/*!

\page tui_modifying_meshes_page Modifying Meshes

<br>
\anchor tui_adding_nodes_and_elements
<h2>Adding Nodes and Elements</h2>

<br>
\anchor tui_add_node
<h3>Add Node</h3>

\code
import SMESH_mechanic

mesh = SMESH_mechanic.mesh

# add node
new_id = mesh.AddNode(50, 10, 0)
print ""
if new_id == 0: print "KO node addition."
else:           print "New Node has been added with ID ", new_id
\endcode

<br>
\anchor tui_add_0DElement
<h3>Add 0D Element</h3>

\code
import SMESH_mechanic

mesh = SMESH_mechanic.mesh

# add node
node_id = mesh.AddNode(50, 10, 0)

# add 0D Element
new_id = mesh.Add0DElement(node_id)

print ""
if new_id == 0: print "KO node addition."
else:           print "New 0D Element has been added with ID ", new_id
\endcode

<br>
\anchor tui_add_edge
<h3>Add Edge</h3>

\code
import SMESH_mechanic

mesh = SMESH_mechanic.mesh
print ""

# add node
n1 = mesh.AddNode(50, 10, 0)
if n1 == 0: print "KO node addition." 

# add edge
e1 = mesh.AddEdge([n1, 38])
if e1 == 0: print "KO edge addition."
else:       print "New Edge has been added with ID ", e1
\endcode

<br>
\anchor tui_add_triangle
<h3>Add Triangle</h3>

\code
import SMESH_mechanic

mesh = SMESH_mechanic.mesh
print ""

# add node
n1 = mesh.AddNode(50, 10, 0)
if n1 == 0: print "KO node addition."

# add triangle
t1 = mesh.AddFace([n1, 38, 39])
if t1 == 0: print "KO triangle addition."
else:       print "New Triangle has been added with ID ", t1
\endcode

<br>
\anchor tui_add_quadrangle
<h3>Add Quadrangle</h3>

\code
import SMESH_mechanic

mesh = SMESH_mechanic.mesh
print ""

# add node
n1 = mesh.AddNode(50, 10, 0)
if n1 == 0: print "KO node addition."

n2 = mesh.AddNode(40, 20, 0)
if n2 == 0: print "KO node addition."

# add quadrangle
q1 = mesh.AddFace([n2, n1, 38, 39])
if q1 == 0: print "KO quadrangle addition."
else:       print "New Quadrangle has been added with ID ", q1
\endcode

<br>
\anchor tui_add_tetrahedron
<h3>Add Tetrahedron</h3>

\code
import SMESH_mechanic

mesh = SMESH_mechanic.mesh
print ""

# add node
n1 = mesh.AddNode(50, 10, 0)
if n1 == 0: print "KO node addition."

# add tetrahedron
t1 = mesh.AddVolume([n1, 38, 39, 246])
if t1 == 0: print "KO tetrahedron addition."
else:       print "New Tetrahedron has been added with ID ", t1
\endcode

<br>
\anchor tui_add_hexahedron
<h3>Add Hexahedron</h3>

\code
import SMESH_mechanic

mesh = SMESH_mechanic.mesh
print ""

# add nodes
nId1 = mesh.AddNode(50, 10, 0)
nId2 = mesh.AddNode(47, 12, 0)
nId3 = mesh.AddNode(50, 10, 10)
nId4 = mesh.AddNode(47, 12, 10)

if nId1 == 0 or nId2 == 0 or nId3 == 0 or nId4 == 0: print "KO node addition."

# add hexahedron
vId = mesh.AddVolume([nId2, nId1, 38, 39, nId4, nId3, 245, 246])
if vId == 0: print "KO Hexahedron addition."
else:        print "New Hexahedron has been added with ID ", vId
\endcode

<br>
\anchor tui_add_polygon
<h3>Add Polygon</h3>

\code
import math
import salome

import smesh

# create an empty mesh structure
mesh = smesh.Mesh() 

# a method to build a polygonal mesh element with <nb_vert> angles:
def MakePolygon (a_mesh, x0, y0, z0, radius, nb_vert):
    al = 2.0 * math.pi / nb_vert
    node_ids = []

