Pattern mapping

About patterns

The pattern describes a mesh to generate: positions of nodes within a geometrical domain and nodal connectivity of elements. As well, a pattern specifies the so-called key-points, i.e. nodes that will be located at geometrical vertices. Pattern description is stored in <pattern_name>.smp file.

 

The smp file contains 4 sections:

 

1. The first line holds the number of nodes (N).

 

2. The next N lines describe nodes coordinates. Each line holds 2 coordinates of a node.

 

3. A key-points line: indices of nodes to be mapped on geometrical vertices. An index n refers to a node described on an n-th line of section 2. The first node index is zero.

 

4. The rest lines describe nodal connectivity of elements, one line for an element. A line holds indices of nodes forming an element. An index n refers to a node described on an n-th line of the section 2. The first node index is zero. There must be 3 or 4 indices on a line: only 2d elements are allowed.

 

The 2D pattern must contain at least one element and at least one key-point. All key-points must lay on boundaries.

 

An example of a simple smp file and a preview of a pattern described in this file:

 

 

 

Application of pattern mapping

To apply pattern mapping to a geometrical object:

 

1. From the Modification menu choose the Pattern Mapping item or click button in the toolbar. The following dialog box shall appear:

 

 

To apply a pattern to a geometrical object, you should specify:

- a face having the number of vertices equal to the number of key-points in the pattern; the number of key-points on internal boundaries of a pattern must also be equal to the number of vertices on internal boundaries of a face;

- a vertex to which the first key-point should be mapped,

- reverse or not the order of key-points. (The order of vertices of a face is counterclockwise looking from outside).

 

Then you either load a .smp pattern file previously created manually by clicking on the button, or click on the New button for automatic generation.

For an automatic generation you just specify a geometrical face having a mesh built on it. Mesh nodes lying on face vertices become key-points. Additionally, you may choose the way of getting nodes coordinates by projecting nodes on the face instead of using "positions on face" generated by mesher (if there is any). Faces having a seam edge can’t be used for automatic pattern creation.

 

When creating a pattern from an existing mesh, there are two possible cases:

 

1. A sub-mesh on face is selected. A pattern is created from the 2d elements bound to a face by mesher. Node coordinates are either "positions on face" computed by mesher, or coordinates got by node projection on a geometrical surface, according to your choice.

2. A mesh where the main shape is a face, is selected. A pattern is created from all the 2d elements in a mesh. If all mesh elements are build by mesher, the user can select the way of getting nodes coordinates, else all nodes are projected on a face surface.

 

Mapping algorithm:

The mapping algorithm is as follows:

 

1. Key-points are set in the order that they are encountered when walking along a pattern boundary so that elements are on the left. The first key-point is preserved.

2. Find geometrical vertices corresponding to key-points by vertices order in a face boundary; here, "Reverse order of key-points" flag is taken into account.

 

 

3. Boundary nodes of a pattern are mapped onto edges of a face: a node located between certain key-points on a pattern boundary is mapped on a geometrical edge limited by corresponding geometrical vertices. Node position on an edge reflects its distance from two key-points.

 

 

4. Coordinates of a non-boundary node in a parametric space of a face are defined as following. In a parametric space of a pattern, a node lays at the intersection of two iso-lines, each of which intersects a pattern boundary at least at two points. Knowing mapped positions of boundary nodes, we find where isoline-boundary intersection points are mapped to, and hence we can find mapped isolines direction and then, two node positions on two mapped isolines. The eventual mapped position of a node is found as an average of positions on mapped isolines.