// Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH : implementaion of SMESH idl descriptions // File : StdMeshers_Hexa_3D.cxx // Moved here from SMESH_Hexa_3D.cxx // Author : Paul RASCLE, EDF // Module : SMESH // #include "StdMeshers_Hexa_3D.hxx" #include "StdMeshers_CompositeHexa_3D.hxx" #include "StdMeshers_FaceSide.hxx" #include "StdMeshers_Penta_3D.hxx" #include "StdMeshers_Prism_3D.hxx" #include "StdMeshers_Quadrangle_2D.hxx" #include "SMESH_Gen.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_subMesh.hxx" #include "SMESH_Comment.hxx" #include "SMDS_MeshElement.hxx" #include "SMDS_MeshNode.hxx" #include "SMDS_FacePosition.hxx" #include "SMDS_VolumeTool.hxx" #include "SMDS_VolumeOfNodes.hxx" #include #include #include #include #include #include #include #include #include #include "utilities.h" #include "Utils_ExceptHandlers.hxx" typedef SMESH_Comment TComm; using namespace std; static SMESH_ComputeErrorPtr ComputePentahedralMesh(SMESH_Mesh &, const TopoDS_Shape &); static bool EvaluatePentahedralMesh(SMESH_Mesh &, const TopoDS_Shape &, MapShapeNbElems &); //============================================================================= /*! * */ //============================================================================= StdMeshers_Hexa_3D::StdMeshers_Hexa_3D(int hypId, int studyId, SMESH_Gen * gen) :SMESH_3D_Algo(hypId, studyId, gen) { MESSAGE("StdMeshers_Hexa_3D::StdMeshers_Hexa_3D"); _name = "Hexa_3D"; _shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit /shape type } //============================================================================= /*! * */ //============================================================================= StdMeshers_Hexa_3D::~StdMeshers_Hexa_3D() { MESSAGE("StdMeshers_Hexa_3D::~StdMeshers_Hexa_3D"); } //================================================================================ /*! * \brief Clear fields and return the argument * \param res - the value to return * \retval bool - the argument value */ //================================================================================ bool StdMeshers_Hexa_3D::ClearAndReturn(FaceQuadStruct* theQuads[6], const bool res) { for (int i = 0; i < 6; i++) { delete theQuads[i]; theQuads[i] = NULL; } return res; } //============================================================================= /*! * */ //============================================================================= bool StdMeshers_Hexa_3D::CheckHypothesis (SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, SMESH_Hypothesis::Hypothesis_Status& aStatus) { // check nb of faces in the shape /* PAL16229 aStatus = SMESH_Hypothesis::HYP_BAD_GEOMETRY; int nbFaces = 0; for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) if ( ++nbFaces > 6 ) break; if ( nbFaces != 6 ) return false; */ aStatus = SMESH_Hypothesis::HYP_OK; return true; } //======================================================================= //function : isCloser //purpose : //======================================================================= inline bool isCloser(const int i, const int j, const int nbhoriz, const FaceQuadStruct* quad, const gp_Pnt2d uv, double & minDist) { int ij = j * nbhoriz + i; gp_Pnt2d uv2( quad->uv_grid[ij].u, quad->uv_grid[ij].v ); double dist = uv.SquareDistance( uv2 ); if ( dist < minDist ) { minDist = dist; return true; } return false; } //======================================================================= //function : findIJ //purpose : return i,j of the node //======================================================================= static bool findIJ (const SMDS_MeshNode* node, const FaceQuadStruct * quad, int& I, int& J) { const SMDS_FacePosition* fpos = static_cast(node->GetPosition().get()); if ( ! fpos ) return false; gp_Pnt2d uv( fpos->GetUParameter(), fpos->GetVParameter() ); double minDist = DBL_MAX; const int nbhoriz = quad->side[0]->NbPoints(); const int nbvertic = quad->side[1]->NbPoints(); I = nbhoriz/2; J = nbvertic/2; int oldI, oldJ; do { oldI = I; oldJ = J; while ( I + 2 < nbhoriz && isCloser( I + 1, J, nbhoriz, quad, uv, minDist )) I += 1; if ( I == oldI ) while ( I - 1 > 0 && isCloser( I - 1, J, nbhoriz, quad, uv, minDist )) I -= 1; if ( minDist < DBL_MIN ) break; while ( J + 2 < nbvertic && isCloser( I, J + 1, nbhoriz, quad, uv, minDist )) J += 1; if ( J == oldJ ) while ( J - 1 > 0 && isCloser( I, J - 1, nbhoriz, quad, uv, minDist )) J -= 1; if ( minDist < DBL_MIN ) break; } while ( I != oldI || J != oldJ ); if ( minDist > DBL_MIN ) { for (int i = 1; i < nbhoriz - 1; i++) for (int j = 1; j < nbvertic - 1; j++) if ( isCloser( i, j, nbhoriz, quad, uv, minDist )) I = i, J = j; } return true; } //============================================================================= /*! * Hexahedron mesh on hexaedron like form * -0. - shape and face mesh verification * -1. - identify faces and vertices of the "cube" * -2. - Algorithm from: * "Application de l'interpolation transfinie à la création de maillages * C0 ou G1 continus sur des triangles, quadrangles, tetraedres, pentaedres * et hexaedres déformés." * Alain PERONNET - 8 janvier 1999 */ //============================================================================= bool StdMeshers_Hexa_3D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape)// throw(SALOME_Exception) { // PAL14921. Enable catching std::bad_alloc and Standard_OutOfMemory outside //Unexpect aCatch(SalomeException); MESSAGE("StdMeshers_Hexa_3D::Compute"); SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); // 0. - shape and face mesh verification // 0.1 - shape must be a solid (or a shell) with 6 faces vector < SMESH_subMesh * >meshFaces; for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) { SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current()); ASSERT(aSubMesh); meshFaces.push_back(aSubMesh); } if (meshFaces.size() != 6) { //return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block"); static StdMeshers_CompositeHexa_3D compositeHexa(-10, 0, aMesh.GetGen()); if ( !compositeHexa.Compute( aMesh, aShape )) return error( compositeHexa.GetComputeError() ); return true; } // 0.2 - is each face meshed with Quadrangle_2D? (so, with a wire of 4 edges) // tool for working with quadratic elements SMESH_MesherHelper aTool (aMesh); _quadraticMesh = aTool.IsQuadraticSubMesh(aShape); // cube structure typedef struct cubeStruct { TopoDS_Vertex V000; TopoDS_Vertex V001; TopoDS_Vertex V010; TopoDS_Vertex V011; TopoDS_Vertex V100; TopoDS_Vertex V101; TopoDS_Vertex V110; TopoDS_Vertex V111; faceQuadStruct* quad_X0; faceQuadStruct* quad_X1; faceQuadStruct* quad_Y0; faceQuadStruct* quad_Y1; faceQuadStruct* quad_Z0; faceQuadStruct* quad_Z1; Point3DStruct* np; // normalised 3D coordinates } CubeStruct; CubeStruct aCube; // bounding faces FaceQuadStruct* aQuads[6]; for (int i = 0; i < 6; i++) aQuads[i] = 0; for (int i = 0; i < 6; i++) { TopoDS_Shape aFace = meshFaces[i]->GetSubShape(); SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace); string algoName = algo->GetName(); bool isAllQuad = false; if (algoName == "Quadrangle_2D") { SMESHDS_SubMesh * sm = meshDS->MeshElements( aFace ); if ( sm ) { isAllQuad = true; SMDS_ElemIteratorPtr eIt = sm->GetElements(); while ( isAllQuad && eIt->more() ) { const SMDS_MeshElement* elem = eIt->next(); isAllQuad = ( elem->NbNodes()==4 ||(_quadraticMesh && elem->NbNodes()==8) ); } } } if ( ! isAllQuad ) { SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape); return ClearAndReturn( aQuads, error(err)); } StdMeshers_Quadrangle_2D *quadAlgo = dynamic_cast < StdMeshers_Quadrangle_2D * >(algo); ASSERT(quadAlgo); try { aQuads[i] = quadAlgo->CheckAnd2Dcompute(aMesh, aFace, _quadraticMesh); if(!aQuads[i]) { return error( quadAlgo->GetComputeError()); } } catch(SALOME_Exception & S_ex) { return ClearAndReturn( aQuads, error(COMPERR_SLM_EXCEPTION,TComm(S_ex.what()) << " Raised by StdMeshers_Quadrangle_2D " " on face #" << meshDS->ShapeToIndex( aFace ))); } // 0.2.1 - number of points on the opposite edges must be the same if (aQuads[i]->side[0]->NbPoints() != aQuads[i]->side[2]->NbPoints() || aQuads[i]->side[1]->NbPoints() != aQuads[i]->side[3]->NbPoints() /*aQuads[i]->side[0]->NbEdges() != 1 || aQuads[i]->side[1]->NbEdges() != 1 || aQuads[i]->side[2]->NbEdges() != 1 || aQuads[i]->side[3]->NbEdges() != 1*/) { MESSAGE("different number of points on the opposite edges of face " << i); // Try to go into penta algorithm 'cause it has been improved. SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape); return ClearAndReturn( aQuads, error(err)); } } // 1. - identify faces and vertices of the "cube" // 1.1 - ancestor maps vertex->edges in the cube // TopTools_IndexedDataMapOfShapeListOfShape MS; // TopExp::MapShapesAndAncestors(aShape, TopAbs_VERTEX, TopAbs_EDGE, MS); // 1.2 - first face is choosen as face Y=0 of the unit cube const TopoDS_Shape & aFace = meshFaces[0]->GetSubShape(); //const TopoDS_Face & F = TopoDS::Face(aFace); // 1.3 - identify the 4 vertices of the face Y=0: V000, V100, V101, V001 aCube.V000 = aQuads[0]->side[0]->FirstVertex(); // will be (0,0,0) on the unit cube aCube.V100 = aQuads[0]->side[0]->LastVertex(); // will be (1,0,0) on the unit cube aCube.V001 = aQuads[0]->side[2]->FirstVertex(); // will be (0,0,1) on the unit cube aCube.V101 = aQuads[0]->side[2]->LastVertex(); // will be (1,0,1) on the unit cube TopTools_IndexedMapOfShape MV0; TopExp::MapShapes(aFace, TopAbs_VERTEX, MV0); aCube.V010 = OppositeVertex( aCube.V000, MV0, aQuads); aCube.V110 = OppositeVertex( aCube.V100, MV0, aQuads); aCube.V011 = OppositeVertex( aCube.V001, MV0, aQuads); aCube.V111 = OppositeVertex( aCube.V101, MV0, aQuads); // 1.6 - find remaining faces given 4 vertices int _indY0 = 0; int _indY1 = GetFaceIndex(aMesh, aShape, meshFaces, aCube.V010, aCube.V011, aCube.V110, aCube.V111); int _indZ0 = GetFaceIndex(aMesh, aShape, meshFaces, aCube.V000, aCube.V010, aCube.V100, aCube.V110); int _indZ1 = GetFaceIndex(aMesh, aShape, meshFaces, aCube.V001, aCube.V011, aCube.V101, aCube.V111); int _indX0 = GetFaceIndex(aMesh, aShape, meshFaces, aCube.V000, aCube.V001, aCube.V010, aCube.V011); int _indX1 = GetFaceIndex(aMesh, aShape, meshFaces, aCube.V100, aCube.V101, aCube.V110, aCube.V111); // IPAL21120: SIGSEGV on Meshing attached Compound with Automatic Hexadralization if ( _indY1 < 1 || _indZ0 < 1 || _indZ1 < 1 || _indX0 < 1 || _indX1 < 1 ) return error(COMPERR_BAD_SHAPE); aCube.quad_Y0 = aQuads[_indY0]; aCube.quad_Y1 = aQuads[_indY1]; aCube.quad_Z0 = aQuads[_indZ0]; aCube.quad_Z1 = aQuads[_indZ1]; aCube.quad_X0 = aQuads[_indX0]; aCube.quad_X1 = aQuads[_indX1]; // 1.7 - get convertion coefs from face 2D normalized to 3D normalized Conv2DStruct cx0; // for face X=0 Conv2DStruct cx1; // for face X=1 Conv2DStruct cy0; Conv2DStruct cy1; Conv2DStruct cz0; Conv2DStruct cz1; GetConv2DCoefs(*aCube.quad_X0, meshFaces[_indX0]->GetSubShape(), aCube.V000, aCube.V010, aCube.V011, aCube.V001, cx0); GetConv2DCoefs(*aCube.quad_X1, meshFaces[_indX1]->GetSubShape(), aCube.V100, aCube.V110, aCube.V111, aCube.V101, cx1); GetConv2DCoefs(*aCube.quad_Y0, meshFaces[_indY0]->GetSubShape(), aCube.V000, aCube.V100, aCube.V101, aCube.V001, cy0); GetConv2DCoefs(*aCube.quad_Y1, meshFaces[_indY1]->GetSubShape(), aCube.V010, aCube.V110, aCube.V111, aCube.V011, cy1); GetConv2DCoefs(*aCube.quad_Z0, meshFaces[_indZ0]->GetSubShape(), aCube.V000, aCube.V100, aCube.V110, aCube.V010, cz0); GetConv2DCoefs(*aCube.quad_Z1, meshFaces[_indZ1]->GetSubShape(), aCube.V001, aCube.V101, aCube.V111, aCube.V011, cz1); // 1.8 - create a 3D structure for normalized values int nbx = aCube.quad_Z0->side[0]->NbPoints(); if (cz0.a1 == 0.) nbx = aCube.quad_Z0->side[1]->NbPoints(); int nby = aCube.quad_X0->side[0]->NbPoints(); if (cx0.a1 == 0.) nby = aCube.quad_X0->side[1]->NbPoints(); int nbz = aCube.quad_Y0->side[0]->NbPoints(); if (cy0.a1 != 0.) nbz = aCube.quad_Y0->side[1]->NbPoints(); int i1, j1, nbxyz = nbx * nby * nbz; Point3DStruct *np = new Point3DStruct[nbxyz]; // 1.9 - store node indexes of faces { const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX0]->GetSubShape()); faceQuadStruct *quad = aCube.quad_X0; int i = 0; // j = x/face , k = y/face int nbdown = quad->side[0]->NbPoints(); int nbright = quad->side[1]->NbPoints(); SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes(); while(itf->more()) { const SMDS_MeshNode * node = itf->next(); if(aTool.IsMedium(node)) continue; if ( !findIJ( node, quad, i1, j1 )) return ClearAndReturn( aQuads, false ); int ij1 = j1 * nbdown + i1; quad->uv_grid[ij1].node = node; } for (int i1 = 0; i1 < nbdown; i1++) for (int j1 = 0; j1 < nbright; j1++) { int ij1 = j1 * nbdown + i1; int j = cx0.ia * i1 + cx0.ib * j1 + cx0.ic; // j = x/face int k = cx0.ja * i1 + cx0.jb * j1 + cx0.jc; // k = y/face int ijk = k * nbx * nby + j * nbx + i; //MESSAGE(" "<uv_grid[ij1].node; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX1]->GetSubShape()); SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes(); faceQuadStruct *quad = aCube.quad_X1; int i = nbx - 1; // j = x/face , k = y/face int nbdown = quad->side[0]->NbPoints(); int nbright = quad->side[1]->NbPoints(); while(itf->more()) { const SMDS_MeshNode * node = itf->next(); if(aTool.IsMedium(node)) continue; if ( !findIJ( node, quad, i1, j1 )) return ClearAndReturn( aQuads, false ); int ij1 = j1 * nbdown + i1; quad->uv_grid[ij1].node = node; } for (int i1 = 0; i1 < nbdown; i1++) for (int j1 = 0; j1 < nbright; j1++) { int ij1 = j1 * nbdown + i1; int j = cx1.ia * i1 + cx1.ib * j1 + cx1.ic; // j = x/face int k = cx1.ja * i1 + cx1.jb * j1 + cx1.jc; // k = y/face int ijk = k * nbx * nby + j * nbx + i; //MESSAGE(" "<uv_grid[ij1].node; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY0]->GetSubShape()); SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes(); faceQuadStruct *quad = aCube.quad_Y0; int j = 0; // i = x/face , k = y/face int nbdown = quad->side[0]->NbPoints(); int nbright = quad->side[1]->NbPoints(); while(itf->more()) { const SMDS_MeshNode * node = itf->next(); if(aTool.IsMedium(node)) continue; if ( !findIJ( node, quad, i1, j1 )) return ClearAndReturn( aQuads, false ); int ij1 = j1 * nbdown + i1; quad->uv_grid[ij1].node = node; } for (int i1 = 0; i1 < nbdown; i1++) for (int j1 = 0; j1 < nbright; j1++) { int ij1 = j1 * nbdown + i1; int i = cy0.ia * i1 + cy0.ib * j1 + cy0.ic; // i = x/face int k = cy0.ja * i1 + cy0.jb * j1 + cy0.jc; // k = y/face int ijk = k * nbx * nby + j * nbx + i; //MESSAGE(" "<uv_grid[ij1].node; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY1]->GetSubShape()); SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes(); faceQuadStruct *quad = aCube.quad_Y1; int j = nby - 1; // i = x/face , k = y/face int nbdown = quad->side[0]->NbPoints(); int nbright = quad->side[1]->NbPoints(); while(itf->more()) { const SMDS_MeshNode * node = itf->next(); if(aTool.IsMedium(node)) continue; if ( !findIJ( node, quad, i1, j1 )) return ClearAndReturn( aQuads, false ); int ij1 = j1 * nbdown + i1; quad->uv_grid[ij1].node = node; } for (int i1 = 0; i1 < nbdown; i1++) for (int j1 = 0; j1 < nbright; j1++) { int ij1 = j1 * nbdown + i1; int i = cy1.ia * i1 + cy1.ib * j1 + cy1.ic; // i = x/face int k = cy1.ja * i1 + cy1.jb * j1 + cy1.jc; // k = y/face int ijk = k * nbx * nby + j * nbx + i; //MESSAGE(" "<uv_grid[ij1].node; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ0]->GetSubShape()); SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes(); faceQuadStruct *quad = aCube.quad_Z0; int k = 0; // i = x/face , j = y/face int nbdown = quad->side[0]->NbPoints(); int nbright = quad->side[1]->NbPoints(); while(itf->more()) { const SMDS_MeshNode * node = itf->next(); if(aTool.IsMedium(node)) continue; if ( !findIJ( node, quad, i1, j1 )) return ClearAndReturn( aQuads, false ); int ij1 = j1 * nbdown + i1; quad->uv_grid[ij1].node = node; } for (int i1 = 0; i1 < nbdown; i1++) for (int j1 = 0; j1 < nbright; j1++) { int ij1 = j1 * nbdown + i1; int i = cz0.ia * i1 + cz0.ib * j1 + cz0.ic; // i = x/face int j = cz0.ja * i1 + cz0.jb * j1 + cz0.jc; // j = y/face int ijk = k * nbx * nby + j * nbx + i; //MESSAGE(" "<uv_grid[ij1].node; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ1]->GetSubShape()); SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes(); faceQuadStruct *quad = aCube.quad_Z1; int k = nbz - 1; // i = x/face , j = y/face int nbdown = quad->side[0]->NbPoints(); int nbright = quad->side[1]->NbPoints(); while(itf->more()) { const SMDS_MeshNode * node = itf->next(); if(aTool.IsMedium(node)) continue; if ( !findIJ( node, quad, i1, j1 )) return ClearAndReturn( aQuads, false ); int ij1 = j1 * nbdown + i1; quad->uv_grid[ij1].node = node; } for (int i1 = 0; i1 < nbdown; i1++) for (int j1 = 0; j1 < nbright; j1++) { int ij1 = j1 * nbdown + i1; int i = cz1.ia * i1 + cz1.ib * j1 + cz1.ic; // i = x/face int j = cz1.ja * i1 + cz1.jb * j1 + cz1.jc; // j = y/face int ijk = k * nbx * nby + j * nbx + i; //MESSAGE(" "<uv_grid[ij1].node; //SCRUTE(np[ijk].nodeId); } } // 2.0 - for each node of the cube: // - get the 8 points 3D = 8 vertices of the cube // - get the 12 points 3D on the 12 edges of the cube // - get the 6 points 3D on the 6 faces with their ID // - compute the point 3D // - store the point 3D in SMESHDS, store its ID in 3D structure int shapeID = meshDS->ShapeToIndex( aShape ); Pt3 