// Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH : implementaion of SMESH idl descriptions // File : StdMeshers_MEFISTO_2D.cxx // Moved here from SMESH_MEFISTO_2D.cxx // Author : Paul RASCLE, EDF // Module : SMESH // #include "StdMeshers_MEFISTO_2D.hxx" #include "SMESH_Gen.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_subMesh.hxx" #include "SMESH_Block.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_Comment.hxx" #include "StdMeshers_FaceSide.hxx" #include "StdMeshers_MaxElementArea.hxx" #include "StdMeshers_LengthFromEdges.hxx" #include "Rn.h" #include "aptrte.h" #include "SMDS_MeshElement.hxx" #include "SMDS_MeshNode.hxx" #include "SMDS_EdgePosition.hxx" #include "SMDS_FacePosition.hxx" #include "utilities.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; //============================================================================= /*! * */ //============================================================================= StdMeshers_MEFISTO_2D::StdMeshers_MEFISTO_2D(int hypId, int studyId, SMESH_Gen * gen): SMESH_2D_Algo(hypId, studyId, gen) { MESSAGE("StdMeshers_MEFISTO_2D::StdMeshers_MEFISTO_2D"); _name = "MEFISTO_2D"; _shapeType = (1 << TopAbs_FACE); _compatibleHypothesis.push_back("MaxElementArea"); _compatibleHypothesis.push_back("LengthFromEdges"); _edgeLength = 0; _maxElementArea = 0; _hypMaxElementArea = NULL; _hypLengthFromEdges = NULL; myTool = 0; } //============================================================================= /*! * */ //============================================================================= StdMeshers_MEFISTO_2D::~StdMeshers_MEFISTO_2D() { MESSAGE("StdMeshers_MEFISTO_2D::~StdMeshers_MEFISTO_2D"); } //============================================================================= /*! * */ //============================================================================= bool StdMeshers_MEFISTO_2D::CheckHypothesis (SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, SMESH_Hypothesis::Hypothesis_Status& aStatus) { _hypMaxElementArea = NULL; _hypLengthFromEdges = NULL; _edgeLength = 0; _maxElementArea = 0; list ::const_iterator itl; const SMESHDS_Hypothesis *theHyp; const list &hyps = GetUsedHypothesis(aMesh, aShape); int nbHyp = hyps.size(); if (!nbHyp) { aStatus = SMESH_Hypothesis::HYP_OK; //SMESH_Hypothesis::HYP_MISSING; return true; // (PAL13464) can work with no hypothesis, LengthFromEdges is default one } itl = hyps.begin(); theHyp = (*itl); // use only the first hypothesis string hypName = theHyp->GetName(); bool isOk = false; if (hypName == "MaxElementArea") { _hypMaxElementArea = static_cast(theHyp); ASSERT(_hypMaxElementArea); _maxElementArea = _hypMaxElementArea->GetMaxArea(); isOk = true; aStatus = SMESH_Hypothesis::HYP_OK; } else if (hypName == "LengthFromEdges") { _hypLengthFromEdges = static_cast(theHyp); ASSERT(_hypLengthFromEdges); isOk = true; aStatus = SMESH_Hypothesis::HYP_OK; } else aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE; if (isOk) { isOk = false; if (_maxElementArea > 0) { //_edgeLength = 2 * sqrt(_maxElementArea); // triangles : minorant _edgeLength = sqrt(2. * _maxElementArea/sqrt(3.0)); isOk = true; } else isOk = (_hypLengthFromEdges != NULL); // **** check mode if (!isOk) aStatus = SMESH_Hypothesis::HYP_BAD_PARAMETER; } return isOk; } //============================================================================= /*! * */ //============================================================================= bool StdMeshers_MEFISTO_2D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape) { MESSAGE("StdMeshers_MEFISTO_2D::Compute"); TopoDS_Face F = TopoDS::Face(aShape.Oriented(TopAbs_FORWARD)); // helper