// Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH : implementaion of SMESH idl descriptions // File : SMESH_Gen.cxx // Author : Paul RASCLE, EDF // Module : SMESH // //#define CHRONODEF #include "SMESH_Gen.hxx" #include "SMDS_Mesh.hxx" #include "SMDS_MeshElement.hxx" #include "SMDS_MeshNode.hxx" #include "SMESHDS_Document.hxx" #include "SMESH_HypoFilter.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_subMesh.hxx" #include "utilities.h" #include "OpUtil.hxx" #include "Utils_ExceptHandlers.hxx" #include #include #include "memoire.h" using namespace std; //============================================================================= /*! * Constructor */ //============================================================================= SMESH_Gen::SMESH_Gen() { MESSAGE("SMESH_Gen::SMESH_Gen"); _localId = 0; _hypId = 0; _segmentation = _nbSegments = 10; SMDS_Mesh::_meshList.clear(); MESSAGE(SMDS_Mesh::_meshList.size()); _counters = new counters(100); #ifdef WITH_SMESH_CANCEL_COMPUTE _compute_canceled = false; _sm_current = NULL; #endif } //============================================================================= /*! * Destructor */ //============================================================================= SMESH_Gen::~SMESH_Gen() { MESSAGE("SMESH_Gen::~SMESH_Gen"); } //============================================================================= /*! * Creates a mesh in a study. * if (theIsEmbeddedMode) { mesh modification commands are not logged } */ //============================================================================= SMESH_Mesh* SMESH_Gen::CreateMesh(int theStudyId, bool theIsEmbeddedMode) throw(SALOME_Exception) { Unexpect aCatch(SalomeException); MESSAGE("SMESH_Gen::CreateMesh"); // Get studyContext, create it if it does'nt exist, with a SMESHDS_Document StudyContextStruct *aStudyContext = GetStudyContext(theStudyId); // create a new SMESH_mesh object SMESH_Mesh *aMesh = new SMESH_Mesh(_localId++, theStudyId, this, theIsEmbeddedMode, aStudyContext->myDocument); aStudyContext->mapMesh[_localId-1] = aMesh; return aMesh; } //============================================================================= /*! * Compute a mesh */ //============================================================================= bool SMESH_Gen::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, const bool anUpward, const ::MeshDimension aDim, TSetOfInt* aShapesId) { MESSAGE("SMESH_Gen::Compute"); MEMOSTAT; bool ret = true; SMESH_subMesh *sm = aMesh.GetSubMesh(aShape); const bool includeSelf = true; const bool complexShapeFirst = true; const int globalAlgoDim = 100; SMESH_subMeshIteratorPtr smIt; if ( anUpward ) // is called from below code here { // ----------------------------------------------- // mesh all the sub-shapes starting from vertices // ----------------------------------------------- smIt = sm->getDependsOnIterator(includeSelf, !complexShapeFirst); while ( smIt->more() ) { SMESH_subMesh* smToCompute = smIt->next(); // do not mesh vertices of a pseudo shape const TopAbs_ShapeEnum aShType = smToCompute->GetSubShape().ShapeType(); if ( !aMesh.HasShapeToMesh() && aShType == TopAbs_VERTEX ) continue; // check for preview dimension limitations if ( aShapesId && GetShapeDim( aShType ) > (int)aDim ) { // clear compute state to not show previous compute errors // if preview invoked less dimension less than previous smToCompute->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); continue; } if (smToCompute->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE) { #ifdef WITH_SMESH_CANCEL_COMPUTE if (_compute_canceled) return false; _sm_current = smToCompute; #endif smToCompute->ComputeStateEngine( SMESH_subMesh::COMPUTE ); #ifdef WITH_SMESH_CANCEL_COMPUTE _sm_current = NULL; #endif } // we check all the submeshes here and detect if any of them failed to compute if (smToCompute->GetComputeState() == SMESH_subMesh::FAILED_TO_COMPUTE) ret = false; else if ( aShapesId ) aShapesId->insert( smToCompute->GetId() ); } //aMesh.GetMeshDS()->Modified(); return ret; } else { // ----------------------------------------------------------------- // apply algos that DO NOT require Discreteized boundaries and DO NOT // support submeshes, starting from the most complex shapes // and collect submeshes with algos that DO support submeshes // ----------------------------------------------------------------- list< SMESH_subMesh* > smWithAlgoSupportingSubmeshes; // map to sort sm with same dim algos according to dim of // the shape the algo assigned to (issue 0021217) multimap< int, SMESH_subMesh* > shDim2sm; multimap< int, SMESH_subMesh* >::reverse_iterator shDim2smIt; TopoDS_Shape algoShape; int prevShapeDim = -1; smIt = sm->getDependsOnIterator(includeSelf, complexShapeFirst); while ( smIt->more() ) { SMESH_subMesh* smToCompute = smIt->next(); if ( smToCompute->GetComputeState() != SMESH_subMesh::READY_TO_COMPUTE ) continue; const TopoDS_Shape& aSubShape = smToCompute->GetSubShape(); int aShapeDim = GetShapeDim( aSubShape ); if ( aShapeDim < 1 ) break; // check for preview dimension limitations if ( aShapesId && aShapeDim > (int)aDim ) continue; SMESH_Algo* algo = GetAlgo( aMesh, aSubShape, &algoShape ); if ( algo && !algo->NeedDiscreteBoundary() ) { if ( algo->SupportSubmeshes() ) { // reload sub-meshes from shDim2sm into smWithAlgoSupportingSubmeshes // so that more local algos to go first if ( prevShapeDim != aShapeDim ) { prevShapeDim = aShapeDim; for ( shDim2smIt = shDim2sm.rbegin(); shDim2smIt != shDim2sm.rend(); ++shDim2smIt ) if ( shDim2smIt->first == globalAlgoDim ) smWithAlgoSupportingSubmeshes.push_back( shDim2smIt->second ); else smWithAlgoSupportingSubmeshes.push_front( shDim2smIt->second ); shDim2sm.clear(); } // add smToCompute to shDim2sm map if ( algoShape.IsSame( aMesh.GetShapeToMesh() )) { aShapeDim = globalAlgoDim; // to compute last } else { aShapeDim = GetShapeDim( algoShape ); if ( algoShape.ShapeType() == TopAbs_COMPOUND ) { TopoDS_Iterator it( algoShape ); aShapeDim += GetShapeDim( it.Value() ); } } shDim2sm.insert( make_pair( aShapeDim, smToCompute )); } else { #ifdef WITH_SMESH_CANCEL_COMPUTE if (_compute_canceled) return false; _sm_current = smToCompute; #endif smToCompute->ComputeStateEngine( SMESH_subMesh::COMPUTE ); #ifdef WITH_SMESH_CANCEL_COMPUTE _sm_current = NULL; #endif if ( aShapesId ) aShapesId->insert( smToCompute->GetId() ); } } } // reload sub-meshes from shDim2sm into smWithAlgoSupportingSubmeshes for ( shDim2smIt = shDim2sm.rbegin(); shDim2smIt != shDim2sm.rend(); ++shDim2smIt ) if ( shDim2smIt->first == globalAlgoDim ) smWithAlgoSupportingSubmeshes.push_back( shDim2smIt->second ); else smWithAlgoSupportingSubmeshes.push_front( shDim2smIt->second ); // ------------------------------------------------------------ // sort list of submeshes according to mesh order // ------------------------------------------------------------ aMesh.SortByMeshOrder( smWithAlgoSupportingSubmeshes ); // ------------------------------------------------------------ // compute submeshes under shapes with algos that DO NOT require // Discreteized boundaries and DO support submeshes // ------------------------------------------------------------ list< SMESH_subMesh* >::iterator subIt, subEnd; subIt = smWithAlgoSupportingSubmeshes.begin(); subEnd = smWithAlgoSupportingSubmeshes.end(); // start from lower shapes for ( ; subIt != subEnd; ++subIt ) { sm = *subIt; // get a shape the algo is assigned to if ( !GetAlgo( aMesh, sm->GetSubShape(), & algoShape )) continue; // strange... // look for more local algos smIt = sm->getDependsOnIterator(!includeSelf, !complexShapeFirst); while ( smIt->more() ) { SMESH_subMesh* smToCompute = smIt->next(); const TopoDS_Shape& aSubShape = smToCompute->GetSubShape(); const int aShapeDim = GetShapeDim( aSubShape ); //if ( aSubShape.ShapeType() == TopAbs_VERTEX ) continue; if ( aShapeDim < 1 ) continue; // check for preview dimension limitations if ( aShapesId && GetShapeDim( aSubShape.ShapeType() ) > (int)aDim ) continue; SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() ); filter .And( SMESH_HypoFilter::IsApplicableTo( aSubShape )) .And( SMESH_HypoFilter::IsMoreLocalThan( algoShape, aMesh )); if ( SMESH_Algo* subAlgo = (SMESH_Algo*) aMesh.GetHypothesis( aSubShape, filter, true )) { SMESH_Hypothesis::Hypothesis_Status status; if ( subAlgo->CheckHypothesis( aMesh, aSubShape, status )) // mesh a lower smToCompute starting from vertices Compute( aMesh, aSubShape, /*anUpward=*/true, aDim, aShapesId ); } } } // ---------------------------------------------------------- // apply the algos that do not require Discreteized boundaries // ---------------------------------------------------------- for ( subIt = smWithAlgoSupportingSubmeshes.begin(); subIt != subEnd; ++subIt ) { sm = *subIt; if ( sm->GetComputeState() == SMESH_subMesh::READY_TO_COMPUTE) { const TopAbs_ShapeEnum aShType = sm->GetSubShape().ShapeType(); // check for preview dimension limitations if ( aShapesId && GetShapeDim( aShType ) > (int)aDim ) continue; #ifdef WITH_SMESH_CANCEL_COMPUTE if (_compute_canceled) return false; _sm_current = sm; #endif sm->ComputeStateEngine( SMESH_subMesh::COMPUTE ); #ifdef WITH_SMESH_CANCEL_COMPUTE _sm_current = NULL; #endif if ( aShapesId ) aShapesId->insert( sm->GetId() ); } } // ----------------------------------------------- // mesh the rest sub-shapes starting from vertices // ----------------------------------------------- ret = Compute( aMesh, aShape, /*anUpward=*/true, aDim, aShapesId ); } MESSAGE( "VSR - SMESH_Gen::Compute() finished, OK = " << ret); MEMOSTAT; SMESHDS_Mesh *myMesh = aMesh.GetMeshDS(); myMesh->adjustStructure(); MESSAGE("*** compactMesh after compute"); myMesh->compactMesh(); //myMesh->adjustStructure(); list listind = myMesh->SubMeshIndices(); list::iterator it = listind.begin(); int total = 0; for(; it != listind.end(); ++it) { ::SMESHDS_SubMesh *subMesh = myMesh->MeshElements(*it); total += subMesh->getSize(); } MESSAGE("total elements and nodes in submesh sets:" << total); MESSAGE("Number of node objects " << SMDS_MeshNode::nbNodes); MESSAGE("Number of cell objects " << SMDS_MeshCell::nbCells); //myMesh->dumpGrid(); //aMesh.GetMeshDS()->Modified(); // fix quadratic mesh by bending iternal links near concave boundary if ( aShape.IsSame( aMesh.GetShapeToMesh() ) && !aShapesId ) // not preview { SMESH_MesherHelper aHelper( aMesh ); if ( aHelper.IsQuadraticMesh() != SMESH_MesherHelper::LINEAR ) aHelper.FixQuadraticElements(); } return ret; } #ifdef WITH_SMESH_CANCEL_COMPUTE //============================================================================= /*! * Prepare Compute a mesh */ //============================================================================= void SMESH_Gen::PrepareCompute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape) { _compute_canceled = false; _sm_current = NULL; } //============================================================================= /*! * Cancel Compute a mesh */ //============================================================================= void SMESH_Gen::CancelCompute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape) { _compute_canceled = true; if(_sm_current) { _sm_current->ComputeStateEngine( SMESH_subMesh::COMPUTE_CANCELED ); } } #endif //============================================================================= /*! * Evaluate a mesh */ //============================================================================= bool SMESH_Gen::Evaluate(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, MapShapeNbElems& aResMap, const bool anUpward, TSetOfInt* aShapesId) { MESSAGE("SMESH_Gen::Evaluate"); bool ret = true; SMESH_subMesh *sm = aMesh.GetSubMesh(aShape); const bool includeSelf = true; const bool complexShapeFirst = true; SMESH_subMeshIteratorPtr smIt; if ( anUpward ) { // is called from below code here // ----------------------------------------------- // mesh all the sub-shapes starting from vertices // ----------------------------------------------- smIt = sm->getDependsOnIterator(includeSelf, !complexShapeFirst); while ( smIt->more() ) { SMESH_subMesh* smToCompute = smIt->next(); // do not mesh vertices of a pseudo shape const TopAbs_ShapeEnum aShType = smToCompute->GetSubShape().ShapeType(); //if ( !aMesh.HasShapeToMesh() && aShType == TopAbs_VERTEX ) // continue; if ( !aMesh.HasShapeToMesh() ) { if( aShType == TopAbs_VERTEX || aShType == TopAbs_WIRE || aShType == TopAbs_SHELL ) continue; } smToCompute->Evaluate(aResMap); if( aShapesId ) aShapesId->insert( smToCompute->GetId() ); } return ret; } else { // ----------------------------------------------------------------- // apply algos that DO NOT require Discreteized boundaries and DO NOT // support submeshes, starting from the most complex shapes // and collect submeshes with algos that DO support submeshes // ----------------------------------------------------------------- list< SMESH_subMesh* > smWithAlgoSupportingSubmeshes; smIt = sm->getDependsOnIterator(includeSelf, complexShapeFirst); while ( smIt->more() ) { SMESH_subMesh* smToCompute = smIt->next(); const TopoDS_Shape& aSubShape = smToCompute->GetSubShape(); const int aShapeDim = GetShapeDim( aSubShape ); if ( aShapeDim < 1 ) break; SMESH_Algo* algo = GetAlgo( aMesh, aSubShape ); if ( algo && !algo->NeedDiscreteBoundary() ) { if ( algo->SupportSubmeshes() ) { smWithAlgoSupportingSubmeshes.push_front( smToCompute ); } else { smToCompute->Evaluate(aResMap); if ( aShapesId ) aShapesId->insert( smToCompute->GetId() ); } } } // ------------------------------------------------------------ // sort list of meshes according to mesh order // ------------------------------------------------------------ aMesh.SortByMeshOrder( smWithAlgoSupportingSubmeshes ); // ------------------------------------------------------------ // compute submeshes under shapes with algos that DO NOT require // Discreteized boundaries and DO support submeshes // ------------------------------------------------------------ list< SMESH_subMesh* >::iterator subIt, subEnd; subIt = smWithAlgoSupportingSubmeshes.begin(); subEnd = smWithAlgoSupportingSubmeshes.end(); // start from lower shapes for ( ; subIt != subEnd; ++subIt ) { sm = *subIt; // get a shape the algo is assigned to TopoDS_Shape algoShape; if ( !GetAlgo( aMesh, sm->GetSubShape(), & algoShape )) continue; // strange... // look for more local algos smIt = sm->getDependsOnIterator(!includeSelf, !complexShapeFirst); while ( smIt->more() ) { SMESH_subMesh* smToCompute = smIt->next(); const TopoDS_Shape& aSubShape = smToCompute->GetSubShape(); const int aShapeDim = GetShapeDim( aSubShape ); if ( aShapeDim < 1 ) continue; //const TopAbs_ShapeEnum aShType = smToCompute->GetSubShape().ShapeType(); SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() ); filter .And( SMESH_HypoFilter::IsApplicableTo( aSubShape )) .And( SMESH_HypoFilter::IsMoreLocalThan( algoShape, aMesh )); if ( SMESH_Algo* subAlgo = (SMESH_Algo*) aMesh.GetHypothesis( aSubShape, filter, true )) { SMESH_Hypothesis::Hypothesis_Status status; if ( subAlgo->CheckHypothesis( aMesh, aSubShape, status )) // mesh a lower smToCompute starting from vertices Evaluate( aMesh, aSubShape, aResMap, /*anUpward=*/true, aShapesId ); } } } // ---------------------------------------------------------- // apply the algos that do not require Discreteized boundaries // ---------------------------------------------------------- for ( subIt = smWithAlgoSupportingSubmeshes.begin(); subIt != subEnd; ++subIt ) { sm = *subIt; sm->Evaluate(aResMap); if ( aShapesId ) aShapesId->insert( sm->GetId() ); } // ----------------------------------------------- // mesh the rest sub-shapes starting from vertices // ----------------------------------------------- ret = Evaluate( aMesh, aShape, aResMap, /*anUpward=*/true, aShapesId ); } MESSAGE( "VSR - SMESH_Gen::Evaluate() finished, OK = " << ret); return ret; } //======================================================================= //function : checkConformIgnoredAlgos //purpose : //======================================================================= static bool checkConformIgnoredAlgos(SMESH_Mesh& aMesh, SMESH_subMesh* aSubMesh, const SMESH_Algo* aGlobIgnoAlgo, const SMESH_Algo* aLocIgnoAlgo, bool & checkConform, set& aCheckedMap, list< SMESH_Gen::TAlgoStateError > & theErrors) { ASSERT( aSubMesh ); if ( aSubMesh->GetSubShape().ShapeType() == TopAbs_VERTEX) return true; bool ret = true; const list& listHyp = aMesh.GetMeshDS()->GetHypothesis( aSubMesh->GetSubShape() ); list::const_iterator it=listHyp.begin(); for ( ; it != listHyp.end(); it++) { const SMESHDS_Hypothesis * aHyp = *it; if (aHyp->GetType() == SMESHDS_Hypothesis::PARAM_ALGO) continue; const SMESH_Algo* algo = dynamic_cast (aHyp); ASSERT ( algo ); if ( aLocIgnoAlgo ) // algo is hidden by a local algo of upper dim { INFOS( "Local <" << algo->GetName() << "> is hidden by local <" << aLocIgnoAlgo->GetName() << ">"); } else { bool isGlobal = (aMesh.IsMainShape( aSubMesh->GetSubShape() )); int dim = algo->GetDim(); int aMaxGlobIgnoDim = ( aGlobIgnoAlgo ? aGlobIgnoAlgo->GetDim() : -1 ); if ( dim < aMaxGlobIgnoDim ) { // algo is hidden by a global algo INFOS( ( isGlobal ? "Global" : "Local" ) << " <" << algo->GetName() << "> is hidden by global <" << aGlobIgnoAlgo->GetName() << ">"); } else if ( !algo->NeedDiscreteBoundary() && !isGlobal) { // local algo is