    # Create nodes for a polygon
    for ii in range(nb_vert):
        nid = mesh.AddNode(x0 + radius * math.cos(ii*al),
                           y0 + radius * math.sin(ii*al),
                                                     z0)
        node_ids.append(nid)
        pass

    # Create a polygon
    return mesh.AddPolygonalFace(node_ids)

# Create three polygons
f1 = MakePolygon(mesh, 0, 0,  0, 30, 13)
f2 = MakePolygon(mesh, 0, 0, 10, 21,  9)
f3 = MakePolygon(mesh, 0, 0, 20, 13,  6)

salome.sg.updateObjBrowser(1)
\endcode

<br>
\anchor tui_add_polyhedron
<h3>Add Polyhedron</h3>

\code
import salome
import math

# create an empty mesh structure
mesh = smesh.Mesh()  

# Create nodes for 12-hedron with pentagonal faces
al = 2 * math.pi / 5.0
cosal = math.cos(al)
aa = 13
rr = aa / (2.0 * math.sin(al/2.0))
dr = 2.0 * rr * cosal
r1 = rr + dr
dh = rr * math.sqrt(2.0 * (1.0 - cosal * (1.0 + 2.0 * cosal)))
hh = 2.0 * dh - dr * (rr*(cosal - 1) + (rr + dr)*(math.cos(al/2) - 1)) / dh

dd = [] # top
cc = [] # below top
bb = [] # above bottom
aa = [] # bottom

for i in range(5):
    cos_bot = math.cos(i*al)
    sin_bot = math.sin(i*al)

    cos_top = math.cos(i*al + al/2.0)
    sin_top = math.sin(i*al + al/2.0)

    nd = mesh.AddNode(rr * cos_top, rr * sin_top, hh     ) # top
    nc = mesh.AddNode(r1 * cos_top, r1 * sin_top, hh - dh) # below top
    nb = mesh.AddNode(r1 * cos_bot, r1 * sin_bot,      dh) # above bottom
    na = mesh.AddNode(rr * cos_bot, rr * sin_bot,       0) # bottom
    dd.append(nd) # top
    cc.append(nc) # below top
    bb.append(nb) # above bottom
    aa.append(na) # bottom
    pass

# Create a polyhedral volume (12-hedron with pentagonal faces)
MeshEditor.AddPolyhedralVolume([dd[0], dd[1], dd[2], dd[3], dd[4],  # top
                                dd[0], cc[0], bb[1], cc[1], dd[1],  # -
                                dd[1], cc[1], bb[2], cc[2], dd[2],  # -
                                dd[2], cc[2], bb[3], cc[3], dd[3],  # - below top
                                dd[3], cc[3], bb[4], cc[4], dd[4],  # -
                                dd[4], cc[4], bb[0], cc[0], dd[0],  # -
                                aa[4], bb[4], cc[4], bb[0], aa[0],  # .
                                aa[3], bb[3], cc[3], bb[4], aa[4],  # .
                                aa[2], bb[2], cc[2], bb[3], aa[3],  # . above bottom
                                aa[1], bb[1], cc[1], bb[2], aa[2],  # .
                                aa[0], bb[0], cc[0], bb[1], aa[1],  # .
                                aa[0], aa[1], aa[2], aa[3], aa[4]], # bottom
                               [5,5,5,5,5,5,5,5,5,5,5,5])

salome.sg.updateObjBrowser(1)
\endcode

<br>
\anchor tui_removing_nodes_and_elements
<h2>Removing Nodes and Elements</h2>

<br>
\anchor tui_removing_nodes
<h3>Removing Nodes</h3>

\code
import SMESH_mechanic

mesh = SMESH_mechanic.mesh

# remove nodes #246 and #255
res = mesh.RemoveNodes([246, 255])
if res == 1: print "Nodes removing is OK!"
else:        print "KO nodes removing."
\endcode

<br>
\anchor tui_removing_elements
<h3>Removing Elements</h3>

\code
import SMESH_mechanic

mesh = SMESH_mechanic.mesh

# remove three elements: #850, #859 and #814
res = mesh.RemoveElements([850, 859, 814])
if res == 1: print "Elements removing is OK!"
else:        print "KO Elements removing."
\endcode

