// SMESH DriverMED : driver to read and write 'med' files // // Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org // // // // File : DriverMED_R_SMESHDS_Mesh.cxx // Module : SMESH using namespace std; #include "DriverMED_R_SMESHDS_Mesh.h" #include "DriverMED_R_SMDS_Mesh.h" #include "utilities.h" #include DriverMED_R_SMESHDS_Mesh::DriverMED_R_SMESHDS_Mesh() { myFileId = -1; } DriverMED_R_SMESHDS_Mesh::~DriverMED_R_SMESHDS_Mesh() { ; } void DriverMED_R_SMESHDS_Mesh::SetMesh(SMDS_Mesh * aMesh) { //myMesh = SMESHDS_Mesh *::DownCast(aMesh); myMesh = aMesh; } void DriverMED_R_SMESHDS_Mesh::SetFile(string aFile) { myFile = aFile; } void DriverMED_R_SMESHDS_Mesh::SetFileId(med_idt aFileId) { myFileId = aFileId; } void DriverMED_R_SMESHDS_Mesh::SetMeshId(int aMeshId) { myMeshId = aMeshId; } void DriverMED_R_SMESHDS_Mesh::Read() { string myClass = string("SMDS_Mesh"); string myExtension = string("MED"); DriverMED_R_SMDS_Mesh *myReader = new DriverMED_R_SMDS_Mesh; myReader->SetMesh(myMesh); myReader->SetMeshId(myMeshId); myReader->SetFile(myFile); myReader->SetFileId(-1); myReader->Read(); } void DriverMED_R_SMESHDS_Mesh::Add() { string myClass = string("SMDS_Mesh"); string myExtension = string("MED"); DriverMED_R_SMDS_Mesh *myReader = new DriverMED_R_SMDS_Mesh; myReader->SetMesh(myMesh); myReader->SetMeshId(myMeshId); SCRUTE(myFileId); myReader->SetFileId(myFileId); myReader->Read(); } void DriverMED_R_SMESHDS_Mesh::ReadMySelf() { med_err ret = 0; int i, j, k, l; int numero; char message[200]; bool ok; /* nombre d'objets MED */ char nom_universel[MED_TAILLE_LNOM + 1]; med_int long_fichier_en_tete; char *fichier_en_tete; char version_hdf[10]; char version_med[10]; med_int nmaa, mdim, nnoe; med_int nmai[MED_NBR_GEOMETRIE_MAILLE], nfac[MED_NBR_GEOMETRIE_FACE]; med_int nare[MED_NBR_GEOMETRIE_ARETE]; /* nom du maillage */ char nommaa[MED_TAILLE_NOM + 1]; /* noeuds */ med_float *coo; char nomcoo[3 * MED_TAILLE_PNOM + 1]; char unicoo[3 * MED_TAILLE_PNOM + 1]; char *nomnoe; med_int *numnoe; med_int *nufano; med_repere rep; med_booleen inonoe, inunoe; med_mode_switch mode_coo; char str[MED_TAILLE_PNOM + 1]; /* elements */ med_int nsup; med_int edim; med_int taille; med_int elem_id; med_int cmpt = 0; med_int *connectivite; char *nomele; med_int *numele; med_int *nufael; med_booleen inoele, inuele; med_connectivite typ_con; med_geometrie_element typgeo; med_geometrie_element typmai[MED_NBR_GEOMETRIE_MAILLE] = { MED_POINT1, MED_SEG2, MED_SEG3, MED_TRIA3, MED_TRIA6, MED_QUAD4, MED_QUAD8, MED_TETRA4, MED_TETRA10, MED_HEXA8, MED_HEXA20, MED_PENTA6, MED_PENTA15, MED_PYRA5, MED_PYRA13 }; med_int desmai[MED_NBR_GEOMETRIE_MAILLE] = { 0, 2, 3, 3, 3, 4, 4, 4, 4, 6, 6, 5, 5, 5, 5 }; med_int nmailles[MED_NBR_GEOMETRIE_MAILLE]; char nommai[MED_NBR_GEOMETRIE_MAILLE][MED_TAILLE_NOM + 