# # Tetrahedrization of the geometry generated by the Python script GEOM_Partition1.py # Hypothesis and algorithms for the mesh generation are global # #%Make geometry (like CEA script (A1)) using Partition algorithm% from OCC # -- Rayon de la bariere barier_height = 7.0 barier_radius = 5.6 / 2 # Rayon de la bariere colis_radius = 1.0 / 2 # Rayon du colis colis_step = 2.0 # Distance s‰parant deux colis cc_width = 0.11 # Epaisseur du complement de colisage # -- cc_radius = colis_radius + cc_width from math import sqrt colis_center = sqrt(2.0)*colis_step/2 # -- import geompy geom = geompy.geom boolean_common = 1 boolean_cut = 2 boolean_fuse = 3 boolean_section = 4 # -- barier = geompy.MakeCylinder( geom.MakePointStruct(0.,0.,0.), geom.MakeDirection(geom.MakePointStruct(0.,0.,1.)), barier_radius, barier_height) # -- colis = geompy.MakeCylinder( geom.MakePointStruct(0.,0.,0.), geom.MakeDirection(geom.MakePointStruct(0.,0.,1.)), colis_radius, barier_height) cc = geompy.MakeCylinder( geom.MakePointStruct(0.,0.,0.), geom.MakeDirection(geom.MakePointStruct(0.,0.,1.)), cc_radius, barier_height) colis_cc = geompy.MakeCompound( [colis._get_Name(), cc._get_Name()]) colis_cc = geompy.MakeTranslation( colis_cc, colis_center, 0.0, 0.0) colis_cc_multi = geompy.MakeMultiRotation1D( colis_cc, geom.MakeDirection(geom.MakePointStruct(0.,0.,1.)), geom.MakePointStruct(0.,0.,0.), 4) # -- alveole = geompy.Partition( [colis_cc_multi._get_Name(), barier._get_Name()]) ShapeTypeShell = 3 ShapeTypeFace = 4 ShapeTypeEdge = 6 print "Analysis of the geometry to mesh (right after the Partition) :" subShellList=geompy.SubShapeAll(alveole,ShapeTypeShell) subFaceList=geompy.SubShapeAll(alveole,ShapeTypeFace) subEdgeList=geompy.SubShapeAll(alveole,ShapeTypeEdge) print "number of Shells in alveole : ",len(subShellList) print "number of Faces in alveole : ",len(subFaceList) print "number of Edges in alveole : ",len(subEdgeList) subshapes = geompy.SubShapeAll( alveole, geompy.ShapeType["SHAPE"] ) ## there are 9 subshapes comp1 = geompy.MakeCompound( [ subshapes[0]._get_Name(), subshapes[1]._get_Name() ] ); comp2 = geompy.MakeCompound( [ subshapes[2]._get_Name(), subshapes[3]._get_Name() ] ); comp3 = geompy.MakeCompound( [ subshapes[4]._get_Name(), subshapes[5]._get_Name() ] ); comp4 = geompy.MakeCompound( [ subshapes[6]._get_Name(), subshapes[7]._get_Name() ] ); compIORs = [] compIORs.append( comp1._get_Name() ); compIORs.append( comp2._get_Name() ); compIORs.append( comp3._get_Name() ); compIORs.append( comp4._get_Name() ); comp = geompy.MakeCompound( compIORs ); alveole = geompy.MakeCompound( [ comp._get_Name(), subshapes[8]._get_Name() ]); idalveole= geompy.addToStudy(alveole, "alveole") print "Analysis of the geometry to mesh (right after the MakeCompound) :" subShellList=geompy.SubShapeAll(alveole,ShapeTypeShell) subFaceList=geompy.SubShapeAll(alveole,ShapeTypeFace) subEdgeList=geompy.SubShapeAll(alveole,ShapeTypeEdge) print "number of Shells in alveole : ",len(subShellList) print "number of Faces in alveole : ",len(subFaceList) print "number of Edges in alveole : ",len(subEdgeList) status=geompy.CheckShape(alveole) print " check status ", status # ---- launch SMESH import salome from salome import sg import SMESH import smeshpy smeshgui = salome.ImportComponentGUI("SMESH") smeshgui.Init(salome.myStudyId) gen=smeshpy.smeshpy() # ---- create Hypothesis print "-------------------------- create Hypothesis (In this case global hypothesis are used)" print "-------------------------- NumberOfSegments" numberOfSegments = 10 hyp1=gen.CreateHypothesis("NumberOfSegments") hypNbSeg=hyp1._narrow(SMESH.SMESH_NumberOfSegments) hypNbSeg.SetNumberOfSegments(numberOfSegments) hypNbSegID = hypNbSeg.GetId() print hypNbSeg.GetName() print hypNbSegID print hypNbSeg.GetNumberOfSegments() idseg = smeshgui.AddNewHypothesis( salome.orb.object_to_string(hypNbSeg) ) smeshgui.SetName(idseg, "NumberOfSegments") print "-------------------------- MaxElementArea" maxElementArea = 0.1 hyp2=gen.CreateHypothesis("MaxElementArea") hypArea=hyp2._narrow(SMESH.SMESH_MaxElementArea) hypArea.SetMaxElementArea(maxElementArea) print hypArea.GetName() print hypArea.GetId() print hypArea.GetMaxElementArea() idarea = smeshgui.AddNewHypothesis( salome.orb.object_to_string(hypArea) ) smeshgui.SetName(idarea, "MaxElementArea") print "-------------------------- MaxElementVolume" maxElementVolume = 0.5 hyp3=gen.CreateHypothesis("MaxElementVolume") hypVolume=hyp3._narrow(SMESH.SMESH_MaxElementVolume) hypVolume.SetMaxElementVolume(maxElementVolume) print hypVolume.GetName() print hypVolume.GetId() print hypVolume.GetMaxElementVolume() idvolume = smeshgui.AddNewHypothesis( salome.orb.object_to_string(hypVolume) ) smeshgui.SetName(idvolume, "MaxElementVolume") # ---- create Algorithms print "-------------------------- create Algorithms" print "-------------------------- Regular_1D" hypothesis=gen.CreateHypothesis("Regular_1D") regular1D = hypothesis._narrow(SMESH.SMESH_Regular_1D) regularID = smeshgui.AddNewAlgorithms( salome.orb.object_to_string(regular1D) ) smeshgui.SetName(regularID, "Wire Discretisation") print "-------------------------- MEFISTO_2D" hypothesis=gen.CreateHypothesis("MEFISTO_2D") mefisto2D = hypothesis._narrow(SMESH.SMESH_MEFISTO_2D) mefistoID = smeshgui.AddNewAlgorithms( salome.orb.object_to_string(mefisto2D) ) smeshgui.SetName(mefistoID, "MEFISTO_2D") print "-------------------------- NETGEN_3D" hypothesis=gen.CreateHypothesis("NETGEN_3D") netgen3D = hypothesis._narrow(SMESH.SMESH_NETGEN_3D) netgenID = smeshgui.AddNewAlgorithms( salome.orb.object_to_string(netgen3D) ) smeshgui.SetName(netgenID, "NETGEN_3D") # ---- init a Mesh with the alveole mesh=gen.Init(idalveole) idmesh = smeshgui.AddNewMesh( salome.orb.object_to_string(mesh) ) smeshgui.SetName(idmesh, "MeshAlveole") smeshgui.SetShape(idalveole, idmesh) # ---- add hypothesis to alveole print "-------------------------- add hypothesis to alveole" ret=mesh.AddHypothesis(alveole,regular1D) print ret ret=mesh.AddHypothesis(alveole,hypNbSeg) print ret ret=mesh.AddHypothesis(alveole,mefisto2D) print ret ret=mesh.AddHypothesis(alveole,hypArea) print ret ret=mesh.AddHypothesis(alveole,netgen3D) print ret ret=mesh.AddHypothesis(alveole,hypVolume) print ret smeshgui.SetAlgorithms( idmesh, regularID) smeshgui.SetHypothesis( idmesh, idseg ) smeshgui.SetAlgorithms( idmesh, mefistoID ) smeshgui.SetHypothesis( idmesh, idarea ) smeshgui.SetAlgorithms( idmesh, netgenID ) smeshgui.SetHypothesis( idmesh, idvolume ) sg.updateObjBrowser(1) print "-------------------------- compute the mesh of alveole " ret=gen.Compute(mesh,idalveole) print ret if ret != 0: log=mesh.GetLog(0) # no erase trace for linelog in log: print linelog else: print "problem when computing the mesh" sg.updateObjBrowser(1)