// Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com #include "SMESH_ControlsDef.hxx" #include "SMDS_BallElement.hxx" #include "SMDS_Iterator.hxx" #include "SMDS_Mesh.hxx" #include "SMDS_MeshElement.hxx" #include "SMDS_MeshNode.hxx" #include "SMDS_QuadraticEdge.hxx" #include "SMDS_QuadraticFaceOfNodes.hxx" #include "SMDS_VolumeTool.hxx" #include "SMESHDS_GroupBase.hxx" #include "SMESHDS_Mesh.hxx" #include "SMESH_OctreeNode.hxx" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* AUXILIARY METHODS */ namespace { const double theEps = 1e-100; const double theInf = 1e+100; inline gp_XYZ gpXYZ(const SMDS_MeshNode* aNode ) { return gp_XYZ(aNode->X(), aNode->Y(), aNode->Z() ); } inline double getAngle( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 ) { gp_Vec v1( P1 - P2 ), v2( P3 - P2 ); return v1.Magnitude() < gp::Resolution() || v2.Magnitude() < gp::Resolution() ? 0 : v1.Angle( v2 ); } inline double getArea( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 ) { gp_Vec aVec1( P2 - P1 ); gp_Vec aVec2( P3 - P1 ); return ( aVec1 ^ aVec2 ).Magnitude() * 0.5; } inline double getArea( const gp_Pnt& P1, const gp_Pnt& P2, const gp_Pnt& P3 ) { return getArea( P1.XYZ(), P2.XYZ(), P3.XYZ() ); } inline double getDistance( const gp_XYZ& P1, const gp_XYZ& P2 ) { double aDist = gp_Pnt( P1 ).Distance( gp_Pnt( P2 ) ); return aDist; } int getNbMultiConnection( const SMDS_Mesh* theMesh, const int theId ) { if ( theMesh == 0 ) return 0; const SMDS_MeshElement* anEdge = theMesh->FindElement( theId ); if ( anEdge == 0 || anEdge->GetType() != SMDSAbs_Edge/* || anEdge->NbNodes() != 2 */) return 0; // for each pair of nodes in anEdge (there are 2 pairs in a quadratic edge) // count elements containing both nodes of the pair. // Note that there may be such cases for a quadratic edge (a horizontal line): // // Case 1 Case 2 // | | | | | // | | | | | // +-----+------+ +-----+------+ // | | | | // | | | | // result sould be 2 in both cases // int aResult0 = 0, aResult1 = 0; // last node, it is a medium one in a quadratic edge const SMDS_MeshNode* aLastNode = anEdge->GetNode( anEdge->NbNodes() - 1 ); const SMDS_MeshNode* aNode0 = anEdge->GetNode( 0 ); const SMDS_MeshNode* aNode1 = anEdge->GetNode( 1 ); if ( aNode1 == aLastNode ) aNode1 = 0; SMDS_ElemIteratorPtr anElemIter = aLastNode->GetInverseElementIterator(); while( anElemIter->more() ) { const SMDS_MeshElement* anElem = anElemIter->next(); if ( anElem != 0 && anElem->GetType() != SMDSAbs_Edge ) { SMDS_ElemIteratorPtr anIter = anElem->nodesIterator(); while ( anIter->more() ) { if ( const SMDS_MeshElement* anElemNode = anIter->next() ) { if ( anElemNode == aNode0 ) { aResult0++; if ( !aNode1 ) break; // not a quadratic edge } else if ( anElemNode == aNode1 ) aResult1++; } } } } int aResult = std::max ( aResult0, aResult1 ); // TColStd_MapOfInteger aMap; // SMDS_ElemIteratorPtr anIter = anEdge->nodesIterator(); // if ( anIter != 0 ) { // while( anIter->more() ) { // const SMDS_MeshNode* aNode = (SMDS_MeshNode*)anIter->next(); // if ( aNode == 0 ) // return 0; // SMDS_ElemIteratorPtr anElemIter = aNode->GetInverseElementIterator(); // while( anElemIter->more() ) { // const SMDS_MeshElement* anElem = anElemIter->next(); // if ( anElem != 0 && anElem->GetType() != SMDSAbs_Edge ) { // int anId = anElem->GetID(); // if ( anIter->more() ) // i.e. first node // aMap.Add( anId ); // else if ( aMap.Contains( anId ) ) // aResult++; // } // } // } // } return aResult; } gp_XYZ getNormale( const SMDS_MeshFace* theFace, bool* ok=0 ) { int aNbNode = theFace->NbNodes(); gp_XYZ q1 = gpXYZ( theFace->GetNode(1)) - gpXYZ( theFace->GetNode(0)); gp_XYZ q2 = gpXYZ( theFace->GetNode(2)) - gpXYZ( theFace->GetNode(0)); gp_XYZ n = q1 ^ q2; if ( aNbNode > 3 ) { gp_XYZ q3 = gpXYZ( theFace->GetNode(3)) - gpXYZ( theFace->GetNode(0)); n += q2 ^ q3; } double len = n.Modulus(); bool zeroLen = ( len <= numeric_limits::min()); if ( !zeroLen ) n /= len; if (ok) *ok = !zeroLen; return n; } } using namespace SMESH::Controls; /* * FUNCTORS */ /* Class : NumericalFunctor Description : Base class for numerical functors */ NumericalFunctor::NumericalFunctor(): myMesh(NULL) { myPrecision = -1; } void NumericalFunctor::SetMesh( const SMDS_Mesh* theMesh ) { myMesh = theMesh; } bool NumericalFunctor::GetPoints(const int theId, TSequenceOfXYZ& theRes ) const { theRes.clear(); if ( myMesh == 0 ) return false; const SMDS_MeshElement* anElem = myMesh->FindElement( theId ); if ( !anElem || anElem->GetType() != this->GetType() ) return false; return GetPoints( anElem, theRes ); } bool NumericalFunctor::GetPoints(const SMDS_MeshElement* anElem, TSequenceOfXYZ& theRes ) { theRes.clear(); if ( anElem == 0 ) return false; theRes.reserve( anElem->NbNodes() ); // Get nodes of the element SMDS_ElemIteratorPtr anIter; if ( anElem->IsQuadratic() ) { switch ( anElem->GetType() ) { case SMDSAbs_Edge: anIter = dynamic_cast (anElem)->interlacedNodesElemIterator(); break; case SMDSAbs_Face: anIter = dynamic_cast (anElem)->interlacedNodesElemIterator(); break; default: anIter = anElem->nodesIterator(); //return false; } } else { anIter = anElem->nodesIterator(); } if ( anIter ) { while( anIter->more() ) { if ( const SMDS_MeshNode* aNode = static_cast( anIter->next() )) theRes.push_back( gp_XYZ( aNode->X(), aNode->Y(), aNode->Z() ) ); } } return true; } long NumericalFunctor::GetPrecision() const { return myPrecision; } void NumericalFunctor::SetPrecision( const long thePrecision ) { myPrecision = thePrecision; myPrecisionValue = pow( 10., (double)( myPrecision ) ); } double NumericalFunctor::GetValue( long theId ) { double aVal = 0; myCurrElement = myMesh->FindElement( theId ); TSequenceOfXYZ P; if ( GetPoints( theId, P )) aVal = Round( GetValue( P )); return aVal; } double NumericalFunctor::Round( const double & aVal ) { return ( myPrecision >= 0 ) ? floor( aVal * myPrecisionValue + 0.5 ) / myPrecisionValue : aVal; } //================================================================================ /*! * \brief Return histogram of functor values * \param nbIntervals - number of intervals * \param nbEvents - number of mesh elements having values within i-th interval * \param funValues - boundaries of intervals * \param elements - elements to check vulue of; empty list means "of all" * \param minmax - boundaries of diapason of values to divide into intervals */ //================================================================================ void NumericalFunctor::GetHistogram(int nbIntervals, std::vector& nbEvents, std::vector& funValues, const vector& elements, const double* minmax, const bool isLogarithmic) { if ( nbIntervals < 1 || !myMesh || !myMesh->GetMeshInfo().NbElements( GetType() )) return; nbEvents.resize( nbIntervals, 0 ); funValues.resize( nbIntervals+1 ); // get all values sorted std::multiset< double > values; if ( elements.empty() ) { SMDS_ElemIteratorPtr elemIt = myMesh->elementsIterator(GetType()); while ( elemIt->more() ) values.insert( GetValue( elemIt->next()->GetID() )); } else { vector::const_iterator id = elements.begin(); for ( ; id != elements.end(); ++id ) values.insert( GetValue( *id )); } if ( minmax ) { funValues[0] = minmax[0]; funValues[nbIntervals] = minmax[1]; } else { funValues[0] = *values.begin(); funValues[nbIntervals] = *values.rbegin(); } // case nbIntervals == 1 if ( nbIntervals == 1 ) { nbEvents[0] = values.size(); return; } // case of 1 value if (funValues.front() == funValues.back()) { nbEvents.resize( 1 ); nbEvents[0] = values.size(); funValues[1] = funValues.back(); funValues.resize( 2 ); } // generic case std::multiset< double >::iterator min = values.begin(), max; for ( int i = 0; i < nbIntervals; ++i ) { // find end value of i-th interval double r = (i+1) / double(nbIntervals); if (isLogarithmic && funValues.front() > 1e-07 && funValues.back() > 1e-07) { double logmin = log10(funValues.front()); double lval = logmin + r * (log10(funValues.back()) - logmin); funValues[i+1] = pow(10.0, lval); } else { funValues[i+1] = funValues.front() * (1-r) + funValues.back() * r; } // count values in the i-th interval if there are any if ( min != values.end() && *min <= funValues[i+1] ) { // find the first value out of the interval max = values.upper_bound( funValues[i+1] ); // max is greater than funValues[i+1], or end() nbEvents[i] = std::distance( min, max ); min = max; } } // add values larger than