not hidden and hides algos on sub-shapes if (checkConform && !aSubMesh->IsConform( algo )) { ret = false; checkConform = false; // no more check conformity INFOS( "ERROR: Local <" << algo->GetName() << "> would produce not conform mesh: " " hypotesis is missing"); theErrors.push_back( SMESH_Gen::TAlgoStateError() ); theErrors.back().Set( SMESH_Hypothesis::HYP_NOTCONFORM, algo, false ); } // sub-algos will be hidden by a local SMESH_subMeshIteratorPtr revItSub = aSubMesh->getDependsOnIterator( /*includeSelf=*/false, /*complexShapeFirst=*/true); bool checkConform2 = false; while ( revItSub->more() ) { SMESH_subMesh* sm = revItSub->next(); checkConformIgnoredAlgos (aMesh, sm, aGlobIgnoAlgo, algo, checkConform2, aCheckedMap, theErrors); aCheckedMap.insert( sm ); } } } } return ret; } //======================================================================= //function : checkMissing //purpose : notify on missing hypothesis // Return false if algo or hipothesis is missing //======================================================================= static bool checkMissing(SMESH_Gen* aGen, SMESH_Mesh& aMesh, SMESH_subMesh* aSubMesh, const int aTopAlgoDim, bool* globalChecked, const bool checkNoAlgo, set& aCheckedMap, list< SMESH_Gen::TAlgoStateError > & theErrors) { if ( aSubMesh->GetSubShape().ShapeType() == TopAbs_VERTEX) return true; //MESSAGE("=====checkMissing"); int ret = true; SMESH_Algo* algo = 0; switch (aSubMesh->GetAlgoState()) { case SMESH_subMesh::NO_ALGO: { if (checkNoAlgo) { // should there be any algo? int shapeDim = SMESH_Gen::GetShapeDim( aSubMesh->GetSubShape() ); if (aTopAlgoDim > shapeDim) { MESSAGE( "ERROR: " << shapeDim << "D algorithm is missing" ); ret = false; theErrors.push_back( SMESH_Gen::TAlgoStateError() ); theErrors.back().Set( SMESH_Hypothesis::HYP_MISSING, shapeDim, true ); } } return ret; } case SMESH_subMesh::MISSING_HYP: { // notify if an algo missing hyp is attached to aSubMesh algo = aGen->GetAlgo( aMesh, aSubMesh->GetSubShape() ); ASSERT( algo ); bool IsGlobalHypothesis = aGen->IsGlobalHypothesis( algo, aMesh ); if (!IsGlobalHypothesis || !globalChecked[ algo->GetDim() ]) { TAlgoStateErrorName errName = SMESH_Hypothesis::HYP_MISSING; SMESH_Hypothesis::Hypothesis_Status status; algo->CheckHypothesis( aMesh, aSubMesh->GetSubShape(), status ); if ( status == SMESH_Hypothesis::HYP_BAD_PARAMETER ) { MESSAGE( "ERROR: hypothesis of " << (IsGlobalHypothesis ? "Global " : "Local ") << "<" << algo->GetName() << "> has a bad parameter value"); errName = status; } else if ( status == SMESH_Hypothesis::HYP_BAD_GEOMETRY ) { MESSAGE( "ERROR: " << (IsGlobalHypothesis ? "Global " : "Local ") << "<" << algo->GetName() << "> assigned to mismatching geometry"); errName = status; } else { MESSAGE( "ERROR: " << (IsGlobalHypothesis ? "Global " : "Local ") << "<" << algo->GetName() << "> misses some hypothesis"); } if (IsGlobalHypothesis) globalChecked[ algo->GetDim() ] = true; theErrors.push_back( SMESH_Gen::TAlgoStateError() ); theErrors.back().Set( errName, algo, IsGlobalHypothesis ); } ret = false; break; } case SMESH_subMesh::HYP_OK: algo = aGen->GetAlgo( aMesh, aSubMesh->GetSubShape() ); ret = true; break; default: ASSERT(0); } // do not check under algo that hides sub-algos or // re-start checking NO_ALGO state ASSERT (algo); bool isTopLocalAlgo = ( aTopAlgoDim <= algo->GetDim() && !aGen->IsGlobalHypothesis( algo, aMesh )); if (!algo->NeedDiscreteBoundary() || isTopLocalAlgo) { bool checkNoAlgo2 = ( algo->NeedDiscreteBoundary() ); SMESH_subMeshIteratorPtr itsub = aSubMesh->getDependsOnIterator( /*includeSelf=*/false, /*complexShapeFirst=*/false); while ( itsub->more() ) { // sub-meshes should not be checked further more SMESH_subMesh* sm = itsub->next(); aCheckedMap.insert( sm ); if (isTopLocalAlgo) { //check algo on sub-meshes int aTopAlgoDim2 = algo->GetDim(); if (!checkMissing (aGen, aMesh, sm, aTopAlgoDim2, globalChecked, checkNoAlgo2, aCheckedMap, theErrors)) { ret = false; if (sm->GetAlgoState() == SMESH_subMesh::NO_ALGO ) checkNoAlgo2 = false; } } } } return ret; } //======================================================================= //function : CheckAlgoState //purpose : notify on bad state of attached algos, return false // if Compute() would fail because of some algo bad state //======================================================================= bool