( gp_Vec (P[4], P[6]) ); Nt += gp_Vec (P[4], P[6]).Crossed( gp_Vec (P[4], P[7]) ); if ( Nt.Dot( upDir ) < 0 ) { DUMPSO( "Reverse top face"); swap( 5, 7, idNodes, P ); } // DUMPSO( "OUTPUT: ========================================"); // for ( i = 0; i < 8; i++ ) { // float *p = ugrid->GetPoint(idNodes[i]); // DUMPSO( i << "(" << idNodes[i] << ") : " << p[0] << " " << p[1] << " " << p[2]); // } return true; }*/ //======================================================================= //function : laplacianSmooth //purpose : pulls theNode toward the center of surrounding nodes directly // connected to that node along an element edge //======================================================================= void laplacianSmooth(const SMDS_MeshNode* theNode, const Handle(Geom_Surface)& theSurface, map< const SMDS_MeshNode*, gp_XY* >& theUVMap) { // find surrounding nodes set< const SMDS_MeshNode* > nodeSet; SMDS_ElemIteratorPtr elemIt = theNode->GetInverseElementIterator(); while ( elemIt->more() ) { const SMDS_MeshElement* elem = elemIt->next(); if ( elem->GetType() != SMDSAbs_Face ) continue; // put all nodes in array int nbNodes = 0, iNode = 0; vector< const SMDS_MeshNode*> aNodes( elem->NbNodes() ); SMDS_ElemIteratorPtr itN = elem->nodesIterator(); while ( itN->more() ) { aNodes[ nbNodes ] = static_cast( itN->next() ); if ( aNodes[ nbNodes ] == theNode ) iNode = nbNodes; // index of theNode within aNodes nbNodes++; } // add linked nodes int iAfter = ( iNode + 1 == nbNodes ) ? 0 : iNode + 1; nodeSet.insert( aNodes[ iAfter ]); int iBefore = ( iNode == 0 ) ? nbNodes - 1 : iNode - 1; nodeSet.insert( aNodes[ iBefore ]); } // compute new coodrs double coord[] = { 0., 0., 0. }; set< const SMDS_MeshNode* >::iterator nodeSetIt = nodeSet.begin(); for ( ; nodeSetIt != nodeSet.end(); nodeSetIt++ ) { const SMDS_MeshNode* node = (*nodeSetIt); if ( theSurface.IsNull() ) { // smooth in 3D coord[0] += node->X(); coord[1] += node->Y(); coord[2] += node->Z(); } else { // smooth in 2D ASSERT( theUVMap.find( node ) != theUVMap.end() ); gp_XY* uv = theUVMap[ node ]; coord[0] += uv->X(); coord[1] += uv->Y(); } } int nbNodes = nodeSet.size(); if ( !nbNodes ) return; coord[0] /= nbNodes; coord[1] /= nbNodes; if ( !theSurface.IsNull() ) { ASSERT( theUVMap.find( theNode ) != theUVMap.end() ); theUVMap[ theNode ]->SetCoord( coord[0], coord[1] ); gp_Pnt p3d = theSurface->Value( coord[0], coord[1] ); coord[0] = p3d.X(); coord[1] = p3d.Y(); coord[2] = p3d.Z(); } else coord[2] /= nbNodes; // move node const_cast< SMDS_MeshNode* >( theNode )->setXYZ(coord[0],coord[1],coord[2]); } //======================================================================= //function : centroidalSmooth //purpose : pulls theNode toward the element-area-weighted centroid of the // surrounding elements //======================================================================= void centroidalSmooth(const SMDS_MeshNode* theNode, const Handle(Geom_Surface)& theSurface, map< const SMDS_MeshNode*, gp_XY* >& theUVMap) { gp_XYZ aNewXYZ(0.,0.,0.); SMESH::Controls::Area anAreaFunc; double totalArea = 0.; int nbElems = 0; // compute new XYZ SMDS_ElemIteratorPtr elemIt = theNode->GetInverseElementIterator(); while ( elemIt->more() ) { const SMDS_MeshElement* elem = elemIt->next(); if ( elem->GetType() != SMDSAbs_Face ) continue; nbElems++; gp_XYZ elemCenter(0.,0.,0.); SMESH::Controls::TSequenceOfXYZ aNodePoints; SMDS_ElemIteratorPtr itN = elem->nodesIterator(); while ( itN->more() ) { const SMDS_MeshNode* aNode = static_cast( itN->next() ); gp_XYZ aP( aNode->X(), aNode->Y(), aNode->Z() ); aNodePoints.push_back( aP ); if ( !theSurface.IsNull() ) { // smooth in 2D ASSERT( theUVMap.find( aNode ) != theUVMap.end() ); gp_XY* uv = theUVMap[ aNode ]; aP.SetCoord( uv->X(), uv->Y(), 0. ); } elemCenter += aP; } double elemArea = anAreaFunc.GetValue( aNodePoints ); totalArea += elemArea; elemCenter /= elem->NbNodes(); aNewXYZ += elemCenter * elemArea; } aNewXYZ /= totalArea; if ( !theSurface.IsNull() ) { ASSERT( theUVMap.find( theNode ) != theUVMap.end() ); theUVMap[ theNode ]->SetCoord( aNewXYZ.X(), aNewXYZ.Y() ); aNewXYZ = theSurface->Value( aNewXYZ.X(), aNewXYZ.Y() ).XYZ(); } // move node const_cast< SMDS_MeshNode* >( theNode )->setXYZ(aNewXYZ.X(),aNewXYZ.Y(),aNewXYZ.Z()); } //======================================================================= //function : getClosestUV //purpose : return UV of closest projection //======================================================================= static bool getClosestUV (Extrema_GenExtPS& projector, const gp_Pnt& point, gp_XY & result) { projector.Perform( point ); if ( projector.IsDone() ) { double u, v, minVal = DBL_MAX; for ( int i = projector.NbExt(); i > 0; i-- ) if ( projector.Value( i ) < minVal ) { minVal = projector.Value( i ); projector.Point( i ).Parameter( u, v ); } result.SetCoord( u, v ); return true; } return false; } //======================================================================= //function : Smooth //purpose : Smooth theElements during theNbIterations or until a worst // element has aspect ratio <= theTgtAspectRatio. // Aspect Ratio varies in range [1.0, inf]. // If theElements is empty, the whole mesh is smoothed. // theFixedNodes contains additionally fixed nodes. Nodes built // on edges and boundary nodes are always fixed. //======================================================================= void SMESH_MeshEditor::Smooth (set & theElems, set & theFixedNodes, const SmoothMethod theSmoothMethod, const int theNbIterations, double theTgtAspectRatio, const bool the2D) { MESSAGE((theSmoothMethod==LAPLACIAN ? "LAPLACIAN" : "CENTROIDAL") << "--::Smooth()"); if ( theTgtAspectRatio < 1.0 ) theTgtAspectRatio = 1.0; SMESH::Controls::AspectRatio aQualityFunc; SMESHDS_Mesh* aMesh = GetMeshDS(); if ( theElems.empty() ) { // add all faces to theElems SMDS_FaceIteratorPtr fIt = aMesh->facesIterator(); while ( fIt->more() ) theElems.insert( fIt->next() ); } // get all face ids theElems are on set< int > faceIdSet; set< const SMDS_MeshElement* >::iterator itElem; if ( the2D ) for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { int fId = FindShape( *itElem ); // check that corresponding submesh exists and a shape is face if (fId && faceIdSet.find( fId ) == faceIdSet.end() && aMesh->MeshElements( fId )) { TopoDS_Shape F = aMesh->IndexToShape( fId ); if ( !F.IsNull() && F.ShapeType() == TopAbs_FACE ) faceIdSet.insert( fId ); } } faceIdSet.insert( 0 ); // to smooth elements that are not on any TopoDS_Face // =============================================== // smooth elements on each TopoDS_Face separately // =============================================== set< int >::reverse_iterator fId = faceIdSet.rbegin(); // treate 0 fId at the end for ( ; fId != faceIdSet.rend(); ++fId ) { // get face surface and submesh Handle(Geom_Surface) surface; SMESHDS_SubMesh* faceSubMesh = 0; TopoDS_Face face; double fToler2 = 0, vPeriod = 0., uPeriod = 0., f,l; double u1 = 0, u2 = 0, v1 = 0, v2 = 0; bool isUPeriodic = false, isVPeriodic = false; if ( *fId ) { face = TopoDS::Face( aMesh->IndexToShape( *fId )); surface = BRep_Tool::Surface( face ); faceSubMesh = aMesh->MeshElements( *fId ); fToler2 = BRep_Tool::Tolerance( face ); fToler2 *= fToler2 * 10.; isUPeriodic = surface->IsUPeriodic(); if ( isUPeriodic ) vPeriod = surface->UPeriod(); isVPeriodic = surface->IsVPeriodic(); if ( isVPeriodic ) uPeriod = surface->VPeriod(); surface->Bounds( u1, u2, v1, v2 ); } // --------------------------------------------------------- // for elements on a face, find movable and fixed nodes and // compute UV for them // --------------------------------------------------------- bool checkBoundaryNodes = false; set setMovableNodes; map< const SMDS_MeshNode*, gp_XY* > uvMap, uvMap2; list< gp_XY > listUV; // uvs the 2 uvMaps refer to list< const SMDS_MeshElement* > elemsOnFace; Extrema_GenExtPS projector; GeomAdaptor_Surface surfAdaptor; if ( !surface.IsNull() ) { surfAdaptor.Load( surface ); projector.Initialize( surfAdaptor, 20,20, 1e-5,1e-5 ); } int nbElemOnFace = 0; itElem = theElems.begin(); // loop on not yet smoothed elements: look for elems on a face while ( itElem != theElems.end() ) { if ( faceSubMesh && nbElemOnFace == faceSubMesh->NbElements() ) break; // all elements found const SMDS_MeshElement* elem = (*itElem); if ( !elem || elem->GetType() != SMDSAbs_Face || elem->NbNodes() < 3 || ( faceSubMesh && !faceSubMesh->Contains( elem ))) { ++itElem; continue; } elemsOnFace.push_back( elem ); theElems.erase( itElem++ ); nbElemOnFace++; // get movable nodes of elem const SMDS_MeshNode* node; SMDS_TypeOfPosition posType; SMDS_ElemIteratorPtr itN = elem->nodesIterator(); while ( itN->more() ) { node = static_cast( itN->next() ); const SMDS_PositionPtr& pos = node->GetPosition(); posType = pos.get() ? pos->GetTypeOfPosition() : SMDS_TOP_3DSPACE; if (posType != SMDS_TOP_EDGE && posType != SMDS_TOP_VERTEX && theFixedNodes.find( node ) == theFixedNodes.end()) { // check if all faces around the node are on faceSubMesh // because a node on edge may be bound to face SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(); bool all = true; if ( faceSubMesh ) { while ( eIt->more() && all ) { const SMDS_MeshElement* e = eIt->next(); if ( e->GetType() == SMDSAbs_Face ) all = faceSubMesh->Contains( e ); } } if ( all ) setMovableNodes.insert( node ); else checkBoundaryNodes = true; } if ( posType == SMDS_TOP_3DSPACE ) checkBoundaryNodes = true; } if ( surface.IsNull() ) continue; // get nodes to check UV list< const SMDS_MeshNode* > uvCheckNodes; itN = elem->nodesIterator(); while ( itN->more() ) { node = static_cast( itN->next() ); if ( uvMap.find( node ) == uvMap.end() ) uvCheckNodes.push_back( node ); // add nodes of elems sharing node // SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(); // while ( eIt->more() ) { // const SMDS_MeshElement* e = eIt->next(); // if ( e != elem && e->GetType() == SMDSAbs_Face ) { // SMDS_ElemIteratorPtr nIt = e->nodesIterator(); // while ( nIt->more() ) { // const SMDS_MeshNode* n = // static_cast( nIt->next() ); // if ( uvMap.find( n ) == uvMap.end() ) // uvCheckNodes.push_back( n ); // } // } // } } // check UV on face list< const SMDS_MeshNode* >::iterator n = uvCheckNodes.begin(); for ( ; n != uvCheckNodes.end(); ++n ) { node = *n; gp_XY uv( 0, 0 ); const SMDS_PositionPtr& pos = node->GetPosition(); posType = pos.get() ? pos->GetTypeOfPosition() : SMDS_TOP_3DSPACE; // get existing UV switch ( posType ) { case SMDS_TOP_FACE: { SMDS_FacePosition* fPos = ( SMDS_FacePosition* ) pos.get(); uv.SetCoord( fPos->GetUParameter(), fPos->GetVParameter() ); break; } case SMDS_TOP_EDGE: { TopoDS_Shape S = aMesh->IndexToShape( pos->GetShapeId() ); Handle(Geom2d_Curve) pcurve; if ( !S.IsNull() && S.ShapeType() == TopAbs_EDGE ) pcurve = BRep_Tool::CurveOnSurface( TopoDS::Edge( S ), face, f,l ); if ( !pcurve.IsNull() ) { double u = (( SMDS_EdgePosition* ) pos.get() )->GetUParameter(); uv = pcurve->Value( u ).XY(); } break; } case SMDS_TOP_VERTEX: { TopoDS_Shape S = aMesh->IndexToShape( pos->GetShapeId() ); if ( !S.IsNull() && S.ShapeType() == TopAbs_VERTEX ) uv = BRep_Tool::Parameters( TopoDS::Vertex( S ), face ).XY(); break; } default:; } // check existing UV bool project = true; gp_Pnt pNode ( node->X(), node->Y(), node->Z() ); double dist1 = DBL_MAX, dist2 = 0; if ( posType != SMDS_TOP_3DSPACE ) { dist1 = pNode.SquareDistance( surface->Value( uv.X(), uv.Y() )); project = dist1 > fToler2; } if ( project ) { // compute new UV gp_XY newUV; if ( !getClosestUV( projector, pNode, newUV )) { MESSAGE("Node Projection Failed " << node); } else { if ( isUPeriodic ) newUV.SetX( ElCLib::InPeriod( newUV.X(), u1, u2 )); if ( isVPeriodic ) newUV.SetY( ElCLib::InPeriod( newUV.Y(), v1, v2 )); // check new UV if ( posType != SMDS_TOP_3DSPACE ) dist2 = pNode.SquareDistance( surface->Value( newUV.X(), newUV.Y() )); if ( dist2 < dist1 ) uv = newUV; } } // store UV in the map listUV.push_back( uv ); uvMap.insert( make_pair( node, &listUV.back() )); } } // loop on not yet smoothed elements if ( !faceSubMesh || nbElemOnFace != faceSubMesh->NbElements() ) checkBoundaryNodes = true; // fix nodes on mesh boundary if ( checkBoundaryNodes ) { typedef pair TLink; map< TLink, int > linkNbMap; // how many times a link encounters in elemsOnFace map< TLink, int >::iterator link_nb; // put all elements links to linkNbMap list< const SMDS_MeshElement* >::iterator elemIt = elemsOnFace.begin(); for ( ; elemIt != elemsOnFace.end(); ++elemIt ) { // put elem nodes in array vector< const SMDS_MeshNode* > nodes; nodes.reserve( (*elemIt)->NbNodes() + 1 ); SMDS_ElemIteratorPtr itN = (*elemIt)->nodesIterator(); while ( itN->more() ) nodes.push_back( static_cast( itN->next() )); nodes.push_back( nodes.front() ); // loop on elem links: insert them in linkNbMap for ( int iN = 1; iN < nodes.size(); ++iN ) { TLink link; if ( nodes[ iN-1 ]->GetID() < nodes[ iN ]->GetID() ) link = make_pair( nodes[ iN-1 ], nodes[ iN ] ); else link = make_pair( nodes[ iN ], nodes[ iN-1 ] ); link_nb = linkNbMap.find( link ); if ( link_nb == linkNbMap.end() ) linkNbMap.insert( make_pair ( link, 1 )); else link_nb->second++; } } // remove nodes that are in links encountered only once from setMovableNodes for ( link_nb = linkNbMap.begin(); link_nb != linkNbMap.end(); ++link_nb ) { if ( link_nb->second == 1 ) { setMovableNodes.erase( link_nb->first.first ); setMovableNodes.erase( link_nb->first.second ); } } } // ----------------------------------------------------- // for nodes on seam edge, compute one more UV ( uvMap2 ); // find movable nodes linked to nodes on seam and which // are to be smoothed using the second UV ( uvMap2 ) // ----------------------------------------------------- set nodesNearSeam; // to smooth using uvMap2 if ( !surface.IsNull() ) { TopExp_Explorer eExp( face, TopAbs_EDGE ); for ( ; eExp.More(); eExp.Next() ) { TopoDS_Edge edge = TopoDS::Edge( eExp.Current() ); if ( !BRep_Tool::IsClosed( edge, face )) continue; SMESHDS_SubMesh* sm = aMesh->MeshElements( edge ); if ( !sm ) continue; // find out which parameter varies for a node on seam double f,l; gp_Pnt2d uv1, uv2; Handle(Geom2d_Curve) pcurve = BRep_Tool::CurveOnSurface( edge, face, f, l ); if ( pcurve.IsNull() ) continue; uv1 = pcurve->Value( f ); edge.Reverse(); pcurve = BRep_Tool::CurveOnSurface( edge, face, f, l ); if ( pcurve.IsNull() ) continue; uv2 = pcurve->Value( f ); int iPar = Abs( uv1.X() - uv2.X() ) > Abs( uv1.Y() - uv2.Y() ) ? 