minmax[1] nbEvents.back() += std::distance( min, values.end() ); } //======================================================================= //function : GetValue //purpose : //======================================================================= double Volume::GetValue( long theElementId ) { if ( theElementId && myMesh ) { SMDS_VolumeTool aVolumeTool; if ( aVolumeTool.Set( myMesh->FindElement( theElementId ))) return aVolumeTool.GetSize(); } return 0; } //======================================================================= //function : GetBadRate //purpose : meaningless as it is not quality control functor //======================================================================= double Volume::GetBadRate( double Value, int /*nbNodes*/ ) const { return Value; } //======================================================================= //function : GetType //purpose : //======================================================================= SMDSAbs_ElementType Volume::GetType() const { return SMDSAbs_Volume; } //======================================================================= /* Class : MaxElementLength2D Description : Functor calculating maximum length of 2D element */ double MaxElementLength2D::GetValue( const TSequenceOfXYZ& P ) { if(P.size() == 0) return 0.; double aVal = 0; int len = P.size(); if( len == 3 ) { // triangles double L1 = getDistance(P( 1 ),P( 2 )); double L2 = getDistance(P( 2 ),P( 3 )); double L3 = getDistance(P( 3 ),P( 1 )); aVal = Max(L1,Max(L2,L3)); } else if( len == 4 ) { // quadrangles double L1 = getDistance(P( 1 ),P( 2 )); double L2 = getDistance(P( 2 ),P( 3 )); double L3 = getDistance(P( 3 ),P( 4 )); double L4 = getDistance(P( 4 ),P( 1 )); double D1 = getDistance(P( 1 ),P( 3 )); double D2 = getDistance(P( 2 ),P( 4 )); aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(D1,D2)); } else if( len == 6 ) { // quadratic triangles double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 )); double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 )); double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 1 )); aVal = Max(L1,Max(L2,L3)); } else if( len == 8 || len == 9 ) { // quadratic quadrangles double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 )); double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 )); double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 7 )); double L4 = getDistance(P( 7 ),P( 8 )) + getDistance(P( 8 ),P( 1 )); double D1 = getDistance(P( 1 ),P( 5 )); double D2 = getDistance(P( 3 ),P( 7 )); aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(D1,D2)); } if( myPrecision >= 0 ) { double prec = pow( 10., (double)myPrecision ); aVal = floor( aVal * prec + 0.5 ) / prec; } return aVal; } double MaxElementLength2D::GetValue( long theElementId ) { TSequenceOfXYZ P; return GetPoints( theElementId, P ) ? GetValue(P) : 0.0; } double MaxElementLength2D::GetBadRate( double Value, int /*nbNodes*/ ) const { return Value; } SMDSAbs_ElementType MaxElementLength2D::GetType() const { return SMDSAbs_Face; } //======================================================================= /* Class : MaxElementLength3D Description : Functor calculating maximum length of 3D element */ double MaxElementLength3D::GetValue( long theElementId ) { TSequenceOfXYZ P; if( GetPoints( theElementId, P ) ) { double aVal = 0; const SMDS_MeshElement* aElem = myMesh->FindElement( theElementId ); SMDSAbs_ElementType aType = aElem->GetType(); int len = P.size(); switch( aType ) { case SMDSAbs_Volume: if( len == 4 ) { // tetras double L1 = getDistance(P( 1 ),P( 2 )); double L2 = getDistance(P( 2 ),P( 3 )); double L3 = getDistance(P( 3 ),P( 1 )); double L4 = getDistance(P( 1 ),P( 4 )); double L5 = getDistance(P( 2 ),P( 4 )); double L6 = getDistance(P( 3 ),P( 4 )); aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); break; } else if( len == 5 ) { // pyramids double L1 = getDistance(P( 1 ),P( 2 )); double L2 = getDistance(P( 2 ),P( 3 )); double L3 = getDistance(P( 3 ),P( 4 )); double L4 = getDistance(P( 4 ),P( 1 )); double L5 = getDistance(P( 1 ),P( 5 )); double L6 = getDistance(P( 2 ),P( 5 )); double L7 = getDistance(P( 3 ),P( 5 )); double L8 = getDistance(P( 4 ),P( 5 )); aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); aVal = Max(aVal,Max(L7,L8)); break; } else if( len == 6 ) { // pentas double L1 = getDistance(P( 1 ),P( 2 )); double L2 = getDistance(P( 2 ),P( 3 )); double L3 = getDistance(P( 3 ),P( 1 )); double L4 = getDistance(P( 4 ),P( 5 )); double L5 = getDistance(P( 5 ),P( 6 )); double L6 = getDistance(P( 6 ),P( 4 )); double L7 = getDistance(P( 1 ),P( 4 )); double L8 = getDistance(P( 2 ),P( 5 )); double L9 = getDistance(P( 3 ),P( 6 )); aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); aVal = Max(aVal,Max(Max(L7,L8),L9)); break; } else if( len == 8 ) { // hexas double L1 = getDistance(P( 1 ),P( 2 )); double L2 = getDistance(P( 2 ),P( 3 )); double L3 = getDistance(P( 3 ),P( 4 )); double L4 = getDistance(P( 4 ),P( 1 )); double L5 = getDistance(P( 5 ),P( 6 )); double L6 = getDistance(P( 6 ),P( 7 )); double L7 = getDistance(P( 7 ),P( 8 )); double L8 = getDistance(P( 8 ),P( 5 )); double L9 = getDistance(P( 1 ),P( 5 )); double L10= getDistance(P( 2 ),P( 6 )); double L11= getDistance(P( 3 ),P( 7 )); double L12= getDistance(P( 4 ),P( 8 )); double D1 = getDistance(P( 1 ),P( 7 )); double D2 = getDistance(P( 2 ),P( 8 )); double D3 = getDistance(P( 3 ),P( 5 )); double D4 = getDistance(P( 4 ),P( 6 )); aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10))); aVal = Max(aVal,Max(L11,L12)); aVal = Max(aVal,Max(Max(D1,D2),Max(D3,D4))); break; } else if( len == 12 ) { // hexagonal prism for ( int i1 = 1; i1 < 12; ++i1 ) for ( int i2 = i1+1; i1 <= 12; ++i1 ) aVal = Max( aVal, getDistance(P( i1 ),P( i2 ))); break; } else if( len == 10 ) { // quadratic tetras double L1 = getDistance(P( 1 ),P( 5 )) + getDistance(P( 5 ),P( 2 )); double L2 = getDistance(P( 2 ),P( 6 )) + getDistance(P( 6 ),P( 3 )); double L3 = getDistance(P( 3 ),P( 7 )) + getDistance(P( 7 ),P( 1 )); double L4 = getDistance(P( 1 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); double L5 = getDistance(P( 2 ),P( 9 )) + getDistance(P( 9 ),P( 4 )); double L6 = getDistance(P( 3 ),P( 10 )) + getDistance(P( 10 ),P( 4 )); aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); break; } else if( len == 13 ) { // quadratic pyramids double L1 = getDistance(P( 1 ),P( 6 )) + getDistance(P( 6 ),P( 2 )); double L2 = getDistance(P( 2 ),P( 7 )) + getDistance(P( 7 ),P( 3 )); double L3 = getDistance(P( 3 ),P( 8 )) + getDistance(P( 8 ),P( 4 )); double L4 = getDistance(P( 4 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); double L5 = getDistance(P( 1 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); double L6 = getDistance(P( 2 ),P( 11 )) + getDistance(P( 11 ),P( 5 )); double L7 = getDistance(P( 3 ),P( 12 )) + getDistance(P( 12 ),P( 5 )); double L8 = getDistance(P( 4 ),P( 13 )) + getDistance(P( 13 ),P( 5 )); aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); aVal = Max(aVal,Max(L7,L8)); break; } else if( len == 15 ) { // quadratic pentas double L1 = getDistance(P( 1 ),P( 7 )) + getDistance(P( 7 ),P( 2 )); double L2 = getDistance(P( 2 ),P( 8 )) + getDistance(P( 8 ),P( 3 )); double L3 = getDistance(P( 3 ),P( 9 )) + getDistance(P( 9 ),P( 1 )); double L4 = getDistance(P( 4 ),P( 10 )) + getDistance(P( 10 ),P( 5 )); double L5 = getDistance(P( 5 ),P( 11 )) + getDistance(P( 11 ),P( 6 )); double L6 = getDistance(P( 6 ),P( 12 )) + getDistance(P( 12 ),P( 4 )); double L7 = getDistance(P( 1 ),P( 13 )) + getDistance(P( 13 ),P( 4 )); double L8 = getDistance(P( 2 ),P( 14 )) + getDistance(P( 14 ),P( 5 )); double L9 = getDistance(P( 3 ),P( 15 )) + getDistance(P( 15 ),P( 6 )); aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); aVal = Max(aVal,Max(Max(L7,L8),L9)); break; } else if( len == 20 || len == 27 ) { // quadratic hexas double L1 = getDistance(P( 1 ),P( 9 )) + getDistance(P( 9 ),P( 2 )); double L2 = getDistance(P( 2 ),P( 10 )) + getDistance(P( 10 ),P( 3 )); double L3 = getDistance(P( 3 ),P( 11 )) + getDistance(P( 11 ),P( 4 )); double L4 = getDistance(P( 4 ),P( 12 )) + getDistance(P( 12 ),P( 1 )); double L5 = getDistance(P( 5 ),P( 13 )) + getDistance(P( 13 ),P( 6 )); double L6 = getDistance(P( 6 ),P( 14 )) + getDistance(P( 14 ),P( 7 )); double L7 = getDistance(P( 7 ),P( 15 )) + getDistance(P( 15 ),P( 8 )); double L8 = getDistance(P( 8 ),P( 16 )) + getDistance(P( 16 ),P( 