builds quadratic mesh if necessary SMESH_MesherHelper helper(aMesh); myTool = &helper; _quadraticMesh = myTool->IsQuadraticSubMesh(aShape); const bool ignoreMediumNodes = _quadraticMesh; // get all edges of a face TError problem; TWireVector wires = StdMeshers_FaceSide::GetFaceWires( F, aMesh, ignoreMediumNodes, problem ); int nbWires = wires.size(); if ( problem && !problem->IsOK() ) return error( problem ); if ( nbWires == 0 ) return error( "Problem in StdMeshers_FaceSide::GetFaceWires()"); if ( wires[0]->NbSegments() < 3 ) // ex: a circle with 2 segments return error(COMPERR_BAD_INPUT_MESH, SMESH_Comment("Too few segments: ")<NbSegments()); // compute average edge length if (!_hypMaxElementArea) { _edgeLength = 0; int nbSegments = 0; for ( int iW = 0; iW < nbWires; ++iW ) { StdMeshers_FaceSidePtr wire = wires[ iW ]; _edgeLength += wire->Length(); nbSegments += wire->NbSegments(); } if ( nbSegments ) _edgeLength /= nbSegments; } if (/*_hypLengthFromEdges &&*/ _edgeLength < DBL_MIN ) _edgeLength = 100; Z nblf; //nombre de lignes fermees (enveloppe en tete) Z *nudslf = NULL; //numero du dernier sommet de chaque ligne fermee R2 *uvslf = NULL; Z nbpti = 0; //nombre points internes futurs sommets de la triangulation R2 *uvpti = NULL; Z nbst; R2 *uvst = NULL; Z nbt; Z *nust = NULL; Z ierr = 0; Z nutysu = 1; // 1: il existe un fonction areteideale_() // Z nutysu=0; // 0: on utilise aretmx R aretmx = _edgeLength; // longueur max aretes future triangulation nblf = nbWires; nudslf = new Z[1 + nblf]; nudslf[0] = 0; int iw = 1; int nbpnt = 0; // count nb of input points for ( int iW = 0; iW < nbWires; ++iW ) { nbpnt += wires[iW]->NbPoints() - 1; nudslf[iw++] = nbpnt; } uvslf = new R2[nudslf[nblf]]; double scalex, scaley; ComputeScaleOnFace(aMesh, F, scalex, scaley); // correspondence mefisto index --> Nodes vector< const SMDS_MeshNode*> mefistoToDS(nbpnt, (const SMDS_MeshNode*)0); bool isOk = false; // fill input points UV if ( LoadPoints(wires, uvslf, mefistoToDS, scalex, scaley) ) { // Compute aptrte(nutysu, aretmx, nblf, nudslf, uvslf, nbpti, uvpti, nbst, uvst, nbt, nust, ierr); if (ierr == 0) { MESSAGE("... End Triangulation Generated Triangle Number " << nbt); MESSAGE(" Node Number " << nbst); StoreResult(nbst, uvst, nbt, nust, mefistoToDS, scalex, scaley); isOk = true; } else { error(ierr,"Error in Triangulation (aptrte())"); } } if (nudslf != NULL) delete[]nudslf; if (uvslf != NULL) delete[]uvslf; if (uvst != NULL) delete[]uvst; if (nust != NULL) delete[]nust; return isOk; } //============================================================================= /*! * */ //============================================================================= bool StdMeshers_MEFISTO_2D::Evaluate(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, MapShapeNbElems& aResMap) { MESSAGE("StdMeshers_MEFISTO_2D::Evaluate"); TopoDS_Face F = TopoDS::Face(aShape.Oriented(TopAbs_FORWARD)); double aLen = 0.0; int NbSeg = 0; bool IsQuadratic = false; bool IsFirst = true; TopExp_Explorer exp(F,TopAbs_EDGE); for(; exp.More(); exp.Next()) { TopoDS_Edge E = TopoDS::Edge(exp.Current()); MapShapeNbElemsItr anIt = aResMap.find( aMesh.GetSubMesh(E) ); if( anIt == aResMap.end() ) continue; std::vector aVec = (*anIt).second; int nbe = Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]); NbSeg += nbe; if(IsFirst) { IsQuadratic = ( aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge] ); IsFirst = false; } double a,b; TopLoc_Location L; Handle(Geom_Curve) C = BRep_Tool::Curve(E,L,a,b); gp_Pnt P1; C->D0(a,P1); double dp = (b-a)/nbe; for(int i=1; i<=nbe; i++) { gp_Pnt P2; C->D0(a+i*dp,P2); aLen += P1.Distance(P2); P1 = P2; } } if(NbSeg<1) { std::vector aResVec(SMDSEntity_Last); for(int i=SMDSEntity_Node; iGetComputeError(); smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED, "Submesh can not be evaluated",this)); return false; } aLen = aLen/NbSeg; // middle length _edgeLength = Precision::Infinite(); double tmpLength = Min( _edgeLength, aLen ); GProp_GProps G; BRepGProp::SurfaceProperties(aShape,G); double anArea = G.Mass(); int nbFaces = Precision::IsInfinite( tmpLength ) ? 