1 : 2; // assure uv1 < uv2 if ( uv1.Coord( iPar ) > uv2.Coord( iPar )) { gp_Pnt2d tmp = uv1; uv1 = uv2; uv2 = tmp; } // get nodes on seam and its vertices list< const SMDS_MeshNode* > seamNodes; SMDS_NodeIteratorPtr nSeamIt = sm->GetNodes(); while ( nSeamIt->more() ) seamNodes.push_back( nSeamIt->next() ); TopExp_Explorer vExp( edge, TopAbs_VERTEX ); for ( ; vExp.More(); vExp.Next() ) { sm = aMesh->MeshElements( vExp.Current() ); if ( sm ) { nSeamIt = sm->GetNodes(); while ( nSeamIt->more() ) seamNodes.push_back( nSeamIt->next() ); } } // loop on nodes on seam list< const SMDS_MeshNode* >::iterator noSeIt = seamNodes.begin(); for ( ; noSeIt != seamNodes.end(); ++noSeIt ) { const SMDS_MeshNode* nSeam = *noSeIt; map< const SMDS_MeshNode*, gp_XY* >::iterator n_uv = uvMap.find( nSeam ); if ( n_uv == uvMap.end() ) continue; // set the first UV n_uv->second->SetCoord( iPar, uv1.Coord( iPar )); // set the second UV listUV.push_back( *n_uv->second ); listUV.back().SetCoord( iPar, uv2.Coord( iPar )); if ( uvMap2.empty() ) uvMap2 = uvMap; // copy the uvMap contents uvMap2[ nSeam ] = &listUV.back(); // collect movable nodes linked to ones on seam in nodesNearSeam SMDS_ElemIteratorPtr eIt = nSeam->GetInverseElementIterator(); while ( eIt->more() ) { const SMDS_MeshElement* e = eIt->next(); if ( e->GetType() != SMDSAbs_Face ) continue; int nbUseMap1 = 0, nbUseMap2 = 0; SMDS_ElemIteratorPtr nIt = e->nodesIterator(); while ( nIt->more() ) { const SMDS_MeshNode* n = static_cast( nIt->next() ); if (n == nSeam || setMovableNodes.find( n ) == setMovableNodes.end() ) continue; // add only nodes being closer to uv2 than to uv1 gp_Pnt pMid (0.5 * ( n->X() + nSeam->X() ), 0.5 * ( n->Y() + nSeam->Y() ), 0.5 * ( n->Z() + nSeam->Z() )); gp_XY uv; getClosestUV( projector, pMid, uv ); if ( uv.Coord( iPar ) > uvMap[ n ]->Coord( iPar ) ) { nodesNearSeam.insert( n ); nbUseMap2++; } else nbUseMap1++; } // for centroidalSmooth all element nodes must // be on one side of a seam if ( theSmoothMethod == CENTROIDAL && nbUseMap1 && nbUseMap2 ) { SMDS_ElemIteratorPtr nIt = e->nodesIterator(); while ( nIt->more() ) { const SMDS_MeshNode* n = static_cast( nIt->next() ); setMovableNodes.erase( n ); } } } } // loop on nodes on seam } // loop on edge of a face } // if ( !face.IsNull() ) if ( setMovableNodes.empty() ) { MESSAGE( "Face id : " << *fId << " - NO SMOOTHING: no nodes to move!!!"); continue; // goto next face } // ------------- // SMOOTHING // // ------------- int it = -1; double maxRatio = -1., maxDisplacement = -1.; set::iterator nodeToMove; for ( it = 0; it < theNbIterations; it++ ) { maxDisplacement = 0.; nodeToMove = setMovableNodes.begin(); for ( ; nodeToMove != setMovableNodes.end(); nodeToMove++ ) { const SMDS_MeshNode* node = (*nodeToMove); gp_XYZ aPrevPos ( node->X(), node->Y(), node->Z() ); // smooth bool map2 = ( nodesNearSeam.find( node ) != nodesNearSeam.end() ); if ( theSmoothMethod == LAPLACIAN ) laplacianSmooth( node, surface, map2 ? uvMap2 : uvMap ); else centroidalSmooth( node, surface, map2 ? uvMap2 : uvMap ); // node displacement gp_XYZ aNewPos ( node->X(), node->Y(), node->Z() ); Standard_Real aDispl = (aPrevPos - aNewPos).SquareModulus(); if ( aDispl > maxDisplacement ) maxDisplacement = aDispl; } // no node movement => exit if ( maxDisplacement < 1.e-16 ) { MESSAGE("-- no node movement --"); break; } // check elements quality maxRatio = 0; list< const SMDS_MeshElement* >::iterator elemIt = elemsOnFace.begin(); for ( ; elemIt != elemsOnFace.end(); ++elemIt ) { const SMDS_MeshElement* elem = (*elemIt); if ( !elem || elem->GetType() != SMDSAbs_Face ) continue; SMESH::Controls::TSequenceOfXYZ aPoints; if ( aQualityFunc.GetPoints( elem, aPoints )) { double aValue = aQualityFunc.GetValue( aPoints ); if ( aValue > maxRatio ) maxRatio = aValue; } } if ( maxRatio <= theTgtAspectRatio ) { MESSAGE("-- quality achived --"); break; } if (it+1 == theNbIterations) { MESSAGE("-- Iteration limit exceeded --"); } } // smoothing iterations MESSAGE(" Face id: " << *fId << " Nb iterstions: " << it << " Displacement: " << maxDisplacement << " Aspect Ratio " << maxRatio); // --------------------------------------- // new nodes positions are computed, // record movement in DS and set new UV // --------------------------------------- nodeToMove = setMovableNodes.begin(); for ( ; nodeToMove != setMovableNodes.end(); nodeToMove++ ) { SMDS_MeshNode* node = const_cast< SMDS_MeshNode* > (*nodeToMove); aMesh->MoveNode( node, node->X(), node->Y(), node->Z() ); map< const SMDS_MeshNode*, gp_XY* >::iterator node_uv = uvMap.find( node ); if ( node_uv != uvMap.end() ) { gp_XY* uv = node_uv->second; node->SetPosition ( SMDS_PositionPtr( new SMDS_FacePosition( *fId, uv->X(), uv->Y() ))); } } } // loop on face ids } //======================================================================= //function : isReverse //purpose : Return true if normal of prevNodes is not co-directied with // gp_Vec(prevNodes[iNotSame],nextNodes[iNotSame]). // iNotSame is where prevNodes and nextNodes are different //======================================================================= static bool isReverse(const SMDS_MeshNode* prevNodes[], const SMDS_MeshNode* nextNodes[], const int nbNodes, const int iNotSame) { int iBeforeNotSame = ( iNotSame == 0 ? nbNodes - 1 : iNotSame - 1 ); int iAfterNotSame = ( iNotSame + 1 == nbNodes ? 0 : iNotSame + 1 ); const SMDS_MeshNode* nB = prevNodes[ iBeforeNotSame ]; const SMDS_MeshNode* nA = prevNodes[ iAfterNotSame ]; const SMDS_MeshNode* nP = prevNodes[ iNotSame ]; const SMDS_MeshNode* nN = nextNodes[ iNotSame ]; gp_Pnt pB ( nB->X(), nB->Y(), nB->Z() ); gp_Pnt pA ( nA->X(), nA->Y(), nA->Z() ); gp_Pnt pP ( nP->X(), nP->Y(), nP->Z() ); gp_Pnt pN ( nN->X(), nN->Y(), nN->Z() ); gp_Vec vB ( pP, pB ), vA ( pP, pA ), vN ( pP, pN ); return (vA ^ vB) * vN < 0.0; } //======================================================================= //function : sweepElement //purpose : //======================================================================= static void sweepElement(SMESHDS_Mesh* aMesh, const SMDS_MeshElement* elem, const vector & newNodesItVec, list& newElems) { // Loop on elem nodes: // find new nodes and detect same nodes indices int nbNodes = elem->NbNodes(); list::const_iterator itNN[ nbNodes ]; const SMDS_MeshNode* prevNod[ nbNodes ], *nextNod[ nbNodes ]; int iNode, nbSame = 0, iNotSameNode = 0, iSameNode = 0; for ( iNode = 0; iNode < nbNodes; iNode++ ) { TNodeOfNodeListMapItr nnIt = newNodesItVec[ iNode ]; const SMDS_MeshNode* node = nnIt->first; const list< const SMDS_MeshNode* > & listNewNodes = nnIt->second; if ( listNewNodes.empty() ) return; itNN[ iNode ] = listNewNodes.begin(); prevNod[ iNode ] = node; nextNod[ iNode ] = listNewNodes.front(); if ( prevNod[ iNode ] != nextNod [ iNode ]) iNotSameNode = iNode; else { iSameNode = iNode; nbSame++; } } if ( nbSame == nbNodes || nbSame > 2) { MESSAGE( " Too many same nodes of element " << elem->GetID() ); return; } int iBeforeSame = 0, iAfterSame = 0, iOpposSame = 0; if ( nbSame > 0 ) { iBeforeSame = ( iSameNode == 0 ? nbNodes - 1 : iSameNode - 1 ); iAfterSame = ( iSameNode + 1 == nbNodes ? 0 : iSameNode + 1 ); iOpposSame = ( iSameNode - 2 < 0 ? iSameNode + 2 : iSameNode - 2 ); } // check element orientation int i0 = 0, i2 = 2; if ( nbNodes > 2 && !isReverse( prevNod, nextNod, nbNodes, iNotSameNode )) { //MESSAGE("Reversed elem " << elem ); i0 = 2; i2 = 0; if ( nbSame > 0 ) { int iAB = iAfterSame + iBeforeSame; iBeforeSame = iAB - iBeforeSame; iAfterSame = iAB - iAfterSame; } } // make new elements int iStep, nbSteps = newNodesItVec[ 0 ]->second.size(); for (iStep = 0; iStep < nbSteps; iStep++ ) { // get next nodes for ( iNode = 0; iNode < nbNodes; iNode++ ) { nextNod[ iNode ] = *itNN[ iNode ]; itNN[ iNode ]++; } SMDS_MeshElement* aNewElem = 0; switch ( nbNodes ) { case 0: return; case 1: { // NODE if ( nbSame == 0 ) aNewElem = aMesh->AddEdge( prevNod[ 0 ], nextNod[ 0 ] ); break; } case 2: { // EDGE if ( nbSame == 0 ) aNewElem = aMesh->AddFace(prevNod[ 0 ], prevNod[ 1 ], nextNod[ 1 ], nextNod[ 0 ] ); else aNewElem = aMesh->AddFace(prevNod[ 0 ], prevNod[ 1 ], nextNod[ iNotSameNode ] ); break; } case 3: { // TRIANGLE if ( nbSame == 0 ) // --- pentahedron aNewElem = aMesh->AddVolume (prevNod[ i0 ], prevNod[ 1 ], prevNod[ i2 ], nextNod[ i0 ], nextNod[ 1 ], nextNod[ i2 ] ); else if ( nbSame == 1 ) // --- pyramid aNewElem = aMesh->AddVolume (prevNod[ iBeforeSame ], prevNod[ iAfterSame ], nextNod[ iAfterSame ], nextNod[ iBeforeSame ], nextNod[ iSameNode ]); else // 2 same nodes: --- tetrahedron aNewElem = aMesh->AddVolume (prevNod[ i0 ], prevNod[ 1 ], prevNod[ i2 ], nextNod[ iNotSameNode ]); break; } case 4: { // QUADRANGLE if ( nbSame == 0 ) // --- hexahedron aNewElem = aMesh->AddVolume (prevNod[ i0 ], prevNod[ 1 ], prevNod[ i2 ], prevNod[ 3 ], nextNod[ i0 ], nextNod[ 1 ], nextNod[ i2 ], nextNod[ 3 ]); else if ( nbSame == 1 ) // --- pyramid + pentahedron { aNewElem = aMesh->AddVolume (prevNod[ iBeforeSame ], prevNod[ iAfterSame ], nextNod[ iAfterSame ], nextNod[ iBeforeSame ], nextNod[ iSameNode ]); newElems.push_back( aNewElem ); aNewElem = aMesh->AddVolume (prevNod[ iAfterSame ], prevNod[ iOpposSame ], prevNod[ iBeforeSame ], nextNod[ iAfterSame ], nextNod[ iOpposSame ], nextNod[ iBeforeSame ] ); } else if ( nbSame == 2 ) // pentahedron { if ( prevNod[ iBeforeSame ] == nextNod[ iBeforeSame ] ) // iBeforeSame is same too aNewElem = aMesh->AddVolume (prevNod[ iBeforeSame ], prevNod[ iOpposSame ], nextNod[ iOpposSame ], prevNod[ iSameNode ], prevNod[ iAfterSame ], nextNod[ iAfterSame ]); else // iAfterSame is same too aNewElem = aMesh->AddVolume (prevNod[ iSameNode ], prevNod[ iBeforeSame ], nextNod[ iBeforeSame ], prevNod[ iAfterSame ], prevNod[ iOpposSame ], nextNod[ iOpposSame ]); } break; } default: { // realized for extrusion only vector polyedre_nodes (nbNodes*2 + 4*nbNodes); vector quantities (nbNodes + 2); quantities[0] = nbNodes; // bottom of prism for (int inode = 0; inode < nbNodes; inode++) { polyedre_nodes[inode] = prevNod[inode]; } quantities[1] = nbNodes; // top of prism for (int inode = 0; inode < nbNodes; inode++) { polyedre_nodes[nbNodes + inode] = nextNod[inode]; } for (int iface = 0; iface < nbNodes; iface++) { quantities[iface + 2] = 4; int inextface = (iface == nbNodes - 1) ? 0 : iface + 1; polyedre_nodes[2*nbNodes + 4*iface + 0] = prevNod[iface]; polyedre_nodes[2*nbNodes + 4*iface + 1] = prevNod[inextface]; polyedre_nodes[2*nbNodes + 4*iface + 2] = nextNod[inextface]; polyedre_nodes[2*nbNodes + 4*iface + 3] = nextNod[iface]; } aNewElem = aMesh->AddPolyhedralVolume (polyedre_nodes, quantities); } } if ( aNewElem ) newElems.push_back( aNewElem ); // set new prev nodes for ( iNode = 0; iNode < nbNodes; iNode++ ) prevNod[ iNode ] = nextNod[ iNode ]; } // for steps } //======================================================================= //function : makeWalls //purpose : create 1D and 2D elements around swept elements //======================================================================= static void makeWalls (SMESHDS_Mesh* aMesh, TNodeOfNodeListMap & mapNewNodes, TElemOfElemListMap & newElemsMap, TElemOfVecOfNnlmiMap & elemNewNodesMap, set& elemSet) { ASSERT( newElemsMap.size() == elemNewNodesMap.size() ); // Find nodes belonging to only one initial element - sweep them to get edges. TNodeOfNodeListMapItr nList = mapNewNodes.begin(); for ( ; nList != mapNewNodes.end(); nList++ ) { const SMDS_MeshNode* node = static_cast( nList->first ); SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator(); int nbInitElems = 0; while ( eIt->more() && nbInitElems < 2 ) if ( elemSet.find( eIt->next() ) != elemSet.end() ) nbInitElems++; if ( nbInitElems < 2 ) { vector newNodesItVec( 1, nList ); list newEdges; sweepElement( aMesh, node, newNodesItVec, newEdges ); } } // Make a ceiling for each element ie an equal element of last new nodes. // Find free links of faces - make edges and sweep them into faces. TElemOfElemListMap::iterator itElem = newElemsMap.begin(); TElemOfVecOfNnlmiMap::iterator itElemNodes = elemNewNodesMap.begin(); for ( ; itElem != newElemsMap.end(); itElem++, itElemNodes++ ) { const SMDS_MeshElement* elem = itElem->first; vector& vecNewNodes = itElemNodes->second; if ( elem->GetType() == SMDSAbs_Edge ) { // create a ceiling edge aMesh->AddEdge(vecNewNodes[ 0 ]->second.back(), vecNewNodes[ 1 ]->second.back() ); } if ( elem->GetType() != SMDSAbs_Face ) continue; bool hasFreeLinks = false; set avoidSet; avoidSet.insert( elem ); // loop on a face nodes set aFaceLastNodes; int iNode, nbNodes = vecNewNodes.size(); for ( iNode = 0; iNode < nbNodes; iNode++ ) { aFaceLastNodes.insert( vecNewNodes[ iNode ]->second.back() ); // look for free links of a face int iNext = ( iNode + 1 == nbNodes ) ? 