5 )); double L9 = getDistance(P( 1 ),P( 17 )) + getDistance(P( 17 ),P( 5 )); double L10= getDistance(P( 2 ),P( 18 )) + getDistance(P( 18 ),P( 6 )); double L11= getDistance(P( 3 ),P( 19 )) + getDistance(P( 19 ),P( 7 )); double L12= getDistance(P( 4 ),P( 20 )) + getDistance(P( 20 ),P( 8 )); double D1 = getDistance(P( 1 ),P( 7 )); double D2 = getDistance(P( 2 ),P( 8 )); double D3 = getDistance(P( 3 ),P( 5 )); double D4 = getDistance(P( 4 ),P( 6 )); aVal = Max(Max(Max(L1,L2),Max(L3,L4)),Max(L5,L6)); aVal = Max(aVal,Max(Max(L7,L8),Max(L9,L10))); aVal = Max(aVal,Max(L11,L12)); aVal = Max(aVal,Max(Max(D1,D2),Max(D3,D4))); break; } else if( len > 1 && aElem->IsPoly() ) { // polys // get the maximum distance between all pairs of nodes for( int i = 1; i <= len; i++ ) { for( int j = 1; j <= len; j++ ) { if( j > i ) { // optimization of the loop double D = getDistance( P(i), P(j) ); aVal = Max( aVal, D ); } } } } } if( myPrecision >= 0 ) { double prec = pow( 10., (double)myPrecision ); aVal = floor( aVal * prec + 0.5 ) / prec; } return aVal; } return 0.; } double MaxElementLength3D::GetBadRate( double Value, int /*nbNodes*/ ) const { return Value; } SMDSAbs_ElementType MaxElementLength3D::GetType() const { return SMDSAbs_Volume; } //======================================================================= /* Class : MinimumAngle Description : Functor for calculation of minimum angle */ double MinimumAngle::GetValue( const TSequenceOfXYZ& P ) { double aMin; if (P.size() <3) return 0.; aMin = getAngle(P( P.size() ), P( 1 ), P( 2 )); aMin = Min(aMin,getAngle(P( P.size()-1 ), P( P.size() ), P( 1 ))); for (int i=2; iFindElement( theId ); if ( myCurrElement && myCurrElement->GetVtkType() == VTK_QUAD ) { // issue 21723 vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myCurrElement->getMeshId()]->getGrid(); if ( vtkCell* avtkCell = grid->GetCell( myCurrElement->getVtkId() )) aVal = Round( vtkMeshQuality::QuadAspectRatio( avtkCell )); } else { TSequenceOfXYZ P; if ( GetPoints( myCurrElement, P )) aVal = Round( GetValue( P )); } return aVal; } double AspectRatio::GetValue( const TSequenceOfXYZ& P ) { // According to "Mesh quality control" by Nadir Bouhamau referring to // Pascal Jean Frey and Paul-Louis George. Maillages, applications aux elements finis. // Hermes Science publications, Paris 1999 ISBN 2-7462-0024-4 // PAL10872 int nbNodes = P.size(); if ( nbNodes < 3 ) return 0; // Compute aspect ratio if ( nbNodes == 3 ) { // Compute lengths of the sides std::vector< double > aLen (nbNodes); for ( int i = 0; i < nbNodes - 1; i++ ) aLen[ i ] = getDistance( P( i + 1 ), P( i + 2 ) ); aLen[ nbNodes - 1 ] = getDistance( P( 1 ), P( nbNodes ) ); // Q = alfa * h * p / S, where // // alfa = sqrt( 3 ) / 6 // h - length of the longest edge // p - half perimeter // S - triangle surface const double alfa = sqrt( 3. ) / 6.; double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) ); double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.; double anArea = getArea( P( 1 ), P( 2 ), P( 3 ) ); if ( anArea <= theEps ) return theInf; return alfa * maxLen * half_perimeter / anArea; } else if ( nbNodes == 6 ) { // quadratic triangles // Compute lengths of the sides std::vector< double > aLen (3); aLen[0] = getDistance( P(1), P(3) ); aLen[1] = getDistance( P(3), P(5) ); aLen[2] = getDistance( P(5), P(1) ); // Q = alfa * h * p / S, where // // alfa = sqrt( 3 ) / 6 // h - length of the longest edge // p - half perimeter // S - triangle surface const double alfa = sqrt( 3. ) / 6.; double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) ); double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.; double anArea = getArea( P(1), P(3), P(5) ); if ( anArea <= theEps ) return theInf; return alfa * maxLen * half_perimeter / anArea; } else if( nbNodes == 4 ) { // quadrangle // Compute lengths of the sides std::vector< double > aLen (4); aLen[0] = getDistance( P(1), P(2) ); aLen[1] = getDistance( P(2), P(3) ); aLen[2] = getDistance( P(3), P(4) ); aLen[3] = getDistance( P(4), P(1) ); // Compute lengths of the diagonals std::vector< double > aDia (2); aDia[0] = getDistance( P(1), P(3) ); aDia[1] = getDistance( P(2), P(4) ); // Compute areas of all triangles which can be built // taking three nodes of the quadrangle std::vector< double > anArea (4); anArea[0] = getArea( P(1), P(2), P(3) ); anArea[1] = getArea( P(1), P(2), P(4) ); anArea[2] = getArea( P(1), P(3), P(4) ); anArea[3] = getArea( P(2), P(3), P(4) ); // Q = alpha * L * C1 / C2, where // // alpha = sqrt( 1/32 ) // L = max( L1, L2, L3, L4, D1, D2 ) // C1 = sqrt( ( L1^2 + L1^2 + L1^2 + L1^2 ) / 4 ) // C2 = min( S1, S2, S3, S4 ) // Li - lengths of the edges // Di - lengths of the diagonals // Si - areas of the triangles const double alpha = sqrt( 1 / 32. ); double L = Max( aLen[ 0 ], Max( aLen[ 1 ], Max( aLen[ 2 ], Max( aLen[ 3 ], Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) ); double C1 = sqrt( ( aLen[0] * aLen[0] + aLen[1] * aLen[1] + aLen[2] * aLen[2] + aLen[3] * aLen[3] ) / 4. ); double C2 = Min( anArea[ 0 ], Min( anArea[ 1 ], Min( anArea[ 2 ], anArea[ 3 ] ) ) ); if ( C2 <= theEps ) return theInf; return alpha * L * C1 / C2; } else if( nbNodes == 8 || nbNodes == 9 ) { // nbNodes==8 - quadratic quadrangle // Compute lengths of the sides std::vector< double > aLen (4); aLen[0] = getDistance( P(1), P(3) ); aLen[1] = getDistance( P(3), P(5) ); aLen[2] = getDistance( P(5), P(7) ); aLen[3] = getDistance( P(7), P(1) ); // Compute lengths of the diagonals std::vector< double > aDia (2); aDia[0] = getDistance( P(1), P(5) ); aDia[1] = getDistance( P(3), P(7) ); // Compute areas of all triangles which can be built // taking three nodes of the quadrangle std::vector< double > anArea (4); anArea[0] = getArea( P(1), P(3), P(5) ); anArea[1] = getArea( P(1), P(3), P(7) ); anArea[2] = getArea( P(1), P(5), P(7) ); anArea[3] = getArea( P(3), P(5), P(7) ); // Q = alpha * L * C1 / C2, where // // alpha = sqrt( 1/32 ) // L = max( L1, L2, L3, L4, D1, D2 ) // C1 = sqrt( ( L1^2 + L1^2 + L1^2 + L1^2 ) / 4 ) // C2 = min( S1, S2, S3, S4 ) // Li - lengths of the edges // Di - lengths of the diagonals // Si - areas of the triangles const double alpha = sqrt( 1 / 32. ); double L = Max( aLen[ 0 ], Max( aLen[ 1 ], Max( aLen[ 2 ], Max( aLen[ 3 ], Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) ); double C1 = sqrt( ( aLen[0] * aLen[0] + aLen[1] * aLen[1] + aLen[2] * aLen[2] + aLen[3] * aLen[3] ) / 4. ); double C2 = Min( anArea[ 0 ], Min( anArea[ 1 ], Min( anArea[ 2 ], anArea[ 3 ] ) ) ); if ( C2 <= theEps ) return theInf; return alpha * L * C1 / C2; } return 0; } double AspectRatio::GetBadRate( double Value, int /*nbNodes*/ ) const { // the aspect ratio is in the range [1.0,infinity] // < 1.0 = very bad, zero area // 1.0 = good // infinity = bad return ( Value < 0.9 ) ? 1000 : Value / 1000.; } SMDSAbs_ElementType AspectRatio::GetType() const { return SMDSAbs_Face; } /* Class : AspectRatio3D Description : Functor for calculating aspect ratio */ namespace{ inline double getHalfPerimeter(double theTria[3]){ return (theTria[0] + theTria[1] + theTria[2])/2.0; } inline double getArea(double theHalfPerim, double theTria[3]){ return sqrt(theHalfPerim* (theHalfPerim-theTria[0])* (theHalfPerim-theTria[1])* (theHalfPerim-theTria[2])); } inline double getVolume(double theLen[6]){ double a2 = theLen[0]*theLen[0]; double b2 = theLen[1]*theLen[1]; double c2 = theLen[2]*theLen[2]; double d2 = theLen[3]*theLen[3]; double e2 = theLen[4]*theLen[4]; double f2 = theLen[5]*theLen[5]; double P = 4.0*a2*b2*d2; double Q = a2*(b2+d2-e2)-b2*(a2+d2-f2)-d2*(a2+b2-c2); double R = (b2+d2-e2)*(a2+d2-f2)*(a2+d2-f2); return sqrt(P-Q+R)/12.0; } inline double getVolume2(double theLen[6]){ double a2 = theLen[0]*theLen[0]; double b2 = theLen[1]*theLen[1]; double c2 = theLen[2]*theLen[2]; double d2 = theLen[3]*theLen[3]; double e2 = theLen[4]*theLen[4]; double f2 = theLen[5]*theLen[5]; double P = a2*e2*(b2+c2+d2+f2-a2-e2); double Q = b2*f2*(a2+c2+d2+e2-b2-f2); double R = c2*d2*(a2+b2+e2+f2-c2-d2); double S = a2*b2*d2+b2*c2*e2+a2*c2*f2+d2*e2*f2; return sqrt(P+Q+R-S)/12.0; } inline double getVolume(const TSequenceOfXYZ& P){ gp_Vec aVec1( P( 2 ) - P( 1 ) ); gp_Vec aVec2( P( 3 ) - P( 1 ) ); gp_Vec aVec3( P( 4 ) - P( 1 ) ); gp_Vec anAreaVec( aVec1 ^ aVec2 ); return fabs(aVec3 * anAreaVec) / 6.0; } inline double getMaxHeight(double theLen[6]) { double aHeight = std::max(theLen[0],theLen[1]); aHeight = std::max(aHeight,theLen[2]); aHeight = std::max(aHeight,theLen[3]); aHeight = std::max(aHeight,theLen[4]); aHeight = std::max(aHeight,theLen[5]); return aHeight; } } double AspectRatio3D::GetValue( long theId ) { double aVal = 0; myCurrElement = myMesh->FindElement( theId ); if ( myCurrElement && myCurrElement->GetVtkType() == VTK_TETRA ) { // Action from CoTech | ACTION 31.3: // EURIWARE BO: Homogenize the formulas used to calculate the Controls in SMESH to fit with // those of ParaView. The library used by ParaView for those calculations can be reused in SMESH. vtkUnstructuredGrid* grid = SMDS_Mesh::_meshList[myCurrElement->getMeshId()]->getGrid(); if ( vtkCell* avtkCell = grid->GetCell( myCurrElement->getVtkId() )) aVal = Round( vtkMeshQuality::TetAspectRatio( avtkCell )); } else { TSequenceOfXYZ P; if ( GetPoints( myCurrElement, P )) aVal = Round( GetValue( P )); } return aVal; } double AspectRatio3D::GetValue( const TSequenceOfXYZ& P ) { double aQuality = 0.0; if(myCurrElement->IsPoly()) return aQuality; int nbNodes = P.size(); if(myCurrElement->IsQuadratic()) { if(nbNodes==10) nbNodes=4; // quadratic tetrahedron else if(nbNodes==13) nbNodes=5; // quadratic pyramid else if(nbNodes==15) nbNodes=6; // quadratic pentahedron else if(nbNodes==20) nbNodes=8; // quadratic hexahedron else if(nbNodes==27) nbNodes=8; // quadratic hexahedron else return aQuality; } switch(nbNodes) { case 4:{ double aLen[6] = { getDistance(P( 1 ),P( 2 )), // a getDistance(P( 2 ),P( 3 )), // b getDistance(P( 3 ),P( 1 )), // c getDistance(P( 2 ),P( 4 )), // d getDistance(P( 3 ),P( 4 )), // e getDistance(P( 1 ),P( 4 )) // f }; double aTria[4][3] = { {aLen[0],aLen[1],aLen[2]}, // abc {aLen[0],aLen[3],aLen[5]}, // adf {aLen[1],aLen[3],aLen[4]}, // bde {aLen[2],aLen[4],aLen[5]} // cef }; double aSumArea = 0.0; double aHalfPerimeter = getHalfPerimeter(aTria[0]); double anArea = getArea(aHalfPerimeter,aTria[0]); aSumArea += anArea; aHalfPerimeter = getHalfPerimeter(aTria[1]); anArea = getArea(aHalfPerimeter,aTria[1]); aSumArea += anArea; aHalfPerimeter = getHalfPerimeter(aTria[2]); anArea = getArea(aHalfPerimeter,aTria[2]); aSumArea += anArea; aHalfPerimeter = getHalfPerimeter(aTria[3]); anArea = getArea(aHalfPerimeter,aTria[3]); aSumArea += anArea; double aVolume = getVolume(P); //double aVolume = getVolume(aLen); double aHeight = getMaxHeight(aLen); static double aCoeff = sqrt(2.0)/12.0; if ( aVolume > DBL_MIN ) aQuality = aCoeff*aHeight*aSumArea/aVolume; break; } case 5:{ { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 3 ),P( 5 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 3 ),P( 4 ),P( 5 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 4 ),P( 5 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 3 ),P( 4 ),P( 5 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } break; } case 6:{ { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 4 ),P( 6 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 4 ),P( 3 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 5 ),P( 6 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 5 ),P( 3 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 5 ),P( 4 ),P( 6 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 5 ),P( 4 ),P( 3 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } break; } case 8:{ { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 5 ),P( 3 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 5 ),P( 4 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 5 ),P( 7 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 5 ),P( 8 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 6 ),P( 3 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 6 ),P( 4 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 6 ),P( 7 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 6 ),P( 8 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 6 ),P( 5 ),P( 3 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 6 ),P( 5 ),P( 4 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 6 ),P( 5 ),P( 7 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 6 ),P( 5 ),P( 8 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 8 ),P( 1 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 8 ),P( 2 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 8 ),P( 5 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 8 ),P( 6 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 7 ),P( 1 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 7 ),P( 2 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 7 ),P( 5 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 7 ),P( 6 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 4 ),P( 8 ),P( 7 ),P( 1 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 4 ),P( 8 ),P( 7 ),P( 2 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 4 ),P( 8 ),P( 7 ),P( 5 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 4 ),P( 8 ),P( 7 ),P( 6 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 4 ),P( 8 ),P( 7 ),P( 2 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 4 ),P( 5 ),P( 8 ),P( 2 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 4 ),P( 5 ),P( 3 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 6 ),P( 7 ),P( 1 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 2 ),P( 3 ),P( 6 ),P( 4 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 5 ),P( 6 ),P( 8 ),P( 3 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 7 ),P( 8 ),P( 6 ),P( 1 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 1 ),P( 2 ),P( 4 ),P( 7 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } { gp_XYZ aXYZ[4] = {P( 3 ),P( 4 ),P( 2 ),P( 5 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[4])),aQuality); } break; } case 12: { gp_XYZ aXYZ[8] = {P( 1 ),P( 2 ),P( 4 ),P( 5 ),P( 7 ),P( 8 ),P( 10 ),P( 11 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[8])),aQuality); } { gp_XYZ aXYZ[8] = {P( 2 ),P( 3 ),P( 5 ),P( 6 ),P( 8 ),P( 9 ),P( 11 ),P( 12 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[8])),aQuality); } { gp_XYZ aXYZ[8] = {P( 3 ),P( 4 ),P( 6 ),P( 1 ),P( 9 ),P( 10 ),P( 12 ),P( 7 )}; aQuality = std::max(GetValue(TSequenceOfXYZ(&aXYZ[0],&aXYZ[8])),aQuality); } break; } // switch(nbNodes) if ( nbNodes > 4 ) { // avaluate aspect ratio of quadranle faces AspectRatio aspect2D; SMDS_VolumeTool::VolumeType type = SMDS_VolumeTool::GetType( nbNodes ); int nbFaces = SMDS_VolumeTool::NbFaces( type ); TSequenceOfXYZ points(4); for ( int i = 0; i < nbFaces; ++i ) { // loop on faces of a volume if ( SMDS_VolumeTool::NbFaceNodes( type, i ) != 4 ) continue; const int* pInd = SMDS_VolumeTool::GetFaceNodesIndices( type, i, true ); for ( int p = 0; p < 4; ++p ) // loop on nodes of a quadranle face points( p + 1 ) = P( pInd[ p ] + 1 ); aQuality = std::max( aQuality, aspect2D.GetValue( points )); } } return aQuality; } double AspectRatio3D::GetBadRate( double Value, int /*nbNodes*/ ) const { // the aspect ratio is in the range [1.0,infinity] // 1.0 = good // infinity = bad return Value / 1000.; } SMDSAbs_ElementType AspectRatio3D::GetType() const { return SMDSAbs_Volume; } /* Class : Warping Description : Functor for calculating warping */ double Warping::GetValue( const TSequenceOfXYZ& P ) { if ( P.size() != 4 ) return 0; gp_XYZ G = ( P( 1 ) + P( 2 ) + P( 3 ) + P( 4 ) ) / 4.; double A1 = ComputeA( P( 1 ), P( 2 ), P( 3 ), G ); double A2 = ComputeA( P( 2 ), P( 3 ), P( 4 ), G ); double A3 = ComputeA( P( 3 ), P( 4 ), P( 1 ), G ); double A4 = ComputeA( P( 4 ), P( 1 ), P( 2 ), G ); return Max( Max( A1, A2 ), Max( A3, A4 ) ); } double Warping::ComputeA( const gp_XYZ& thePnt1, const gp_XYZ& thePnt2, const gp_XYZ& thePnt3, const gp_XYZ& theG ) const { double aLen1 = gp_Pnt( thePnt1 ).Distance( gp_Pnt( thePnt2 ) ); double aLen2 = gp_Pnt( thePnt2 ).Distance( gp_Pnt( thePnt3 ) ); double L = Min( aLen1, aLen2 ) * 0.5; if ( L < theEps ) return theInf; gp_XYZ GI = ( thePnt2 + thePnt1 ) / 2. - theG; gp_XYZ GJ = ( thePnt3 + thePnt2 ) / 2. - theG; gp_XYZ N = GI.Crossed( GJ ); if ( N.Modulus() < gp::Resolution() ) return M_PI / 2; N.Normalize(); double H = ( thePnt2 - theG ).Dot( N ); return asin( fabs( H / L ) ) * 180. / M_PI; } double Warping::GetBadRate( double Value, int /*nbNodes*/ ) const { // the warp is in the range [0.0,PI/2] // 0.0 = good (no warp) // PI/2 = bad (face pliee) return Value; } SMDSAbs_ElementType Warping::GetType() const { return SMDSAbs_Face; } /* Class : Taper Description : Functor for calculating taper */ double Taper::GetValue( const TSequenceOfXYZ& P ) { if ( P.size() != 4 ) return 0.; // Compute taper double J1 = getArea( P( 4 ), P( 1 ), P( 2 ) ) / 2.; double J2 = getArea( P( 3 ), P( 1 ), P( 2 ) ) / 2.; double J3 = getArea( P( 2 ), P( 3 ), P( 4 ) ) / 2.; double J4 = getArea( P( 3 ), P( 4 ), P( 1 ) ) / 2.; double JA = 0.25 * ( J1 + J2 + J3 + J4 ); if ( JA <= theEps ) return theInf; double T1 = fabs( ( J1 - JA ) / JA ); double T2 = fabs( ( J2 - JA ) / JA ); double T3 = fabs( ( J3 - JA ) / JA ); double T4 = fabs( ( J4 - JA ) / JA ); return Max( Max( T1, T2 ), Max( T3, T4 ) ); } double Taper::GetBadRate( double Value, int /*nbNodes*/ ) const { // the taper is in the range [0.0,1.0] // 0.0 = good (no taper) // 1.0 = bad (les cotes opposes sont allignes) return Value; } SMDSAbs_ElementType Taper::GetType() const { return SMDSAbs_Face; } /* Class : Skew Description : Functor for calculating skew in degrees */ static inline double skewAngle( const gp_XYZ& p1, const gp_XYZ& p2, const gp_XYZ& p3 ) { gp_XYZ p12 = ( p2 + p1 ) / 2.; gp_XYZ p23 = ( p3 + p2 ) / 2.; gp_XYZ p31 = ( p3 + p1 ) / 2.; gp_Vec v1( p31 - p2 ), v2( p12 - p23 ); return v1.Magnitude() < gp::Resolution() || v2.Magnitude() < gp::Resolution() ? 