// Copyright (C) 2007-2021 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH : implementation of SMESH idl descriptions // File : StdMeshers_Hexa_3D.cxx // Moved here from SMESH_Hexa_3D.cxx // Author : Paul RASCLE, EDF // Module : SMESH // #include "StdMeshers_Hexa_3D.hxx" #include "SMDS_MeshNode.hxx" #include "SMESH_Comment.hxx" #include "SMESH_Gen.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_subMesh.hxx" #include "StdMeshers_BlockRenumber.hxx" #include "StdMeshers_CompositeHexa_3D.hxx" #include "StdMeshers_FaceSide.hxx" #include "StdMeshers_HexaFromSkin_3D.hxx" #include "StdMeshers_Penta_3D.hxx" #include "StdMeshers_Prism_3D.hxx" #include "StdMeshers_Quadrangle_2D.hxx" #include "StdMeshers_ViscousLayers.hxx" #include #include #include #include #include #include #include #include "utilities.h" #include "Utils_ExceptHandlers.hxx" #include #include typedef SMESH_Comment TComm; using namespace std; static SMESH_ComputeErrorPtr ComputePentahedralMesh(SMESH_Mesh &, const TopoDS_Shape &, SMESH_ProxyMesh* proxyMesh=0); static bool EvaluatePentahedralMesh(SMESH_Mesh &, const TopoDS_Shape &, MapShapeNbElems &); //============================================================================= /*! * Constructor */ //============================================================================= StdMeshers_Hexa_3D::StdMeshers_Hexa_3D(int hypId, SMESH_Gen * gen) :SMESH_3D_Algo(hypId, gen) { _name = "Hexa_3D"; _shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit /shape type _requireShape = false; _compatibleHypothesis.push_back("ViscousLayers"); _compatibleHypothesis.push_back("BlockRenumber"); _quadAlgo = new StdMeshers_Quadrangle_2D( gen->GetANewId(), _gen ); } //============================================================================= /*! * Destructor */ //============================================================================= StdMeshers_Hexa_3D::~StdMeshers_Hexa_3D() { delete _quadAlgo; _quadAlgo = 0; } //============================================================================= /*! * Retrieves defined hypotheses */ //============================================================================= bool StdMeshers_Hexa_3D::CheckHypothesis (SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, SMESH_Hypothesis::Hypothesis_Status& aStatus) { // check nb of faces in the shape /* PAL16229 aStatus = SMESH_Hypothesis::HYP_BAD_GEOMETRY; int nbFaces = 0; for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) if ( ++nbFaces > 6 ) break; if ( nbFaces != 6 ) return false; */ _viscousLayersHyp = nullptr; _blockRenumberHyp = nullptr; const list& hyps = GetUsedHypothesis(aMesh, aShape, /*ignoreAuxiliary=*/false); list ::const_iterator h = hyps.begin(); if ( h == hyps.end()) { aStatus = SMESH_Hypothesis::HYP_OK; return true; } // only StdMeshers_ViscousLayers can be used aStatus = HYP_OK; for ( ; h != hyps.end(); ++h ) { if ( !_viscousLayersHyp && (_viscousLayersHyp = dynamic_cast< const StdMeshers_ViscousLayers*> ( *h ))) continue; if ( !_blockRenumberHyp && (_blockRenumberHyp = dynamic_cast< const StdMeshers_BlockRenumber*> ( *h ))) continue; break; } if ((int) hyps.size() != (bool)_viscousLayersHyp + (bool)_blockRenumberHyp ) aStatus = HYP_INCOMPATIBLE; else { if ( _viscousLayersHyp ) if ( !error( _viscousLayersHyp->CheckHypothesis( aMesh, aShape, aStatus ))) aStatus = HYP_BAD_PARAMETER; if ( _blockRenumberHyp && aStatus == HYP_OK ) error( _blockRenumberHyp->CheckHypothesis( aMesh, aShape )); } return aStatus == HYP_OK; } namespace { //============================================================================= typedef boost::shared_ptr< FaceQuadStruct > FaceQuadStructPtr; typedef std::vector TXYZColumn; // symbolic names of box sides enum EBoxSides{ B_BOTTOM=0, B_RIGHT, B_TOP, B_LEFT, B_FRONT, B_BACK, B_NB_SIDES }; // symbolic names of sides of quadrangle enum EQuadSides{ Q_BOTTOM=0, Q_RIGHT, Q_TOP, Q_LEFT, Q_NB_SIDES }; enum EAxes{ COO_X=1, COO_Y, COO_Z }; //============================================================================= /*! * \brief Container of nodes of structured mesh on a qudrangular geom FACE */ struct _FaceGrid { // face sides FaceQuadStructPtr _quad; // map of (node parameter on EDGE) to (column (vector) of nodes) TParam2ColumnMap _u2nodesMap; // node column's taken from _u2nodesMap taking into account sub-shape orientation vector _columns; // columns of normalized