0 : iNode + 1; const SMDS_MeshNode* n1 = vecNewNodes[ iNode ]->first; const SMDS_MeshNode* n2 = vecNewNodes[ iNext ]->first; // check if a link is free if ( ! SMESH_MeshEditor::FindFaceInSet ( n1, n2, elemSet, avoidSet )) { hasFreeLinks = true; // make an edge and a ceiling for a new edge if ( !aMesh->FindEdge( n1, n2 )) aMesh->AddEdge( n1, n2 ); n1 = vecNewNodes[ iNode ]->second.back(); n2 = vecNewNodes[ iNext ]->second.back(); if ( !aMesh->FindEdge( n1, n2 )) aMesh->AddEdge( n1, n2 ); } } // sweep free links into faces if ( hasFreeLinks ) { list & newVolumes = itElem->second; int iStep, nbSteps = vecNewNodes[0]->second.size(); int iVol, volNb, nbVolumesByStep = newVolumes.size() / nbSteps; set initNodeSet, faceNodeSet; for ( iNode = 0; iNode < nbNodes; iNode++ ) initNodeSet.insert( vecNewNodes[ iNode ]->first ); for ( volNb = 0; volNb < nbVolumesByStep; volNb++ ) { list::iterator v = newVolumes.begin(); iVol = 0; while ( iVol++ < volNb ) v++; // find indices of free faces of a volume list< int > fInd; SMDS_VolumeTool vTool( *v ); int iF, nbF = vTool.NbFaces(); for ( iF = 0; iF < nbF; iF ++ ) if (vTool.IsFreeFace( iF ) && vTool.GetFaceNodes( iF, faceNodeSet ) && initNodeSet != faceNodeSet) // except an initial face fInd.push_back( iF ); if ( fInd.empty() ) continue; // create faces for all steps for ( iStep = 0; iStep < nbSteps; iStep++ ) { vTool.Set( *v ); vTool.SetExternalNormal(); list< int >::iterator ind = fInd.begin(); for ( ; ind != fInd.end(); ind++ ) { const SMDS_MeshNode** nodes = vTool.GetFaceNodes( *ind ); switch ( vTool.NbFaceNodes( *ind ) ) { case 3: aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] ); break; case 4: aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ], nodes[ 3 ] ); break; default: { int nbPolygonNodes = vTool.NbFaceNodes( *ind ); vector polygon_nodes (nbPolygonNodes); for (int inode = 0; inode < nbPolygonNodes; inode++) { polygon_nodes[inode] = nodes[inode]; } aMesh->AddPolygonalFace(polygon_nodes); break; } } } // go to the next volume iVol = 0; while ( iVol++ < nbVolumesByStep ) v++; } } } // sweep free links into faces // make a ceiling face with a normal external to a volume SMDS_VolumeTool lastVol( itElem->second.back() ); int iF = lastVol.GetFaceIndex( aFaceLastNodes ); if ( iF >= 0 ) { lastVol.SetExternalNormal(); const SMDS_MeshNode** nodes = lastVol.GetFaceNodes( iF ); switch ( lastVol.NbFaceNodes( iF ) ) { case 3: if (!hasFreeLinks || !aMesh->FindFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ])) aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] ); break; case 4: if (!hasFreeLinks || !aMesh->FindFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ], nodes[ 3 ])) aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ], nodes[ 3 ] ); break; default: { int nbPolygonNodes = lastVol.NbFaceNodes( iF ); vector polygon_nodes (nbPolygonNodes); for (int inode = 0; inode < nbPolygonNodes; inode++) { polygon_nodes[inode] = nodes[inode]; } if (!hasFreeLinks || !aMesh->FindFace(polygon_nodes)) aMesh->AddPolygonalFace(polygon_nodes); } break; } } } // loop on swept elements } //======================================================================= //function : RotationSweep //purpose : //======================================================================= void SMESH_MeshEditor::RotationSweep(set & theElems, const gp_Ax1& theAxis, const double theAngle, const int theNbSteps, const double theTol) { MESSAGE( "RotationSweep()"); gp_Trsf aTrsf; aTrsf.SetRotation( theAxis, theAngle ); gp_Lin aLine( theAxis ); double aSqTol = theTol * theTol; SMESHDS_Mesh* aMesh = GetMeshDS(); TNodeOfNodeListMap mapNewNodes; TElemOfVecOfNnlmiMap mapElemNewNodes; TElemOfElemListMap newElemsMap; // loop on theElems set< const SMDS_MeshElement* >::iterator itElem; for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { const SMDS_MeshElement* elem = (*itElem); if ( !elem ) continue; vector & newNodesItVec = mapElemNewNodes[ elem ]; newNodesItVec.reserve( elem->NbNodes() ); // loop on elem nodes SMDS_ElemIteratorPtr itN = elem->nodesIterator(); while ( itN->more() ) { // check if a node has been already sweeped const SMDS_MeshNode* node = static_cast( itN->next() ); TNodeOfNodeListMapItr nIt = mapNewNodes.find( node ); if ( nIt == mapNewNodes.end() ) { nIt = mapNewNodes.insert( make_pair( node, list() )).first; list& listNewNodes = nIt->second; // make new nodes gp_XYZ aXYZ( node->X(), node->Y(), node->Z() ); double coord[3]; aXYZ.Coord( coord[0], coord[1], coord[2] ); bool isOnAxis = ( aLine.SquareDistance( aXYZ ) <= aSqTol ); const SMDS_MeshNode * newNode = node; for ( int i = 0; i < theNbSteps; i++ ) { if ( !isOnAxis ) { aTrsf.Transforms( coord[0], coord[1], coord[2] ); newNode = aMesh->AddNode( coord[0], coord[1], coord[2] ); } listNewNodes.push_back( newNode ); } } newNodesItVec.push_back( nIt ); } // make new elements sweepElement( aMesh, elem, newNodesItVec, newElemsMap[elem] ); } makeWalls( aMesh, mapNewNodes, newElemsMap, mapElemNewNodes, theElems ); } //======================================================================= //function : ExtrusionSweep //purpose : //======================================================================= void SMESH_MeshEditor::ExtrusionSweep(set & theElems, const gp_Vec& theStep, const int theNbSteps) { gp_Trsf aTrsf; aTrsf.SetTranslation( theStep ); SMESHDS_Mesh* aMesh = GetMeshDS(); TNodeOfNodeListMap mapNewNodes; TElemOfVecOfNnlmiMap mapElemNewNodes; TElemOfElemListMap newElemsMap; // loop on theElems set< const SMDS_MeshElement* >::iterator itElem; for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { // check element type const SMDS_MeshElement* elem = (*itElem); if ( !elem ) continue; vector & newNodesItVec = mapElemNewNodes[ elem ]; newNodesItVec.reserve( elem->NbNodes() ); // loop on elem nodes SMDS_ElemIteratorPtr itN = elem->nodesIterator(); while ( itN->more() ) { // check if a node has been already sweeped const SMDS_MeshNode* node = static_cast( itN->next() ); TNodeOfNodeListMap::iterator nIt = mapNewNodes.find( node ); if ( nIt == mapNewNodes.end() ) { nIt = mapNewNodes.insert( make_pair( node, list() )).first; list& listNewNodes = nIt->second; // make new nodes double coord[] = { node->X(), node->Y(), node->Z() }; for ( int i = 0; i < theNbSteps; i++ ) { aTrsf.Transforms( coord[0], coord[1], coord[2] ); const SMDS_MeshNode * newNode = aMesh->AddNode( coord[0], coord[1], coord[2] ); listNewNodes.push_back( newNode ); } } newNodesItVec.push_back( nIt ); } // make new elements sweepElement( aMesh, elem, newNodesItVec, newElemsMap[elem] ); // fill history SMESH_SequenceOfElemPtr SeqNewME; list tmpList = newElemsMap[elem]; for(list::iterator ite = tmpList.begin(); ite!=tmpList.end(); ite++) { SeqNewME.Append(*ite); } myExtrusionHistory.Bind(elem,SeqNewME); // end fill history } makeWalls( aMesh, mapNewNodes, newElemsMap, mapElemNewNodes, theElems ); } //======================================================================= //class : SMESH_MeshEditor_PathPoint //purpose : auxiliary class //======================================================================= class SMESH_MeshEditor_PathPoint { public: SMESH_MeshEditor_PathPoint() { myPnt.SetCoord(99., 99., 99.); myTgt.SetCoord(1.,0.,0.); myAngle=0.; myPrm=0.; } void SetPnt(const gp_Pnt& aP3D){ myPnt=aP3D; } void SetTangent(const gp_Dir& aTgt){ myTgt=aTgt; } void SetAngle(const double& aBeta){ myAngle=aBeta; } void SetParameter(const double& aPrm){ myPrm=aPrm; } const gp_Pnt& Pnt()const{ return myPnt; } const gp_Dir& Tangent()const{ return myTgt; } double Angle()const{ return myAngle; } double Parameter()const{ return myPrm; } protected: gp_Pnt myPnt; gp_Dir myTgt; double myAngle; double myPrm; }; //======================================================================= //function : ExtrusionAlongTrack //purpose : //======================================================================= SMESH_MeshEditor::Extrusion_Error SMESH_MeshEditor::ExtrusionAlongTrack (std::set & theElements, SMESH_subMesh* theTrack, const SMDS_MeshNode* theN1, const bool theHasAngles, std::list& theAngles, const bool theHasRefPoint, const gp_Pnt& theRefPoint) { MESSAGE("SMESH_MeshEditor::ExtrusionAlongTrack") int j, aNbTP, aNbE, aNb; double aT1, aT2, aT, aAngle, aX, aY, aZ; std::list aPrms; std::list::iterator aItD; std::set< const SMDS_MeshElement* >::iterator itElem; Standard_Real aTx1, aTx2, aL2, aTolVec, aTolVec2; gp_Pnt aP3D, aV0; gp_Vec aVec; gp_XYZ aGC; Handle(Geom_Curve) aC3D; TopoDS_Edge aTrackEdge; TopoDS_Vertex aV1, aV2; SMDS_ElemIteratorPtr aItE; SMDS_NodeIteratorPtr aItN; SMDSAbs_ElementType aTypeE; TNodeOfNodeListMap mapNewNodes; TElemOfVecOfNnlmiMap mapElemNewNodes; TElemOfElemListMap newElemsMap; aTolVec=1.e-7; aTolVec2=aTolVec*aTolVec; // 1. Check data aNbE = theElements.size(); // nothing to do if ( !aNbE ) return EXTR_NO_ELEMENTS; // 1.1 Track Pattern ASSERT( theTrack ); SMESHDS_SubMesh* pSubMeshDS=theTrack->GetSubMeshDS(); aItE = pSubMeshDS->GetElements(); while ( aItE->more() ) { const SMDS_MeshElement* pE = aItE->next(); aTypeE = pE->GetType(); // Pattern must contain links only if ( aTypeE != SMDSAbs_Edge ) return EXTR_PATH_NOT_EDGE; } const TopoDS_Shape& aS = theTrack->GetSubShape(); // Sub shape for the Pattern must be an Edge if ( aS.ShapeType() != TopAbs_EDGE ) return EXTR_BAD_PATH_SHAPE; aTrackEdge = TopoDS::Edge( aS ); // the Edge must not be degenerated if ( BRep_Tool::Degenerated( aTrackEdge ) ) return EXTR_BAD_PATH_SHAPE; TopExp::Vertices( aTrackEdge, aV1, aV2 ); aT1=BRep_Tool::Parameter( aV1, aTrackEdge ); aT2=BRep_Tool::Parameter( aV2, aTrackEdge ); aItN = theTrack->GetFather()->GetSubMesh( aV1 )->GetSubMeshDS()->GetNodes(); const SMDS_MeshNode* aN1 = aItN->next(); aItN = theTrack->GetFather()->GetSubMesh( aV2 )->GetSubMeshDS()->GetNodes(); const SMDS_MeshNode* aN2 = aItN->next(); // starting node must be aN1 or aN2 if ( !( aN1 == theN1 || aN2 == theN1 ) ) return EXTR_BAD_STARTING_NODE; aNbTP = pSubMeshDS->NbNodes() + 2; // 1.2. Angles vector aAngles( aNbTP ); for ( j=0; j < aNbTP; ++j ) { aAngles[j] = 0.; } if ( theHasAngles ) { aItD = theAngles.begin(); for ( j=1; (aItD != theAngles.end()) && (jGetNodes(); while ( aItN->more() ) { const SMDS_MeshNode* pNode = aItN->next(); const SMDS_EdgePosition* pEPos = static_cast( pNode->GetPosition().get() ); aT = pEPos->GetUParameter(); aPrms.push_back( aT ); } // sort parameters aPrms.sort(); if ( aN1 == theN1 ) { if ( aT1 > aT2 ) { aPrms.reverse(); } } else { if ( aT2 > aT1 ) { aPrms.reverse(); } } // 3. Path Points SMESH_MeshEditor_PathPoint aPP; vector aPPs( aNbTP ); // aC3D = BRep_Tool::Curve( aTrackEdge, aTx1, aTx2 ); // aItD = aPrms.begin(); for ( j=0; aItD != aPrms.end(); ++aItD, ++j ) { aT = *aItD; aC3D->D1( aT, aP3D, aVec ); aL2 = aVec.SquareMagnitude(); if ( aL2 < aTolVec2 ) return EXTR_CANT_GET_TANGENT; gp_Dir aTgt( aVec ); aAngle = aAngles[j]; aPP.SetPnt( aP3D ); aPP.SetTangent( aTgt ); aPP.SetAngle( aAngle ); aPP.SetParameter( aT ); aPPs[j]=aPP; } // 3. Center of rotation aV0 aV0 = theRefPoint; if ( !theHasRefPoint ) { aNb = 0; aGC.SetCoord( 0.,0.,0. ); itElem = theElements.begin(); for ( ; itElem != theElements.end(); itElem++ ) { const SMDS_MeshElement* elem = (*itElem); SMDS_ElemIteratorPtr itN = elem->nodesIterator(); while ( itN->more() ) { const SMDS_MeshNode* node = static_cast( itN->next() ); aX = node->X(); aY = node->Y(); aZ = node->Z(); if ( mapNewNodes.find( node ) == mapNewNodes.end() ) { list aLNx; mapNewNodes[node] = aLNx; // gp_XYZ aXYZ( aX, aY, aZ ); aGC += aXYZ; ++aNb; } } } aGC /= aNb; aV0.SetXYZ( aGC ); } // if (!theHasRefPoint) { mapNewNodes.clear(); // 4. Processing the elements SMESHDS_Mesh* aMesh = GetMeshDS(); for ( itElem = theElements.begin(); itElem != theElements.end(); itElem++ ) { // check element type const SMDS_MeshElement* elem = (*itElem); aTypeE = elem->GetType(); if ( !elem || ( aTypeE != SMDSAbs_Face && aTypeE != SMDSAbs_Edge ) ) continue; vector & newNodesItVec = mapElemNewNodes[ elem ]; newNodesItVec.reserve( elem->NbNodes() ); // loop on elem nodes SMDS_ElemIteratorPtr itN = elem->nodesIterator(); while ( itN->more() ) { // check if a node has been already processed const SMDS_MeshNode* node = static_cast( itN->next() ); TNodeOfNodeListMap::iterator nIt = mapNewNodes.find( node ); if ( nIt == mapNewNodes.end() ) { nIt = mapNewNodes.insert( make_pair( node, list() )).first; list& listNewNodes = nIt->second; // make new nodes aX = node->X(); aY = node->Y(); aZ = node->Z(); Standard_Real aAngle1x, aAngleT1T0, aTolAng; gp_Pnt aP0x, aP1x, aPN0, aPN1, aV0x, aV1x; gp_Ax1 anAx1, anAxT1T0; gp_Dir aDT1x, aDT0x, aDT1T0; aTolAng=1.e-4; aV0x = aV0; aPN0.SetCoord(aX, aY, aZ); const SMESH_MeshEditor_PathPoint& aPP0 = aPPs[0]; aP0x = aPP0.Pnt(); aDT0x= aPP0.Tangent(); for ( j = 1; j < aNbTP; ++j ) { const SMESH_MeshEditor_PathPoint& aPP1 = aPPs[j]; aP1x = aPP1.Pnt(); aDT1x = aPP1.Tangent(); aAngle1x = aPP1.Angle(); gp_Trsf aTrsf, aTrsfRot, aTrsfRotT1T0; // Translation gp_Vec aV01x( aP0x, aP1x ); aTrsf.SetTranslation( aV01x ); // traslated point aV1x = aV0x.Transformed( aTrsf ); aPN1 = aPN0.Transformed( aTrsf ); // rotation 1 [ T1,T0 ] aAngleT1T0=-aDT1x.Angle( aDT0x ); if (fabs(aAngleT1T0) > aTolAng) { aDT1T0=aDT1x^aDT0x; anAxT1T0.SetLocation( aV1x ); anAxT1T0.SetDirection( aDT1T0 ); aTrsfRotT1T0.SetRotation( anAxT1T0, aAngleT1T0 ); aPN1 = aPN1.Transformed( aTrsfRotT1T0 ); } // rotation 2 if ( theHasAngles ) { anAx1.SetLocation( aV1x ); anAx1.SetDirection( aDT1x ); aTrsfRot.SetRotation( anAx1, aAngle1x ); aPN1 = aPN1.Transformed( aTrsfRot ); } // make new node aX = aPN1.X(); aY = aPN1.Y(); aZ = aPN1.Z(); const SMDS_MeshNode* newNode = aMesh->AddNode( aX, aY, aZ ); listNewNodes.push_back( newNode ); aPN0 = aPN1; aP0x = aP1x; aV0x = aV1x; aDT0x = aDT1x; } } newNodesItVec.push_back( nIt ); } // make new elements sweepElement( aMesh, elem, newNodesItVec, newElemsMap[elem] ); } makeWalls( aMesh, mapNewNodes, newElemsMap, mapElemNewNodes, theElements ); return EXTR_OK; } //======================================================================= //function : Transform //purpose : //======================================================================= void SMESH_MeshEditor::Transform (set & theElems, const gp_Trsf& theTrsf, const bool theCopy) { bool needReverse; switch ( theTrsf.Form() ) { case gp_PntMirror: case gp_Ax2Mirror: needReverse = true; break; default: needReverse = false; } SMESHDS_Mesh* aMesh = GetMeshDS(); // map old node to new one TNodeNodeMap nodeMap; // elements sharing moved nodes; those of them which have all // nodes mirrored but are not in theElems are to be reversed set inverseElemSet; // loop on theElems set< const SMDS_MeshElement* >::iterator itElem; for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { const SMDS_MeshElement* elem = (*itElem); if ( !elem ) continue; // loop on elem nodes SMDS_ElemIteratorPtr itN = elem->nodesIterator(); while ( itN->more() ) { // check if a node has been already transformed const SMDS_MeshNode* node = static_cast( itN->next() ); if (nodeMap.find( node ) != nodeMap.end() ) continue; double coord[3]; coord[0] = node->X(); coord[1] = node->Y(); coord[2] = node->Z(); theTrsf.Transforms( coord[0], coord[1], coord[2] ); const SMDS_MeshNode * newNode = node; if ( theCopy ) newNode = aMesh->AddNode( coord[0], coord[1], coord[2] ); else { aMesh->MoveNode( node, coord[0], coord[1], coord[2] ); // node position on shape becomes invalid const_cast< SMDS_MeshNode* > ( node )->SetPosition ( SMDS_SpacePosition::originSpacePosition() ); } nodeMap.insert( TNodeNodeMap::value_type( node, newNode )); // keep inverse elements if ( !theCopy && needReverse ) { SMDS_ElemIteratorPtr invElemIt = node->GetInverseElementIterator(); while ( invElemIt->more() ) inverseElemSet.insert( invElemIt->next() ); } } } // either new elements are to be created // or a mirrored element are to be reversed if ( !theCopy && !needReverse) return; if ( !inverseElemSet.empty()) { set::iterator invElemIt = inverseElemSet.begin(); for ( ; invElemIt != inverseElemSet.end(); invElemIt++ ) theElems.insert( *invElemIt ); } // replicate or reverse elements enum { REV_TETRA = 0, // = nbNodes - 4 REV_PYRAMID = 1, // = nbNodes - 4 REV_PENTA = 2, // = nbNodes - 4 REV_FACE = 3, REV_HEXA = 4, // = nbNodes - 4 FORWARD = 5 }; int index[][8] = { { 2, 1, 0, 3, 4, 0, 0, 0 }, // REV_TETRA { 2, 1, 0, 3, 4, 0, 0, 0 }, // REV_PYRAMID { 2, 1, 0, 5, 4, 3, 0, 0 }, // REV_PENTA { 2, 1, 0, 3, 0, 0, 0, 0 }, // REV_FACE { 2, 1, 0, 3, 6, 5, 4, 7 }, // REV_HEXA { 0, 1, 2, 3, 4, 5, 6, 7 } // FORWARD }; for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ ) { const SMDS_MeshElement* elem = (*itElem); if ( !elem || elem->GetType() == SMDSAbs_Node ) continue; int nbNodes = elem->NbNodes(); int elemType = elem->GetType(); if (elem->IsPoly()) { // Polygon or Polyhedral Volume switch ( elemType ) { case SMDSAbs_Face: { vector poly_nodes (nbNodes); int iNode = 0; SMDS_ElemIteratorPtr itN = elem->nodesIterator(); while (itN->more()) { const SMDS_MeshNode* node = static_cast(itN->next()); TNodeNodeMap::iterator nodeMapIt = nodeMap.find(node); if (nodeMapIt == nodeMap.end()) break; // not all nodes transformed if (needReverse) { // reverse mirrored faces and volumes poly_nodes[nbNodes - iNode - 1] = (*nodeMapIt).second; } else { poly_nodes[iNode] = (*nodeMapIt).second; } iNode++; } if ( iNode != nbNodes ) continue; // not all nodes transformed if ( theCopy ) { aMesh->AddPolygonalFace(poly_nodes); } else { aMesh->ChangePolygonNodes(elem, poly_nodes); } } break; case SMDSAbs_Volume: { // ATTENTION: Reversing is not yet done!!! const SMDS_PolyhedralVolumeOfNodes* aPolyedre = (const SMDS_PolyhedralVolumeOfNodes*) elem; if (!aPolyedre) { MESSAGE("Warning: bad volumic element"); continue; } vector poly_nodes; vector quantities; bool allTransformed = true; int nbFaces = aPolyedre->NbFaces(); for (int iface = 1; iface <= nbFaces && allTransformed; iface++) { int nbFaceNodes = aPolyedre->NbFaceNodes(iface); for (int inode = 1; inode <= nbFaceNodes && allTransformed; inode++) { const SMDS_MeshNode* node = aPolyedre->GetFaceNode(iface, inode); TNodeNodeMap::iterator nodeMapIt = nodeMap.find(node); if (nodeMapIt == nodeMap.end()) { allTransformed = false; // not all nodes transformed } else { poly_nodes.push_back((*nodeMapIt).second); } } quantities.push_back(nbFaceNodes); } if ( !allTransformed ) continue; // not all nodes transformed if ( theCopy ) { aMesh->AddPolyhedralVolume(poly_nodes, quantities); } else { aMesh->ChangePolyhedronNodes(elem, poly_nodes, quantities); } } break; default:; } continue; } // Regular elements int* i = index[ FORWARD ]; if ( needReverse && nbNodes > 2) // reverse mirrored faces and volumes if ( elemType == SMDSAbs_Face ) i = index[ REV_FACE ]; else i = index[ nbNodes - 4 ]; // find transformed nodes const SMDS_MeshNode* nodes[8]; int iNode = 0; SMDS_ElemIteratorPtr itN = elem->nodesIterator(); while ( itN->more() ) { const SMDS_MeshNode* node = static_cast( itN->next() ); TNodeNodeMap::iterator nodeMapIt = nodeMap.find( node ); if ( nodeMapIt == nodeMap.end() ) break; // not all nodes transformed nodes[ i [ iNode++ ]] = (*nodeMapIt).second; } if ( iNode != nbNodes ) continue; // not all nodes transformed if ( theCopy ) { // add a new element switch ( elemType ) { case SMDSAbs_Edge: aMesh->AddEdge( nodes[ 0 ], nodes[ 1 ] ); break; case SMDSAbs_Face: if ( nbNodes == 3 ) aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] ); else aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ]); break; case SMDSAbs_Volume: if ( nbNodes == 4 ) aMesh->AddVolume( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ] ); else if ( nbNodes == 8 ) aMesh->AddVolume( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ], nodes[ 4 ], nodes[ 5 ], nodes[ 6 ] , nodes[ 7 ]); else if ( nbNodes == 6 ) aMesh->AddVolume( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ], nodes[ 4 ], nodes[ 5 ]); else if ( nbNodes == 5 ) aMesh->AddVolume( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ], nodes[ 4 ]); break; default:; } } else { // reverse element as it was reversed by transformation if ( nbNodes > 2 ) aMesh->ChangeElementNodes( elem, nodes, nbNodes ); } } } //======================================================================= //function : FindCoincidentNodes //purpose : Return list of group of nodes close to each other within theTolerance // Search among theNodes or in the whole mesh if theNodes is empty. //======================================================================= void SMESH_MeshEditor::FindCoincidentNodes (set & theNodes, const double theTolerance, TListOfListOfNodes & theGroupsOfNodes) { double tol2 = theTolerance * theTolerance; list nodes; if ( theNodes.empty() ) { // get all nodes in the mesh SMDS_NodeIteratorPtr nIt = GetMeshDS()->nodesIterator(); while ( nIt->more() ) nodes.push_back( nIt->next() ); } else { nodes.insert( nodes.end(), theNodes.begin(), theNodes.end() ); } list::iterator it2, it1 = nodes.begin(); for ( ; it1 != nodes.end(); it1++ ) { const SMDS_MeshNode* n1 = *it1; gp_Pnt p1( n1->X(), n1->Y(), n1->Z() ); list * groupPtr = 0; it2 = it1; for ( it2++; it2 != nodes.end(); it2++ ) { const SMDS_MeshNode* n2 = *it2; gp_Pnt p2( n2->X(), n2->Y(), n2->Z() ); if ( p1.SquareDistance( p2 ) <= tol2 ) { if ( !groupPtr ) { theGroupsOfNodes.push_back( list() ); groupPtr = & theGroupsOfNodes.back(); groupPtr->push_back( n1 ); } groupPtr->push_back( n2 ); it2 = nodes.erase( it2 ); it2--; } } } } //======================================================================= //function : SimplifyFace //purpose : //======================================================================= int SMESH_MeshEditor::SimplifyFace (const vector faceNodes, vector& poly_nodes, vector& quantities) const { int nbNodes = faceNodes.size(); if (nbNodes < 3) return 0; set nodeSet; // get simple seq of nodes const SMDS_MeshNode* simpleNodes[ nbNodes ]; int iSimple = 0, nbUnique = 0; simpleNodes[iSimple++] = faceNodes[0]; nbUnique++; for (int iCur = 1; iCur < nbNodes; iCur++) { if (faceNodes[iCur] != simpleNodes[iSimple - 1]) { simpleNodes[iSimple++] = faceNodes[iCur]; if (nodeSet.insert( faceNodes[iCur] ).second) nbUnique++; } } int nbSimple = iSimple; if (simpleNodes[nbSimple - 1] == simpleNodes[0]) { nbSimple--; iSimple--; } if (nbUnique < 3) return 0; // separate loops int nbNew = 0; bool foundLoop = (nbSimple > nbUnique); while (foundLoop) { foundLoop = false; set loopSet; for (iSimple = 0; iSimple < nbSimple && !foundLoop; iSimple++) { const SMDS_MeshNode* n = simpleNodes[iSimple]; if (!loopSet.insert( n ).second) { foundLoop = true; // separate loop int iC = 0, curLast = iSimple; for (; iC < curLast; iC++) { if (simpleNodes[iC] == n) break; } int loopLen = curLast - iC; if (loopLen > 2) { // create sub-element nbNew++; quantities.push_back(loopLen); for (; iC < curLast; iC++) { poly_nodes.push_back(simpleNodes[iC]); } } // shift the rest nodes (place from the first loop position) for (iC = curLast + 1; iC < nbSimple; iC++) { simpleNodes[iC - loopLen] = simpleNodes[iC]; } nbSimple -= loopLen; iSimple -= loopLen; } } // for (iSimple = 0; iSimple < nbSimple; iSimple++) } // while (foundLoop) if (iSimple > 2) { nbNew++; quantities.push_back(iSimple); for (int i = 0; i < iSimple; i++) poly_nodes.push_back(simpleNodes[i]); } return nbNew; } //======================================================================= //function : MergeNodes //purpose : In each group, the cdr of nodes are substituted by the first one // in all elements. //======================================================================= void SMESH_MeshEditor::MergeNodes (TListOfListOfNodes & theGroupsOfNodes) { SMESHDS_Mesh* aMesh = GetMeshDS(); TNodeNodeMap nodeNodeMap; // node to replace - new node set elems; // all elements with changed nodes list< int > rmElemIds, rmNodeIds; // Fill nodeNodeMap and elems TListOfListOfNodes::iterator grIt = theGroupsOfNodes.begin(); for ( ; grIt != theGroupsOfNodes.end(); grIt++ ) { list& nodes = *grIt; list::iterator nIt = nodes.begin(); const SMDS_MeshNode* nToKeep = *nIt; for ( ; nIt != nodes.end(); nIt++ ) { const SMDS_MeshNode* nToRemove = *nIt; nodeNodeMap.insert( TNodeNodeMap::value_type( nToRemove, nToKeep )); if ( nToRemove != nToKeep ) { rmNodeIds.push_back( nToRemove->GetID() ); AddToSameGroups( nToKeep, nToRemove, aMesh ); } SMDS_ElemIteratorPtr invElemIt = nToRemove->GetInverseElementIterator(); while ( invElemIt->more() ) elems.insert( invElemIt->next() ); } } // Change element nodes or remove an element set::iterator eIt = elems.begin(); for ( ; eIt != elems.end(); eIt++ ) { const SMDS_MeshElement* elem = *eIt; int nbNodes = elem->NbNodes(); int aShapeId = FindShape( elem ); set nodeSet; const SMDS_MeshNode* curNodes[ nbNodes ], *uniqueNodes[ nbNodes ]; int iUnique = 0, iCur = 0, nbRepl = 0, iRepl [ nbNodes ]; // get new seq of nodes SMDS_ElemIteratorPtr itN = elem->nodesIterator(); while ( itN->more() ) { const SMDS_MeshNode* n = static_cast( itN->next() ); TNodeNodeMap::iterator nnIt = nodeNodeMap.find( n ); if ( nnIt != nodeNodeMap.end() ) { // n sticks n = (*nnIt).second; iRepl[ nbRepl++ ] = iCur; } curNodes[ iCur ] = n; bool isUnique = nodeSet.insert( n ).second; if ( isUnique ) uniqueNodes[ iUnique++ ] = n; iCur++; } // Analyse element topology after replacement bool isOk = true; int nbUniqueNodes = nodeSet.size(); if ( nbNodes != nbUniqueNodes ) // some nodes stick { // Polygons and Polyhedral volumes if (elem->IsPoly()) { if (elem->GetType() == SMDSAbs_Face) { // Polygon vector face_nodes (nbNodes); int inode = 0; for (; inode < nbNodes; inode++) { face_nodes[inode] = curNodes[inode]; } vector polygons_nodes; vector quantities; int nbNew = SimplifyFace(face_nodes, polygons_nodes, quantities); if (nbNew > 0) { inode = 0; for (int iface = 0; iface < nbNew - 1; iface++) { int nbNodes = quantities[iface]; vector poly_nodes (nbNodes); for (int ii = 0; ii < nbNodes; ii++, inode++) { poly_nodes[ii] = polygons_nodes[inode]; } SMDS_MeshElement* newElem = aMesh->AddPolygonalFace(poly_nodes); if (aShapeId) aMesh->SetMeshElementOnShape(newElem, aShapeId); } aMesh->ChangeElementNodes(elem, &polygons_nodes[inode], quantities[nbNew - 1]); } else { rmElemIds.push_back(elem->GetID()); } } else if (elem->GetType() == SMDSAbs_Volume) { // Polyhedral volume if (nbUniqueNodes < 4) { rmElemIds.push_back(elem->GetID()); } else { // each face has to be analized in order to check volume validity const SMDS_PolyhedralVolumeOfNodes* aPolyedre = static_cast( elem ); if (aPolyedre) { int nbFaces = aPolyedre->NbFaces(); vector poly_nodes; vector quantities; for (int iface = 1; iface <= nbFaces; iface++) { int nbFaceNodes = aPolyedre->NbFaceNodes(iface); vector faceNodes (nbFaceNodes); for (int inode = 1; inode <= nbFaceNodes; inode++) { const SMDS_MeshNode * faceNode = aPolyedre->GetFaceNode(iface, inode); TNodeNodeMap::iterator nnIt = nodeNodeMap.find(faceNode); if (nnIt != nodeNodeMap.end()) { // faceNode sticks faceNode = (*nnIt).second; } faceNodes[inode - 1] = faceNode; } SimplifyFace(faceNodes, poly_nodes, quantities); } if (quantities.size() > 3) { // to be done: remove coincident faces } if (quantities.size() > 3) aMesh->ChangePolyhedronNodes(elem, poly_nodes, quantities); else rmElemIds.push_back(elem->GetID()); } else { rmElemIds.push_back(elem->GetID()); } } } else { } continue; } // Regular elements switch ( nbNodes ) { case 2: ///////////////////////////////////// EDGE isOk = false; break; case 3: ///////////////////////////////////// TRIANGLE isOk = false; break; case 4: if ( elem->GetType() == SMDSAbs_Volume ) // TETRAHEDRON isOk = false; else { //////////////////////////////////// QUADRANGLE if ( nbUniqueNodes < 3 ) isOk = false; else if ( nbRepl == 2 && iRepl[ 1 ] - iRepl[ 0 ] == 2 ) isOk = false; // opposite nodes stick } break; case 6: ///////////////////////////////////// PENTAHEDRON if ( nbUniqueNodes == 4 ) { // ---------------------------------> tetrahedron if (nbRepl == 3 && iRepl[ 0 ] > 2 && iRepl[ 1 ] > 2 && iRepl[ 2 ] > 2 ) { // all top nodes stick: reverse a bottom uniqueNodes[ 0 ] = curNodes [ 1 ]; uniqueNodes[ 1 ] = curNodes [ 0 ]; } else if (nbRepl == 3 && iRepl[ 0 ] < 3 && iRepl[ 1 ] < 3 && iRepl[ 2 ] < 3 ) { // all bottom nodes stick: set a top before uniqueNodes[ 3 ] = uniqueNodes [ 0 ]; uniqueNodes[ 0 ] = curNodes [ 3 ]; uniqueNodes[ 1 ] = curNodes [ 4 ]; uniqueNodes[ 2 ] = curNodes [ 5 ]; } else if (nbRepl == 4 && iRepl[ 2 ] - iRepl [ 0 ] == 3 && iRepl[ 3 ] - iRepl [ 1 ] == 3 ) { // a lateral face turns into a line: reverse a bottom uniqueNodes[ 0 ] = curNodes [ 1 ]; uniqueNodes[ 1 ] = curNodes [ 0 ]; } else isOk = false; } else if ( nbUniqueNodes == 5 ) { // PENTAHEDRON --------------------> 2 tetrahedrons if ( nbRepl == 2 && iRepl[ 1 ] - iRepl [ 0 ] == 3 ) { // a bottom node sticks with a linked top one // 1. SMDS_MeshElement* newElem = aMesh->AddVolume(curNodes[ 3 ], curNodes[ 4 ], curNodes[ 5 ], curNodes[ iRepl[ 0 ] == 2 ? 