1] = { "MED_POINT1", "MED_SEG2", "MED_SEG3", "MED_TRIA3", "MED_TRIA6", "MED_QUAD4", "MED_QUAD8", "MED_TETRA4", "MED_TETRA10", "MED_HEXA8", "MED_HEXA20", "MED_PENTA6", "MED_PENTA15", "MED_PYRA5", "MED_PYRA13" }; med_geometrie_element typfac[MED_NBR_GEOMETRIE_FACE] = { MED_TRIA3, MED_TRIA6, MED_QUAD4, MED_QUAD8 }; med_int desfac[MED_NBR_GEOMETRIE_FACE] = { 3, 3, 4, 4 }; med_int nfaces[MED_NBR_GEOMETRIE_FACE]; char nomfac[MED_NBR_GEOMETRIE_FACE][MED_TAILLE_NOM + 1] = { "MED_TRIA3", "MED_TRIA6", "MED_QUAD4", "MED_QUAD8" }; med_geometrie_element typare[MED_NBR_GEOMETRIE_ARETE] = { MED_SEG2, MED_SEG3 }; med_int desare[MED_NBR_GEOMETRIE_ARETE] = { 2, 3 }; med_int naretes[MED_NBR_GEOMETRIE_ARETE]; char nomare[MED_NBR_GEOMETRIE_ARETE][MED_TAILLE_NOM + 1] = { "MED_SEG2", "MED_SEG3" }; /* familles */ med_int nfam; med_int natt, ngro; char *attdes, *gro; med_int *attval, *attide; char nomfam[MED_TAILLE_NOM + 1]; med_int numfam; char str1[MED_TAILLE_DESC + 1]; char str2[MED_TAILLE_LNOM + 1]; string fam; string fam_type; string fam_id; char *file2Read; bool locally_managed; if (myFileId == -1) locally_managed = true; else locally_managed = false; if (locally_managed) { file2Read = (char *)myFile.c_str(); myFileId = MEDouvrir(file2Read, MED_LECT); if (myFileId < 0) { fprintf(stderr, ">> ERREUR : ouverture du fichier %s \n", file2Read); exit(EXIT_FAILURE); } numero = 1; } else numero = myMeshId; sprintf(nommaa, "Mesh %d", myMeshId); //pour load SCRUTE(nommaa); typ_con = MED_NOD; mode_coo = MED_FULL_INTERLACE; mdim = 3; SMESHDS_Mesh * mySMESHDSMesh = dynamic_cast(myMesh); //TopoDS_Shape myShape = mySMESHDSMesh->ShapeToMesh(); /**************************************************************************** * NOMBRES D'OBJETS MED * ****************************************************************************/ fprintf(stdout, "\n(****************************)\n"); fprintf(stdout, "(* INFORMATIONS GENERALES : *)\n"); fprintf(stdout, "(****************************)\n"); /* lecture du nom et de la dimension du maillage */ /*! fprintf(stdout,"%d %d\n",myFileId,numero); * ret = MEDmaaInfo(myFileId,numero,nommaa,&mdim); * fprintf(stdout,"%d\n",ret); * if (ret < 0) * { * fprintf(stderr,">> ERREUR : lecture du nom du maillage \n"); * exit(EXIT_FAILURE); * } * fprintf(stdout,"- Nom du maillage : <<%s>>\n",nommaa); * fprintf(stdout,"- Dimension du maillage : %d\n",mdim); */ /* Combien de noeuds ? */ nnoe = MEDnEntMaa(myFileId, nommaa, MED_COOR, MED_NOEUD, MED_POINT1, typ_con); if (nnoe < 0) { fprintf(stderr, ">> ERREUR : lecture du nombre de noeuds \n"); exit(EXIT_FAILURE); } fprintf(stdout, "- Nombre de noeuds : %d \n", nnoe); /* Combien de mailles, faces ou aretes ? */ for (i = 0; i < MED_NBR_GEOMETRIE_MAILLE; i++) { nmailles[i] = MEDnEntMaa(myFileId, nommaa, MED_CONN, MED_MAILLE, typmai[i], typ_con); if (nmailles[i] < 0) { fprintf(stderr, ">> ERREUR : lecture du nombre de mailles \n"); exit(EXIT_FAILURE); } fprintf(stdout, "- Nombre de mailles de type %s : %d \n", nommai[i], nmailles[i]); } for (i = 0; i < MED_NBR_GEOMETRIE_FACE; i++) { nfaces[i] = MEDnEntMaa(myFileId, nommaa, MED_CONN, MED_FACE, typfac[i], typ_con); if (nfaces[i] < 0) { fprintf(stderr, ">> ERREUR : lecture du nombre de faces \n"); exit(EXIT_FAILURE); } fprintf(stdout, "- Nombre de faces de type %s : %d \n", nomfac[i], nfaces[i]); } for (i = 0; i < MED_NBR_GEOMETRIE_ARETE; i++) { naretes[i] = MEDnEntMaa(myFileId, nommaa, MED_CONN, MED_ARETE, typare[i], typ_con); if (naretes[i] < 0) { fprintf(stderr, ">> ERREUR : lecture du nombre d'aretes \n"); exit(EXIT_FAILURE); } fprintf(stdout, "- Nombre d'aretes de type %s : %d \n", nomare[i], naretes[i]); } /* nombre de familles */ nfam = MEDnFam(myFileId, nommaa, 0, MED_FAMILLE); if (nfam < 0) { fprintf(stderr, ">> ERREUR : lecture du nombre de familles \n"); exit(EXIT_FAILURE); } fprintf(stdout, "- Nombre de familles : %d \n", nfam); vector < int >family[nfam]; /**************************************************************************** * LECTURE DES NOEUDS * ****************************************************************************/ fprintf(stdout, "\n(************************)\n"); fprintf(stdout, "(* NOEUDS DU MAILLAGE : *)\n"); fprintf(stdout, "(************************)\n"); /* Allocations memoires */ /* table des coordonnees * profil : (dimension * nombre de noeuds ) */ coo = (med_float *) malloc(sizeof(med_float) * nnoe * mdim); /* table des numeros, des numeros de familles des noeuds * profil : (nombre de noeuds) */ numnoe = (med_int *) malloc(sizeof(med_int) * nnoe); nufano = (med_int *) malloc(sizeof(med_int) * nnoe); /* table des noms des noeuds * profil : (nnoe*MED_TAILLE_PNOM+1) */ nomnoe = (char *)malloc(MED_TAILLE_PNOM * nnoe + 1); /* lecture des noeuds : * - coordonnees * - noms (optionnel dans un fichier MED) * - numeros (optionnel dans un fichier MED) * - numeros des familles */ ret = MEDnoeudsLire(myFileId, nommaa, mdim, coo, mode_coo, &rep, nomcoo, unicoo, nomnoe, &inonoe, numnoe, &inunoe, nufano, nnoe); if (ret < 0) strcpy(message, ">> ERREUR : lecture des noeuds \n"); if (inunoe) { for (int i = 0; i < nnoe; i++) { ok = mySMESHDSMesh->AddNodeWithID(coo[i * 3], coo[i * 3 + 1], coo[i * 3 + 2], numnoe[i]); //fprintf(Out,"%d %f %f %f\n",numnoe[i],coo[i*3],coo[i*3+1],coo[i*3+2]); } } else { for (int i = 0; i < nnoe; i++) { ok = mySMESHDSMesh->AddNodeWithID(coo[i * 3], coo[i * 3 + 1], coo[i * 3 + 2], i + 1); //fprintf(Out,"%d %f %f %f\n",numnoe[i],coo[i*3],coo[i*3+1],i); family[*(nufano + i)].push_back(numnoe[i]); } } fprintf(stdout, "\n- Numeros des familles des noeuds : \n"); for (i = 0; i < nnoe; i++) fprintf(stdout, " %d ", *(nufano + i)); fprintf(stdout, "\n"); /* liberation memoire */ free(coo); free(nomnoe); free(numnoe); free(nufano); /**************************************************************************** * LECTURE DES ELEMENTS * ****************************************************************************/ fprintf(stdout, "\n(**************************)\n"); fprintf(stdout, "(* ELEMENTS DU MAILLAGE : *)\n"); fprintf(stdout, "(**************************)"); //fprintf(Out,"CELLS\n"); /* Lecture des connectivites, noms, numeros des mailles */ //printf("%d %d %d %d\n",nmailles[3],nmailles[4],nmailles[5],nmailles[9]); if (ret == 0) for (i = 0; i < MED_NBR_GEOMETRIE_MAILLE; i++) { if (nmailles[i] > 0 && ret == 0) { /* dimension de la maille */ edim = typmai[i] / 100; nsup = 0; if (mdim == 2 || mdim == 3) if (edim == 1) nsup = 1; if (mdim == 3) if (edim == 2) nsup = 1; taille = nsup + typmai[i] % 100; //taille = typmai[i]%100; /* allocation memoire */ connectivite = (med_int *) malloc(sizeof(med_int) * taille * nmailles[i]); nomele = (char *)malloc(sizeof(char) * MED_TAILLE_PNOM * nmailles[i] + 1); numele = (med_int *) malloc(sizeof(med_int) * nmailles[i]); nufael = (med_int *) malloc(sizeof(med_int) * nmailles[i]); /* lecture des données */ ret = MEDelementsLire(myFileId, nommaa, mdim, connectivite, mode_coo, nomele, &inoele, numele, &inuele, nufael, nmailles[i], MED_MAILLE, typmai[i], typ_con); switch (typmai[i]) { case MED_TRIA3: { if (inuele) { for (j = 0; j < nmailles[i]; j++) { elem_id = *(numele + j); ok = mySMESHDSMesh->AddFaceWithID(*(connectivite + j * (taille - nsup)), *(connectivite + j * (taille - nsup) + 1), *(connectivite + j * (taille - nsup) + 2), elem_id); //fprintf(Out,"%d %d %d %d\n",elem_id,*(connectivite+j*(taille-nsup)),*(connectivite+j*(taille-nsup)+1),*(connectivite+j*(taille-nsup)+2)); } } else { for (j = 0; j < nmailles[i]; j++) { cmpt++; ok = mySMESHDSMesh->AddFaceWithID(*(connectivite + j * (taille)), *(connectivite + j * (taille) + 1), *(connectivite + j * (taille) + 2), cmpt); //fprintf(Out,"%d %d %d %d\n",j,*(connectivite+j*(taille)),*(connectivite+j*(taille)+1),*(connectivite+j*(taille)+2)); } } break; } case MED_QUAD4: { if (inuele) { for (j = 0; j < nmailles[i]; j++) { elem_id = *(numele + j); ok = mySMESHDSMesh->AddFaceWithID(*(connectivite + j * (taille - nsup)), *(connectivite + j * (taille - nsup) + 1), *(connectivite + j * (taille - nsup) + 2), *(connectivite + j * (taille - nsup) + 3), elem_id); //fprintf(Out,"%d %d %d %d\n",elem_id,*(connectivite+j*(taille-nsup)),*(connectivite+j*(taille-nsup)+1),*(connectivite+j*(taille-nsup)+2),*(connectivite+j*(taille-nsup)+3)); } } else { for (j = 0; j < nmailles[i]; j++) { cmpt++; ok = myMesh->AddFaceWithID(*(connectivite + j * (taille)), *(connectivite + j * (taille) + 1), *(connectivite + j * (taille) + 2), *(connectivite + j * (taille) + 3), cmpt); //fprintf(Out,"%d %d %d %d\n",j,*(connectivite+j*(taille)),*(connectivite+j*(taille)+1),*(connectivite+j*(taille)+2),*(connectivite+j*(taille)+3)); } } break; } case MED_TETRA4: { if (inuele) { for (j = 0; j < nmailles[i]; j++) { elem_id = *(numele + j); ok = mySMESHDSMesh->AddVolumeWithID(*(connectivite + j * (taille - nsup)), *(connectivite + j * (taille - nsup) + 1), *(connectivite + j * (taille - nsup) + 2), *(connectivite + j * (taille - nsup) + 3), elem_id); //fprintf(Out,"%d %d %d %d\n",elem_id,*(connectivite+j*(taille-nsup)),*(connectivite+j*(taille-nsup)+1),*(connectivite+j*(taille-nsup)+2),*(connectivite+j*(taille-nsup)+3)); } } else { for (j = 0; j < nmailles[i]; j++) { cmpt++; ok = mySMESHDSMesh->AddVolumeWithID(*(connectivite + j * (taille)), *(connectivite + j * (taille) + 1), *(connectivite + j * (taille) + 2), *(connectivite + j * (taille) + 3), cmpt); //fprintf(Out,"%d %d %d %d\n",j,*(connectivite+j*(taille)),*(connectivite+j*(taille)+1),*(connectivite+j*(taille)+2),*(connectivite+j*(taille)+3)); } } break; } case MED_HEXA8: { if (inuele) { for (j = 0; j < nmailles[i]; j++) { elem_id = *(numele + j); ok = mySMESHDSMesh->AddVolumeWithID(*(connectivite + j * (taille - nsup)), *(connectivite + j * (taille - nsup) + 1), *(connectivite + j * (taille - nsup) + 2), *(connectivite + j * (taille - nsup) + 3), *(connectivite + j * (taille - nsup) + 4), *(connectivite + j * (taille - nsup) + 5), *(connectivite + j * (taille - nsup) + 6), *(connectivite + j * (taille - nsup) + 7), elem_id); //fprintf(Out,"%d %d %d %d\n",elem_id,*(connectivite+j*(taille-nsup)),*(connectivite+j*(taille-nsup)+1),*(connectivite+j*(taille-nsup)+2),*(connectivite+j*(taille-nsup)+3),*(connectivite+j*(taille-nsup)+4),*(connectivite+j*(taille-nsup)+5),*(connectivite+j*(taille-nsup)+6),*(connectivite+j*(taille-nsup)+7)); } } else { for (j = 0; j < nmailles[i]; j++) { cmpt++; ok = mySMESHDSMesh->AddVolumeWithID(*(connectivite + j * (taille)), *(connectivite + j * (taille) + 1), *(connectivite + j * (taille) + 2), *(connectivite + j * (taille) + 3), *(connectivite + j * (taille) + 4), *(connectivite + j * (taille) + 5), *(connectivite + j * (taille) + 6), *(connectivite + j * (taille) + 7), cmpt); //fprintf(Out,"%d %d %d %d\n",j,*(connectivite+j*(taille)),*(connectivite+j*(taille)+1),*(connectivite+j*(taille)+2),*(connectivite+j*(taille)+3),*(connectivite+j*(taille)+4),*(connectivite+j*(taille)+5),*(connectivite+j*(taille)+6),*(connectivite+j*(taille)+7)); } } break; } default: { break; } } fprintf(stdout, "\n - Numéros de familles : \n"); for (j = 0; j < nmailles[i]; j++) fprintf(stdout, " %d ", *(nufael + j)); /* liberation memoire */ free(connectivite); free(nomele); free(numele); free(nufael); } } /**************************************************************************** * LECTURE DES FAMILLES * ****************************************************************************/ printf("\n(*************************)\n"); printf("(* FAMILLES DU MAILLAGE : *)\n"); printf("(*************************)\n"); if (ret == 0) for (i = 0; i < nfam; i++) { /* nombre de groupes */ ngro = MEDnFam(myFileId, nommaa, i + 1, MED_GROUPE); if (ngro < 0) { ret = -1; strcpy(message, ">> ERREUR : lecture du nombre de groupes d'une famille \n"); } /* nombre d'attributs */ if (ret == 0) { natt = MEDnFam(myFileId, nommaa, i + 1, MED_ATTR); if (natt < 0) { ret = -1; strcpy(message, ">> ERREUR : lecture du nombre d'attributs d'une famille\n"); } } if (ret == 0) fprintf(stdout, "- Famille %d a %d attributs et %d groupes \n", i + 1, natt, ngro); /* nom,numero,attributs,groupes */ if (ret == 0) { attide = (med_int *) malloc(sizeof(med_int) * natt); attval = (med_int *) malloc(sizeof(med_int) * natt); attdes = (char *)malloc(MED_TAILLE_DESC * natt + 1); gro = (char *)malloc(MED_TAILLE_LNOM * ngro + 1); ret = MEDfamInfo(myFileId, nommaa, i + 1, nomfam, &numfam, attide, attval, attdes, &natt, gro, &ngro); fam = string(nomfam); fam_type = fam.substr(1, 1); fam_id = fam.substr(2, 1); if ((fam_type == string("V")) || (fam_type == string("A")) || (fam_type == string("F"))) LinkMeshToShape(fam_type, fam_id, family[i]); fprintf(stdout, " - Famille de nom %s et de numero %d : \n", nomfam, numfam); fprintf(stdout, " - Attributs : \n"); for (j = 0; j < natt; j++) { strncpy(str1, attdes + j * MED_TAILLE_DESC, MED_TAILLE_DESC); str1[MED_TAILLE_DESC] = '\0'; fprintf(stdout, " ide = %d - val = %d - des = %s\n", *(attide + j), *(attval + j), str1); } free(attide); free(attval); free(attdes); fprintf(stdout, " - Groupes :\n"); for (j = 0; j < ngro; j++) { strncpy(str2, gro + j * MED_TAILLE_LNOM, MED_TAILLE_LNOM); str2[MED_TAILLE_LNOM] = '\0'; fprintf(stdout, " gro = %s\n", str2); } free(gro); } } if (locally_managed) ret = MEDfermer(myFileId); } void DriverMED_R_SMESHDS_Mesh::LinkMeshToShape(string fam_type, string fam_id, vector < int >myNodes) { SMESHDS_Mesh * mySMESHDSMesh = dynamic_cast(myMesh); int id = atoi(fam_id.c_str()); if (fam_type == string("V")) { //Linked to a vertex for (int i = 0; i < myNodes.size(); i++) { const SMDS_MeshNode * node = mySMESHDSMesh->FindNode(myNodes[i]); //const TopoDS_Vertex& S;//le recuperer !!! //mySMESHDSMesh->SetNodeOnVertex (node,S); } } else if (fam_type == string("E")) { //Linked to an edge for (int i = 0; i < myNodes.size(); i++) { const SMDS_MeshNode * node = mySMESHDSMesh->FindNode(myNodes[i]); //const TopoDS_Edge& S;//le recuperer !!! //mySMESHDSMesh->SetNodeOnEdge (node,S); } } else if (fam_type == string("F")) { //Linked to a face for (int i = 0; i < myNodes.size(); i++) { const SMDS_MeshNode * node = mySMESHDSMesh->FindNode(myNodes[i]); //const TopoDS_Face& S;//le recuperer !!! //mySMESHDSMesh->SetNodeOnFace (node,S); } } }