<br>
\anchor tui_removing_orphan_nodes
<h3>Removing Orphan Nodes</h3>

\code
import SMESH_mechanic

mesh = SMESH_mechanic.mesh

# add orphan nodes
mesh.AddNode(0,0,0)
mesh.AddNode(1,1,1)
# remove just created orphan nodes
res = mesh.RemoveOrphanNodes()
if res == 1: print "Removed %d nodes!" % res
else:        print "KO nodes removing."
\endcode

<br>
\anchor tui_renumbering_nodes_and_elements
<h2>Renumbering Nodes and Elements</h2>

\code
import SMESH_mechanic

mesh = SMESH_mechanic.mesh

mesh.RenumberNodes()

mesh.RenumberElements()
\endcode

<br>
\anchor tui_moving_nodes
<h2>Moving Nodes</h2>

\code
from geompy import *
from smesh import *

box = MakeBoxDXDYDZ(200, 200, 200)

mesh = Mesh( box )
mesh.Segment().AutomaticLength(0.1)
mesh.Quadrangle()
mesh.Compute()

# find node at (0,0,0)
node000 = None
for vId in SubShapeAllIDs( box, ShapeType["VERTEX"]):
    if node000: break
    nodeIds = mesh.GetSubMeshNodesId( vId, True )
    for node in nodeIds:
        xyz = mesh.GetNodeXYZ( node )
        if xyz[0] == 0 and xyz[1] == 0 and xyz[2] == 0 :
            node000 = node
            pass
        pass
    pass

if not node000:
    raise "node000 not found"

# find node000 using the tested function 
n = mesh.FindNodeClosestTo( -1,-1,-1 )
if not n == node000:
    raise "FindNodeClosestTo() returns " + str( n ) + " != " + str( node000 )

# move node000 to a new location
x,y,z = -10, -10, -10
n = mesh.MoveNode( n,x,y,z )
if not n:
    raise "MoveNode() returns " + n

# check the coordinates of the node000
xyz = mesh.GetNodeXYZ( node000 )
if not ( xyz[0] == x and xyz[1] == y and xyz[2] == z) :
    raise "Wrong coordinates: " + str( xyz ) + " != " + str( [x,y,z] )
\endcode

<br>
\anchor tui_diagonal_inversion
<h2>Diagonal Inversion</h2>

\code
import salome
import smesh

# create an empty mesh structure
mesh = smesh.Mesh() 

# create the following mesh:
# .----.----.----.
# |   /|   /|   /|
# |  / |  / |  / |
# | /  | /  | /  |
# |/   |/   |/   |
# .----.----.----.

bb = [0, 0, 0, 0]
tt = [0, 0, 0, 0]
ff = [0, 0, 0, 0, 0, 0]

bb[0] = mesh.AddNode( 0., 0., 0.)
bb[1] = mesh.AddNode(10., 0., 0.)
bb[2] = mesh.AddNode(20., 0., 0.)
bb[3] = mesh.AddNode(30., 0., 0.)

tt[0] = mesh.AddNode( 0., 15., 0.)
tt[1] = mesh.AddNode(10., 15., 0.)
tt[2] = mesh.AddNode(20., 15., 0.)
tt[3] = mesh.AddNode(30., 15., 0.)

ff[0] = mesh.AddFace([bb[0], bb[1], tt[1]])
ff[1] = mesh.AddFace([bb[0], tt[1], tt[0]])
ff[2] = mesh.AddFace([bb[1], bb[2], tt[2]])
ff[3] = mesh.AddFace([bb[1], tt[2], tt[1]])
ff[4] = mesh.AddFace([bb[2], bb[3], tt[3]])
ff[5] = mesh.AddFace([bb[2], tt[3], tt[2]])

# inverse the diagonal bb[1] - tt[2]
print "\nDiagonal inversion ... ",
res = mesh.InverseDiag(bb[1], tt[2])
if not res: print "failed!"
else:       print "done."

salome.sg.updateObjBrowser(1)
\endcode

<br>
\anchor tui_uniting_two_triangles
<h2>Uniting two Triangles</h2>

\code
import salome
import smesh

# create an empty mesh structure
mesh = smesh.Mesh() 

# create the following mesh:
# .----.----.----.
# |   /|   /|   /|
# |  / |  / |  / |
# | /  | /  | /  |
# |/   |/   |/   |
# .----.----.----.