1 : 2 ]); if ( aShapeId ) aMesh->SetMeshElementOnShape( newElem, aShapeId ); // 2. : reverse a bottom uniqueNodes[ 0 ] = curNodes [ 1 ]; uniqueNodes[ 1 ] = curNodes [ 0 ]; nbUniqueNodes = 4; } else isOk = false; } else isOk = false; break; case 8: { //////////////////////////////////// HEXAHEDRON isOk = false; SMDS_VolumeTool hexa (elem); hexa.SetExternalNormal(); if ( nbUniqueNodes == 4 && nbRepl == 6 ) { //////////////////////// ---> tetrahedron for ( int iFace = 0; iFace < 6; iFace++ ) { const int *ind = hexa.GetFaceNodesIndices( iFace ); // indices of face nodes if (curNodes[ind[ 0 ]] == curNodes[ind[ 1 ]] && curNodes[ind[ 0 ]] == curNodes[ind[ 2 ]] && curNodes[ind[ 0 ]] == curNodes[ind[ 3 ]] ) { // one face turns into a point ... int iOppFace = hexa.GetOppFaceIndex( iFace ); ind = hexa.GetFaceNodesIndices( iOppFace ); int nbStick = 0; iUnique = 2; // reverse a tetrahedron bottom for ( iCur = 0; iCur < 4 && nbStick < 2; iCur++ ) { if ( curNodes[ind[ iCur ]] == curNodes[ind[ iCur + 1 ]] ) nbStick++; else if ( iUnique >= 0 ) uniqueNodes[ iUnique-- ] = curNodes[ind[ iCur ]]; } if ( nbStick == 1 ) { // ... and the opposite one - into a triangle. // set a top node ind = hexa.GetFaceNodesIndices( iFace ); uniqueNodes[ 3 ] = curNodes[ind[ 0 ]]; isOk = true; } break; } } } else if (nbUniqueNodes == 5 && nbRepl == 4 ) { //////////////////// HEXAHEDRON ---> 2 tetrahedrons for ( int iFace = 0; iFace < 6; iFace++ ) { const int *ind = hexa.GetFaceNodesIndices( iFace ); // indices of face nodes if (curNodes[ind[ 0 ]] == curNodes[ind[ 1 ]] && curNodes[ind[ 0 ]] == curNodes[ind[ 2 ]] && curNodes[ind[ 0 ]] == curNodes[ind[ 3 ]] ) { // one face turns into a point ... int iOppFace = hexa.GetOppFaceIndex( iFace ); ind = hexa.GetFaceNodesIndices( iOppFace ); int nbStick = 0; iUnique = 2; // reverse a tetrahedron 1 bottom for ( iCur = 0; iCur < 4 && nbStick == 0; iCur++ ) { if ( curNodes[ind[ iCur ]] == curNodes[ind[ iCur + 1 ]] ) nbStick++; else if ( iUnique >= 0 ) uniqueNodes[ iUnique-- ] = curNodes[ind[ iCur ]]; } if ( nbStick == 0 ) { // ... and the opposite one is a quadrangle // set a top node const int* indTop = hexa.GetFaceNodesIndices( iFace ); uniqueNodes[ 3 ] = curNodes[indTop[ 0 ]]; nbUniqueNodes = 4; // tetrahedron 2 SMDS_MeshElement* newElem = aMesh->AddVolume(curNodes[ind[ 0 ]], curNodes[ind[ 3 ]], curNodes[ind[ 2 ]], curNodes[indTop[ 0 ]]); if ( aShapeId ) aMesh->SetMeshElementOnShape( newElem, aShapeId ); isOk = true; } break; } } } else if ( nbUniqueNodes == 6 && nbRepl == 4 ) { ////////////////// HEXAHEDRON ---> 2 tetrahedrons or 1 prism // find indices of quad and tri faces int iQuadFace[ 6 ], iTriFace[ 6 ], nbQuad = 0, nbTri = 0, iFace; for ( iFace = 0; iFace < 6; iFace++ ) { const int *ind = hexa.GetFaceNodesIndices( iFace ); // indices of face nodes nodeSet.clear(); for ( iCur = 0; iCur < 4; iCur++ ) nodeSet.insert( curNodes[ind[ iCur ]] ); nbUniqueNodes = nodeSet.size(); if ( nbUniqueNodes == 3 ) iTriFace[ nbTri++ ] = iFace; else if ( nbUniqueNodes == 4 ) iQuadFace[ nbQuad++ ] = iFace; } if (nbQuad == 2 && nbTri == 4 && hexa.GetOppFaceIndex( iQuadFace[ 0 ] ) == iQuadFace[ 1 ]) { // 2 opposite quadrangles stuck with a diagonal; // sample groups of merged indices: (0-4)(2-6) // --------------------------------------------> 2 tetrahedrons const int *ind1 = hexa.GetFaceNodesIndices( iQuadFace[ 0 ]); // indices of quad1 nodes const int *ind2 = hexa.GetFaceNodesIndices( iQuadFace[ 1 ]); int i0, i1d, i2, i3d, i0t, i2t; // d-daigonal, t-top if (curNodes[ind1[ 0 ]] == curNodes[ind2[ 0 ]] && curNodes[ind1[ 2 ]] == curNodes[ind2[ 2 ]]) { // stuck with 0-2 diagonal i0 = ind1[ 3 ]; i1d = ind1[ 0 ]; i2 = ind1[ 1 ]; i3d = ind1[ 2 ]; i0t = ind2[ 1 ]; i2t = ind2[ 3 ]; } else if (curNodes[ind1[ 1 ]] == curNodes[ind2[ 3 ]] && curNodes[ind1[ 3 ]] == curNodes[ind2[ 1 ]]) { // stuck with 1-3 diagonal i0 = ind1[ 0 ]; i1d = ind1[ 1 ]; i2 = ind1[ 2 ]; i3d = ind1[ 3 ]; i0t = ind2[ 0 ]; i2t = ind2[ 1 ]; } else { ASSERT(0); } // tetrahedron 1 uniqueNodes[ 0 ] = curNodes [ i0 ]; uniqueNodes[ 1 ] = curNodes [ i1d ]; uniqueNodes[ 2 ] = curNodes [ i3d ]; uniqueNodes[ 3 ] = curNodes [ i0t ]; nbUniqueNodes = 4; // tetrahedron 2 SMDS_MeshElement* newElem = aMesh->AddVolume(curNodes[ i1d ], curNodes[ i2 ], curNodes[ i3d ], curNodes[ i2t ]); if ( aShapeId ) aMesh->SetMeshElementOnShape( newElem, aShapeId ); isOk = true; } else if (( nbTri == 2 && nbQuad == 3 ) || // merged (0-4)(1-5) ( nbTri == 4 && nbQuad == 2 )) { // merged (7-4)(1-5) // --------------------------------------------> prism // find 2 opposite triangles nbUniqueNodes = 6; for ( iFace = 0; iFace + 1 < nbTri; iFace++ ) { if ( hexa.GetOppFaceIndex( iTriFace[ iFace ] ) == iTriFace[ iFace + 1 ]) { // find indices of kept and replaced nodes // and fill unique nodes of 2 opposite triangles const int *ind1 = hexa.GetFaceNodesIndices( iTriFace[ iFace ]); const int *ind2 = hexa.GetFaceNodesIndices( iTriFace[ iFace + 1 ]); const SMDS_MeshNode** hexanodes = hexa.GetNodes(); // fill unique nodes iUnique = 0; isOk = true; for ( iCur = 0; iCur < 4 && isOk; iCur++ ) { const SMDS_MeshNode* n = curNodes[ind1[ iCur ]]; const SMDS_MeshNode* nInit = hexanodes[ind1[ iCur ]]; if ( n == nInit ) { // iCur of a linked node of the opposite face (make normals co-directed): int iCurOpp = ( iCur == 1 || iCur == 3 ) ? 4 - iCur : iCur; // check that correspondent corners of triangles are linked if ( !hexa.IsLinked( ind1[ iCur ], ind2[ iCurOpp ] )) isOk = false; else { uniqueNodes[ iUnique ] = n; uniqueNodes[ iUnique + 3 ] = curNodes[ind2[ iCurOpp ]]; iUnique++; } } } break; } } } } // if ( nbUniqueNodes == 6 && nbRepl == 4 ) break; } // HEXAHEDRON default: isOk = false; } // switch ( nbNodes ) } // if ( nbNodes != nbUniqueNodes ) // some nodes stick if ( isOk ) { if (elem->IsPoly() && elem->GetType() == SMDSAbs_Volume) { // Change nodes of polyedre const SMDS_PolyhedralVolumeOfNodes* aPolyedre = static_cast( elem ); if (aPolyedre) { int nbFaces = aPolyedre->NbFaces(); vector poly_nodes; vector quantities (nbFaces); for (int iface = 1; iface <= nbFaces; iface++) { int inode, nbFaceNodes = aPolyedre->NbFaceNodes(iface); quantities[iface - 1] = nbFaceNodes; for (inode = 1; inode <= nbFaceNodes; inode++) { const SMDS_MeshNode* curNode = aPolyedre->GetFaceNode(iface, inode); TNodeNodeMap::iterator nnIt = nodeNodeMap.find( curNode ); if (nnIt != nodeNodeMap.end()) { // curNode sticks curNode = (*nnIt).second; } poly_nodes.push_back(curNode); } } aMesh->ChangePolyhedronNodes( elem, poly_nodes, quantities ); } } else { // Change regular element or polygon aMesh->ChangeElementNodes( elem, uniqueNodes, nbUniqueNodes ); } } else { // Remove invalid regular element or invalid polygon rmElemIds.push_back( elem->GetID() ); } } // loop on elements // Remove equal nodes and bad elements Remove( rmNodeIds, true ); Remove( rmElemIds, false ); } //======================================================================= //function : MergeEqualElements //purpose : Remove all but one of elements built on the same nodes. //======================================================================= void SMESH_MeshEditor::MergeEqualElements() { SMESHDS_Mesh* aMesh = GetMeshDS(); SMDS_EdgeIteratorPtr eIt = aMesh->edgesIterator(); SMDS_FaceIteratorPtr fIt = aMesh->facesIterator(); SMDS_VolumeIteratorPtr vIt = aMesh->volumesIterator(); list< int > rmElemIds; // IDs of elems to remove for ( int iDim = 1; iDim <= 3; iDim++ ) { set< set > setOfNodeSet; while ( 1 ) { // get next element const SMDS_MeshElement* elem = 0; if ( iDim == 1 ) { if ( eIt->more() ) elem = eIt->next(); } else if ( iDim == 2 ) { if ( fIt->more() ) elem = fIt->next(); } else { if ( vIt->more() ) elem = vIt->next(); } if ( !elem ) break; // get elem nodes set nodeSet; SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator(); while ( nodeIt->more() ) nodeSet.insert( nodeIt->next() ); // check uniqueness bool isUnique = setOfNodeSet.insert( nodeSet ).second; if ( !isUnique ) rmElemIds.push_back( elem->GetID() ); } } Remove( rmElemIds, false ); } //======================================================================= //function : FindFaceInSet //purpose : Return a face having linked nodes n1 and n2 and which is // - not in avoidSet, // - in elemSet provided that !elemSet.empty() //======================================================================= const SMDS_MeshElement* SMESH_MeshEditor::FindFaceInSet(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const set& elemSet, const set& avoidSet) { SMDS_ElemIteratorPtr invElemIt = n1->GetInverseElementIterator(); while ( invElemIt->more() ) { // loop on inverse elements of n1 const SMDS_MeshElement* elem = invElemIt->next(); if (elem->GetType() != SMDSAbs_Face || avoidSet.find( elem ) != avoidSet.end() ) continue; if ( !elemSet.empty() && elemSet.find( elem ) == elemSet.end()) continue; // get face nodes and find index of n1 int i1, nbN = elem->NbNodes(), iNode = 0; const SMDS_MeshNode* faceNodes[ nbN ], *n; SMDS_ElemIteratorPtr nIt = elem->nodesIterator(); while ( nIt->more() ) { faceNodes[ iNode ] = static_cast( nIt->next() ); if ( faceNodes[ iNode++ ] == n1 ) i1 = iNode - 1; } // find a n2 linked to n1 for ( iNode = 0; iNode < 2; iNode++ ) { if ( iNode ) // node before n1 n = faceNodes[ i1 == 0 ? nbN - 1 : i1 - 1 ]; else // node after n1 n = faceNodes[ i1 + 1 == nbN ? 0 : i1 + 1 ]; if ( n == n2 ) return elem; } } return 0; } //======================================================================= //function : findAdjacentFace //purpose : //======================================================================= static const SMDS_MeshElement* findAdjacentFace(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshElement* elem) { set elemSet, avoidSet; if ( elem ) avoidSet.insert ( elem ); return SMESH_MeshEditor::FindFaceInSet( n1, n2, elemSet, avoidSet ); } //======================================================================= //function : findFreeBorder //purpose : //======================================================================= #define ControlFreeBorder SMESH::Controls::FreeEdges::IsFreeEdge static bool findFreeBorder (const SMDS_MeshNode* theFirstNode, const SMDS_MeshNode* theSecondNode, const SMDS_MeshNode* theLastNode, list< const SMDS_MeshNode* > & theNodes, list< const SMDS_MeshElement* > & theFaces) { if ( !theFirstNode || !theSecondNode ) return false; // find border face between theFirstNode and theSecondNode const SMDS_MeshElement* curElem = findAdjacentFace( theFirstNode, theSecondNode, 0 ); if ( !curElem ) return false; theFaces.push_back( curElem ); theNodes.push_back( theFirstNode ); theNodes.push_back( theSecondNode ); const SMDS_MeshNode* nodes [5], *nIgnore = theFirstNode, * nStart = theSecondNode; set < const SMDS_MeshElement* > foundElems; bool needTheLast = ( theLastNode != 0 ); while ( nStart != theLastNode ) { if ( nStart == theFirstNode ) return !needTheLast; // find all free border faces sharing form nStart list< const SMDS_MeshElement* > curElemList; list< const SMDS_MeshNode* > nStartList; SMDS_ElemIteratorPtr invElemIt = nStart->facesIterator(); while ( invElemIt->more() ) { const SMDS_MeshElement* e = invElemIt->next(); if ( e == curElem || foundElems.insert( e ).second ) { // get nodes SMDS_ElemIteratorPtr nIt = e->nodesIterator(); int iNode = 0, nbNodes = e->NbNodes(); while ( nIt->more() ) nodes[ iNode++ ] = static_cast( nIt->next() ); nodes[ iNode ] = nodes[ 0 ]; // check 2 links for ( iNode = 0; iNode < nbNodes; iNode++ ) if (((nodes[ iNode ] == nStart && nodes[ iNode + 1] != nIgnore ) || (nodes[ iNode + 1] == nStart && nodes[ iNode ] != nIgnore )) && ControlFreeBorder( &nodes[ iNode ], e->GetID() )) { nStartList.push_back( nodes[ iNode + ( nodes[ iNode ] == nStart ? 