0. : v1.Angle( v2 ); } double Skew::GetValue( const TSequenceOfXYZ& P ) { if ( P.size() != 3 && P.size() != 4 ) return 0.; // Compute skew static double PI2 = M_PI / 2.; if ( P.size() == 3 ) { double A0 = fabs( PI2 - skewAngle( P( 3 ), P( 1 ), P( 2 ) ) ); double A1 = fabs( PI2 - skewAngle( P( 1 ), P( 2 ), P( 3 ) ) ); double A2 = fabs( PI2 - skewAngle( P( 2 ), P( 3 ), P( 1 ) ) ); return Max( A0, Max( A1, A2 ) ) * 180. / M_PI; } else { gp_XYZ p12 = ( P( 1 ) + P( 2 ) ) / 2.; gp_XYZ p23 = ( P( 2 ) + P( 3 ) ) / 2.; gp_XYZ p34 = ( P( 3 ) + P( 4 ) ) / 2.; gp_XYZ p41 = ( P( 4 ) + P( 1 ) ) / 2.; gp_Vec v1( p34 - p12 ), v2( p23 - p41 ); double A = v1.Magnitude() <= gp::Resolution() || v2.Magnitude() <= gp::Resolution() ? 0. : fabs( PI2 - v1.Angle( v2 ) ); //BUG SWP12743 if ( A < theEps ) return theInf; return A * 180. / M_PI; } } double Skew::GetBadRate( double Value, int /*nbNodes*/ ) const { // the skew is in the range [0.0,PI/2]. // 0.0 = good // PI/2 = bad return Value; } SMDSAbs_ElementType Skew::GetType() const { return SMDSAbs_Face; } /* Class : Area Description : Functor for calculating area */ double Area::GetValue( const TSequenceOfXYZ& P ) { double val = 0.0; if ( P.size() > 2 ) { gp_Vec aVec1( P(2) - P(1) ); gp_Vec aVec2( P(3) - P(1) ); gp_Vec SumVec = aVec1 ^ aVec2; for (int i=4; i<=P.size(); i++) { gp_Vec aVec1( P(i-1) - P(1) ); gp_Vec aVec2( P(i) - P(1) ); gp_Vec tmp = aVec1 ^ aVec2; SumVec.Add(tmp); } val = SumVec.Magnitude() * 0.5; } return val; } double Area::GetBadRate( double Value, int /*nbNodes*/ ) const { // meaningless as it is not a quality control functor return Value; } SMDSAbs_ElementType Area::GetType() const { return SMDSAbs_Face; } /* Class : Length Description : Functor for calculating length of edge */ double Length::GetValue( const TSequenceOfXYZ& P ) { switch ( P.size() ) { case 2: return getDistance( P( 1 ), P( 2 ) ); case 3: return getDistance( P( 1 ), P( 2 ) ) + getDistance( P( 2 ), P( 3 ) ); default: return 0.; } } double Length::GetBadRate( double Value, int /*nbNodes*/ ) const { // meaningless as it is not quality control functor return Value; } SMDSAbs_ElementType Length::GetType() const { return SMDSAbs_Edge; } /* Class : Length2D Description : Functor for calculating length of edge */ double Length2D::GetValue( long theElementId) { TSequenceOfXYZ P; //cout<<"Length2D::GetValue"<FindElement( theElementId ); SMDSAbs_ElementType aType = aElem->GetType(); int len = P.size(); switch (aType){ case SMDSAbs_All: case SMDSAbs_Node: case SMDSAbs_Edge: if (len == 2){ aVal = getDistance( P( 1 ), P( 2 ) ); break; } else if (len == 3){ // quadratic edge aVal = getDistance(P( 1 ),P( 3 )) + getDistance(P( 3 ),P( 2 )); break; } case SMDSAbs_Face: if (len == 3){ // triangles double L1 = getDistance(P( 1 ),P( 2 )); double L2 = getDistance(P( 2 ),P( 3 )); double L3 = getDistance(P( 3 ),P( 1 )); aVal = Max(L1,Max(L2,L3)); break; } else if (len == 4){ // quadrangles double L1 = getDistance(P( 1 ),P( 2 )); double L2 = getDistance(P( 2 ),P( 3 )); double L3 = getDistance(P( 3 ),P( 4 )); double L4 = getDistance(P( 4 ),P( 1 )); aVal = Max(Max(L1,L2),Max(L3,L4)); break; } if (len == 6){ // quadratic triangles double L1 = getDistance(P( 1 ),P( 2 )) + getDistance(P( 2 ),P( 3 )); double L2 = getDistance(P( 3 ),P( 4 )) + getDistance(P( 4 ),P( 5 )); double L3 = getDistance(P( 5 ),P( 6 )) + getDistance(P( 6 ),P( 1 )); aVal = Max(L1,Max(L2,L3)); //cout<<"L1="<FindElement( theId ); if ( !anElem ) return false; const SMDSAbs_ElementType anElemType = anElem->GetType(); if ( myType != SMDSAbs_All && anElemType != myType ) return false; bool isOk = ( anElem->GetGeomType() == myGeomType ); return isOk; } void ElemGeomType::SetType( SMDSAbs_ElementType theType ) { myType = theType; } SMDSAbs_ElementType ElemGeomType::GetType() const { return myType; } void ElemGeomType::SetGeomType( SMDSAbs_GeometryType theType ) { myGeomType = theType; } SMDSAbs_GeometryType ElemGeomType::GetGeomType() const { return myGeomType; } //================================================================================ /*! * \brief Class CoplanarFaces */ //================================================================================ CoplanarFaces::CoplanarFaces() : myFaceID(0), myToler(0) { } void CoplanarFaces::SetMesh( const SMDS_Mesh* theMesh ) { myMeshModifTracer.SetMesh( theMesh ); if ( myMeshModifTracer.IsMeshModified() ) { // Build a set of coplanar face ids myCoplanarIDs.clear(); if ( !myMeshModifTracer.GetMesh() || !myFaceID || !myToler ) return; const SMDS_MeshElement* face = myMeshModifTracer.GetMesh()->FindElement( myFaceID ); if ( !face || face->GetType() != SMDSAbs_Face ) return; bool normOK; gp_Vec myNorm = getNormale( static_cast(face), &normOK ); if (!normOK) return; const double radianTol = myToler * M_PI / 180.; std::set< SMESH_TLink > checkedLinks; std::list< pair< const SMDS_MeshElement*, gp_Vec > > faceQueue; faceQueue.push_back( make_pair( face, myNorm )); while ( !faceQueue.empty() ) { face = faceQueue.front().first; myNorm = faceQueue.front().second; faceQueue.pop_front(); for ( int i = 0, nbN = face->NbCornerNodes(); i < nbN; ++i ) { const SMDS_MeshNode* n1 = face->GetNode( i ); const SMDS_MeshNode* n2 = face->GetNode(( i+1 )%nbN); if ( !checkedLinks.insert( SMESH_TLink( n1, n2 )).second ) continue; SMDS_ElemIteratorPtr fIt = n1->GetInverseElementIterator(SMDSAbs_Face); while ( fIt->more() ) { const SMDS_MeshElement* f = fIt->next(); if ( f->GetNodeIndex( n2 ) > -1 ) { gp_Vec norm = getNormale( static_cast(f), &normOK ); if (!normOK || myNorm.Angle( norm ) <= radianTol) { myCoplanarIDs.insert( f->GetID() ); faceQueue.push_back( make_pair( f, norm )); } } } } } } } bool CoplanarFaces::IsSatisfy( long theElementId ) { return myCoplanarIDs.count( theElementId ); } /* *Class : RangeOfIds *Description : Predicate for Range of Ids. * Range may be specified with two ways. * 1. Using AddToRange method * 2. With SetRangeStr method. Parameter of this method is a string * like as "1,2,3,50-60,63,67,70-" */ //======================================================================= // name : RangeOfIds // Purpose : Constructor //======================================================================= RangeOfIds::RangeOfIds() { myMesh = 0; myType = SMDSAbs_All; } //======================================================================= // name : SetMesh // Purpose : Set mesh //======================================================================= void RangeOfIds::SetMesh( const SMDS_Mesh* theMesh ) { myMesh = theMesh; } //======================================================================= // name : AddToRange // Purpose : Add ID to the range //======================================================================= bool RangeOfIds::AddToRange( long theEntityId ) { myIds.Add( theEntityId ); return true; } //======================================================================= // name : GetRangeStr // Purpose : Get range as a string. // Example: "1,2,3,50-60,63,67,70-" //======================================================================= void RangeOfIds::GetRangeStr( TCollection_AsciiString& theResStr ) { theResStr.Clear(); TColStd_SequenceOfInteger anIntSeq; TColStd_SequenceOfAsciiString aStrSeq; TColStd_MapIteratorOfMapOfInteger anIter( myIds ); for ( ; anIter.More(); anIter.Next() ) { int anId = anIter.Key(); TCollection_AsciiString aStr( anId ); anIntSeq.Append( anId ); aStrSeq.Append( aStr ); } for ( int i = 1, n = myMin.Length(); i <= n; i++ ) { int aMinId = myMin( i ); int aMaxId = myMax( i ); TCollection_AsciiString aStr; if ( aMinId != IntegerFirst() ) aStr += aMinId; aStr += "-"; if ( aMaxId != IntegerLast() ) aStr += aMaxId; // find position of the string in result sequence and insert string in it if ( anIntSeq.Length() == 0 ) { anIntSeq.Append( aMinId ); aStrSeq.Append( aStr ); } else { if ( aMinId < anIntSeq.First() ) { anIntSeq.Prepend( aMinId ); aStrSeq.Prepend( aStr ); } else if ( aMinId > anIntSeq.Last() ) { anIntSeq.Append( aMinId ); aStrSeq.Append( aStr ); } else for ( int j = 1, k = anIntSeq.Length(); j <= k; j++ ) if ( aMinId < anIntSeq( j ) ) { anIntSeq.InsertBefore( j, aMinId ); aStrSeq.InsertBefore( j, aStr ); break; } } } if ( aStrSeq.Length() == 0 ) return; theResStr = aStrSeq( 1 ); for ( int j = 2, k = aStrSeq.Length(); j <= k; j++ ) { theResStr += ","; theResStr += aStrSeq( j ); } } //======================================================================= // name : SetRangeStr // Purpose : Define range with string // Example of entry string: "1,2,3,50-60,63,67,70-" //======================================================================= bool RangeOfIds::SetRangeStr( const TCollection_AsciiString& theStr ) { myMin.Clear(); myMax.Clear(); myIds.Clear(); TCollection_AsciiString aStr = theStr; aStr.RemoveAll( ' ' ); aStr.RemoveAll( '\t' ); for ( int aPos = aStr.Search( ",," ); aPos != -1; aPos = aStr.Search( ",," ) ) aStr.Remove( aPos, 2 ); TCollection_AsciiString tmpStr = aStr.Token( ",", 1 ); int i = 1; while ( tmpStr != "" ) { tmpStr = aStr.Token( ",", i++ ); int aPos = tmpStr.Search( '-' ); if ( aPos == -1 ) { if ( tmpStr.IsIntegerValue() ) myIds.Add( tmpStr.IntegerValue() ); else return false; } else { TCollection_AsciiString aMaxStr = tmpStr.Split( aPos ); TCollection_AsciiString aMinStr = tmpStr; while ( aMinStr.Search( "-" ) != -1 ) aMinStr.RemoveAll( '-' ); while ( aMaxStr.Search( "-" ) != -1 ) aMaxStr.RemoveAll( '-' ); if ( (!aMinStr.IsEmpty() && !aMinStr.IsIntegerValue()) || (!aMaxStr.IsEmpty() && !aMaxStr.IsIntegerValue()) ) return false; myMin.Append( aMinStr.IsEmpty() ? IntegerFirst() : aMinStr.IntegerValue() ); myMax.Append( aMaxStr.IsEmpty() ? IntegerLast() : aMaxStr.IntegerValue() ); } } return true; } //======================================================================= // name : GetType // Purpose : Get type of supported entities //======================================================================= SMDSAbs_ElementType RangeOfIds::GetType() const { return myType; } //======================================================================= // name : SetType // Purpose : Set type of supported entities //======================================================================= void RangeOfIds::SetType( SMDSAbs_ElementType theType ) { myType = theType; } //======================================================================= // name : IsSatisfy // Purpose : Verify whether entity satisfies to this rpedicate //======================================================================= bool RangeOfIds::IsSatisfy( long theId ) { if ( !myMesh ) return false; if ( myType == SMDSAbs_Node ) { if ( myMesh->FindNode( theId ) == 0 ) return false; } else { const SMDS_MeshElement* anElem = myMesh->FindElement( theId ); if ( anElem == 0 || (myType != anElem->GetType() && myType != SMDSAbs_All )) return false; } if ( myIds.Contains( theId ) ) return true; for ( int i = 1, n = myMin.Length(); i <= n; i++ ) if ( theId >= myMin( i ) && theId <= myMax( i ) ) return true; return false; } /* Class : Comparator Description : Base class for comparators */ Comparator::Comparator(): myMargin(0) {} Comparator::~Comparator() {} void Comparator::SetMesh( const SMDS_Mesh* theMesh ) { if ( myFunctor ) myFunctor->SetMesh( theMesh ); } void Comparator::SetMargin( double theValue ) { myMargin = theValue; } void Comparator::SetNumFunctor( NumericalFunctorPtr theFunct ) { myFunctor = theFunct; } SMDSAbs_ElementType Comparator::GetType() const { return myFunctor ? myFunctor->GetType() : SMDSAbs_All; } double Comparator::GetMargin() { return myMargin; } /* Class : LessThan Description : Comparator "<" */ bool LessThan::IsSatisfy( long theId ) { return myFunctor && myFunctor->GetValue( theId ) < myMargin; } /* Class : MoreThan Description : Comparator ">" */ bool MoreThan::IsSatisfy( long theId ) { return myFunctor && myFunctor->GetValue( theId ) > myMargin; } /* Class : EqualTo Description : Comparator "=" */ EqualTo::EqualTo(): myToler(Precision::Confusion()) {} bool EqualTo::IsSatisfy( long theId ) { return myFunctor && fabs( myFunctor->GetValue( theId ) - myMargin ) < myToler; } void EqualTo::SetTolerance( double theToler ) { myToler = theToler; } double EqualTo::GetTolerance() { return myToler; } /* Class : LogicalNOT Description : Logical NOT predicate */ LogicalNOT::LogicalNOT() {} LogicalNOT::~LogicalNOT() {} bool LogicalNOT::IsSatisfy( long theId ) { return myPredicate && !myPredicate->IsSatisfy( theId ); } void LogicalNOT::SetMesh( const SMDS_Mesh* theMesh ) { if ( myPredicate ) myPredicate->SetMesh( theMesh ); } void LogicalNOT::SetPredicate( PredicatePtr thePred ) { myPredicate = thePred; } SMDSAbs_ElementType LogicalNOT::GetType() const { return myPredicate ? myPredicate->GetType() : SMDSAbs_All; } /* Class : LogicalBinary Description : Base class for binary logical predicate */ LogicalBinary::LogicalBinary() {} LogicalBinary::~LogicalBinary() {} void LogicalBinary::SetMesh( const SMDS_Mesh* theMesh ) { if ( myPredicate1 ) myPredicate1->SetMesh( theMesh ); if ( myPredicate2 ) myPredicate2->SetMesh( theMesh ); } void LogicalBinary::SetPredicate1( PredicatePtr thePredicate ) { myPredicate1 = thePredicate; } void LogicalBinary::SetPredicate2( PredicatePtr thePredicate ) { myPredicate2 = thePredicate; } SMDSAbs_ElementType LogicalBinary::GetType() const { if ( !myPredicate1 || !myPredicate2 ) return SMDSAbs_All; SMDSAbs_ElementType aType1 = myPredicate1->GetType(); SMDSAbs_ElementType aType2 = myPredicate2->GetType(); return aType1 == aType2 ? aType1 : SMDSAbs_All; } /* Class : LogicalAND Description : Logical AND */ bool LogicalAND::IsSatisfy( long theId ) { return myPredicate1 && myPredicate2 && myPredicate1->IsSatisfy( theId ) && myPredicate2->IsSatisfy( theId ); } /* Class : LogicalOR Description : Logical OR */ bool LogicalOR::IsSatisfy( long theId ) { return myPredicate1 && myPredicate2 && (myPredicate1->IsSatisfy( theId ) || myPredicate2->IsSatisfy( theId )); } /* FILTER */ Filter::Filter() {} Filter::~Filter() {} void Filter::SetPredicate( PredicatePtr thePredicate ) { myPredicate = thePredicate; } void Filter::GetElementsId( const SMDS_Mesh* theMesh, PredicatePtr thePredicate, TIdSequence& theSequence ) { theSequence.clear(); if ( !theMesh || !thePredicate ) return; thePredicate->SetMesh( theMesh ); SMDS_ElemIteratorPtr elemIt = theMesh->elementsIterator( thePredicate->GetType() ); if ( elemIt ) { while ( elemIt->more() ) { const SMDS_MeshElement* anElem = elemIt->next(); long anId = anElem->GetID(); if ( thePredicate->IsSatisfy( anId ) ) theSequence.push_back( anId ); } } } void Filter::GetElementsId( const SMDS_Mesh* theMesh, Filter::TIdSequence& theSequence ) { GetElementsId(theMesh,myPredicate,theSequence); } /* ManifoldPart */ typedef std::set TMapOfFacePtr; /* Internal class Link */ ManifoldPart::Link::Link( SMDS_MeshNode* theNode1, SMDS_MeshNode* theNode2 ) { myNode1 = theNode1; myNode2 = theNode2; } ManifoldPart::Link::~Link() { myNode1 = 0; myNode2 = 0; } bool ManifoldPart::Link::IsEqual( const ManifoldPart::Link& theLink ) const { if ( myNode1 == theLink.myNode1 && myNode2 == theLink.myNode2 ) return true; else if ( myNode1 == theLink.myNode2 && myNode2 == theLink.myNode1 ) return true; else return false; } bool ManifoldPart::Link::operator<( const ManifoldPart::Link& x ) const { if(myNode1 < x.myNode1) return true; if(myNode1 == x.myNode1) if(myNode2 < x.myNode2) return true; return false; } bool ManifoldPart::IsEqual( const ManifoldPart::Link& theLink1, const ManifoldPart::Link& theLink2 ) { return theLink1.IsEqual( theLink2 ); } ManifoldPart::ManifoldPart() { myMesh = 0; myAngToler = Precision::Angular(); myIsOnlyManifold = true; } ManifoldPart::~ManifoldPart() { myMesh = 0; } void ManifoldPart::SetMesh( const SMDS_Mesh* theMesh ) { myMesh = theMesh; process(); } SMDSAbs_ElementType ManifoldPart::GetType() const { return SMDSAbs_Face; } bool ManifoldPart::IsSatisfy( long theElementId ) { return myMapIds.Contains( theElementId ); } void ManifoldPart::SetAngleTolerance( const double theAngToler ) { myAngToler = theAngToler; } double ManifoldPart::GetAngleTolerance() const { return myAngToler; } void ManifoldPart::SetIsOnlyManifold( const bool theIsOnly ) { myIsOnlyManifold = theIsOnly; } void ManifoldPart::SetStartElem( const long theStartId ) { myStartElemId = theStartId; } bool ManifoldPart::process() { myMapIds.Clear(); myMapBadGeomIds.Clear(); myAllFacePtr.clear(); myAllFacePtrIntDMap.clear(); if ( !myMesh ) return false; // collect all faces into own map SMDS_FaceIteratorPtr anFaceItr = myMesh->facesIterator(); for (; anFaceItr->more(); ) { SMDS_MeshFace* aFacePtr = (SMDS_MeshFace*)anFaceItr->next(); myAllFacePtr.push_back( aFacePtr ); myAllFacePtrIntDMap[aFacePtr] = myAllFacePtr.size()-1; } SMDS_MeshFace* aStartFace = (SMDS_MeshFace*)myMesh->FindElement( myStartElemId ); if ( !aStartFace ) return false; // the map of non manifold links and bad geometry TMapOfLink aMapOfNonManifold; TColStd_MapOfInteger aMapOfTreated; // begin cycle on faces from start index and run on vector till the end // and from begin to start index to cover whole vector const int aStartIndx = myAllFacePtrIntDMap[aStartFace]; bool isStartTreat = false; for ( int fi = aStartIndx; !isStartTreat || fi != aStartIndx ; fi++ ) { if ( fi == aStartIndx ) isStartTreat = true; // as result next time when fi will be equal to aStartIndx SMDS_MeshFace* aFacePtr = myAllFacePtr[ fi ]; if ( aMapOfTreated.Contains( aFacePtr->GetID() ) ) continue; aMapOfTreated.Add( aFacePtr->GetID() ); TColStd_MapOfInteger aResFaces; if ( !findConnected( myAllFacePtrIntDMap, aFacePtr, aMapOfNonManifold, aResFaces ) ) continue; TColStd_MapIteratorOfMapOfInteger anItr( aResFaces ); for ( ; anItr.More(); anItr.Next() ) { int aFaceId = anItr.Key(); aMapOfTreated.Add( aFaceId ); myMapIds.Add( aFaceId ); } if ( fi == ( myAllFacePtr.size() - 1 ) ) fi = 0; } // end run on vector of faces return !myMapIds.IsEmpty(); } static void getLinks( const SMDS_MeshFace* theFace, ManifoldPart::TVectorOfLink& theLinks ) { int aNbNode = theFace->NbNodes(); SMDS_ElemIteratorPtr aNodeItr = theFace->nodesIterator(); int i = 1; SMDS_MeshNode* aNode = 0; for ( ; aNodeItr->more() && i <= aNbNode; ) { SMDS_MeshNode* aN1 = (SMDS_MeshNode*)aNodeItr->next(); if ( i == 1 ) aNode = aN1; i++; SMDS_MeshNode* aN2 = ( i >= aNbNode ) ? aNode : (SMDS_MeshNode*)aNodeItr->next(); i++; ManifoldPart::Link aLink( aN1, aN2 ); theLinks.push_back( aLink ); } } bool ManifoldPart::findConnected ( const ManifoldPart::TDataMapFacePtrInt& theAllFacePtrInt, SMDS_MeshFace* theStartFace, ManifoldPart::TMapOfLink& theNonManifold, TColStd_MapOfInteger& theResFaces ) { theResFaces.Clear(); if ( !theAllFacePtrInt.size() ) return false; if ( getNormale( theStartFace ).SquareModulus() <= gp::Resolution() ) { myMapBadGeomIds.Add( theStartFace->GetID() ); return false; } ManifoldPart::TMapOfLink aMapOfBoundary, aMapToSkip; ManifoldPart::TVectorOfLink aSeqOfBoundary; theResFaces.Add( theStartFace->GetID() ); ManifoldPart::TDataMapOfLinkFacePtr aDMapLinkFace; expandBoundary( aMapOfBoundary, aSeqOfBoundary, aDMapLinkFace, theNonManifold, theStartFace ); bool isDone = false; while ( !isDone && aMapOfBoundary.size() != 0 ) { bool isToReset = false; ManifoldPart::TVectorOfLink::iterator pLink = aSeqOfBoundary.begin(); for ( ; !isToReset && pLink != aSeqOfBoundary.end(); ++pLink ) { ManifoldPart::Link aLink = *pLink; if ( aMapToSkip.find( aLink ) != aMapToSkip.end() ) continue; // each link could be treated only once aMapToSkip.insert( aLink ); ManifoldPart::TVectorOfFacePtr aFaces; // find next if ( myIsOnlyManifold && (theNonManifold.find( aLink ) != theNonManifold.end()) ) continue; else { getFacesByLink( aLink, aFaces ); // filter the element to keep only indicated elements ManifoldPart::TVectorOfFacePtr aFiltered; ManifoldPart::TVectorOfFacePtr::iterator pFace = aFaces.begin(); for ( ; pFace != aFaces.end(); ++pFace ) { SMDS_MeshFace* aFace = *pFace; if ( myAllFacePtrIntDMap.find( aFace ) != myAllFacePtrIntDMap.end() ) aFiltered.push_back( aFace ); } aFaces = aFiltered; if ( aFaces.size() < 2 ) // no neihgbour faces continue; else if ( myIsOnlyManifold && aFaces.size() > 2 ) // non manifold case { theNonManifold.insert( aLink ); continue; } } // compare normal with normals of neighbor element SMDS_MeshFace* aPrevFace = aDMapLinkFace[ aLink ]; ManifoldPart::TVectorOfFacePtr::iterator pFace = aFaces.begin(); for ( ; pFace != aFaces.end(); ++pFace ) { SMDS_MeshFace* aNextFace = *pFace; if ( aPrevFace == aNextFace ) continue; int anNextFaceID = aNextFace->GetID(); if ( myIsOnlyManifold && theResFaces.Contains( anNextFaceID ) ) // should not be with non manifold restriction. probably bad topology continue; // check if face was treated and skipped if ( myMapBadGeomIds.Contains( anNextFaceID ) || !isInPlane( aPrevFace, aNextFace ) ) continue; // add new element to connected and extend the boundaries. theResFaces.Add( anNextFaceID ); expandBoundary( aMapOfBoundary, aSeqOfBoundary, aDMapLinkFace, theNonManifold, aNextFace ); isToReset = true; } } isDone = !isToReset; } return !theResFaces.IsEmpty(); } bool ManifoldPart::isInPlane( const SMDS_MeshFace* theFace1, const SMDS_MeshFace* theFace2 ) { gp_Dir aNorm1 = gp_Dir( getNormale( theFace1 ) ); gp_XYZ aNorm2XYZ = getNormale( theFace2 ); if ( aNorm2XYZ.SquareModulus() <= gp::Resolution() ) { myMapBadGeomIds.Add( theFace2->GetID() ); return false; } if ( aNorm1.IsParallel( gp_Dir( aNorm2XYZ ), myAngToler ) ) return true; return false; } void ManifoldPart::expandBoundary ( ManifoldPart::TMapOfLink& theMapOfBoundary, ManifoldPart::TVectorOfLink& theSeqOfBoundary, ManifoldPart::TDataMapOfLinkFacePtr& theDMapLinkFacePtr, ManifoldPart::TMapOfLink& theNonManifold, SMDS_MeshFace* theNextFace ) const { ManifoldPart::TVectorOfLink aLinks; getLinks( theNextFace, aLinks ); int aNbLink = (int)aLinks.size(); for ( int i = 0; i < aNbLink; i++ ) { ManifoldPart::Link aLink = aLinks[ i ]; if ( myIsOnlyManifold && (theNonManifold.find( aLink ) != theNonManifold.end()) ) continue; if ( theMapOfBoundary.find( aLink ) != theMapOfBoundary.end() ) { if ( myIsOnlyManifold ) { // remove from boundary theMapOfBoundary.erase( aLink ); ManifoldPart::TVectorOfLink::iterator pLink = theSeqOfBoundary.begin(); for ( ; pLink != theSeqOfBoundary.end(); ++pLink ) { ManifoldPart::Link aBoundLink = *pLink; if ( aBoundLink.IsEqual( aLink ) ) { theSeqOfBoundary.erase( pLink ); break; } } } } else { theMapOfBoundary.insert( aLink ); theSeqOfBoundary.push_back( aLink ); theDMapLinkFacePtr[ aLink ] = theNextFace; } } } void ManifoldPart::getFacesByLink( const ManifoldPart::Link& theLink, ManifoldPart::TVectorOfFacePtr& theFaces ) const { std::set aSetOfFaces; // take all faces that shared first node SMDS_ElemIteratorPtr anItr = theLink.myNode1->facesIterator(); for ( ; anItr->more(); ) { SMDS_MeshFace* aFace = (SMDS_MeshFace*)anItr->next(); if ( !aFace ) continue; aSetOfFaces.insert( aFace ); } // take all faces that shared second node anItr = theLink.myNode2->facesIterator(); // find the common part of two sets for ( ; anItr->more(); ) { SMDS_MeshFace* aFace = (SMDS_MeshFace*)anItr->next(); if ( aSetOfFaces.count( aFace ) ) theFaces.push_back( aFace ); } } /* ElementsOnSurface */ ElementsOnSurface::ElementsOnSurface() { myIds.Clear(); myType = SMDSAbs_All; mySurf.Nullify(); myToler = Precision::Confusion(); myUseBoundaries = false; } ElementsOnSurface::~ElementsOnSurface() { } void ElementsOnSurface::SetMesh( const SMDS_Mesh* theMesh ) { myMeshModifTracer.SetMesh( theMesh ); if ( myMeshModifTracer.IsMeshModified()) process(); } bool ElementsOnSurface::IsSatisfy( long theElementId ) { return myIds.Contains( theElementId ); } SMDSAbs_ElementType ElementsOnSurface::GetType() const { return myType; } void ElementsOnSurface::SetTolerance( const double theToler ) { if ( myToler != theToler ) myIds.Clear(); myToler = theToler; } double ElementsOnSurface::GetTolerance() const { return