bb = [0, 0, 0, 0]
tt = [0, 0, 0, 0]
ff = [0, 0, 0, 0, 0, 0]

bb[0] = mesh.AddNode( 0., 0., 0.)
bb[1] = mesh.AddNode(10., 0., 0.)
bb[2] = mesh.AddNode(20., 0., 0.)
bb[3] = mesh.AddNode(30., 0., 0.)

tt[0] = mesh.AddNode( 0., 15., 0.)
tt[1] = mesh.AddNode(10., 15., 0.)
tt[2] = mesh.AddNode(20., 15., 0.)
tt[3] = mesh.AddNode(30., 15., 0.)

ff[0] = mesh.AddFace([bb[0], bb[1], tt[1]])
ff[1] = mesh.AddFace([bb[0], tt[1], tt[0]])
ff[2] = mesh.AddFace([bb[1], bb[2], tt[2]])
ff[3] = mesh.AddFace([bb[1], tt[2], tt[1]])
ff[4] = mesh.AddFace([bb[2], bb[3], tt[3]])
ff[5] = mesh.AddFace([bb[2], tt[3], tt[2]]) 

# delete the diagonal bb[1] - tt[2]
print "\nUnite two triangles ... ",
res = mesh.DeleteDiag(bb[1], tt[2])
if not res: print "failed!"
else:       print "done."

salome.sg.updateObjBrowser(1)
\endcode

<br>
\anchor tui_uniting_set_of_triangles
<h2>Uniting a Set of Triangles</h2>

\code
import salome
import smesh

# create an empty mesh structure
mesh = smesh.Mesh() 

# create the following mesh:
# .----.----.----.
# |   /|   /|   /|
# |  / |  / |  / |
# | /  | /  | /  |
# |/   |/   |/   |
# .----.----.----.

bb = [0, 0, 0, 0]
tt = [0, 0, 0, 0]
ff = [0, 0, 0, 0, 0, 0]

bb[0] = mesh.AddNode( 0., 0., 0.)
bb[1] = mesh.AddNode(10., 0., 0.)
bb[2] = mesh.AddNode(20., 0., 0.)
bb[3] = mesh.AddNode(30., 0., 0.)

tt[0] = mesh.AddNode( 0., 15., 0.)
tt[1] = mesh.AddNode(10., 15., 0.)
tt[2] = mesh.AddNode(20., 15., 0.)
tt[3] = mesh.AddNode(30., 15., 0.)

ff[0] = mesh.AddFace([bb[0], bb[1], tt[1]])
ff[1] = mesh.AddFace([bb[0], tt[1], tt[0]])
ff[2] = mesh.AddFace([bb[1], bb[2], tt[2]])
ff[3] = mesh.AddFace([bb[1], tt[2], tt[1]])
ff[4] = mesh.AddFace([bb[2], bb[3], tt[3]])
ff[5] = mesh.AddFace([bb[2], tt[3], tt[2]])

# unite a set of triangles
print "\nUnite a set of triangles ... ",
res = mesh.TriToQuad([ff[2], ff[3], ff[4], ff[5]], smesh.FT_MinimumAngle, 60.)
if not res: print "failed!"
else:       print "done."

salome.sg.updateObjBrowser(1)
\endcode

<br>
\anchor tui_orientation
<h2>Orientation</h2>

\code
import salome
import smesh

# create an empty mesh structure
mesh = smesh.Mesh() 

# build five quadrangles:
dx = 10
dy = 20

n1  = mesh.AddNode(0.0 * dx, 0, 0)
n2  = mesh.AddNode(1.0 * dx, 0, 0)
n3  = mesh.AddNode(2.0 * dx, 0, 0)
n4  = mesh.AddNode(3.0 * dx, 0, 0)
n5  = mesh.AddNode(4.0 * dx, 0, 0)
n6  = mesh.AddNode(5.0 * dx, 0, 0)
n7  = mesh.AddNode(0.0 * dx, dy, 0)
n8  = mesh.AddNode(1.0 * dx, dy, 0)
n9  = mesh.AddNode(2.0 * dx, dy, 0)
n10 = mesh.AddNode(3.0 * dx, dy, 0)
n11 = mesh.AddNode(4.0 * dx, dy, 0)
n12 = mesh.AddNode(5.0 * dx, dy, 0)

f1 = mesh.AddFace([n1, n2, n8 , n7 ])
f2 = mesh.AddFace([n2, n3, n9 , n8 ])
f3 = mesh.AddFace([n3, n4, n10, n9 ])
f4 = mesh.AddFace([n4, n5, n11, n10])
f5 = mesh.AddFace([n5, n6, n12, n11]) 