0 : (int)( anArea/(tmpLength*tmpLength*sqrt(3.)/4) ); int nbNodes = (int) ( nbFaces*3 - (NbSeg-1)*2 ) / 6; std::vector aVec(SMDSEntity_Last); for(int i=SMDSEntity_Node; i= 1.e-3 const double minSin = 1.e-3; if ( dot > 0 && 1 - dot * dot / ( sqMod1 * sqMod2 ) < minSin * minSin ) { MESSAGE(" ___ FIX UV ____" << uv0.x << " " << uv0.y); v1.SetCoord( -v1.Y(), v1.X() ); double delta = sqrt( sqMod1 ) * minSin; if ( v1.X() < 0 ) uv0.x -= delta; else uv0.x += delta; if ( v1.Y() < 0 ) uv0.y -= delta; else uv0.y += delta; // #ifdef _DEBUG_ // MESSAGE(" -> " << uv0.x << " " << uv0.y << " "); // MESSAGE("v1( " << v1.X() << " " << v1.Y() << " ) " << // "v2( " << v2.X() << " " << v2.Y() << " ) "); // MESSAGE("SIN: " << sqrt(1 - dot * dot / (sqMod1 * sqMod2))); // v1.SetCoord( uv0.x - uv1.x, uv0.y - uv1.y ); // v2.SetCoord( uv2.x - uv1.x, uv2.y - uv1.y ); // gp_XY v3( uv2.x - uv0.x, uv2.y - uv0.y ); // sqMod1 = v1.SquareModulus(); // sqMod2 = v2.SquareModulus(); // dot = v1*v2; // double sin = sqrt(1 - dot * dot / (sqMod1 * sqMod2)); // MESSAGE("NEW SIN: " << sin); // #endif return true; } return false; } //======================================================================= //function : fixCommonVertexUV //purpose : //======================================================================= static bool fixCommonVertexUV (R2 & theUV, const TopoDS_Vertex& theV, const TopoDS_Face& theF, const TopTools_IndexedDataMapOfShapeListOfShape & theVWMap, SMESH_Mesh & theMesh, const double theScaleX, const double theScaleY, const bool theCreateQuadratic) { if( !theVWMap.Contains( theV )) return false; // check if there is another wire sharing theV const TopTools_ListOfShape& WList = theVWMap.FindFromKey( theV ); TopTools_ListIteratorOfListOfShape aWIt; TopTools_MapOfShape aWires; for ( aWIt.Initialize( WList ); aWIt.More(); aWIt.Next() ) aWires.Add( aWIt.Value() ); if ( aWires.Extent() < 2 ) return false; TopoDS_Shape anOuterWire = BRepTools::OuterWire(theF); TopoDS_Shape anInnerWire; for ( aWIt.Initialize( WList ); aWIt.More() && anInnerWire.IsNull(); aWIt.Next() ) if ( !anOuterWire.IsSame( aWIt.Value() )) anInnerWire = aWIt.Value(); TopTools_ListOfShape EList; list< double > UList; // find edges of theW sharing theV // and find 2d normal to them at theV gp_Vec2d N(0.,0.); TopoDS_Iterator itE( anInnerWire ); for ( ; itE.More(); itE.Next() ) { const TopoDS_Edge& E = TopoDS::Edge( itE.Value() ); TopoDS_Iterator itV( E ); for ( ; itV.More(); itV.Next() ) { const TopoDS_Vertex & V = TopoDS::Vertex( itV.Value() ); if ( !V.IsSame( theV )) continue; EList.Append( E ); Standard_Real u = BRep_Tool::Parameter( V, E ); UList.push_back( u ); double f, l; Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, theF, f, l); gp_Vec2d d1; gp_Pnt2d p; C2d->D1( u, p, d1 ); gp_Vec2d n( d1.Y() * theScaleX, -d1.X() * theScaleY); if ( E.Orientation() == TopAbs_REVERSED ) n.Reverse(); N += n.Normalized(); } } // define step size by which to move theUV gp_Pnt2d nextUV; // uv of next node on edge, most distant of the four gp_Pnt2d thisUV( theUV.x, theUV.y ); double maxDist = -DBL_MAX; TopTools_ListIteratorOfListOfShape