1 : 0 )]); curElemList.push_back( e ); } } } // analyse the found int nbNewBorders = curElemList.size(); if ( nbNewBorders == 0 ) { // no free border furthermore return !needTheLast; } else if ( nbNewBorders == 1 ) { // one more element found nIgnore = nStart; nStart = nStartList.front(); curElem = curElemList.front(); theFaces.push_back( curElem ); theNodes.push_back( nStart ); } else { // several continuations found list< const SMDS_MeshElement* >::iterator curElemIt; list< const SMDS_MeshNode* >::iterator nStartIt; // check if one of them reached the last node if ( needTheLast ) { for (curElemIt = curElemList.begin(), nStartIt = nStartList.begin(); curElemIt!= curElemList.end(); curElemIt++, nStartIt++ ) if ( *nStartIt == theLastNode ) { theFaces.push_back( *curElemIt ); theNodes.push_back( *nStartIt ); return true; } } // find the best free border by the continuations list contNodes[ 2 ], *cNL; list contFaces[ 2 ], *cFL; for (curElemIt = curElemList.begin(), nStartIt = nStartList.begin(); curElemIt!= curElemList.end(); curElemIt++, nStartIt++ ) { cNL = & contNodes[ contNodes[0].empty() ? 0 : 1 ]; cFL = & contFaces[ contFaces[0].empty() ? 0 : 1 ]; // find one more free border if ( ! findFreeBorder( nIgnore, nStart, theLastNode, *cNL, *cFL )) { cNL->clear(); cFL->clear(); } else if ( !contNodes[0].empty() && !contNodes[1].empty() ) { // choice: clear a worse one int iLongest = ( contNodes[0].size() < contNodes[1].size() ? 1 : 0 ); int iWorse = ( needTheLast ? 1 - iLongest : iLongest ); contNodes[ iWorse ].clear(); contFaces[ iWorse ].clear(); } } if ( contNodes[0].empty() && contNodes[1].empty() ) return false; // append the best free border cNL = & contNodes[ contNodes[0].empty() ? 1 : 0 ]; cFL = & contFaces[ contFaces[0].empty() ? 1 : 0 ]; theNodes.pop_back(); // remove nIgnore theNodes.pop_back(); // remove nStart theFaces.pop_back(); // remove curElem list< const SMDS_MeshNode* >::iterator nIt = cNL->begin(); list< const SMDS_MeshElement* >::iterator fIt = cFL->begin(); for ( ; nIt != cNL->end(); nIt++ ) theNodes.push_back( *nIt ); for ( ; fIt != cFL->end(); fIt++ ) theFaces.push_back( *fIt ); return true; } // several continuations found } // while ( nStart != theLastNode ) return true; } //======================================================================= //function : CheckFreeBorderNodes //purpose : Return true if the tree nodes are on a free border //======================================================================= bool SMESH_MeshEditor::CheckFreeBorderNodes(const SMDS_MeshNode* theNode1, const SMDS_MeshNode* theNode2, const SMDS_MeshNode* theNode3) { list< const SMDS_MeshNode* > nodes; list< const SMDS_MeshElement* > faces; return findFreeBorder( theNode1, theNode2, theNode3, nodes, faces); } //======================================================================= //function : SewFreeBorder //purpose : //======================================================================= SMESH_MeshEditor::Sew_Error SMESH_MeshEditor::SewFreeBorder (const SMDS_MeshNode* theBordFirstNode, const SMDS_MeshNode* theBordSecondNode, const SMDS_MeshNode* theBordLastNode, const SMDS_MeshNode* theSideFirstNode, const SMDS_MeshNode* theSideSecondNode, const SMDS_MeshNode* theSideThirdNode, const bool theSideIsFreeBorder, const bool toCreatePolygons, const bool toCreatePolyedrs) { MESSAGE("::SewFreeBorder()"); Sew_Error aResult = SEW_OK; // ==================================== // find side nodes and elements // ==================================== list< const SMDS_MeshNode* > nSide[ 2 ]; list< const SMDS_MeshElement* > eSide[ 2 ]; list< const SMDS_MeshNode* >::iterator nIt[ 2 ]; list< const SMDS_MeshElement* >::iterator eIt[ 2 ]; // Free border 1 // -------------- if (!findFreeBorder(theBordFirstNode,theBordSecondNode,theBordLastNode, nSide[0], eSide[0])) { MESSAGE(" Free Border 1 not found " ); aResult = SEW_BORDER1_NOT_FOUND; } if (theSideIsFreeBorder) { // Free border 2 // -------------- if (!findFreeBorder(theSideFirstNode, theSideSecondNode, theSideThirdNode, nSide[1], eSide[1])) { MESSAGE(" Free Border 2 not found " ); aResult = ( aResult != SEW_OK ? SEW_BOTH_BORDERS_NOT_FOUND : SEW_BORDER2_NOT_FOUND ); } } if ( aResult != SEW_OK ) return aResult; if (!theSideIsFreeBorder) { // Side 2 // -------------- // ------------------------------------------------------------------------- // Algo: // 1. If nodes to merge are not coincident, move nodes of the free border // from the coord sys defined by the direction from the first to last // nodes of the border to the correspondent sys of the side 2 // 2. On the side 2, find the links most co-directed with the correspondent // links of the free border // ------------------------------------------------------------------------- // 1. Since sewing may brake if there are volumes to split on the side 2, // we wont move nodes but just compute new coordinates for them typedef map TNodeXYZMap; TNodeXYZMap nBordXYZ; list< const SMDS_MeshNode* >& bordNodes = nSide[ 0 ]; list< const SMDS_MeshNode* >::iterator nBordIt; gp_XYZ Pb1( theBordFirstNode->X(), theBordFirstNode->Y(), theBordFirstNode->Z() ); gp_XYZ Pb2( theBordLastNode->X(), theBordLastNode->Y(), theBordLastNode->Z() ); gp_XYZ Ps1( theSideFirstNode->X(), theSideFirstNode->Y(), theSideFirstNode->Z() ); gp_XYZ Ps2( theSideSecondNode->X(), theSideSecondNode->Y(), theSideSecondNode->Z() ); double tol2 = 1.e-8; gp_Vec Vbs1( Pb1 - Ps1 ),Vbs2( Pb2 - Ps2 ); if ( Vbs1.SquareMagnitude() > tol2 || Vbs2.SquareMagnitude() > tol2 ) { // Need node movement. // find X and Z axes to create trsf gp_Vec Zb( Pb1 - Pb2 ), Zs( Ps1 - Ps2 ); gp_Vec X = Zs ^ Zb; if ( X.SquareMagnitude() <= gp::Resolution() * gp::Resolution() ) // Zb || Zs X = gp_Ax2( gp::Origin(), Zb ).XDirection(); // coord systems gp_Ax3 toBordAx( Pb1, Zb, X ); gp_Ax3 fromSideAx( Ps1, Zs, X ); gp_Ax3 toGlobalAx( gp::Origin(), gp::DZ(), gp::DX() ); // set trsf gp_Trsf toBordSys, fromSide2Sys; toBordSys.SetTransformation( toBordAx ); fromSide2Sys.SetTransformation( fromSideAx, toGlobalAx ); fromSide2Sys.SetScaleFactor( Zs.Magnitude() / Zb.Magnitude() ); // move for ( nBordIt = bordNodes.begin(); nBordIt != bordNodes.end(); nBordIt++ ) { const SMDS_MeshNode* n = *nBordIt; gp_XYZ xyz( n->X(),n->Y(),n->Z() ); toBordSys.Transforms( xyz ); fromSide2Sys.Transforms( xyz ); nBordXYZ.insert( TNodeXYZMap::value_type( n, xyz )); } } else { // just insert nodes XYZ in the nBordXYZ map for ( nBordIt = bordNodes.begin(); nBordIt != bordNodes.end(); nBordIt++ ) { const SMDS_MeshNode* n = *nBordIt; nBordXYZ.insert( TNodeXYZMap::value_type( n, gp_XYZ( n->X(),n->Y(),n->Z() ))); } } // 2. On the side 2, find the links most co-directed with the correspondent // links of the free border list< const SMDS_MeshElement* >& sideElems = eSide[ 1 ]; list< const SMDS_MeshNode* >& sideNodes = nSide[ 1 ]; sideNodes.push_back( theSideFirstNode ); bool hasVolumes = false; LinkID_Gen aLinkID_Gen( GetMeshDS() ); set foundSideLinkIDs, checkedLinkIDs; SMDS_VolumeTool volume; //const SMDS_MeshNode* faceNodes[ 4 ]; const SMDS_MeshNode* sideNode; const SMDS_MeshElement* sideElem; const SMDS_MeshNode* prevSideNode = theSideFirstNode; const SMDS_MeshNode* prevBordNode = theBordFirstNode; nBordIt = bordNodes.begin(); nBordIt++; // border node position and border link direction to compare with gp_XYZ bordPos = nBordXYZ[ *nBordIt ]; gp_XYZ bordDir = bordPos - nBordXYZ[ prevBordNode ]; // choose next side node by link direction or by closeness to // the current border node: bool searchByDir = ( *nBordIt != theBordLastNode ); do { // find the next node on the Side 2 sideNode = 0; double maxDot = -DBL_MAX, minDist = DBL_MAX; long linkID; checkedLinkIDs.clear(); gp_XYZ prevXYZ( prevSideNode->X(), prevSideNode->Y(), prevSideNode->Z() ); SMDS_ElemIteratorPtr invElemIt = prevSideNode->GetInverseElementIterator(); while ( invElemIt->more() ) { // loop on inverse elements on the Side 2 const SMDS_MeshElement* elem = invElemIt->next(); // prepare data for a loop on links, of a face or a volume int iPrevNode, iNode = 0, nbNodes = elem->NbNodes(); const SMDS_MeshNode* faceNodes[ nbNodes ]; bool isVolume = volume.Set( elem ); const SMDS_MeshNode** nodes = isVolume ? volume.GetNodes() : faceNodes; if ( isVolume ) // --volume hasVolumes = true; else if ( nbNodes > 2 ) { // --face // retrieve all face nodes and find iPrevNode - an index of the prevSideNode SMDS_ElemIteratorPtr nIt = elem->nodesIterator(); while ( nIt->more() ) { nodes[ iNode ] = static_cast( nIt->next() ); if ( nodes[ iNode++ ] == prevSideNode ) iPrevNode = iNode - 1; } // there are 2 links to check nbNodes = 2; } else // --edge continue; // loop on links, to be precise, on the second node of links for ( iNode = 0; iNode < nbNodes; iNode++ ) { const SMDS_MeshNode* n = nodes[ iNode ]; if ( isVolume ) { if ( !volume.IsLinked( n, prevSideNode )) continue; } else { if ( iNode ) // a node before prevSideNode n = nodes[ iPrevNode == 0 ? elem->NbNodes() - 1 : iPrevNode - 1 ]; else // a node after prevSideNode n = nodes[ iPrevNode + 1 == elem->NbNodes() ? 0 : iPrevNode + 1 ]; } // check if this link was already used long iLink = aLinkID_Gen.GetLinkID( prevSideNode, n ); bool isJustChecked = !checkedLinkIDs.insert( iLink ).second; if (!isJustChecked && foundSideLinkIDs.find( iLink ) == foundSideLinkIDs.end() ) { // test a link geometrically gp_XYZ nextXYZ ( n->X(), n->Y(), n->Z() ); bool linkIsBetter = false; double dot, dist; if ( searchByDir ) { // choose most co-directed link dot = bordDir * ( nextXYZ - prevXYZ ).Normalized(); linkIsBetter = ( dot > maxDot ); } else { // choose link with the node closest to bordPos dist = ( nextXYZ - bordPos ).SquareModulus(); linkIsBetter = ( dist < minDist ); } if ( linkIsBetter ) { maxDot = dot; minDist = dist; linkID = iLink; sideNode = n; sideElem = elem; } } } } // loop on inverse elements of prevSideNode if ( !sideNode ) { MESSAGE(" Cant find path by links of the Side 2 "); return SEW_BAD_SIDE_NODES; } sideNodes.push_back( sideNode ); sideElems.push_back( sideElem ); foundSideLinkIDs.insert ( linkID ); prevSideNode = sideNode; if ( *nBordIt == theBordLastNode ) searchByDir = false; else { // find the next border link to compare with gp_XYZ sidePos( sideNode->X(), sideNode->Y(), sideNode->Z() ); searchByDir = ( bordDir * ( sidePos - bordPos ) <= 0 ); while ( *nBordIt != theBordLastNode && !searchByDir ) { prevBordNode = *nBordIt; nBordIt++; bordPos = nBordXYZ[ *nBordIt ]; bordDir = bordPos - nBordXYZ[ prevBordNode ]; searchByDir = ( bordDir * ( sidePos - bordPos ) <= 0 ); } } } while ( sideNode != theSideSecondNode ); if ( hasVolumes && sideNodes.size () != bordNodes.size() && !toCreatePolyedrs) { MESSAGE("VOLUME SPLITTING IS FORBIDDEN"); return SEW_VOLUMES_TO_SPLIT; // volume splitting is forbidden } } // end nodes search on the side 2 // ============================ // sew the border to the side 2 // ============================ int nbNodes[] = { nSide[0].size(), nSide[1].size() }; int maxNbNodes = Max( nbNodes[0], nbNodes[1] ); TListOfListOfNodes nodeGroupsToMerge; if ( nbNodes[0] == nbNodes[1] || ( theSideIsFreeBorder && !theSideThirdNode)) { // all nodes are to be merged for (nIt[0] = nSide[0].begin(), nIt[1] = nSide[1].begin(); nIt[0] != nSide[0].end() && nIt[1] != nSide[1].end(); nIt[0]++, nIt[1]++ ) { nodeGroupsToMerge.push_back( list() ); nodeGroupsToMerge.back().push_back( *nIt[1] ); // to keep nodeGroupsToMerge.back().push_back( *nIt[0] ); // tp remove } } else { // insert new nodes into the border and the side to get equal nb of segments // get normalized parameters of nodes on the borders double param[ 2 ][ maxNbNodes ]; int iNode, iBord; for ( iBord = 0; iBord < 2; iBord++ ) { // loop on 2 borders list< const SMDS_MeshNode* >& nodes = nSide[ iBord ]; list< const SMDS_MeshNode* >::iterator nIt = nodes.begin(); const SMDS_MeshNode* nPrev = *nIt; double bordLength = 0; for ( iNode = 0; nIt != nodes.end(); nIt++, iNode++ ) { // loop on border nodes const SMDS_MeshNode* nCur = *nIt; gp_XYZ segment (nCur->X() - nPrev->X(), nCur->Y() - nPrev->Y(), nCur->Z() - nPrev->Z()); double segmentLen = segment.Modulus(); bordLength += segmentLen; param[ iBord ][ iNode ] = bordLength; nPrev = nCur; } // normalize within [0,1] for ( iNode = 0; iNode < nbNodes[ iBord ]; iNode++ ) { param[ iBord ][ iNode ] /= bordLength; } } // loop on border segments const SMDS_MeshNode *nPrev[ 2 ] = { 0, 0 }; int i[ 2 ] = { 0, 0 }; nIt[0] = nSide[0].begin(); eIt[0] = eSide[0].begin(); nIt[1] = nSide[1].begin(); eIt[1] = eSide[1].begin(); TElemOfNodeListMap insertMap; TElemOfNodeListMap::iterator insertMapIt; // insertMap is // key: elem to insert nodes into // value: 2 nodes to insert between + nodes to be inserted do { bool next[ 2 ] = { false, false }; // find min adjacent segment length after sewing double nextParam = 10., prevParam = 0; for ( iBord = 0; iBord < 2; iBord++ ) { // loop on 2 borders if ( i[ iBord ] + 1 < nbNodes[ iBord ]) nextParam = Min( nextParam, param[iBord][ i[iBord] + 1 ]); if ( i[ iBord ] > 0 ) prevParam = Max( prevParam, param[iBord][ i[iBord] - 1 ]); } double minParam = Min( param[ 0 ][ i[0] ], param[ 1 ][ i[1] ]); double maxParam = Max( param[ 0 ][ i[0] ], param[ 1 ][ i[1] ]); double minSegLen = Min( nextParam - minParam, maxParam - prevParam ); // choose to insert or to merge nodes double du = param[ 1 ][ i[1] ] - param[ 0 ][ i[0] ]; if ( Abs( du ) <= minSegLen * 0.2 ) { // merge // ------ nodeGroupsToMerge.push_back( list() ); const SMDS_MeshNode* n0 = *nIt[0]; const SMDS_MeshNode* n1 = *nIt[1]; nodeGroupsToMerge.back().push_back( n1 ); nodeGroupsToMerge.back().push_back( n0 ); // position of node of the border changes due to merge param[ 0 ][ i[0] ] += du; // move n1 for the sake of elem shape evaluation during insertion. // n1 will be removed by MergeNodes() anyway const_cast( n0 )->setXYZ( n1->X(), n1->Y(), n1->Z() ); next[0] = next[1] = true; } else { // insert // ------ int intoBord = ( du < 0 ) ? 