# Change the orientation of the second and the fourth faces.
mesh.Reorient([2, 4])

salome.sg.updateObjBrowser(1)
\endcode

<br>
\anchor tui_cutting_quadrangles
<h2>Cutting Quadrangles</h2>

\code
import SMESH_mechanic

smesh = SMESH_mechanic.smesh
mesh  = SMESH_mechanic.mesh

# cut two quadrangles: 405 and 406
mesh.QuadToTri([405, 406], smesh.FT_MinimumAngle)
\endcode

<br>
\anchor tui_smoothing
<h2>Smoothing</h2>

\code
import salome
import geompy

import SMESH_mechanic

smesh = SMESH_mechanic.smesh
mesh = SMESH_mechanic.mesh

# select the top face
faces = geompy.SubShapeAllSorted(SMESH_mechanic.shape_mesh, geompy.ShapeType["FACE"])
face = faces[3]
geompy.addToStudyInFather(SMESH_mechanic.shape_mesh, face, "face planar with hole")

# create a group of faces to be smoothed
GroupSmooth = mesh.GroupOnGeom(face, "Group of faces (smooth)", smesh.FACE)

# perform smoothing

# boolean SmoothObject(Object, IDsOfFixedNodes, MaxNbOfIterations, MaxAspectRatio, Method)
res = mesh.SmoothObject(GroupSmooth, [], 20, 2., smesh.CENTROIDAL_SMOOTH)
print "\nSmoothing ... ",
if not res: print "failed!"
else:       print "done."

salome.sg.updateObjBrowser(1) 
\endcode

<br>
\anchor tui_extrusion
<h2>Extrusion</h2>

\code
import salome
import geompy

import SMESH_mechanic

smesh = SMESH_mechanic.smesh
mesh = SMESH_mechanic.mesh 

# select the top face
faces = geompy.SubShapeAllSorted(SMESH_mechanic.shape_mesh, geompy.ShapeType["FACE"])
face = faces[7]
geompy.addToStudyInFather(SMESH_mechanic.shape_mesh, face, "face circular top")

# create a vector for extrusion
point = smesh.PointStruct(0., 0., 5.)
vector = smesh.DirStruct(point)

# create a group to be extruded
GroupTri = mesh.GroupOnGeom(face, "Group of faces (extrusion)", smesh.FACE)

# perform extrusion of the group
mesh.ExtrusionSweepObject(GroupTri, vector, 5)

salome.sg.updateObjBrowser(1)
\endcode

<br>
\anchor tui_extrusion_along_path
<h2>Extrusion along a Path</h2>

\code
import math
import salome

# Geometry
import geompy

# 1. Create points
points = [[0, 0], [50, 30], [50, 110], [0, 150], [-80, 150], [-130, 70], [-130, -20]]

iv = 1
vertices = []
for point in points:
    vert = geompy.MakeVertex(point[0], point[1], 0)
    geompy.addToStudy(vert, "Vertex_" + `iv`)
    vertices.append(vert)
    iv += 1
    pass

# 2. Create edges and wires
Edge_straight = geompy.MakeEdge(vertices[0], vertices[4])
Edge_bezierrr = geompy.MakeBezier(vertices)
Wire_polyline = geompy.MakePolyline(vertices)
Edge_Circle   = geompy.MakeCircleThreePnt(vertices[0], vertices[1], vertices[2])

geompy.addToStudy(Edge_straight, "Edge_straight")
geompy.addToStudy(Edge_bezierrr, "Edge_bezierrr")
geompy.addToStudy(Wire_polyline, "Wire_polyline")
geompy.addToStudy(Edge_Circle  , "Edge_Circle")

# 3. Explode wire on edges, as they will be used for mesh extrusion
Wire_polyline_edges = geompy.SubShapeAll(Wire_polyline, geompy.ShapeType["EDGE"])
for ii in range(len(Wire_polyline_edges)):
    geompy.addToStudyInFather(Wire_polyline, Wire_polyline_edges[ii], "Edge_" + `ii + 1`)
    pass