aEIt (EList); list< double >::iterator aUIt = UList.begin(); for ( ; aEIt.More(); aEIt.Next(), aUIt++ ) { const TopoDS_Edge& E = TopoDS::Edge( aEIt.Value() ); double f, l; Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, theF, f, l); double umin = DBL_MAX, umax = -DBL_MAX; SMDS_NodeIteratorPtr nIt = theMesh.GetSubMesh(E)->GetSubMeshDS()->GetNodes(); if ( !nIt->more() ) // no nodes on edge, only on vertices { umin = l; umax = f; } else { while ( nIt->more() ) { const SMDS_MeshNode* node = nIt->next(); // check if node is medium if ( theCreateQuadratic && SMESH_MesherHelper::IsMedium( node, SMDSAbs_Edge )) continue; const SMDS_EdgePosition* epos = static_cast(node->GetPosition().get()); double u = epos->GetUParameter(); if ( u < umin ) umin = u; if ( u > umax ) umax = u; } } bool isFirstCommon = ( *aUIt == f ); gp_Pnt2d uv = C2d->Value( isFirstCommon ? umin : umax ); double dist = thisUV.SquareDistance( uv ); if ( dist > maxDist ) { maxDist = dist; nextUV = uv; } } R2 uv0, uv1, uv2; uv0.x = thisUV.X(); uv0.y = thisUV.Y(); uv1.x = nextUV.X(); uv1.y = nextUV.Y(); uv2.x = thisUV.X(); uv2.y = thisUV.Y(); uv1.x *= theScaleX; uv1.y *= theScaleY; if ( fixOverlappedLinkUV( uv0, uv1, uv2 )) { double step = thisUV.Distance( gp_Pnt2d( uv0.x, uv0.y )); // move theUV along the normal by the step N *= step; MESSAGE("--fixCommonVertexUV move(" << theUV.x << " " << theUV.x << ") by (" << N.X() << " " << N.Y() << ")" << endl << "--- MAX DIST " << maxDist); theUV.x += N.X(); theUV.y += N.Y(); return true; } return false; } //============================================================================= /*! * */ //============================================================================= bool StdMeshers_MEFISTO_2D::LoadPoints(TWireVector & wires, R2 * uvslf, vector& mefistoToDS, double scalex, double scaley) { // to avoid passing same uv points for a vertex common to 2 wires TopoDS_Face F; TopTools_IndexedDataMapOfShapeListOfShape VWMap; if ( wires.size() > 1 ) { F = TopoDS::Face( myTool->GetSubShape() ); TopExp::MapShapesAndAncestors( F, TopAbs_VERTEX, TopAbs_WIRE, VWMap ); int nbVertices = 0; for ( int iW = 0; iW < wires.size(); ++iW ) nbVertices += wires[ iW ]->NbEdges(); if ( nbVertices == VWMap.Extent() ) VWMap.Clear(); // wires have no common vertices } int m = 0; for ( int iW = 0; iW < wires.size(); ++iW ) { const vector& uvPtVec = wires[ iW ]->GetUVPtStruct(); if ( uvPtVec.size() != wires[ iW ]->NbPoints() ) { return error(COMPERR_BAD_INPUT_MESH,SMESH_Comment("Unexpected nb of points on wire ") << iW << ": " << uvPtVec.size()<<" != "<NbPoints() << ", probably because of invalid node parameters on geom edges"); } if ( m + uvPtVec.size()-1 > mefistoToDS.size() ) { MESSAGE("Wrong mefistoToDS.size: "< mOnVertex; vector::const_iterator uvPt = uvPtVec.begin(); for ( ++uvPt; uvPt != uvPtVec.end(); ++uvPt ) { // bind mefisto ID to node mefistoToDS[m] = uvPt->node; // set UV uvslf[m].x = uvPt->u * scalex; uvslf[m].y = uvPt->v * scaley; if ( uvPt->node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX ) mOnVertex.push_back( m ); m++; } int mFirst = mOnVertex.front(), mLast = m - 1; list< int >::iterator mIt = mOnVertex.begin(); for ( ; mIt != mOnVertex.end(); ++mIt) { int m = *mIt; if ( iW && !VWMap.IsEmpty()) { // except outer wire // avoid passing same uv point for a vertex common to 2 wires int vID = mefistoToDS[m]->GetPosition()->GetShapeId(); TopoDS_Vertex V = TopoDS::Vertex( myTool->GetMeshDS()->IndexToShape( vID )); if ( fixCommonVertexUV( uvslf[m], V, F, VWMap, *myTool->GetMesh(), scalex, scaley, _quadraticMesh )) { myNodesOnCommonV.push_back( mefistoToDS[m] ); continue; } } // prevent