SMESH_Gen::CheckAlgoState(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape) { list< TAlgoStateError > errors; return GetAlgoState( aMesh, aShape, errors ); } //======================================================================= //function : GetAlgoState //purpose : notify on bad state of attached algos, return false // if Compute() would fail because of some algo bad state // theErrors list contains problems description //======================================================================= bool SMESH_Gen::GetAlgoState(SMESH_Mesh& theMesh, const TopoDS_Shape& theShape, list< TAlgoStateError > & theErrors) { //MESSAGE("SMESH_Gen::CheckAlgoState"); bool ret = true; bool hasAlgo = false; SMESH_subMesh* sm = theMesh.GetSubMesh(theShape); const SMESHDS_Mesh* meshDS = theMesh.GetMeshDS(); TopoDS_Shape mainShape = meshDS->ShapeToMesh(); // ----------------- // get global algos // ----------------- const SMESH_Algo* aGlobAlgoArr[] = {0,0,0,0}; const list& listHyp = meshDS->GetHypothesis( mainShape ); list::const_iterator it=listHyp.begin(); for ( ; it != listHyp.end(); it++) { const SMESHDS_Hypothesis * aHyp = *it; if (aHyp->GetType() == SMESHDS_Hypothesis::PARAM_ALGO) continue; const SMESH_Algo* algo = dynamic_cast (aHyp); ASSERT ( algo ); int dim = algo->GetDim(); aGlobAlgoArr[ dim ] = algo; hasAlgo = true; } // -------------------------------------------------------- // info on algos that will be ignored because of ones that // don't NeedDiscreteBoundary() attached to super-shapes, // check that a conform mesh will be produced // -------------------------------------------------------- // find a global algo possibly hiding sub-algos int dim; const SMESH_Algo* aGlobIgnoAlgo = 0; for (dim = 3; dim > 0; dim--) { if (aGlobAlgoArr[ dim ] && !aGlobAlgoArr[ dim ]->NeedDiscreteBoundary()) { aGlobIgnoAlgo = aGlobAlgoArr[ dim ]; break; } } set aCheckedSubs; bool checkConform = ( !theMesh.IsNotConformAllowed() ); // loop on theShape and its sub-shapes SMESH_subMeshIteratorPtr revItSub = sm->getDependsOnIterator( /*includeSelf=*/true, /*complexShapeFirst=*/true); while ( revItSub->more() ) { SMESH_subMesh* smToCheck = revItSub->next(); if ( smToCheck->GetSubShape().ShapeType() == TopAbs_VERTEX) break; if ( aCheckedSubs.insert( smToCheck ).second ) // not yet checked if (!checkConformIgnoredAlgos (theMesh, smToCheck, aGlobIgnoAlgo, 0, checkConform, aCheckedSubs, theErrors)) ret = false; if ( smToCheck->GetAlgoState() != SMESH_subMesh::NO_ALGO ) hasAlgo = true; } // ---------------------------------------------------------------- // info on missing hypothesis and find out if all needed algos are // well defined // ---------------------------------------------------------------- //MESSAGE( "---info on missing hypothesis and find out if all needed algos are"); // find max dim of global algo int aTopAlgoDim = 0; for (dim = 3; dim > 0; dim--) { if (aGlobAlgoArr[ dim ]) { aTopAlgoDim = dim; break; } } bool checkNoAlgo = theMesh.HasShapeToMesh() ? bool( aTopAlgoDim ) : false; bool globalChecked[] = { false, false, false, false }; // loop on theShape and its sub-shapes aCheckedSubs.clear(); revItSub = sm->getDependsOnIterator( /*includeSelf=*/true, /*complexShapeFirst=*/true); while ( revItSub->more() ) { SMESH_subMesh* smToCheck = revItSub->next(); if ( smToCheck->GetSubShape().ShapeType() == TopAbs_VERTEX) break; if ( aCheckedSubs.insert( smToCheck ).second ) // not yet checked if (!checkMissing (this, theMesh, smToCheck, aTopAlgoDim, globalChecked, checkNoAlgo, aCheckedSubs, theErrors)) { ret = false; if (smToCheck->GetAlgoState() == SMESH_subMesh::NO_ALGO ) checkNoAlgo = false; } } if ( !hasAlgo ) { ret = false; INFOS( "None algorithm attached" ); theErrors.push_back( TAlgoStateError() ); theErrors.back().Set( SMESH_Hypothesis::HYP_MISSING, 1, true ); } return ret; } //======================================================================= //function : IsGlobalHypothesis //purpose : check if theAlgo is attached to the main shape //======================================================================= bool SMESH_Gen::IsGlobalHypothesis(const SMESH_Hypothesis* theHyp, SMESH_Mesh& aMesh) { SMESH_HypoFilter filter( SMESH_HypoFilter::Is( theHyp )); return aMesh.GetHypothesis( aMesh.GetMeshDS()->ShapeToMesh(), filter, false ); } //================================================================================ /*! * \brief Return paths to xml files of plugins */ //================================================================================ std::vector< std::string > SMESH_Gen::GetPluginXMLPaths() { // Get paths to xml files of plugins vector< string > xmlPaths; string sep; if ( const char* meshersList = getenv("SMESH_MeshersList") ) { string meshers = meshersList, plugin; string::size_type from = 0, pos; while ( from < meshers.size() ) { // cut off plugin name pos = meshers.find( ':', from ); if ( pos != string::npos ) plugin = meshers.substr( from, pos-from ); else plugin = meshers.substr( from ), pos = meshers.size(); from = pos + 1; // get PLUGIN_ROOT_DIR path string rootDirVar, pluginSubDir = plugin; if ( plugin == "StdMeshers" ) rootDirVar = "SMESH", pluginSubDir = "smesh"; else for ( pos = 0; pos < plugin.size(); ++pos ) rootDirVar += toupper( plugin[pos] ); rootDirVar += "_ROOT_DIR"; const char* rootDir = getenv( rootDirVar.c_str() ); if ( !rootDir || strlen(rootDir) == 0 ) { rootDirVar = plugin + "_ROOT_DIR"; // HexoticPLUGIN_ROOT_DIR rootDir = getenv( rootDirVar.c_str() ); if ( !rootDir || strlen(rootDir) == 0 ) continue; } // get a separator from rootDir for ( pos = strlen( rootDir )-1; pos >= 0 && sep.empty(); --pos ) if ( rootDir[pos] == '/' || rootDir[pos] == '\\' ) { sep = rootDir[pos]; break; } #ifdef WNT if (sep.empty() ) sep = "\\"; #else if (sep.empty() ) sep = "/"; #endif // get a path to resource file string xmlPath = rootDir; if ( xmlPath[ xmlPath.size()-1 ] != sep[0] ) xmlPath += sep; xmlPath += "share" + sep + "salome" + sep + "resources" + sep; for ( pos = 0; pos < pluginSubDir.size(); ++pos ) xmlPath += tolower( pluginSubDir[pos] ); xmlPath += sep + plugin + ".xml"; bool fileOK; #ifdef WNT fileOK = (GetFileAttributes(xmlPath.c_str()) != INVALID_FILE_ATTRIBUTES); #else fileOK = (access(xmlPath.c_str(), F_OK) == 0); #endif if ( fileOK ) xmlPaths.push_back( xmlPath ); } } return xmlPaths; } //======================================================================= namespace // Access to type of input and output of an algorithm //======================================================================= { struct AlgoData { int _dim; set _inElemTypes; // acceptable types of input mesh element set _outElemTypes; // produced types of mesh elements bool IsCompatible( const AlgoData& algo2 ) const { if ( _dim > algo2._dim ) return algo2.IsCompatible( *this ); // algo2 is of highter dimension if ( _outElemTypes.empty() || algo2._inElemTypes.empty() ) return false; bool compatible = true; set::const_iterator myOutType = _outElemTypes.begin(); for ( ; myOutType != _outElemTypes.end() && compatible; ++myOutType ) compatible = algo2._inElemTypes.count( *myOutType ); return compatible; } }; //================================================================================ /*! * \brief Return AlgoData of the algorithm */ //================================================================================ const AlgoData& getAlgoData( const SMESH_Algo* algo ) { static map< string, AlgoData > theDataByName; if ( theDataByName.empty() ) { // Read Plugin.xml files vector< string > xmlPaths = SMESH_Gen::GetPluginXMLPaths(); LDOMParser xmlParser; for ( size_t i = 0; i < xmlPaths.size(); ++i ) { bool error = xmlParser.parse( xmlPaths[i].c_str() ); if ( error ) { TCollection_AsciiString data; INFOS( xmlParser.GetError(data) ); continue; } // // LDOM_Document xmlDoc = xmlParser.getDocument(); LDOM_NodeList algoNodeList = xmlDoc.getElementsByTagName( "algorithm" ); for ( int i = 0; i < algoNodeList.getLength(); ++i ) { LDOM_Node algoNode = algoNodeList.item( i ); LDOM_Element& algoElem = (LDOM_Element&) algoNode; TCollection_AsciiString algoType = algoElem.getAttribute("type"); TCollection_AsciiString input = algoElem.getAttribute("input"); TCollection_AsciiString output = algoElem.getAttribute("output"); TCollection_AsciiString dim = algoElem.getAttribute("dim"); AlgoData & data = theDataByName[ algoType.ToCString() ]; data._dim = dim.IntegerValue(); for ( int isInput = 0; isInput < 2; ++isInput ) { TCollection_AsciiString& typeStr = isInput ? input : output; set& typeSet = isInput ? data._inElemTypes : data._outElemTypes; int beg = 1, end; while ( beg <= typeStr.Length() ) { while ( beg < typeStr.Length() && !isalpha( typeStr.Value( beg ) )) ++beg; end = beg; while ( end < typeStr.Length() && isalpha( typeStr.Value( end + 1 ) )) ++end; if ( end > beg ) { TCollection_AsciiString typeName = typeStr.SubString( beg, end ); if ( typeName == "EDGE" ) typeSet.insert( SMDSGeom_EDGE ); else if ( typeName == "TRIA" ) typeSet.insert( SMDSGeom_TRIANGLE ); else if ( typeName == "QUAD" ) typeSet.insert( SMDSGeom_QUADRANGLE ); } beg = end + 1; } } } } } return theDataByName[ algo->GetName() ]; } } //============================================================================= /*! * Finds algo to mesh a shape. Optionally returns a shape the found algo is bound to */ //============================================================================= SMESH_Algo *SMESH_Gen::GetAlgo(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, TopoDS_Shape* assignedTo) { SMESH_HypoFilter filter( SMESH_HypoFilter::IsAlgo() ); filter.And( filter.IsApplicableTo( aShape )); TopoDS_Shape assignedToShape; SMESH_Algo* algo = (SMESH_Algo*) aMesh.GetHypothesis( aShape, filter, true, &assignedToShape ); if ( algo && aShape.ShapeType() == TopAbs_FACE && !aShape.IsSame( assignedToShape ) && SMESH_MesherHelper::NbAncestors( aShape, aMesh, TopAbs_SOLID ) > 1 ) { // Issue 0021559. If there is another 2D algo with different types of output // elements that can be used to mesh aShape, and 3D algos on adjacent SOLIDs // have different types of input elements, we choose a most appropriate 2D algo. // try to find a concurrent 2D algo filter.AndNot( filter.Is( algo )); TopoDS_Shape assignedToShape2; SMESH_Algo* algo2 = (SMESH_Algo*) aMesh.GetHypothesis( aShape, filter, true, &assignedToShape2 ); if ( algo2 && assignedToShape2.ShapeType() == assignedToShape.ShapeType() && aMesh.IsOrderOK( aMesh.GetSubMesh( assignedToShape2 ), aMesh.GetSubMesh( assignedToShape ))) { // get algos on the adjacent SOLIDs filter.Init( filter.IsAlgo() ).And( filter.HasDim( 3 )); vector< SMESH_Algo* > algos3D; PShapeIteratorPtr solidIt = SMESH_MesherHelper::GetAncestors( aShape, aMesh, TopAbs_SOLID ); while ( const TopoDS_Shape* solid = solidIt->next() ) if ( SMESH_Algo* algo3D = (SMESH_Algo*) aMesh.GetHypothesis( *solid, filter, true )) { algos3D.push_back( algo3D ); filter.AndNot( filter.Is( algo3D )); } // check compatibility of algos if ( algos3D.size() > 1 ) { const AlgoData& algoData = getAlgoData( algo ); const AlgoData& algoData2 = getAlgoData( algo2 ); const AlgoData& algoData3d0 = getAlgoData( algos3D[0] ); const AlgoData& algoData3d1 = getAlgoData( algos3D[1] ); if (( algoData2.IsCompatible( algoData3d0 ) && algoData2.IsCompatible( algoData3d1 )) && !(algoData.IsCompatible( algoData3d0 ) && algoData.IsCompatible( algoData3d1 ))) algo = algo2; } } } if ( assignedTo && algo ) * assignedTo = assignedToShape; return algo; } //============================================================================= /*! * Returns StudyContextStruct for a study */ //============================================================================= StudyContextStruct *SMESH_Gen::GetStudyContext(int studyId) { // Get studyContext, create it if it does'nt exist, with a SMESHDS_Document if (_mapStudyContext.find(studyId) == _mapStudyContext.end()) { _mapStudyContext[studyId] = new StudyContextStruct; _mapStudyContext[studyId]->myDocument = new SMESHDS_Document(studyId); } StudyContextStruct *myStudyContext = _mapStudyContext[studyId]; return myStudyContext; } //================================================================================ /*! * \brief Return shape dimension by TopAbs_ShapeEnum */ //================================================================================ int SMESH_Gen::GetShapeDim(const TopAbs_ShapeEnum & aShapeType) { static vector dim; if ( dim.empty() ) { dim.resize( TopAbs_SHAPE, -1 ); dim[ TopAbs_COMPOUND ] = MeshDim_3D; dim[ TopAbs_COMPSOLID ] = MeshDim_3D; dim[ TopAbs_SOLID ] = MeshDim_3D; dim[ TopAbs_SHELL ] = MeshDim_2D; dim[ TopAbs_FACE ] = MeshDim_2D; dim[ TopAbs_WIRE ] = MeshDim_1D; dim[ TopAbs_EDGE ] = MeshDim_1D; dim[ TopAbs_VERTEX ] = MeshDim_0D; } return dim[ aShapeType ]; } //============================================================================= /*! * Genarate a new id unique withing this Gen */ //============================================================================= int SMESH_Gen::GetANewId() { return _hypId++; }