# Mesh
import smesh

# Mesh the given shape with the given 1d hypothesis
def Mesh1D(shape1d, nbSeg, name):
  mesh1d_tool = smesh.Mesh(shape1d, name)
  algo = mesh1d_tool.Segment()
  hyp  = algo.NumberOfSegments(nbSeg)
  isDone = mesh1d_tool.Compute()
  if not isDone: print 'Mesh ', name, ': computation failed'
  return mesh1d_tool

# Create a mesh with six nodes, seven edges and two quadrangle faces
def MakeQuadMesh2(mesh_name):
  quad_1 = smesh.Mesh(name = mesh_name)
  
  # six nodes
  n1 = quad_1.AddNode(0, 20, 10)
  n2 = quad_1.AddNode(0, 40, 10)
  n3 = quad_1.AddNode(0, 40, 30)
  n4 = quad_1.AddNode(0, 20, 30)
  n5 = quad_1.AddNode(0,  0, 30)
  n6 = quad_1.AddNode(0,  0, 10)

  # seven edges
  quad_1.AddEdge([n1, n2]) # 1
  quad_1.AddEdge([n2, n3]) # 2
  quad_1.AddEdge([n3, n4]) # 3
  quad_1.AddEdge([n4, n1]) # 4
  quad_1.AddEdge([n4, n5]) # 5
  quad_1.AddEdge([n5, n6]) # 6
  quad_1.AddEdge([n6, n1]) # 7

  # two quadrangle faces
  quad_1.AddFace([n1, n2, n3, n4]) # 8
  quad_1.AddFace([n1, n4, n5, n6]) # 9
  return [quad_1, [1,2,3,4,5,6,7], [8,9]]

# Path meshes
Edge_straight_mesh = Mesh1D(Edge_straight, 7, "Edge_straight")
Edge_bezierrr_mesh = Mesh1D(Edge_bezierrr, 7, "Edge_bezierrr")
Wire_polyline_mesh = Mesh1D(Wire_polyline, 3, "Wire_polyline")
Edge_Circle_mesh   = Mesh1D(Edge_Circle  , 8, "Edge_Circle")

# Initial meshes (to be extruded)
[quad_1, ee_1, ff_1] = MakeQuadMesh2("quad_1")
[quad_2, ee_2, ff_2] = MakeQuadMesh2("quad_2")
[quad_3, ee_3, ff_3] = MakeQuadMesh2("quad_3")
[quad_4, ee_4, ff_4] = MakeQuadMesh2("quad_4")
[quad_5, ee_5, ff_5] = MakeQuadMesh2("quad_5")
[quad_6, ee_6, ff_6] = MakeQuadMesh2("quad_6")
[quad_7, ee_7, ff_7] = MakeQuadMesh2("quad_7")

# ExtrusionAlongPath
# IDsOfElements, PathMesh, PathShape, NodeStart,
# HasAngles, Angles, HasRefPoint, RefPoint
refPoint = smesh.PointStruct(0, 0, 0)
a10 = 10.0*math.pi/180.0
a45 = 45.0*math.pi/180.0

# 1. Extrusion of two mesh edges along a straight path
error = quad_1.ExtrusionAlongPath([1,2], Edge_straight_mesh, Edge_straight, 1,
                                  0, [], 0, refPoint)

# 2. Extrusion of one mesh edge along a curved path
error = quad_2.ExtrusionAlongPath([2], Edge_bezierrr_mesh, Edge_bezierrr, 1,
                                  0, [], 0, refPoint)

# 3. Extrusion of one mesh edge along a curved path with usage of angles
error = quad_3.ExtrusionAlongPath([2], Edge_bezierrr_mesh, Edge_bezierrr, 1,
                                  1, [a45, a45, a45, 0, -a45, -a45, -a45], 0, refPoint)

# 4. Extrusion of one mesh edge along the path, which is a part of a meshed wire
error = quad_4.ExtrusionAlongPath([4], Wire_polyline_mesh, Wire_polyline_edges[0], 1,
                                  1, [a10, a10, a10], 0, refPoint)