failure on overlapped adjacent links, // check only links ending in vertex nodes int mB = m - 1, mA = m + 1; // indices Before and After if ( mB < mFirst ) mB = mLast; if ( mA > mLast ) mA = mFirst; fixOverlappedLinkUV (uvslf[ mB ], uvslf[ m ], uvslf[ mA ]); } } return true; } //============================================================================= /*! * */ //============================================================================= void StdMeshers_MEFISTO_2D::ComputeScaleOnFace(SMESH_Mesh & aMesh, const TopoDS_Face & aFace, double & scalex, double & scaley) { TopoDS_Wire W = BRepTools::OuterWire(aFace); double xmin = 1.e300; // min & max of face 2D parametric coord. double xmax = -1.e300; double ymin = 1.e300; double ymax = -1.e300; int nbp = 23; scalex = 1; scaley = 1; TopExp_Explorer wexp(W, TopAbs_EDGE); for ( ; wexp.More(); wexp.Next()) { const TopoDS_Edge & E = TopoDS::Edge( wexp.Current() ); double f, l; Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, aFace, f, l); if ( C2d.IsNull() ) continue; double du = (l - f) / double (nbp); for (int i = 0; i <= nbp; i++) { double param = f + double (i) * du; gp_Pnt2d p = C2d->Value(param); if (p.X() < xmin) xmin = p.X(); if (p.X() > xmax) xmax = p.X(); if (p.Y() < ymin) ymin = p.Y(); if (p.Y() > ymax) ymax = p.Y(); // MESSAGE(" "<< f<<" "<Value(xmin, ymoy); gp_Pnt PY0 = S->Value(xmoy, ymin); double dx = xsize / double (nbp); double dy = ysize / double (nbp); for (int i = 1; i <= nbp; i++) { double x = xmin + double (i) * dx; gp_Pnt PX = S->Value(x, ymoy); double y = ymin + double (i) * dy; gp_Pnt PY = S->Value(xmoy, y); length_x += PX.Distance(PX0); length_y += PY.Distance(PY0); PX0 = PX; PY0 = PY; } scalex = length_x / xsize; scaley = length_y / ysize; // SCRUTE(xsize); // SCRUTE(ysize); double xyratio = xsize*scalex/(ysize*scaley); const double maxratio = 1.e2; //SCRUTE(xyratio); if (xyratio > maxratio) { SCRUTE( scaley ); scaley *= xyratio / maxratio; SCRUTE( scaley ); } else if (xyratio < 1./maxratio) { SCRUTE( scalex ); scalex *= 1 / xyratio / maxratio; SCRUTE( scalex ); } ASSERT(scalex); ASSERT(scaley); } //============================================================================= /*! * */ //============================================================================= void StdMeshers_MEFISTO_2D::StoreResult(Z nbst, R2 * uvst, Z nbt, Z * nust, vector< const SMDS_MeshNode*>&mefistoToDS, double scalex, double scaley) { SMESHDS_Mesh * meshDS = myTool->GetMeshDS(); int faceID = myTool->GetSubShapeID(); TopoDS_Face F = TopoDS::Face( myTool->GetSubShape() ); Handle(Geom_Surface) S = BRep_Tool::Surface( F ); Z n = mefistoToDS.size(); // nb input points mefistoToDS.resize( nbst ); for ( ; n < nbst; n++) { if (!mefistoToDS[n]) { double u = uvst[n][0] / scalex; double v = uvst[n][1] / scaley; gp_Pnt P = S->Value(u, v); SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z()); meshDS->SetNodeOnFace(node, faceID, u, v); //MESSAGE(P.X()<<" "<AddFace(n1, n2, n3); else elt = myTool->AddFace(n1, n3, n2); meshDS->SetMeshElementOnShape(elt, faceID); m++; } // remove bad elements built on vertices shared by wires list::iterator itN = myNodesOnCommonV.begin(); for ( ; itN != myNodesOnCommonV.end(); itN++ ) { const SMDS_MeshNode* node = *itN; SMDS_ElemIteratorPtr invElemIt = node->GetInverseElementIterator(); while ( invElemIt->more() ) { const SMDS_MeshElement* elem = invElemIt->next(); SMDS_ElemIteratorPtr itN = elem->nodesIterator(); int nbSame = 0; while ( itN->more() ) if ( itN->next() == node) nbSame++; if (nbSame > 1) { MESSAGE( "RM bad element " << elem->GetID()); meshDS->RemoveElement( elem ); } } } }