myToler; } void ElementsOnSurface::SetUseBoundaries( bool theUse ) { if ( myUseBoundaries != theUse ) { myUseBoundaries = theUse; SetSurface( mySurf, myType ); } } void ElementsOnSurface::SetSurface( const TopoDS_Shape& theShape, const SMDSAbs_ElementType theType ) { myIds.Clear(); myType = theType; mySurf.Nullify(); if ( theShape.IsNull() || theShape.ShapeType() != TopAbs_FACE ) return; mySurf = TopoDS::Face( theShape ); BRepAdaptor_Surface SA( mySurf, myUseBoundaries ); Standard_Real u1 = SA.FirstUParameter(), u2 = SA.LastUParameter(), v1 = SA.FirstVParameter(), v2 = SA.LastVParameter(); Handle(Geom_Surface) surf = BRep_Tool::Surface( mySurf ); myProjector.Init( surf, u1,u2, v1,v2 ); process(); } void ElementsOnSurface::process() { myIds.Clear(); if ( mySurf.IsNull() ) return; if ( !myMeshModifTracer.GetMesh() ) return; myIds.ReSize( myMeshModifTracer.GetMesh()->GetMeshInfo().NbElements( myType )); SMDS_ElemIteratorPtr anIter = myMeshModifTracer.GetMesh()->elementsIterator( myType ); for(; anIter->more(); ) process( anIter->next() ); } void ElementsOnSurface::process( const SMDS_MeshElement* theElemPtr ) { SMDS_ElemIteratorPtr aNodeItr = theElemPtr->nodesIterator(); bool isSatisfy = true; for ( ; aNodeItr->more(); ) { SMDS_MeshNode* aNode = (SMDS_MeshNode*)aNodeItr->next(); if ( !isOnSurface( aNode ) ) { isSatisfy = false; break; } } if ( isSatisfy ) myIds.Add( theElemPtr->GetID() ); } bool ElementsOnSurface::isOnSurface( const SMDS_MeshNode* theNode ) { if ( mySurf.IsNull() ) return false; gp_Pnt aPnt( theNode->X(), theNode->Y(), theNode->Z() ); // double aToler2 = myToler * myToler; // if ( mySurf->IsKind(STANDARD_TYPE(Geom_Plane))) // { // gp_Pln aPln = Handle(Geom_Plane)::DownCast(mySurf)->Pln(); // if ( aPln.SquareDistance( aPnt ) > aToler2 ) // return false; // } // else if ( mySurf->IsKind(STANDARD_TYPE(Geom_CylindricalSurface))) // { // gp_Cylinder aCyl = Handle(Geom_CylindricalSurface)::DownCast(mySurf)->Cylinder(); // double aRad = aCyl.Radius(); // gp_Ax3 anAxis = aCyl.Position(); // gp_XYZ aLoc = aCyl.Location().XYZ(); // double aXDist = anAxis.XDirection().XYZ() * ( aPnt.XYZ() - aLoc ); // double aYDist = anAxis.YDirection().XYZ() * ( aPnt.XYZ() - aLoc ); // if ( fabs(aXDist*aXDist + aYDist*aYDist - aRad*aRad) > aToler2 ) // return false; // } // else // return false; myProjector.Perform( aPnt ); bool isOn = ( myProjector.IsDone() && myProjector.LowerDistance() <= myToler ); return isOn; } /* ElementsOnShape */ ElementsOnShape::ElementsOnShape() : //myMesh(0), myType(SMDSAbs_All), myToler(Precision::Confusion()), myAllNodesFlag(false) { } ElementsOnShape::~ElementsOnShape() { clearClassifiers(); } SMDSAbs_ElementType ElementsOnShape::GetType() const { return myType; } void ElementsOnShape::SetTolerance (const double theToler) { if (myToler != theToler) { myToler = theToler; SetShape(myShape, myType); } } double ElementsOnShape::GetTolerance() const { return myToler; } void ElementsOnShape::SetAllNodes (bool theAllNodes) { myAllNodesFlag = theAllNodes; } void ElementsOnShape::SetMesh (const SMDS_Mesh* theMesh) { myMesh = theMesh; } void ElementsOnShape::SetShape (const TopoDS_Shape& theShape, const SMDSAbs_ElementType theType) { myType = theType; myShape = theShape; if ( myShape.IsNull() ) return; TopTools_IndexedMapOfShape shapesMap; TopAbs_ShapeEnum shapeTypes[4] = { TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE, TopAbs_VERTEX }; TopExp_Explorer sub; for ( int i = 0; i < 4; ++i ) { if ( shapesMap.IsEmpty() ) for ( sub.Init( myShape, shapeTypes[i] ); sub.More(); sub.Next() ) shapesMap.Add( sub.Current() ); if ( i > 0 ) for ( sub.Init( myShape, shapeTypes[i], shapeTypes[i-1] ); sub.More(); sub.Next() ) shapesMap.Add( sub.Current() ); } clearClassifiers(); myClassifiers.resize( shapesMap.Extent() ); for ( int i = 0; i < shapesMap.Extent(); ++i ) myClassifiers[ i ] = new TClassifier( shapesMap( i+1 ), myToler ); } void ElementsOnShape::clearClassifiers() { for ( size_t i = 0; i < myClassifiers.size(); ++i ) delete myClassifiers[ i ]; myClassifiers.clear(); } bool ElementsOnShape::IsSatisfy (long elemId) { const SMDS_MeshElement* elem = ( myType == SMDSAbs_Node ? myMesh->FindNode( elemId ) : myMesh->FindElement( elemId )); if ( !elem || myClassifiers.empty() ) return false; for ( size_t i = 0; i < myClassifiers.size(); ++i ) { SMDS_ElemIteratorPtr aNodeItr = elem->nodesIterator(); bool isSatisfy = myAllNodesFlag; gp_XYZ centerXYZ (0, 0, 0); while (aNodeItr->more() && (isSatisfy == myAllNodesFlag)) { SMESH_TNodeXYZ aPnt ( aNodeItr->next() ); centerXYZ += aPnt; isSatisfy = ! myClassifiers[i]->IsOut( aPnt ); } // Check the center point for volumes MantisBug 0020168 if (isSatisfy && myAllNodesFlag && myClassifiers[i]->ShapeType() == TopAbs_SOLID) { centerXYZ /= elem->NbNodes(); isSatisfy = ! myClassifiers[i]->IsOut( centerXYZ ); } if ( isSatisfy ) return true; } return false; } TopAbs_ShapeEnum ElementsOnShape::TClassifier::ShapeType() const { return myShape.ShapeType(); } bool ElementsOnShape::TClassifier::IsOut(const gp_Pnt& p) { return (this->*myIsOutFun)( p ); } void ElementsOnShape::TClassifier::Init (const TopoDS_Shape& theShape, double theTol) { myShape = theShape; myTol = theTol; switch ( myShape.ShapeType() ) { case TopAbs_SOLID: { mySolidClfr.Load(theShape); myIsOutFun = & ElementsOnShape::TClassifier::isOutOfSolid; break; } case TopAbs_FACE: { Standard_Real u1,u2,v1,v2; Handle(Geom_Surface) surf = BRep_Tool::Surface( TopoDS::Face( theShape )); surf->Bounds( u1,u2,v1,v2 ); myProjFace.Init(surf, u1,u2, v1,v2, myTol ); myIsOutFun = & ElementsOnShape::TClassifier::isOutOfFace; break; } case TopAbs_EDGE: { Standard_Real u1, u2; Handle(Geom_Curve) curve = BRep_Tool::Curve( TopoDS::Edge(theShape), u1, u2); myProjEdge.Init(curve, u1, u2); myIsOutFun = & ElementsOnShape::TClassifier::isOutOfEdge; break; } case TopAbs_VERTEX:{ myVertexXYZ = BRep_Tool::Pnt( TopoDS::Vertex( theShape ) ); myIsOutFun = & ElementsOnShape::TClassifier::isOutOfVertex; break; } default: throw SALOME_Exception("Programmer error in usage of ElementsOnShape::TClassifier"); } } bool ElementsOnShape::TClassifier::isOutOfSolid (const gp_Pnt& p) { mySolidClfr.Perform( p, myTol ); return ( mySolidClfr.State() != TopAbs_IN && mySolidClfr.State() != TopAbs_ON ); } bool ElementsOnShape::TClassifier::isOutOfFace (const gp_Pnt& p) { myProjFace.Perform( p ); if ( myProjFace.IsDone() && myProjFace.LowerDistance() <= myTol ) { // check relatively to the face Quantity_Parameter u, v; myProjFace.LowerDistanceParameters(u, v); gp_Pnt2d aProjPnt (u, v); BRepClass_FaceClassifier aClsf ( TopoDS::Face( myShape ), aProjPnt, myTol ); if ( aClsf.State() == TopAbs_IN || aClsf.State() == TopAbs_ON ) return false; } return true; } bool ElementsOnShape::TClassifier::isOutOfEdge (const gp_Pnt& p) { myProjEdge.Perform( p ); return ! ( myProjEdge.NbPoints() > 0 && myProjEdge.LowerDistance() <= myTol ); } bool ElementsOnShape::TClassifier::isOutOfVertex(const gp_Pnt& p) { return ( myVertexXYZ.Distance( p ) > myTol ); } TSequenceOfXYZ::TSequenceOfXYZ() {} TSequenceOfXYZ::TSequenceOfXYZ(size_type n) : myArray(n) {} TSequenceOfXYZ::TSequenceOfXYZ(size_type n, const gp_XYZ& t) : myArray(n,t) {} TSequenceOfXYZ::TSequenceOfXYZ(const TSequenceOfXYZ& theSequenceOfXYZ) : myArray(theSequenceOfXYZ.myArray) {} template TSequenceOfXYZ::TSequenceOfXYZ(InputIterator theBegin, InputIterator theEnd): myArray(theBegin,theEnd) {} TSequenceOfXYZ::~TSequenceOfXYZ() {} TSequenceOfXYZ& TSequenceOfXYZ::operator=(const TSequenceOfXYZ& theSequenceOfXYZ) { myArray = theSequenceOfXYZ.myArray; return *this; } gp_XYZ& TSequenceOfXYZ::operator()(size_type n) { return myArray[n-1]; } const gp_XYZ& TSequenceOfXYZ::operator()(size_type n) const { return myArray[n-1]; } void TSequenceOfXYZ::clear() { myArray.clear(); } void TSequenceOfXYZ::reserve(size_type n) { myArray.reserve(n); } void TSequenceOfXYZ::push_back(const gp_XYZ& v) { myArray.push_back(v); } TSequenceOfXYZ::size_type TSequenceOfXYZ::size() const { return myArray.size(); } TMeshModifTracer::TMeshModifTracer(): myMeshModifTime(0), myMesh(0) { } void TMeshModifTracer::SetMesh( const SMDS_Mesh* theMesh ) { if ( theMesh != myMesh ) myMeshModifTime = 0; myMesh = theMesh; } bool TMeshModifTracer::IsMeshModified() { bool modified = false; if ( myMesh ) { modified = ( myMeshModifTime != myMesh->GetMTime() ); myMeshModifTime = myMesh->GetMTime(); } return modified; }