# 5. Extrusion of two mesh faces along the path, which is a part of a meshed wire
error = quad_5.ExtrusionAlongPath(ff_5 , Wire_polyline_mesh, Wire_polyline_edges[2], 4,
                                  0, [], 0, refPoint)

# 6. Extrusion of two mesh faces along a closed path
error = quad_6.ExtrusionAlongPath(ff_6 , Edge_Circle_mesh, Edge_Circle, 1,
                                  0, [], 0, refPoint)

# 7. Extrusion of two mesh faces along a closed path with usage of angles
error = quad_7.ExtrusionAlongPath(ff_7, Edge_Circle_mesh, Edge_Circle, 1,
                                  1, [a45, -a45, a45, -a45, a45, -a45, a45, -a45], 0, refPoint)

salome.sg.updateObjBrowser(1)
\endcode

<br>
\anchor tui_revolution
<h2>Revolution</h2>

\code
import math
import SMESH

import SMESH_mechanic

mesh  = SMESH_mechanic.mesh
smesh = SMESH_mechanic.smesh

# create a group of faces to be revolved
FacesRotate = [492, 493, 502, 503]
GroupRotate = mesh.CreateEmptyGroup(SMESH.FACE,"Group of faces (rotate)")
GroupRotate.Add(FacesRotate)

# define revolution angle and axis
angle45 = 45 * math.pi / 180
axisXYZ = SMESH.AxisStruct(-38.3128, -73.3658, -23.321, -13.3402, -13.3265, 6.66632)

# perform revolution of an object
mesh.RotationSweepObject(GroupRotate, axisXYZ, angle45, 4, 1e-5) 
\endcode

<br>
\anchor tui_pattern_mapping
<h2>Pattern Mapping</h2>

\code
import geompy
import smesh

# define the geometry
Box_1 = geompy.MakeBoxDXDYDZ(200., 200., 200.)
geompy.addToStudy(Box_1, "Box_1")

faces = geompy.SubShapeAll(Box_1, geompy.ShapeType["FACE"])
Face_1 = faces[0]
Face_2 = faces[1]

geompy.addToStudyInFather(Box_1, Face_1, "Face_1")
geompy.addToStudyInFather(Box_1, Face_2, "Face_2")

# build a quadrangle mesh 3x3 on Face_1
Mesh_1 = smesh.Mesh(Face_1)
algo1D = Mesh_1.Segment()
algo1D.NumberOfSegments(3)
Mesh_1.Quadrangle()

isDone = Mesh_1.Compute()
if not isDone: print 'Mesh Mesh_1 : computation failed'

# build a triangle mesh on Face_2
Mesh_2 = smesh.Mesh(Face_2)

algo1D = Mesh_2.Segment()
algo1D.NumberOfSegments(1)
algo2D = Mesh_2.Triangle()
algo2D.MaxElementArea(240)

isDone = Mesh_2.Compute()
if not isDone: print 'Mesh Mesh_2 : computation failed'

# create a 2d pattern
pattern = smesh.GetPattern()

isDone = pattern.LoadFromFace(Mesh_2.GetMesh(), Face_2, 0)
if (isDone != 1): print 'LoadFromFace :', pattern.GetErrorCode()

# apply the pattern to a face of the first mesh
facesToSplit = Mesh_1.GetElementsByType(smesh.SMESH.FACE)
print "Splitting %d rectangular face(s) to %d triangles..."%(len(facesToSplit), 2*len(facesToSplit))
pattern.ApplyToMeshFaces(Mesh_1.GetMesh(), facesToSplit, 0, 0)
isDone = pattern.MakeMesh(Mesh_1.GetMesh(), 0, 0)
if (isDone != 1): print 'MakeMesh :', pattern.GetErrorCode()  

# create quadrangle mesh
Mesh_3 = smesh.Mesh(Box_1)
Mesh_3.Segment().NumberOfSegments(1)
Mesh_3.Quadrangle()
Mesh_3.Hexahedron()
isDone = Mesh_3.Compute()
if not isDone: print 'Mesh Mesh_3 : computation failed'