parameters of nodes within the unitary cube vector _ijkColumns; // geometry of a cube side TopoDS_Face _sideF; const SMDS_MeshNode* GetNode(int iCol, int iRow) const { return _columns[iCol][iRow]; } gp_XYZ GetXYZ(int iCol, int iRow) const { return SMESH_TNodeXYZ( GetNode( iCol, iRow )); } gp_XYZ& GetIJK(int iCol, int iRow) { return _ijkColumns[iCol][iRow]; } }; //================================================================================ /*! * \brief Converter of a pair of integers to a sole index */ struct _Indexer { int _xSize, _ySize; _Indexer( int xSize, int ySize ): _xSize(xSize), _ySize(ySize) {} int size() const { return _xSize * _ySize; } int operator()(const int x, const int y) const { return y * _xSize + x; } }; //================================================================================ /*! * \brief Finds FaceQuadStruct having a side equal to a given one and rearranges * the found FaceQuadStruct::side to have the given side at a Q_BOTTOM place */ FaceQuadStructPtr getQuadWithBottom( StdMeshers_FaceSidePtr side, FaceQuadStructPtr quad[ 6 ]) { FaceQuadStructPtr foundQuad; for ( int i = 1; i < 6; ++i ) { if ( !quad[i] ) continue; for ( size_t iS = 0; iS < quad[i]->side.size(); ++iS ) { const StdMeshers_FaceSidePtr side2 = quad[i]->side[iS]; if (( side->FirstVertex().IsSame( side2->FirstVertex() ) || side->FirstVertex().IsSame( side2->LastVertex() )) && ( side->LastVertex().IsSame( side2->FirstVertex() ) || side->LastVertex().IsSame( side2->LastVertex() )) ) { if ( iS != Q_BOTTOM ) { vector< FaceQuadStruct::Side > newSides; for ( size_t j = iS; j < quad[i]->side.size(); ++j ) newSides.push_back( quad[i]->side[j] ); for ( size_t j = 0; j < iS; ++j ) newSides.push_back( quad[i]->side[j] ); quad[i]->side.swap( newSides ); } foundQuad.swap(quad[i]); return foundQuad; } } } return foundQuad; } //================================================================================ /*! * \brief Put quads to aCubeSide in the order of enum EBoxSides */ //================================================================================ bool arrangeQuads( FaceQuadStructPtr quad[ 6 ], _FaceGrid aCubeSide[ 6 ], bool reverseBottom ) { swap( aCubeSide[B_BOTTOM]._quad, quad[0] ); if ( reverseBottom ) swap( aCubeSide[B_BOTTOM]._quad->side[ Q_RIGHT],// direct the bottom normal inside cube aCubeSide[B_BOTTOM]._quad->side[ Q_LEFT ] ); aCubeSide[B_FRONT]._quad = getQuadWithBottom( aCubeSide[B_BOTTOM]._quad->side[Q_BOTTOM], quad ); aCubeSide[B_RIGHT]._quad = getQuadWithBottom( aCubeSide[B_BOTTOM]._quad->side[Q_RIGHT ], quad ); aCubeSide[B_BACK ]._quad = getQuadWithBottom( aCubeSide[B_BOTTOM]._quad->side[Q_TOP ], quad ); aCubeSide[B_LEFT ]._quad = getQuadWithBottom( aCubeSide[B_BOTTOM]._quad->side[Q_LEFT ], quad ); if ( aCubeSide[B_FRONT ]._quad ) aCubeSide[B_TOP]._quad = getQuadWithBottom( aCubeSide[B_FRONT ]._quad->side[Q_TOP ], quad ); for ( int i = 1; i < 6; ++i ) if ( !aCubeSide[i]._quad ) return false; return true; } //================================================================================ /*! * \brief Rearrange block sides according to StdMeshers_BlockRenumber hypothesis */ //================================================================================ bool arrangeForRenumber( _FaceGrid blockSide[ 6 ], TopoDS_Vertex& v000, TopoDS_Vertex& v001 ) { std::swap( blockSide[B_BOTTOM]._quad->side[ Q_RIGHT],// restore after arrangeQuads() blockSide[B_BOTTOM]._quad->side[ Q_LEFT ] ); // find v000 TopTools_MapOfShape cornerVertices; cornerVertices.Add( blockSide[B_BOTTOM]._quad->side[Q_BOTTOM].grid->LastVertex() ); cornerVertices.Add( blockSide[B_BOTTOM]._quad->side[Q_BOTTOM].grid->FirstVertex() ); cornerVertices.Add( blockSide[B_BOTTOM]._quad->side[Q_TOP ].grid->LastVertex() ); cornerVertices.Add( blockSide[B_BOTTOM]._quad->side[Q_TOP ].grid->FirstVertex() ); cornerVertices.Add( blockSide[B_TOP ]._quad->side[Q_BOTTOM].grid->FirstVertex() ); cornerVertices.Add( blockSide[B_TOP ]._quad->side[Q_BOTTOM].grid->LastVertex() ); cornerVertices.Add( blockSide[B_TOP ]._quad->side[Q_TOP ].grid->FirstVertex() ); cornerVertices.Add( blockSide[B_TOP ]._quad->side[Q_TOP ].grid->LastVertex() ); if ( v000.IsNull() ) { // block CS is not defined; // renumber only if the block has an edge parallel to an axis of global CS v000 = StdMeshers_RenumberHelper::GetVertex000( cornerVertices ); } Bnd_B3d bbox; for ( auto it = cornerVertices.cbegin(); it != cornerVertices.cend(); ++it ) bbox.Add( BRep_Tool::Pnt( TopoDS::Vertex( *it ))); double tol = 1e-5 * Sqrt( bbox.SquareExtent() ); // get block edges starting at v000 std::vector< StdMeshers_FaceSidePtr > edgesAtV000; std::vector< gp_Vec > edgeDir; std::vector< int > iParallel; // 0 - none, 1 - X, 2 - Y, 3 - Z TopTools_MapOfShape lastVertices; for ( int iQ = 0; iQ < 6; ++iQ ) { FaceQuadStructPtr quad = blockSide[iQ]._quad; for ( size_t iS = 0; iS < quad->side.size() && edgesAtV000.size() < 3; ++iS ) { StdMeshers_FaceSidePtr edge = quad->side[iS]; TopoDS_Vertex v1 = edge->FirstVertex(), v2 = edge->LastVertex(); if (( v1.IsSame( v000 ) && !lastVertices.Contains( v2 )) || ( v2.IsSame( v000 ) && !lastVertices.Contains( v1 ))) { bool reverse = v2.IsSame( v000 ); if ( reverse ) std::swap( v1, v2 ); lastVertices.Add( v2 ); edgesAtV000.push_back( edge ); gp_Pnt pf = BRep_Tool::Pnt( v1 ); gp_Pnt pl = BRep_Tool::Pnt( v2 ); gp_Vec vec( pf, pl ); edgeDir.push_back( vec ); iParallel.push_back( 0 ); if ( !v001.IsNull() ) { if ( v001.IsSame( v2 )) iParallel.back() = 3; } else { bool isStraight = true; for ( int iE = 0; iE < edge->NbEdges() && isStraight; ++iE ) isStraight = SMESH_Algo::IsStraight( edge->Edge( iE )); // is parallel to a GCS axis? if ( isStraight ) { int nbDiff = (( Abs( vec.X() ) > tol ) + ( Abs( vec.Y() ) > tol ) + ( Abs( vec.Z() ) > tol ) ); if ( nbDiff == 1 ) iParallel.back() = ( Abs( vec.X() ) > tol ) ? 1 : ( Abs( vec.Y() ) > tol ) ? 2 : 3; } else { edgeDir.back() = gp_Vec( pf, edge->Value3d( reverse ? 0.99 : 0.01 )); } } } } } if ( std::accumulate( iParallel.begin(), iParallel.end(), 0 ) == 0 ) return false; // find edge OZ and edge OX StdMeshers_FaceSidePtr edgeOZ, edgeOX; auto iZIt = std::find( iParallel.begin(), iParallel.end(), 3 ); if ( iZIt != iParallel.end() ) { int i = std::distance( iParallel.begin(), iZIt ); edgeOZ = edgesAtV000[ i ]; int iE1 = SMESH_MesherHelper::WrapIndex( i + 1, edgesAtV000.size() ); int iE2 = SMESH_MesherHelper::WrapIndex( i + 2, edgesAtV000.size() ); if (( edgeDir[ iE1 ] ^ edgeDir[ iE2 ] ) * edgeDir[ i ] < 0 ) std::swap( iE1, iE2 ); edgeOX = edgesAtV000[ iE1 ]; } else { for ( size_t i = 0; i < edgesAtV000.size(); ++i ) { if ( !iParallel[ i ] ) continue; int iE1 = SMESH_MesherHelper::WrapIndex( i + 1, edgesAtV000.size() ); int iE2 = SMESH_MesherHelper::WrapIndex( i + 2, edgesAtV000.size() ); if (( edgeDir[ iE1 ] ^ edgeDir[ iE2 ] ) * edgeDir[ i ] < 0 ) std::swap( iE1, iE2 ); edgeOZ = edgesAtV000[ iParallel[i] == 1 ? iE2 : iE1 ]; edgeOX = edgesAtV000[ iParallel[i] == 1 ? i : iE1 ]; break; } } if ( !edgeOZ || !edgeOX ) return false; TopoDS_Vertex v100 = edgeOX->LastVertex(); if ( v100.IsSame( v000 )) v100 = edgeOX->FirstVertex(); // Find the left quad, one including v000 but not v100 for ( int iQ = 0; iQ < 6; ++iQ ) { FaceQuadStructPtr quad = blockSide[iQ]._quad; bool hasV000 = false, hasV100 = false; for ( size_t iS = 0; iS < quad->side.size(); ++iS ) { StdMeshers_FaceSidePtr edge = quad->side[iS]; if ( edge->FirstVertex().IsSame( v000 ) || edge->LastVertex().IsSame( v000 )) hasV000 = true; if ( edge->FirstVertex().IsSame( v100 ) || edge->LastVertex().IsSame( v100 )) hasV100 = true; } if ( hasV000 && !hasV100 ) { // orient the left quad for ( int i = 0; i < 4; ++i ) { if ( quad->side[Q_BOTTOM].grid->Edge(0).IsSame( edgeOZ->Edge(0) )) break; quad->shift( 1, true ); } FaceQuadStructPtr quads[ 6 ]; quads[0].swap( blockSide[iQ]._quad ); for ( int i = 1, j = 0; i < 6; ++i, ++j ) if ( blockSide[ j ]._quad ) quads[ i ].swap( blockSide[ j ]._quad ); else --i; return arrangeQuads( quads, blockSide, false/* true*/ ); } } return false; } //================================================================================ /*! * \brief Returns true if the 1st base node of sideGrid1 belongs to sideGrid2 */ //================================================================================ bool beginsAtSide( const _FaceGrid& sideGrid1, const _FaceGrid& sideGrid2, SMESH_ProxyMesh::Ptr proxymesh ) { const TNodeColumn& col0 = sideGrid2._u2nodesMap.begin()->second; const TNodeColumn& col1 = sideGrid2._u2nodesMap.rbegin()->second; const SMDS_MeshNode* n00 = col0.front(); const SMDS_MeshNode* n01 = col0.back(); const SMDS_MeshNode* n10 = col1.front(); const SMDS_MeshNode* n11 = col1.back(); const SMDS_MeshNode* n = (sideGrid1._u2nodesMap.begin()->second)[0]; if ( proxymesh ) { n00 = proxymesh->GetProxyNode( n00 ); n10 = proxymesh->GetProxyNode( n10 ); n01 = proxymesh->GetProxyNode( n01 ); n11 = proxymesh->GetProxyNode( n11 ); n = proxymesh->GetProxyNode( n ); } return ( n == n00 || n == n01 || n == n10 || n == n11 ); } //================================================================================ /*! * \brief Fill in _FaceGrid::_ijkColumns * \param [in,out] fg - a _FaceGrid * \param [in] i1 - coordinate index along _columns * \param [in] i2 - coordinate index along _columns[i] * \param [in] v3 - value of the constant parameter */ //================================================================================ void computeIJK( _FaceGrid& fg, int i1, int i2, double v3 ) { gp_XYZ ijk( v3, v3, v3 ); const size_t nbCol = fg._columns.size(); const size_t nbRow = fg._columns[0].size(); fg._ijkColumns.resize( nbCol ); for ( size_t i = 0; i < nbCol; ++i ) fg._ijkColumns[ i ].resize( nbRow, ijk ); vector< double > len( nbRow ); len[0] = 0; for ( size_t i = 0; i < nbCol; ++i ) { gp_Pnt pPrev = fg.GetXYZ( i, 0 ); for ( size_t j = 1; j < nbRow; ++j ) { gp_Pnt p = fg.GetXYZ( i, j ); len[ j ] = len[ j-1 ] + p.Distance( pPrev ); pPrev = p; } for ( size_t j = 0; j < nbRow; ++j ) fg.GetIJK( i, j ).SetCoord( i2, len[ j ]/len.back() ); } len.resize( nbCol ); for ( size_t j = 0; j < nbRow; ++j ) { gp_Pnt pPrev = fg.GetXYZ( 0, j ); for ( size_t i = 1; i < nbCol; ++i ) { gp_Pnt p = fg.GetXYZ( i, j ); len[ i ] = len[ i-1 ] + p.Distance( pPrev ); pPrev = p; } for ( size_t i = 0; i < nbCol; ++i ) fg.GetIJK( i, j ).SetCoord( i1, len[ i ]/len.back() ); } } } //============================================================================= /*! * Generates hexahedron mesh on hexaedron like form using algorithm from * "Application de l'interpolation transfinie � la cr�ation de maillages * C0 ou G1 continus sur des triangles, quadrangles, tetraedres, pentaedres * et hexaedres d�form�s." * Alain PERONNET - 8 janvier 1999 */ //============================================================================= bool StdMeshers_Hexa_3D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape) { // PAL14921. Enable catching std::bad_alloc and Standard_OutOfMemory outside //Unexpect aCatch(SalomeException); SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); // Shape verification // ---------------------- // shape must be a solid (or a shell) with 6 faces TopExp_Explorer exp(aShape,TopAbs_SHELL); if ( !exp.More() ) return error(COMPERR_BAD_SHAPE, "No SHELL in the geometry"); if ( exp.Next(), exp.More() ) return error(COMPERR_BAD_SHAPE, "More than one SHELL in the geometry"); TopTools_IndexedMapOfShape FF, EE; TopExp::MapShapes( aShape, TopAbs_FACE, FF); if ( FF.Extent() != 6) { static StdMeshers_CompositeHexa_3D compositeHexa(_gen->GetANewId(), _gen); compositeHexa.SetHypothesis( _blockRenumberHyp ); if ( !compositeHexa.Compute( aMesh, aShape )) return error( compositeHexa.GetComputeError() ); return _blockRenumberHyp ? error( _blockRenumberHyp->CheckHypothesis( aMesh, aShape )) : true; } // Find sides of a cube // --------------------- // tool creating quadratic elements if needed SMESH_MesherHelper helper (aMesh); _quadraticMesh = helper.IsQuadraticSubMesh(aShape); TopExp::MapShapes( aShape, TopAbs_EDGE, EE ); SMESH_MesherHelper* faceHelper = ( EE.Size() == 12 ) ? 0 : &helper; FaceQuadStructPtr quad[ 6 ]; for ( int i = 0; i < 6; ++i ) { if ( faceHelper ) faceHelper->SetSubShape( FF( i+1 )); if ( !( quad[i] = FaceQuadStructPtr( _quadAlgo->CheckNbEdges( aMesh, FF( i+1 ), /*considerMesh=*/true, faceHelper)))) return error( _quadAlgo->GetComputeError() ); if ( quad[i]->side.size() != 4 ) return error( COMPERR_BAD_SHAPE, "Not a quadrangular box side" ); } // put quads in a proper order _FaceGrid aCubeSide[ 6 ]; if ( !arrangeQuads( quad, aCubeSide, true )) return error( COMPERR_BAD_SHAPE ); // Make viscous layers // -------------------- SMESH_ProxyMesh::Ptr proxymesh; if ( _viscousLayersHyp ) { proxymesh = _viscousLayersHyp->Compute( aMesh, aShape, /*makeN2NMap=*/ true ); if ( !proxymesh ) return false; } // Check if there are triangles on cube sides // ------------------------------------------- if ( aMesh.NbTriangles() > 0 ) { for ( int i = 0; i < 6; ++i ) { const TopoDS_Face& sideF = aCubeSide[i]._quad->face; const SMESHDS_SubMesh* smDS = proxymesh ? proxymesh->GetSubMesh( sideF ) : meshDS->MeshElements( sideF ); if ( !SMESH_MesherHelper::IsSameElemGeometry( smDS, SMDSGeom_QUADRANGLE, /*nullSubMeshRes=*/false )) { SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape, proxymesh.get()); return error( err ); } } } // Arrange sides according to _blockRenumberHyp bool toRenumber = _blockRenumberHyp; if ( toRenumber ) { TopoDS_Vertex v000, v001; _blockRenumberHyp->IsSolidIncluded( aMesh, aShape, v000, v001 ); toRenumber = arrangeForRenumber( aCubeSide, v000, v001 ); if ( toRenumber ) { meshDS->Modified(); meshDS->CompactMesh(); // remove numbering holes } } // Check presence of regular grid mesh on FACEs of the cube // ------------------------------------------------------------ for ( int i = 0; i < 6; ++i ) { const TopoDS_Face& F = aCubeSide[i]._quad->face; StdMeshers_FaceSidePtr baseQuadSide = aCubeSide[i]._quad->side[ Q_BOTTOM ]; list baseEdges( baseQuadSide->Edges().begin(), baseQuadSide->Edges().end() ); // assure correctness of node positions on baseE: // helper.GetNodeU() will fix positions if they are wrong helper.ToFixNodeParameters( true ); for ( int iE = 0; iE < baseQuadSide->NbEdges(); ++iE ) { const TopoDS_Edge& baseE = baseQuadSide->Edge( iE ); if ( SMESHDS_SubMesh* smDS = meshDS->MeshElements( baseE )) { bool ok; helper.SetSubShape( baseE ); SMDS_ElemIteratorPtr eIt = smDS->GetElements(); while ( eIt->more() ) { const SMDS_MeshElement* e = eIt->next(); // expect problems on a composite side try { helper.GetNodeU( baseE, e->GetNode(0), e->GetNode(1), &ok); } catch (...) {} try { helper.GetNodeU( baseE, e->GetNode(1), e->GetNode(0), &ok); } catch (...) {} } } } // load grid bool ok = helper.LoadNodeColumns( aCubeSide[i]._u2nodesMap, F, baseEdges, meshDS, proxymesh.get()); if ( ok ) { // check if the loaded grid corresponds to nb of quadrangles on the FACE const SMESHDS_SubMesh* faceSubMesh = proxymesh ? proxymesh->GetSubMesh( F ) : meshDS->MeshElements( F ); const int nbQuads = faceSubMesh->NbElements(); const int nbHor = aCubeSide[i]._u2nodesMap.size() - 1; const int nbVer = aCubeSide[i]._u2nodesMap.begin()->second.size() - 1; ok = ( nbQuads == nbHor * nbVer ); } if ( !ok ) { SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape, proxymesh.get()); return error( err ); } } // Orient loaded grids of cube sides along axis of the unitary cube coord system bool isReverse[6]; isReverse[B_BOTTOM] = beginsAtSide( aCubeSide[B_BOTTOM], aCubeSide[B_RIGHT ], proxymesh ); isReverse[B_TOP ] = beginsAtSide( aCubeSide[B_TOP ], aCubeSide[B_RIGHT ], proxymesh ); isReverse[B_FRONT ] = beginsAtSide( aCubeSide[B_FRONT ], aCubeSide[B_RIGHT ], proxymesh ); isReverse[B_BACK ] = beginsAtSide( aCubeSide[B_BACK ], aCubeSide[B_RIGHT ], proxymesh ); isReverse[B_LEFT ] = beginsAtSide( aCubeSide[B_LEFT ], aCubeSide[B_BACK ], proxymesh ); isReverse[B_RIGHT ] = beginsAtSide( aCubeSide[B_RIGHT ], aCubeSide[B_BACK ], proxymesh ); for ( int i = 0; i < 6; ++i ) { aCubeSide[i]._columns.resize( aCubeSide[i]._u2nodesMap.size() ); size_t iFwd = 0, iRev = aCubeSide[i]._columns.size()-1; size_t* pi = isReverse[i] ? &iRev : &iFwd; TParam2ColumnMap::iterator u2nn = aCubeSide[i]._u2nodesMap.begin(); for ( ; iFwd < aCubeSide[i]._columns.size(); --iRev, ++iFwd, ++u2nn ) aCubeSide[i]._columns[ *pi ].swap( u2nn->second ); aCubeSide[i]._u2nodesMap.clear(); } if ( proxymesh ) for ( int i = 0; i < 6; ++i ) for ( size_t j = 0; j < aCubeSide[i]._columns.size(); ++j) for ( size_t k = 0; k < aCubeSide[i]._columns[j].size(); ++k) { const SMDS_MeshNode* & n = aCubeSide[i]._columns[j][k]; n = proxymesh->GetProxyNode( n ); } // 4) Create internal nodes of the cube // ------------------------------------- helper.SetSubShape( aShape ); helper.SetElementsOnShape(true); // shortcuts to sides _FaceGrid* fBottom = & aCubeSide[ B_BOTTOM ]; _FaceGrid* fRight = & aCubeSide[ B_RIGHT ]; _FaceGrid* fTop = & aCubeSide[ B_TOP ]; _FaceGrid* fLeft = & aCubeSide[ B_LEFT ]; _FaceGrid* fFront = & aCubeSide[ B_FRONT ]; _FaceGrid* fBack = & aCubeSide[ B_BACK ]; // cube size measured in nb of nodes size_t x, xSize = fBottom->_columns.size() , X = xSize - 1; size_t y, ySize = fLeft->_columns.size() , Y = ySize - 1; size_t z, zSize = fLeft->_columns[0].size(), Z = zSize - 1; // check sharing of FACEs (IPAL54417) if ( fFront ->_columns.size() != xSize || fBack ->_columns.size() != xSize || fTop ->_columns.size() != xSize || fRight ->_columns.size() != ySize || fTop ->_columns[0].size() != ySize || fBottom->_columns[0].size() != ySize || fRight ->_columns[0].size() != zSize || fFront ->_columns[0].size() != zSize || fBack ->_columns[0].size() != zSize ) return error( COMPERR_BAD_SHAPE, "Not sewed faces" ); // columns of internal nodes "rising" from nodes of fBottom _Indexer colIndex( xSize, ySize ); vector< vector< const SMDS_MeshNode* > > columns( colIndex.size() ); // fill node columns by front and back box sides for ( x = 0; x < xSize; ++x ) { vector< const SMDS_MeshNode* >& column0 = columns[ colIndex( x, 0 )]; vector< const SMDS_MeshNode* >& column1 = columns[ colIndex( x, Y )]; column0.resize( zSize ); column1.resize( zSize ); for ( z = 0; z < zSize; ++z ) { column0[ z ] = fFront->GetNode( x, z ); column1[ z ] = fBack ->GetNode( x, z ); } } // fill node columns by left and right box sides for ( y = 1; y < ySize-1; ++y ) { vector< const SMDS_MeshNode* >& column0 = columns[ colIndex( 0, y )]; vector< const SMDS_MeshNode* >& column1 = columns[ colIndex( X, y )]; column0.resize( zSize ); column1.resize( zSize ); for ( z = 0; z < zSize; ++z ) { column0[ z ] = fLeft ->GetNode( y, z ); column1[ z ] = fRight->GetNode( y, z ); } } // get nodes from top and bottom box sides for ( x = 1; x < xSize-1; ++x ) { for ( y = 1; y < ySize-1; ++y ) { vector< const SMDS_MeshNode* >& column = columns[ colIndex( x, y )]; column.resize( zSize ); column.front() = fBottom->GetNode( x, y ); column.back() = fTop ->GetNode( x, y ); } } // compute normalized parameters of nodes on sides (PAL23189) computeIJK( *fBottom, COO_X, COO_Y, /*z=*/0. ); computeIJK( *fRight, COO_Y, COO_Z, /*x=*/1. ); computeIJK( *fTop, COO_X, COO_Y, /*z=*/1. ); computeIJK( *fLeft, COO_Y, COO_Z, /*x=*/0. ); computeIJK( *fFront, COO_X, COO_Z, /*y=*/0. ); computeIJK( *fBack, COO_X, COO_Z, /*y=*/1. ); StdMeshers_RenumberHelper renumHelper( aMesh, _blockRenumberHyp ); // projection points of the internal node on cube sub-shapes by which // coordinates of the internal node are computed vector pointsOnShapes( SMESH_Block::ID_Shell ); // projections on vertices are constant pointsOnShapes[ SMESH_Block::ID_V000 ] = fBottom->GetXYZ( 0, 0 ); pointsOnShapes[ SMESH_Block::ID_V100 ] = fBottom->GetXYZ( X, 0 ); pointsOnShapes[ SMESH_Block::ID_V010 ] = fBottom->GetXYZ( 0, Y ); pointsOnShapes[ SMESH_Block::ID_V110 ] = fBottom->GetXYZ( X, Y ); pointsOnShapes[ SMESH_Block::ID_V001 ] = fTop->GetXYZ( 0, 0 ); pointsOnShapes[ SMESH_Block::ID_V101 ] = fTop->GetXYZ( X, 0 ); pointsOnShapes[ SMESH_Block::ID_V011 ] = fTop->GetXYZ( 0, Y ); pointsOnShapes[ SMESH_Block::ID_V111 ] = fTop->GetXYZ( X, Y ); gp_XYZ params; // normalized parameters of an internal node within the unit box if ( toRenumber ) for ( y = 0; y < ySize; ++y ) { vector< const SMDS_MeshNode* >& column0y = columns[ colIndex( 0, y )]; for ( z = 0; z < zSize; ++z ) renumHelper.AddReplacingNode( column0y[ z ] ); } for ( x = 1; x < xSize-1; ++x ) { if ( toRenumber ) { vector< const SMDS_MeshNode* >& columnX0 = columns[ colIndex( x, 0 )]; for ( z = 0; z < zSize; ++z ) renumHelper.AddReplacingNode( columnX0[ z ] ); } const double rX = x / double(X); for ( y = 1; y < ySize-1; ++y ) { const double rY = y / double(Y); // a column to fill in during z loop vector< const SMDS_MeshNode* >& column = columns[ colIndex( x, y )]; // projection points on horizontal edges pointsOnShapes[ SMESH_Block::ID_Ex00 ] = fBottom->GetXYZ( x, 0 ); pointsOnShapes[ SMESH_Block::ID_Ex10 ] = fBottom->GetXYZ( x, Y ); pointsOnShapes[ SMESH_Block::ID_E0y0 ] = fBottom->GetXYZ( 0, y ); pointsOnShapes[ SMESH_Block::ID_E1y0 ] = fBottom->GetXYZ( X, y ); pointsOnShapes[ SMESH_Block::ID_Ex01 ] = fTop->GetXYZ( x, 0 ); pointsOnShapes[ SMESH_Block::ID_Ex11 ] = fTop->GetXYZ( x, Y ); pointsOnShapes[ SMESH_Block::ID_E0y1 ] = fTop->GetXYZ( 0, y ); pointsOnShapes[ SMESH_Block::ID_E1y1 ] = fTop->GetXYZ( X, y ); // projection points on horizontal faces pointsOnShapes[ SMESH_Block::ID_Fxy0 ] = fBottom->GetXYZ( x, y ); pointsOnShapes[ SMESH_Block::ID_Fxy1 ] = fTop ->GetXYZ( x, y ); if ( toRenumber ) renumHelper.AddReplacingNode( column[ 0 ] ); for ( z = 1; z < zSize-1; ++z ) // z loop { const double rZ = z / double(Z); const gp_XYZ& pBo = fBottom->GetIJK( x, y ); const gp_XYZ& pTo = fTop ->GetIJK( x, y ); const gp_XYZ& pFr = fFront ->GetIJK( x, z ); const gp_XYZ& pBa = fBack ->GetIJK( x, z ); const gp_XYZ& pLe = fLeft ->GetIJK( y, z ); const gp_XYZ& pRi = fRight ->GetIJK( y, z ); params.SetCoord( 1, 0.5 * ( pBo.X() * ( 1. - rZ ) + pTo.X() * rZ + pFr.X() * ( 1. - rY ) + pBa.X() * rY )); params.SetCoord( 2, 0.5 * ( pBo.Y() * ( 1. - rZ ) + pTo.Y() * rZ + pLe.Y() * ( 1. - rX ) + pRi.Y() * rX )); params.SetCoord( 3, 0.5 * ( pFr.Z() * ( 1. - rY ) + pBa.Z() * rY + pLe.Z() * ( 1. - rX ) + pRi.Z() * rX )); // projection points on vertical edges pointsOnShapes[ SMESH_Block::ID_E00z ] = fFront->GetXYZ( 0, z ); pointsOnShapes[ SMESH_Block::ID_E10z ] = fFront->GetXYZ( X, z ); pointsOnShapes[ SMESH_Block::ID_E01z ] = fBack->GetXYZ( 0, z ); pointsOnShapes[ SMESH_Block::ID_E11z ] = fBack->GetXYZ( X, z ); // projection points on vertical faces pointsOnShapes[ SMESH_Block::ID_Fx0z ] = fFront->GetXYZ( x, z ); pointsOnShapes[ SMESH_Block::ID_Fx1z ] = fBack ->GetXYZ( x, z ); pointsOnShapes[ SMESH_Block::ID_F0yz ] = fLeft ->GetXYZ( y, z ); pointsOnShapes[ SMESH_Block::ID_F1yz ] = fRight->GetXYZ( y, z ); // compute internal node coordinates gp_XYZ coords; SMESH_Block::ShellPoint( params, pointsOnShapes, coords ); column[ z ] = helper.AddNode( coords.X(), coords.Y(), coords.Z() ); } // z loop if ( toRenumber ) renumHelper.AddReplacingNode( column[ Z ] ); } // y loop if ( toRenumber ) { vector< const SMDS_MeshNode* >& columnX0 = columns[ colIndex( x, Y )]; for ( z = 0; z < zSize; ++z ) renumHelper.AddReplacingNode( columnX0[ z ] ); } } // x loop if ( toRenumber ) for ( y = 0; y < ySize; ++y ) { vector< const SMDS_MeshNode* >& columnXy = columns[ colIndex( X, y )]; for ( z = 0; z < zSize; ++z ) renumHelper.AddReplacingNode( columnXy[ z ] ); } // side data no more needed, free memory for ( int i = 0; i < 6; ++i ) SMESHUtils::FreeVector( aCubeSide[i]._columns ); // 5) Create hexahedrons // --------------------- for ( x = 0; x < xSize-1; ++x ) { for ( y = 0; y < ySize-1; ++y ) { vector< const SMDS_MeshNode* >& col00 = columns[ colIndex( x, y )]; vector< const SMDS_MeshNode* >& col10 = columns[ colIndex( x+1, y )]; vector< const SMDS_MeshNode* >& col01 = columns[ colIndex( x, y+1 )]; vector< const SMDS_MeshNode* >& col11 = columns[ colIndex( x+1, y+1 )]; for ( z = 0; z < zSize-1; ++z ) { // bottom face normal of a hexa mush point outside the volume if ( toRenumber ) helper.AddVolume(col00[z], col01[z], col01[z+1], col00[z+1], col10[z], col11[z], col11[z+1], col10[z+1]); else helper.AddVolume(col00[z], col01[z], col11[z], col10[z], col00[z+1], col01[z+1], col11[z+1], col10[z+1]); } } } if ( toRenumber ) renumHelper.DoReplaceNodes(); if ( _blockRenumberHyp ) { return error( _blockRenumberHyp->CheckHypothesis( aMesh, aShape )); } return true; } //============================================================================= /*! * Evaluate */ //============================================================================= bool StdMeshers_Hexa_3D::Evaluate(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, MapShapeNbElems& aResMap) { vector < SMESH_subMesh * >meshFaces; TopTools_SequenceOfShape aFaces; for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) { aFaces.Append(exp.Current()); SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current()); ASSERT(aSubMesh); meshFaces.push_back(aSubMesh); } if (meshFaces.size() != 6) { //return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block"); static StdMeshers_CompositeHexa_3D compositeHexa(-10, aMesh.GetGen()); return compositeHexa.Evaluate(aMesh, aShape, aResMap); } int i = 0; for(; i<6; i++) { //TopoDS_Shape aFace = meshFaces[i]->GetSubShape(); TopoDS_Shape aFace = aFaces.Value(i+1); SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace); if( !algo ) { std::vector aResVec(SMDSEntity_Last); for(int i=SMDSEntity_Node; iGetComputeError(); smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this)); return false; } string algoName = algo->GetName(); bool isAllQuad = false; if (algoName == "Quadrangle_2D") { MapShapeNbElemsItr anIt = aResMap.find(meshFaces[i]); if( anIt == aResMap.end() ) continue; std::vector aVec = (*anIt).second; int nbtri = Max(aVec[SMDSEntity_Triangle],aVec[SMDSEntity_Quad_Triangle]); if( nbtri == 0 ) isAllQuad = true; } if ( ! isAllQuad ) { return EvaluatePentahedralMesh(aMesh, aShape, aResMap); } } // find number of 1d elems for 1 face int nb1d = 0; TopTools_MapOfShape Edges1; bool IsQuadratic = false; bool IsFirst = true; for (TopExp_Explorer