0 : 1; const SMDS_MeshElement* elem = *eIt[ intoBord ]; const SMDS_MeshNode* n1 = nPrev[ intoBord ]; const SMDS_MeshNode* n2 = *nIt[ intoBord ]; const SMDS_MeshNode* nIns = *nIt[ 1 - intoBord ]; if ( intoBord == 1 ) { // move node of the border to be on a link of elem of the side gp_XYZ p1 (n1->X(), n1->Y(), n1->Z()); gp_XYZ p2 (n2->X(), n2->Y(), n2->Z()); double ratio = du / ( param[ 1 ][ i[1] ] - param[ 1 ][ i[1]-1 ]); gp_XYZ p = p2 * ( 1 - ratio ) + p1 * ratio; GetMeshDS()->MoveNode( nIns, p.X(), p.Y(), p.Z() ); } insertMapIt = insertMap.find( elem ); bool notFound = ( insertMapIt == insertMap.end() ); bool otherLink = ( !notFound && (*insertMapIt).second.front() != n1 ); if ( otherLink ) { // insert into another link of the same element: // 1. perform insertion into the other link of the elem list & nodeList = (*insertMapIt).second; const SMDS_MeshNode* n12 = nodeList.front(); nodeList.pop_front(); const SMDS_MeshNode* n22 = nodeList.front(); nodeList.pop_front(); InsertNodesIntoLink( elem, n12, n22, nodeList, toCreatePolygons ); // 2. perform insertion into the link of adjacent faces while (true) { const SMDS_MeshElement* adjElem = findAdjacentFace( n12, n22, elem ); if ( adjElem ) InsertNodesIntoLink( adjElem, n12, n22, nodeList, toCreatePolygons ); else break; } if (toCreatePolyedrs) { // perform insertion into the links of adjacent volumes UpdateVolumes(n12, n22, nodeList); } // 3. find an element appeared on n1 and n2 after the insertion insertMap.erase( elem ); elem = findAdjacentFace( n1, n2, 0 ); } if ( notFound || otherLink ) { // add element and nodes of the side into the insertMap insertMapIt = insertMap.insert ( TElemOfNodeListMap::value_type( elem, list() )).first; (*insertMapIt).second.push_back( n1 ); (*insertMapIt).second.push_back( n2 ); } // add node to be inserted into elem (*insertMapIt).second.push_back( nIns ); next[ 1 - intoBord ] = true; } // go to the next segment for ( iBord = 0; iBord < 2; iBord++ ) { // loop on 2 borders if ( next[ iBord ] ) { if ( i[ iBord ] != 0 && eIt[ iBord ] != eSide[ iBord ].end()) eIt[ iBord ]++; nPrev[ iBord ] = *nIt[ iBord ]; nIt[ iBord ]++; i[ iBord ]++; } } } while ( nIt[0] != nSide[0].end() && nIt[1] != nSide[1].end()); // perform insertion of nodes into elements for (insertMapIt = insertMap.begin(); insertMapIt != insertMap.end(); insertMapIt++ ) { const SMDS_MeshElement* elem = (*insertMapIt).first; list & nodeList = (*insertMapIt).second; const SMDS_MeshNode* n1 = nodeList.front(); nodeList.pop_front(); const SMDS_MeshNode* n2 = nodeList.front(); nodeList.pop_front(); InsertNodesIntoLink( elem, n1, n2, nodeList, toCreatePolygons ); if ( !theSideIsFreeBorder ) { // look for and insert nodes into the faces adjacent to elem while (true) { const SMDS_MeshElement* adjElem = findAdjacentFace( n1, n2, elem ); if ( adjElem ) InsertNodesIntoLink( adjElem, n1, n2, nodeList, toCreatePolygons ); else break; } } if (toCreatePolyedrs) { // perform insertion into the links of adjacent volumes UpdateVolumes(n1, n2, nodeList); } } } // end: insert new nodes MergeNodes ( nodeGroupsToMerge ); return aResult; } //======================================================================= //function : InsertNodesIntoLink //purpose : insert theNodesToInsert into theFace between theBetweenNode1 // and theBetweenNode2 and split theElement //======================================================================= void SMESH_MeshEditor::InsertNodesIntoLink(const SMDS_MeshElement* theFace, const SMDS_MeshNode* theBetweenNode1, const SMDS_MeshNode* theBetweenNode2, list& theNodesToInsert, const bool toCreatePoly) { if ( theFace->GetType() != SMDSAbs_Face ) return; // find indices of 2 link nodes and of the rest nodes int iNode = 0, il1, il2, i3, i4; il1 = il2 = i3 = i4 = -1; const SMDS_MeshNode* nodes[ theFace->NbNodes() ]; SMDS_ElemIteratorPtr nodeIt = theFace->nodesIterator(); while ( nodeIt->more() ) { const SMDS_MeshNode* n = static_cast( nodeIt->next() ); if ( n == theBetweenNode1 ) il1 = iNode; else if ( n == theBetweenNode2 ) il2 = iNode; else if ( i3 < 0 ) i3 = iNode; else i4 = iNode; nodes[ iNode++ ] = n; } if ( il1 < 0 || il2 < 0 || i3 < 0 ) return ; // arrange link nodes to go one after another regarding the face orientation bool reverse = ( Abs( il2 - il1 ) == 1 ? il2 < il1 : il1 < il2 ); list aNodesToInsert = theNodesToInsert; if ( reverse ) { iNode = il1; il1 = il2; il2 = iNode; aNodesToInsert.reverse(); } // check that not link nodes of a quadrangles are in good order int nbFaceNodes = theFace->NbNodes(); if ( nbFaceNodes == 4 && i4 - i3 != 1 ) { iNode = i3; i3 = i4; i4 = iNode; } if (toCreatePoly || theFace->IsPoly()) { iNode = 0; vector poly_nodes (nbFaceNodes + aNodesToInsert.size()); // add nodes of face up to first node of link bool isFLN = false; nodeIt = theFace->nodesIterator(); while ( nodeIt->more() && !isFLN ) { const SMDS_MeshNode* n = static_cast( nodeIt->next() ); poly_nodes[iNode++] = n; if (n == nodes[il1]) { isFLN = true; } } // add nodes to insert list::iterator nIt = aNodesToInsert.begin(); for (; nIt != aNodesToInsert.end(); nIt++) { poly_nodes[iNode++] = *nIt; } // add nodes of face starting from last node of link while ( nodeIt->more() ) { const SMDS_MeshNode* n = static_cast( nodeIt->next() ); poly_nodes[iNode++] = n; } // edit or replace the face SMESHDS_Mesh *aMesh = GetMeshDS(); if (theFace->IsPoly()) { aMesh->ChangePolygonNodes(theFace, poly_nodes); } else { int aShapeId = FindShape( theFace ); SMDS_MeshElement* newElem = aMesh->AddPolygonalFace(poly_nodes); if ( aShapeId && newElem ) aMesh->SetMeshElementOnShape( newElem, aShapeId ); aMesh->RemoveElement(theFace); } return; } // put aNodesToInsert between theBetweenNode1 and theBetweenNode2 int nbLinkNodes = 2 + aNodesToInsert.size(); const SMDS_MeshNode* linkNodes[ nbLinkNodes ]; linkNodes[ 0 ] = nodes[ il1 ]; linkNodes[ nbLinkNodes - 1 ] = nodes[ il2 ]; list::iterator nIt = aNodesToInsert.begin(); for ( iNode = 1; nIt != aNodesToInsert.end(); nIt++ ) { linkNodes[ iNode++ ] = *nIt; } // decide how to split a quadrangle: compare possible variants // and choose which of splits to be a quadrangle int i1, i2, iSplit, nbSplits = nbLinkNodes - 1, iBestQuad; if ( nbFaceNodes == 3 ) { iBestQuad = nbSplits; i4 = i3; } else if ( nbFaceNodes == 4 ) { SMESH::Controls::NumericalFunctorPtr aCrit( new SMESH::Controls::AspectRatio); double aBestRate = DBL_MAX; for ( int iQuad = 0; iQuad < nbSplits; iQuad++ ) { i1 = 0; i2 = 1; double aBadRate = 0; // evaluate elements quality for ( iSplit = 0; iSplit < nbSplits; iSplit++ ) { if ( iSplit == iQuad ) { SMDS_FaceOfNodes quad (linkNodes[ i1++ ], linkNodes[ i2++ ], nodes[ i3 ], nodes[ i4 ]); aBadRate += getBadRate( &quad, aCrit ); } else { SMDS_FaceOfNodes tria (linkNodes[ i1++ ], linkNodes[ i2++ ], nodes[ iSplit < iQuad ? i4 : i3 ]); aBadRate += getBadRate( &tria, aCrit ); } } // choice if ( aBadRate < aBestRate ) { iBestQuad = iQuad; aBestRate = aBadRate; } } } // create new elements SMESHDS_Mesh *aMesh = GetMeshDS(); int aShapeId = FindShape( theFace ); i1 = 0; i2 = 1; for ( iSplit = 0; iSplit < nbSplits - 1; iSplit++ ) { SMDS_MeshElement* newElem = 0; if ( iSplit == iBestQuad ) newElem = aMesh->AddFace (linkNodes[ i1++ ], linkNodes[ i2++ ], nodes[ i3 ], nodes[ i4 ]); else newElem = aMesh->AddFace (linkNodes[ i1++ ], linkNodes[ i2++ ], nodes[ iSplit < iBestQuad ? i4 : i3 ]); if ( aShapeId && newElem ) aMesh->SetMeshElementOnShape( newElem, aShapeId ); } // change nodes of theFace const SMDS_MeshNode* newNodes[ 4 ]; newNodes[ 0 ] = linkNodes[ i1 ]; newNodes[ 1 ] = linkNodes[ i2 ]; newNodes[ 2 ] = nodes[ iSplit >= iBestQuad ? i3 : i4 ]; newNodes[ 3 ] = nodes[ i4 ]; aMesh->ChangeElementNodes( theFace, newNodes, iSplit == iBestQuad ? 4 : 3 ); } //======================================================================= //function : UpdateVolumes //purpose : //======================================================================= void SMESH_MeshEditor::UpdateVolumes (const SMDS_MeshNode* theBetweenNode1, const SMDS_MeshNode* theBetweenNode2, list& theNodesToInsert) { SMDS_ElemIteratorPtr invElemIt = theBetweenNode1->GetInverseElementIterator(); while (invElemIt->more()) { // loop on inverse elements of theBetweenNode1 const SMDS_MeshElement* elem = invElemIt->next(); if (elem->GetType() != SMDSAbs_Volume) continue; // check, if current volume has link theBetweenNode1 - theBetweenNode2 SMDS_VolumeTool aVolume (elem); if (!aVolume.IsLinked(theBetweenNode1, theBetweenNode2)) continue; // insert new nodes in all faces of the volume, sharing link theBetweenNode1 - theBetweenNode2 int iface, nbFaces = aVolume.NbFaces(); vector poly_nodes; vector quantities (nbFaces); for (iface = 0; iface < nbFaces; iface++) { int nbFaceNodes = aVolume.NbFaceNodes(iface), nbInserted = 0; // faceNodes will contain (nbFaceNodes + 1) nodes, last = first const SMDS_MeshNode** faceNodes = aVolume.GetFaceNodes(iface); for (int inode = 0; inode < nbFaceNodes; inode++) { poly_nodes.push_back(faceNodes[inode]); if (nbInserted == 0) { if (faceNodes[inode] == theBetweenNode1) { if (faceNodes[inode + 1] == theBetweenNode2) { nbInserted = theNodesToInsert.size(); // add nodes to insert list::iterator nIt = theNodesToInsert.begin(); for (; nIt != theNodesToInsert.end(); nIt++) { poly_nodes.push_back(*nIt); } } } else if (faceNodes[inode] == theBetweenNode2) { if (faceNodes[inode + 1] == theBetweenNode1) { nbInserted = theNodesToInsert.size(); // add nodes to insert in reversed order list::iterator nIt = theNodesToInsert.end(); nIt--; for (; nIt != theNodesToInsert.begin(); nIt--) { poly_nodes.push_back(*nIt); } poly_nodes.push_back(*nIt); } } else { } } } quantities[iface] = nbFaceNodes + nbInserted; } // Replace or update the volume SMESHDS_Mesh *aMesh = GetMeshDS(); if (elem->IsPoly()) { aMesh->ChangePolyhedronNodes(elem, poly_nodes, quantities); } else { int aShapeId = FindShape( elem ); SMDS_MeshElement* newElem = aMesh->AddPolyhedralVolume(poly_nodes, quantities); if (aShapeId && newElem) aMesh->SetMeshElementOnShape(newElem, aShapeId); aMesh->RemoveElement(elem); } } } //======================================================================= //function : SewSideElements //purpose : //======================================================================= SMESH_MeshEditor::Sew_Error SMESH_MeshEditor::SewSideElements (set& theSide1, set& theSide2, const SMDS_MeshNode* theFirstNode1, const SMDS_MeshNode* theFirstNode2, const SMDS_MeshNode* theSecondNode1, const SMDS_MeshNode* theSecondNode2) { MESSAGE ("::::SewSideElements()"); if ( theSide1.size() != theSide2.size() ) return SEW_DIFF_NB_OF_ELEMENTS; Sew_Error aResult = SEW_OK; // Algo: // 1. Build set of faces representing each side // 2. Find which nodes of the side 1 to merge with ones on the side 2 // 3. Replace nodes in elements of the side 1 and remove replaced nodes // ======================================================================= // 1. Build set of faces representing each side: // ======================================================================= // a. build set of nodes belonging to faces // b. complete set of faces: find missing fices whose nodes are in set of nodes // c. create temporary faces representing side of volumes if correspondent // face does not exist SMESHDS_Mesh* aMesh = GetMeshDS(); SMDS_Mesh aTmpFacesMesh; set faceSet1, faceSet2; set volSet1, volSet2; set nodeSet1, nodeSet2; set * faceSetPtr[] = { &faceSet1, &faceSet2 }; set * volSetPtr[] = { &volSet1, &volSet2 }; set * nodeSetPtr[] = { &nodeSet1, &nodeSet2 }; set * elemSetPtr[] = { &theSide1, &theSide2 }; int iSide, iFace, iNode; for ( iSide = 0; iSide < 2; iSide++ ) { set * nodeSet = nodeSetPtr[ iSide ]; set * elemSet = elemSetPtr[ iSide ]; set * faceSet = faceSetPtr[ iSide ]; set * volSet = volSetPtr [ iSide ]; set::iterator vIt, eIt; set::iterator nIt; // ----------------------------------------------------------- // 1a. Collect nodes of existing faces // and build set of face nodes in order to detect missing // faces corresponing to sides of volumes // ----------------------------------------------------------- set< set > setOfFaceNodeSet; // loop on the given element of a side for (eIt = elemSet->begin(); eIt != elemSet->end(); eIt++ ) { const SMDS_MeshElement* elem = *eIt; if ( elem->GetType() == SMDSAbs_Face ) { faceSet->insert( elem ); set faceNodeSet; SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator(); while ( nodeIt->more() ) { const SMDS_MeshNode* n = static_cast( nodeIt->next() ); nodeSet->insert( n ); faceNodeSet.insert( n ); } setOfFaceNodeSet.insert( faceNodeSet ); } else if ( elem->GetType() == SMDSAbs_Volume ) volSet->insert( elem ); } // ------------------------------------------------------------------------------ // 1b. Complete set of faces: find missing fices whose nodes are in set of nodes // ------------------------------------------------------------------------------ for ( nIt = nodeSet->begin(); nIt != nodeSet->end(); nIt++ ) { // loop on nodes of iSide SMDS_ElemIteratorPtr fIt = (*nIt)->facesIterator(); while ( fIt->more() ) { // loop on faces sharing a node const SMDS_MeshElement* f = fIt->next(); if ( faceSet->find( f ) == faceSet->end() ) { // check