# create a 3d pattern (hexahedrons)
pattern_hexa = smesh.GetPattern()

smp_hexa = """!!! Nb of points:
15
      0        0        0   !- 0
      1        0        0   !- 1
      0        1        0   !- 2
      1        1        0   !- 3
      0        0        1   !- 4
      1        0        1   !- 5
      0        1        1   !- 6
      1        1        1   !- 7
    0.5        0      0.5   !- 8
    0.5        0        1   !- 9
    0.5      0.5      0.5   !- 10
    0.5      0.5        1   !- 11
      1        0      0.5   !- 12
      1      0.5      0.5   !- 13
      1      0.5        1   !- 14
  !!! Indices of points of 4 elements:
  8 12 5 9 10 13 14 11
  0 8 9 4 2 10 11 6
  2 10 11 6 3 13 14 7
  0 1 12 8 2 3 13 10"""

pattern_hexa.LoadFromFile(smp_hexa)

# apply the pattern to a mesh
volsToSplit = Mesh_3.GetElementsByType(smesh.SMESH.VOLUME)
print "Splitting %d hexa volume(s) to %d hexas..."%(len(volsToSplit), 4*len(volsToSplit))
pattern_hexa.ApplyToHexahedrons(Mesh_3.GetMesh(), volsToSplit,0,3)
isDone = pattern_hexa.MakeMesh(Mesh_3.GetMesh(), True, True)
if (isDone != 1): print 'MakeMesh :', pattern_hexa.GetErrorCode()  

# create one more quadrangle mesh
Mesh_4 = smesh.Mesh(Box_1)
Mesh_4.Segment().NumberOfSegments(1)
Mesh_4.Quadrangle()
Mesh_4.Hexahedron()
isDone = Mesh_4.Compute()
if not isDone: print 'Mesh Mesh_4 : computation failed'

# create another 3d pattern (pyramids)
pattern_pyra = smesh.GetPattern()

smp_pyra = """!!! Nb of points:
9
        0        0        0   !- 0
        1        0        0   !- 1
        0        1        0   !- 2
        1        1        0   !- 3
        0        0        1   !- 4
        1        0        1   !- 5
        0        1        1   !- 6
        1        1        1   !- 7
      0.5      0.5      0.5   !- 8
  !!! Indices of points of 6 elements:
  0 1 5 4 8
  7 5 1 3 8
  3 2 6 7 8
  2 0 4 6 8
  0 2 3 1 8
  4 5 7 6 8"""

pattern_pyra.LoadFromFile(smp_pyra)

# apply the pattern to a face mesh
volsToSplit = Mesh_4.GetElementsByType(smesh.SMESH.VOLUME)
print "Splitting %d hexa volume(s) to %d hexas..."%(len(volsToSplit), 6*len(volsToSplit))
pattern_pyra.ApplyToHexahedrons(Mesh_4.GetMesh(), volsToSplit,1,0)
isDone = pattern_pyra.MakeMesh(Mesh_4.GetMesh(), True, True)
if (isDone != 1): print 'MakeMesh :', pattern_pyra.GetErrorCode()  
\endcode

<br>
\anchor tui_quadratic
<h2>Convert mesh to/from quadratic</h2>

\code
import geompy
import smesh

# create sphere of radius 100

Sphere = geompy.MakeSphereR( 100 )
geompy.addToStudy( Sphere, "Sphere" )

# create simple trihedral mesh

Mesh = smesh.Mesh(Sphere)
Regular_1D = Mesh.Segment()
Nb_Segments = Regular_1D.NumberOfSegments(5)
MEFISTO_2D = Mesh.Triangle()
Tetrahedron_Netgen = Mesh.Tetrahedron(algo=smesh.NETGEN)

# compute mesh

isDone = Mesh.Compute()

# convert to quadratic
# theForce3d = 1; this results in the medium node lying at the
# middle of the line segments connecting start and end node of a mesh
# element

Mesh.ConvertToQuadratic( theForce3d=1 )

# revert back to the non-quadratic mesh

Mesh.ConvertFromQuadratic()

# convert to quadratic
# theForce3d = 0; this results in the medium node lying at the
# geometrical edge from which the mesh element is built

Mesh.ConvertToQuadratic( theForce3d=0 )

# to convert not the whole mesh but a sub-mesh, provide it as 
# an additional argument to the functions:
# Mesh.ConvertToQuadratic( 0, subMesh )
# Mesh.ConvertFromQuadratic( subMesh )
#
# Note that the mesh becomes non-conformal at conversion of sub-mesh.

\endcode

*/