exp(aFaces.Value(1), TopAbs_EDGE); exp.More(); exp.Next()) { Edges1.Add(exp.Current()); SMESH_subMesh *sm = aMesh.GetSubMesh(exp.Current()); if( sm ) { MapShapeNbElemsItr anIt = aResMap.find(sm); if( anIt == aResMap.end() ) continue; std::vector aVec = (*anIt).second; nb1d += Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]); if(IsFirst) { IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]); IsFirst = false; } } } // find face opposite to 1 face int OppNum = 0; for(i=2; i<=6; i++) { bool IsOpposite = true; for(TopExp_Explorer exp(aFaces.Value(i), TopAbs_EDGE); exp.More(); exp.Next()) { if( Edges1.Contains(exp.Current()) ) { IsOpposite = false; break; } } if(IsOpposite) { OppNum = i; break; } } // find number of 2d elems on side faces int nb2d = 0; for(i=2; i<=6; i++) { if( i == OppNum ) continue; MapShapeNbElemsItr anIt = aResMap.find( meshFaces[i-1] ); if( anIt == aResMap.end() ) continue; std::vector aVec = (*anIt).second; nb2d += Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]); } MapShapeNbElemsItr anIt = aResMap.find( meshFaces[0] ); std::vector aVec = (*anIt).second; int nb2d_face0 = Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]); int nb0d_face0 = aVec[SMDSEntity_Node]; std::vector aResVec(SMDSEntity_Last); for(int i=SMDSEntity_Node; iGetANewId(), gen ); } algo->InitComputeError(); algo->Compute( aMesh, aHelper ); return error( algo->GetComputeError()); } //================================================================================ /*! * \brief Return true if the algorithm can mesh this shape * \param [in] aShape - shape to check * \param [in] toCheckAll - if true, this check returns OK if all shapes are OK, * else, returns OK if at least one shape is OK */ //================================================================================ bool StdMeshers_Hexa_3D::IsApplicable( const TopoDS_Shape & aShape, bool toCheckAll ) { TopExp_Explorer exp0( aShape, TopAbs_SOLID ); if ( !exp0.More() ) return false; for ( ; exp0.More(); exp0.Next() ) { int nbFoundShells = 0; TopExp_Explorer exp1( exp0.Current(), TopAbs_SHELL ); for ( ; exp1.More(); exp1.Next(), ++nbFoundShells) if ( nbFoundShells == 2 ) break; if ( nbFoundShells != 1 ) { if ( toCheckAll ) return false; continue; } exp1.Init( exp0.Current(), TopAbs_FACE ); int nbEdges = SMESH_MesherHelper::Count( exp1.Current(), TopAbs_EDGE, /*ignoreSame=*/true ); bool ok = ( nbEdges > 3 ); if ( toCheckAll && !ok ) return false; if ( !toCheckAll && ok ) return true; } return toCheckAll; } //======================================================================= //function : ComputePentahedralMesh //purpose : //======================================================================= SMESH_ComputeErrorPtr ComputePentahedralMesh(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, SMESH_ProxyMesh* proxyMesh) { SMESH_ComputeErrorPtr err = SMESH_ComputeError::New(); if ( proxyMesh ) { err->myName = COMPERR_BAD_INPUT_MESH; err->myComment = "Can't build pentahedral mesh on viscous layers"; return err; } bool bOK; StdMeshers_Penta_3D anAlgo; // bOK=anAlgo.Compute(aMesh, aShape); // err = anAlgo.GetComputeError(); // if ( !bOK && anAlgo.ErrorStatus() == 5 ) { static StdMeshers_Prism_3D * aPrism3D = 0; if ( !aPrism3D ) { SMESH_Gen* gen = aMesh.GetGen(); aPrism3D = new StdMeshers_Prism_3D( gen->GetANewId(), gen ); } SMESH_Hypothesis::Hypothesis_Status aStatus; if ( aPrism3D->CheckHypothesis( aMesh, aShape, aStatus ) ) { aPrism3D->InitComputeError(); bOK = aPrism3D->Compute( aMesh, aShape ); err = aPrism3D->GetComputeError(); } } return err; } //======================================================================= //function : EvaluatePentahedralMesh //purpose : //======================================================================= bool EvaluatePentahedralMesh(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, MapShapeNbElems& aResMap) { StdMeshers_Penta_3D anAlgo; bool bOK = anAlgo.Evaluate(aMesh, aShape, aResMap); //err = anAlgo.GetComputeError(); //if ( !bOK && anAlgo.ErrorStatus() == 5 ) if( !bOK ) { static StdMeshers_Prism_3D * aPrism3D = 0; if ( !aPrism3D ) { SMESH_Gen* gen = aMesh.GetGen(); aPrism3D = new StdMeshers_Prism_3D( gen->GetANewId(), gen ); } SMESH_Hypothesis::Hypothesis_Status aStatus; if ( aPrism3D->CheckHypothesis( aMesh, aShape, aStatus ) ) { return aPrism3D->Evaluate(aMesh, aShape, aResMap); } } return bOK; }