if all nodes are in nodeSet and // complete setOfFaceNodeSet if they are set faceNodeSet; SMDS_ElemIteratorPtr nodeIt = f->nodesIterator(); bool allInSet = true; while ( nodeIt->more() && allInSet ) { // loop on nodes of a face const SMDS_MeshNode* n = static_cast( nodeIt->next() ); if ( nodeSet->find( n ) == nodeSet->end() ) allInSet = false; else faceNodeSet.insert( n ); } if ( allInSet ) { faceSet->insert( f ); setOfFaceNodeSet.insert( faceNodeSet ); } } } } // ------------------------------------------------------------------------- // 1c. Create temporary faces representing sides of volumes if correspondent // face does not exist // ------------------------------------------------------------------------- if ( !volSet->empty() ) { //int nodeSetSize = nodeSet->size(); // loop on given volumes for ( vIt = volSet->begin(); vIt != volSet->end(); vIt++ ) { SMDS_VolumeTool vol (*vIt); // loop on volume faces: find free faces // -------------------------------------- list freeFaceList; for ( iFace = 0; iFace < vol.NbFaces(); iFace++ ) { if ( !vol.IsFreeFace( iFace )) continue; // check if there is already a face with same nodes in a face set const SMDS_MeshElement* aFreeFace = 0; const SMDS_MeshNode** fNodes = vol.GetFaceNodes( iFace ); int nbNodes = vol.NbFaceNodes( iFace ); set faceNodeSet; vol.GetFaceNodes( iFace, faceNodeSet ); bool isNewFace = setOfFaceNodeSet.insert( faceNodeSet ).second; if ( isNewFace ) { // no such a face is given but it still can exist, check it if ( nbNodes == 3 ) { aFreeFace = aMesh->FindFace( fNodes[0],fNodes[1],fNodes[2] ); } else if ( nbNodes == 4 ) { aFreeFace = aMesh->FindFace( fNodes[0],fNodes[1],fNodes[2],fNodes[3] ); } else { vector poly_nodes (nbNodes); for (int inode = 0; inode < nbNodes; inode++) { poly_nodes[inode] = fNodes[inode]; } aFreeFace = aMesh->FindFace(poly_nodes); } } if ( !aFreeFace ) { // create a temporary face if ( nbNodes == 3 ) { aFreeFace = aTmpFacesMesh.AddFace( fNodes[0],fNodes[1],fNodes[2] ); } else if ( nbNodes == 4 ) { aFreeFace = aTmpFacesMesh.AddFace( fNodes[0],fNodes[1],fNodes[2],fNodes[3] ); } else { vector poly_nodes (nbNodes); for (int inode = 0; inode < nbNodes; inode++) { poly_nodes[inode] = fNodes[inode]; } aFreeFace = aTmpFacesMesh.AddPolygonalFace(poly_nodes); } } if ( aFreeFace ) freeFaceList.push_back( aFreeFace ); } // loop on faces of a volume // choose one of several free faces // -------------------------------------- if ( freeFaceList.size() > 1 ) { // choose a face having max nb of nodes shared by other elems of a side int maxNbNodes = -1/*, nbExcludedFaces = 0*/; list::iterator fIt = freeFaceList.begin(); while ( fIt != freeFaceList.end() ) { // loop on free faces int nbSharedNodes = 0; SMDS_ElemIteratorPtr nodeIt = (*fIt)->nodesIterator(); while ( nodeIt->more() ) { // loop on free face nodes const SMDS_MeshNode* n = static_cast( nodeIt->next() ); SMDS_ElemIteratorPtr invElemIt = n->GetInverseElementIterator(); while ( invElemIt->more() ) { const SMDS_MeshElement* e = invElemIt->next(); if ( faceSet->find( e ) != faceSet->end() ) nbSharedNodes++; if ( elemSet->find( e ) != elemSet->end() ) nbSharedNodes++; } } if ( nbSharedNodes >= maxNbNodes ) { maxNbNodes = nbSharedNodes; fIt++; } else freeFaceList.erase( fIt++ ); // here fIt++ occures before erase } if ( freeFaceList.size() > 1 ) { // could not choose one face, use another way // choose a face most close to the bary center of the opposite side gp_XYZ aBC( 0., 0., 0. ); set addedNodes; set * elemSet2 = elemSetPtr[ 1 - iSide ]; eIt = elemSet2->begin(); for ( eIt = elemSet2->begin(); eIt != elemSet2->end(); eIt++ ) { SMDS_ElemIteratorPtr nodeIt = (*eIt)->nodesIterator(); while ( nodeIt->more() ) { // loop on free face nodes const SMDS_MeshNode* n = static_cast( nodeIt->next() ); if ( addedNodes.insert( n ).second ) aBC += gp_XYZ( n->X(),n->Y(),n->Z() ); } } aBC /= addedNodes.size(); double minDist = DBL_MAX; fIt = freeFaceList.begin(); while ( fIt != freeFaceList.end() ) { // loop on free faces double dist = 0; SMDS_ElemIteratorPtr nodeIt = (*fIt)->nodesIterator(); while ( nodeIt->more() ) { // loop on free face nodes const SMDS_MeshNode* n = static_cast( nodeIt->next() ); gp_XYZ p( n->X(),n->Y(),n->Z() ); dist += ( aBC - p ).SquareModulus(); } if ( dist < minDist ) { minDist = dist; freeFaceList.erase( freeFaceList.begin(), fIt++ ); } else fIt = freeFaceList.erase( fIt++ ); } } } // choose one of several free faces of a volume if ( freeFaceList.size() == 1 ) { const SMDS_MeshElement* aFreeFace = freeFaceList.front(); faceSet->insert( aFreeFace ); // complete a node set with nodes of a found free face // for ( iNode = 0; iNode < ; iNode++ ) // nodeSet->insert( fNodes[ iNode ] ); } } // loop on volumes of a side // // complete a set of faces if new nodes in a nodeSet appeared // // ---------------------------------------------------------- // if ( nodeSetSize != nodeSet->size() ) { // for ( ; nIt != nodeSet->end(); nIt++ ) { // loop on nodes of iSide // SMDS_ElemIteratorPtr fIt = (*nIt)->facesIterator(); // while ( fIt->more() ) { // loop on faces sharing a node // const SMDS_MeshElement* f = fIt->next(); // if ( faceSet->find( f ) == faceSet->end() ) { // // check if all nodes are in nodeSet and // // complete setOfFaceNodeSet if they are // set faceNodeSet; // SMDS_ElemIteratorPtr nodeIt = f->nodesIterator(); // bool allInSet = true; // while ( nodeIt->more() && allInSet ) { // loop on nodes of a face // const SMDS_MeshNode* n = static_cast( nodeIt->next() ); // if ( nodeSet->find( n ) == nodeSet->end() ) // allInSet = false; // else // faceNodeSet.insert( n ); // } // if ( allInSet ) { // faceSet->insert( f ); // setOfFaceNodeSet.insert( faceNodeSet ); // } // } // } // } // } } // Create temporary faces, if there are volumes given } // loop on sides if ( faceSet1.size() != faceSet2.size() ) { // delete temporary faces: they are in reverseElements of actual nodes SMDS_FaceIteratorPtr tmpFaceIt = aTmpFacesMesh.facesIterator(); while ( tmpFaceIt->more() ) aTmpFacesMesh.RemoveElement( tmpFaceIt->next() ); MESSAGE("Diff nb of faces"); return SEW_TOPO_DIFF_SETS_OF_ELEMENTS; } // ============================================================ // 2. Find nodes to merge: // bind a node to remove to a node to put instead // ============================================================ TNodeNodeMap nReplaceMap; // bind a node to remove to a node to put instead if ( theFirstNode1 != theFirstNode2 ) nReplaceMap.insert( TNodeNodeMap::value_type( theFirstNode1, theFirstNode2 )); if ( theSecondNode1 != theSecondNode2 ) nReplaceMap.insert( TNodeNodeMap::value_type( theSecondNode1, theSecondNode2 )); LinkID_Gen aLinkID_Gen( GetMeshDS() ); set< long > linkIdSet; // links to process linkIdSet.insert( aLinkID_Gen.GetLinkID( theFirstNode1, theSecondNode1 )); typedef pair< const SMDS_MeshNode*, const SMDS_MeshNode* > TPairOfNodes; list< TPairOfNodes > linkList[2]; linkList[0].push_back( TPairOfNodes( theFirstNode1, theSecondNode1 )); linkList[1].push_back( TPairOfNodes( theFirstNode2, theSecondNode2 )); // loop on links in linkList; find faces by links and append links // of the found faces to linkList list< TPairOfNodes >::iterator linkIt[] = { linkList[0].begin(), linkList[1].begin() } ; for ( ; linkIt[0] != linkList[0].end(); linkIt[0]++, linkIt[1]++ ) { TPairOfNodes link[] = { *linkIt[0], *linkIt[1] }; long linkID = aLinkID_Gen.GetLinkID( link[0].first, link[0].second ); if ( linkIdSet.find( linkID ) == linkIdSet.end() ) continue; // by links, find faces in the face sets, // and find indices of link nodes in the found faces; // in a face set, there is only one or no face sharing a link // --------------------------------------------------------------- const SMDS_MeshElement* face[] = { 0, 0 }; const SMDS_MeshNode* faceNodes[ 2 ][ 5 ]; const SMDS_MeshNode* notLinkNodes[ 2 ][ 2 ] = {{ 0, 0 },{ 0, 0 }} ; int iLinkNode[2][2]; for ( iSide = 0; iSide < 2; iSide++ ) { // loop on 2 sides const SMDS_MeshNode* n1 = link[iSide].first; const SMDS_MeshNode* n2 = link[iSide].second; set * faceSet = faceSetPtr[ iSide ]; set< const SMDS_MeshElement* > fMap; for ( int i = 0; i < 2; i++ ) { // loop on 2 nodes of a link const SMDS_MeshNode* n = i ? n1 : n2; // a node of a link SMDS_ElemIteratorPtr fIt = n->facesIterator(); while ( fIt->more() ) { // loop on faces sharing a node const SMDS_MeshElement* f = fIt->next(); if (faceSet->find( f ) != faceSet->end() && // f is in face set ! fMap.insert( f ).second ) // f encounters twice { if ( face[ iSide ] ) { MESSAGE( "2 faces per link " ); aResult = iSide ? SEW_BAD_SIDE2_NODES : SEW_BAD_SIDE1_NODES; break; } face[ iSide ] = f; faceSet->erase( f ); // get face nodes and find ones of a link iNode = 0; SMDS_ElemIteratorPtr nIt = f->nodesIterator(); while ( nIt->more() ) { const SMDS_MeshNode* n = static_cast( nIt->next() ); if ( n == n1 ) iLinkNode[ iSide ][ 0 ] = iNode; else if ( n == n2 ) iLinkNode[ iSide ][ 1 ] = iNode; else if ( notLinkNodes[ iSide ][ 0 ] ) notLinkNodes[ iSide ][ 1 ] = n; else notLinkNodes[ iSide ][ 0 ] = n; faceNodes[ iSide ][ iNode++ ] = n; } faceNodes[ iSide ][ iNode ] = faceNodes[ iSide ][ 0 ]; } } } } // check similarity of elements of the sides if (aResult == SEW_OK && ( face[0] && !face[1] ) || ( !face[0] && face[1] )) { MESSAGE("Correspondent face not found on side " << ( face[0] ? 1 : 0 )); if ( nReplaceMap.size() == 2 ) // faces on input nodes not found aResult = ( face[0] ? SEW_BAD_SIDE2_NODES : SEW_BAD_SIDE1_NODES ); else aResult = SEW_TOPO_DIFF_SETS_OF_ELEMENTS; break; // do not return because it s necessary to remove tmp faces } // set nodes to merge // ------------------- if ( face[0] && face[1] ) { int nbNodes = face[0]->NbNodes(); if ( nbNodes != face[1]->NbNodes() ) { MESSAGE("Diff nb of face nodes"); aResult = SEW_TOPO_DIFF_SETS_OF_ELEMENTS; break; // do not return because it s necessary to remove tmp faces } bool reverse[] = { false, false }; // order of notLinkNodes of quadrangle if ( nbNodes == 3 ) nReplaceMap.insert( TNodeNodeMap::value_type ( notLinkNodes[0][0], notLinkNodes[1][0] )); else { for ( iSide = 0; iSide < 2; iSide++ ) { // loop on 2 sides // analyse link orientation in faces int i1 = iLinkNode[ iSide ][ 0 ]; int i2 = iLinkNode[ iSide ][ 1 ]; reverse[ iSide ] = Abs( i1 - i2 ) == 1 ? i1 > i2 : i2 > i1; // if notLinkNodes are the first and the last ones, then // their order does not correspond to the link orientation if (( i1 == 1 && i2 == 2 ) || ( i1 == 2 && i2 == 1 )) reverse[ iSide ] = !reverse[ iSide ]; } if ( reverse[0] == reverse[1] ) { nReplaceMap.insert( TNodeNodeMap::value_type ( notLinkNodes[0][0], notLinkNodes[1][0] )); nReplaceMap.insert( TNodeNodeMap::value_type ( notLinkNodes[0][1], notLinkNodes[1][1] )); } else { nReplaceMap.insert( TNodeNodeMap::value_type ( notLinkNodes[0][0], notLinkNodes[1][1] )); nReplaceMap.insert( TNodeNodeMap::value_type ( notLinkNodes[0][1], notLinkNodes[1][0] )); } } // add other links of the faces to linkList // ----------------------------------------- const SMDS_MeshNode** nodes = faceNodes[ 0 ]; for ( iNode = 0; iNode < nbNodes; iNode++ ) { linkID = aLinkID_Gen.GetLinkID( nodes[iNode], nodes[iNode+1] ); pair< set::iterator, bool > iter_isnew = linkIdSet.insert( linkID ); if ( !iter_isnew.second ) { // already in a set: no need to process linkIdSet.erase( iter_isnew.first ); } else // new in set == encountered for the first time: add { const SMDS_MeshNode* n1 = nodes[ iNode ]; const SMDS_MeshNode* n2 = nodes[ iNode + 1]; linkList[0].push_back ( TPairOfNodes( n1, n2 )); linkList[1].push_back ( TPairOfNodes( nReplaceMap[n1], nReplaceMap[n2] )); } } } // 2 faces found } // loop on link lists if ( aResult == SEW_OK && ( linkIt[0] != linkList[0].end() || !faceSetPtr[0]->empty() || !faceSetPtr[1]->empty() )) { MESSAGE( (linkIt[0] != linkList[0].end()) <<" "<< (faceSetPtr[0]->empty()) << " " << (faceSetPtr[1]->empty())); aResult = SEW_TOPO_DIFF_SETS_OF_ELEMENTS; } // ==================================================================== // 3. Replace nodes in elements of the side 1 and remove replaced nodes // ==================================================================== // delete temporary faces: they are in reverseElements of actual nodes SMDS_FaceIteratorPtr tmpFaceIt = aTmpFacesMesh.facesIterator(); while ( tmpFaceIt->more() ) aTmpFacesMesh.RemoveElement( tmpFaceIt->next() ); if ( aResult != SEW_OK) return aResult; list< int > nodeIDsToRemove/*, elemIDsToRemove*/; // loop on nodes replacement map TNodeNodeMap::iterator nReplaceMapIt = nReplaceMap.begin(), nnIt; for ( ; nReplaceMapIt != nReplaceMap.end(); nReplaceMapIt++ ) if ( (*nReplaceMapIt).first != (*nReplaceMapIt).second ) { const SMDS_MeshNode* nToRemove = (*nReplaceMapIt).first; nodeIDsToRemove.push_back( nToRemove->GetID() ); // loop on elements sharing nToRemove SMDS_ElemIteratorPtr invElemIt = nToRemove->GetInverseElementIterator(); while ( invElemIt->more() ) { const SMDS_MeshElement* e = invElemIt->next(); // get a new suite of nodes: make replacement int nbReplaced = 0, i = 0, nbNodes = e->NbNodes(); const SMDS_MeshNode* nodes[ 8 ]; SMDS_ElemIteratorPtr nIt = e->nodesIterator(); while ( nIt->more() ) { const SMDS_MeshNode* n = static_cast( nIt->next() ); nnIt = nReplaceMap.find( n ); if ( nnIt != nReplaceMap.end() ) { nbReplaced++; n = (*nnIt).second; } nodes[ i++ ] = n; } // if ( nbReplaced == nbNodes && e->GetType() == SMDSAbs_Face ) // elemIDsToRemove.push_back( e->GetID() ); // else if ( nbReplaced ) aMesh->ChangeElementNodes( e, nodes, nbNodes ); } } Remove( nodeIDsToRemove, true ); return aResult; }