p000, p001, p010, p011, p100, p101, p110, p111; Pt3 px00, px01, px10, px11; Pt3 p0y0, p0y1, p1y0, p1y1; Pt3 p00z, p01z, p10z, p11z; Pt3 pxy0, pxy1, px0z, px1z, p0yz, p1yz; GetPoint(p000, 0, 0, 0, nbx, nby, nbz, np, meshDS); GetPoint(p001, 0, 0, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(p010, 0, nby - 1, 0, nbx, nby, nbz, np, meshDS); GetPoint(p011, 0, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(p100, nbx - 1, 0, 0, nbx, nby, nbz, np, meshDS); GetPoint(p101, nbx - 1, 0, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(p110, nbx - 1, nby - 1, 0, nbx, nby, nbz, np, meshDS); GetPoint(p111, nbx - 1, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS); for (int i = 1; i < nbx - 1; i++) { for (int j = 1; j < nby - 1; j++) { for (int k = 1; k < nbz - 1; k++) { // *** seulement maillage regulier // 12 points on edges GetPoint(px00, i, 0, 0, nbx, nby, nbz, np, meshDS); GetPoint(px01, i, 0, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(px10, i, nby - 1, 0, nbx, nby, nbz, np, meshDS); GetPoint(px11, i, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(p0y0, 0, j, 0, nbx, nby, nbz, np, meshDS); GetPoint(p0y1, 0, j, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(p1y0, nbx - 1, j, 0, nbx, nby, nbz, np, meshDS); GetPoint(p1y1, nbx - 1, j, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(p00z, 0, 0, k, nbx, nby, nbz, np, meshDS); GetPoint(p01z, 0, nby - 1, k, nbx, nby, nbz, np, meshDS); GetPoint(p10z, nbx - 1, 0, k, nbx, nby, nbz, np, meshDS); GetPoint(p11z, nbx - 1, nby - 1, k, nbx, nby, nbz, np, meshDS); // 12 points on faces GetPoint(pxy0, i, j, 0, nbx, nby, nbz, np, meshDS); GetPoint(pxy1, i, j, nbz - 1, nbx, nby, nbz, np, meshDS); GetPoint(px0z, i, 0, k, nbx, nby, nbz, np, meshDS); GetPoint(px1z, i, nby - 1, k, nbx, nby, nbz, np, meshDS); GetPoint(p0yz, 0, j, k, nbx, nby, nbz, np, meshDS); GetPoint(p1yz, nbx - 1, j, k, nbx, nby, nbz, np, meshDS); int ijk = k * nbx * nby + j * nbx + i; double x = double (i) / double (nbx - 1); // *** seulement double y = double (j) / double (nby - 1); // *** maillage double z = double (k) / double (nbz - 1); // *** regulier Pt3 X; for (int i = 0; i < 3; i++) { X[i] = (1 - x) * p0yz[i] + x * p1yz[i] + (1 - y) * px0z[i] + y * px1z[i] + (1 - z) * pxy0[i] + z * pxy1[i] - (1 - x) * ((1 - y) * p00z[i] + y * p01z[i]) - x * ((1 - y) * p10z[i] + y * p11z[i]) - (1 - y) * ((1 - z) * px00[i] + z * px01[i]) - y * ((1 - z) * px10[i] + z * px11[i]) - (1 - z) * ((1 - x) * p0y0[i] + x * p1y0[i]) - z * ((1 - x) * p0y1[i] + x * p1y1[i]) + (1 - x) * ((1 - y) * ((1 - z) * p000[i] + z * p001[i]) + y * ((1 - z) * p010[i] + z * p011[i])) + x * ((1 - y) * ((1 - z) * p100[i] + z * p101[i]) + y * ((1 - z) * p110[i] + z * p111[i])); } SMDS_MeshNode * node = meshDS->AddNode(X[0], X[1], X[2]); np[ijk].node = node; meshDS->SetNodeInVolume(node, shapeID); } } } // find orientation of furute volumes according to MED convention vector< bool > forward( nbx * nby ); SMDS_VolumeTool vTool; for (int i = 0; i < nbx - 1; i++) { for (int j = 0; j < nby - 1; j++) { int n1 = j * nbx + i; int n2 = j * nbx + i + 1; int n3 = (j + 1) * nbx + i + 1; int n4 = (j + 1) * nbx + i; int n5 = nbx * nby + j * nbx + i; int n6 = nbx * nby + j * nbx + i + 1; int n7 = nbx * nby + (j + 1) * nbx + i + 1; int n8 = nbx * nby + (j + 1) * nbx + i; SMDS_VolumeOfNodes tmpVol (np[n1].node,np[n2].node,np[n3].node,np[n4].node, np[n5].node,np[n6].node,np[n7].node,np[n8].node); vTool.Set( &tmpVol ); forward[ n1 ] = vTool.IsForward(); } } //2.1 - for each node of the cube (less 3 *1 Faces): // - store hexahedron in SMESHDS MESSAGE("Storing hexahedron into the DS"); for (int i = 0; i < nbx - 1; i++) { for (int j = 0; j < nby - 1; j++) { bool isForw = forward.at( j * nbx + i ); for (int k = 0; k < nbz - 1; k++) { int n1 = k * nbx * nby + j * nbx + i; int n2 = k * nbx * nby + j * nbx + i + 1; int n3 = k * nbx * nby + (j + 1) * nbx + i + 1; int n4 = k * nbx * nby + (j + 1) * nbx + i; int n5 = (k + 1) * nbx * nby + j * nbx + i; int n6 = (k + 1) * nbx * nby + j * nbx + i + 1; int n7 = (k + 1) * nbx * nby + (j + 1) * nbx + i + 1; int n8 = (k + 1) * nbx * nby + (j + 1) * nbx + i; SMDS_MeshVolume * elt; if ( isForw ) { elt = aTool.AddVolume(np[n1].node, np[n2].node, np[n3].node, np[n4].node, np[n5].node, np[n6].node, np[n7].node, np[n8].node); } else { elt = aTool.AddVolume(np[n1].node, np[n4].node, np[n3].node, np[n2].node, np[n5].node, np[n8].node, np[n7].node, np[n6].node); } meshDS->SetMeshElementOnShape(elt, shapeID); } } } if ( np ) delete [] np; return ClearAndReturn( aQuads, true ); } //============================================================================= /*! * Evaluate */ //============================================================================= bool StdMeshers_Hexa_3D::Evaluate(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, MapShapeNbElems& aResMap) { vector < SMESH_subMesh * >meshFaces; TopTools_SequenceOfShape aFaces; for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) { aFaces.Append(exp.Current()); SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current()); ASSERT(aSubMesh); meshFaces.push_back(aSubMesh); } if (meshFaces.size() != 6) { //return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block"); static StdMeshers_CompositeHexa_3D compositeHexa(-10, 0, aMesh.GetGen()); return compositeHexa.Evaluate(aMesh, aShape, aResMap); } int i = 0; for(; i<6; i++) { //TopoDS_Shape aFace = meshFaces[i]->GetSubShape(); TopoDS_Shape aFace = aFaces.Value(i+1); SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace); if( !algo ) { std::vector aResVec(SMDSEntity_Last); for(int i=SMDSEntity_Node; iGetComputeError(); smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this)); return false; } string algoName = algo->GetName(); bool isAllQuad = false; if (algoName == "Quadrangle_2D") { MapShapeNbElemsItr anIt = aResMap.find(meshFaces[i]); if( anIt == aResMap.end() ) continue; std::vector aVec = (*anIt).second; int nbtri = Max(aVec[SMDSEntity_Triangle],aVec[SMDSEntity_Quad_Triangle]); if( nbtri == 0 ) isAllQuad = true; } if ( ! isAllQuad ) { return EvaluatePentahedralMesh(aMesh, aShape, aResMap); } } // find number of 1d elems for 1 face int nb1d = 0; TopTools_MapOfShape Edges1; bool IsQuadratic = false; bool IsFirst = true; for (TopExp_Explorer exp(aFaces.Value(1), TopAbs_EDGE); exp.More(); exp.Next()) { Edges1.Add(exp.Current()); SMESH_subMesh *sm = aMesh.GetSubMesh(exp.Current()); if( sm ) { MapShapeNbElemsItr anIt = aResMap.find(sm); if( anIt == aResMap.end() ) continue; std::vector aVec = (*anIt).second; nb1d += Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]); if(IsFirst) { IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]); IsFirst = false; } } } // find face opposite to 1 face int OppNum = 0; for(i=2; i<=6; i++) { bool IsOpposite = true; for(TopExp_Explorer exp(aFaces.Value(i), TopAbs_EDGE); exp.More(); exp.Next()) { if( Edges1.Contains(exp.Current()) ) { IsOpposite = false; break; } } if(IsOpposite) { OppNum = i; break; } } // find number of 2d elems on side faces int nb2d = 0; for(i=2; i<=6; i++) { if( i == OppNum ) continue; MapShapeNbElemsItr anIt = aResMap.find( meshFaces[i-1] ); if( anIt == aResMap.end() ) continue; std::vector aVec = (*anIt).second; nb2d += Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]); } MapShapeNbElemsItr anIt = aResMap.find( meshFaces[0] ); std::vector aVec = (*anIt).second; int nb2d_face0 = Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]); int nb0d_face0 = aVec[SMDSEntity_Node]; std::vector aResVec(SMDSEntity_Last); for(int i=SMDSEntity_Node; iX(); p[1] = node->Y(); p[2] = node->Z(); //MESSAGE(" "<&meshFaces, const TopoDS_Vertex & V0, const TopoDS_Vertex & V1, const TopoDS_Vertex & V2, const TopoDS_Vertex & V3) { //MESSAGE("StdMeshers_Hexa_3D::GetFaceIndex"); int faceIndex = -1; for (int i = 1; i < 6; i++) { const TopoDS_Shape & aFace = meshFaces[i]->GetSubShape(); //const TopoDS_Face& F = TopoDS::Face(aFace); TopTools_IndexedMapOfShape M; TopExp::MapShapes(aFace, TopAbs_VERTEX, M); bool verticesInShape = false; if (M.Contains(V0)) if (M.Contains(V1)) if (M.Contains(V2)) if (M.Contains(V3)) verticesInShape = true; if (verticesInShape) { faceIndex = i; break; } } //IPAL21120 ASSERT(faceIndex > 0); //SCRUTE(faceIndex); return faceIndex; } //============================================================================= /*! * */ //============================================================================= TopoDS_Edge StdMeshers_Hexa_3D::EdgeNotInFace(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, const TopoDS_Face & aFace, const TopoDS_Vertex & aVertex, const TopTools_IndexedDataMapOfShapeListOfShape & MS) { //MESSAGE("StdMeshers_Hexa_3D::EdgeNotInFace"); TopTools_IndexedDataMapOfShapeListOfShape MF; TopExp::MapShapesAndAncestors(aFace, TopAbs_VERTEX, TopAbs_EDGE, MF); const TopTools_ListOfShape & ancestorsInSolid = MS.FindFromKey(aVertex); const TopTools_ListOfShape & ancestorsInFace = MF.FindFromKey(aVertex); // SCRUTE(ancestorsInSolid.Extent()); // SCRUTE(ancestorsInFace.Extent()); ASSERT(ancestorsInSolid.Extent() == 6); // 6 (edges doublees) ASSERT(ancestorsInFace.Extent() == 2); TopoDS_Edge E; E.Nullify(); TopTools_ListIteratorOfListOfShape its(ancestorsInSolid); for (; its.More(); its.Next()) { TopoDS_Shape ancestor = its.Value(); TopTools_ListIteratorOfListOfShape itf(ancestorsInFace); bool isInFace = false; for (; itf.More(); itf.Next()) { TopoDS_Shape ancestorInFace = itf.Value(); if (ancestorInFace.IsSame(ancestor)) { isInFace = true; break; } } if (!isInFace) { E = TopoDS::Edge(ancestor); break; } } return E; } //============================================================================= /*! * */ //============================================================================= void StdMeshers_Hexa_3D::GetConv2DCoefs(const faceQuadStruct & quad, const TopoDS_Shape & aShape, const TopoDS_Vertex & V0, const TopoDS_Vertex & V1, const TopoDS_Vertex & V2, const TopoDS_Vertex & V3, Conv2DStruct & conv) { // MESSAGE("StdMeshers_Hexa_3D::GetConv2DCoefs"); // const TopoDS_Face & F = TopoDS::Face(aShape); // TopoDS_Edge E = quad.edge[0]; // double f, l; // Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, F, f, l); // TopoDS_Vertex VFirst, VLast; // TopExp::Vertices(E, VFirst, VLast); // corresponds to f and l // bool isForward = (((l - f) * (quad.last[0] - quad.first[0])) > 0); TopoDS_Vertex VA, VB; // if (isForward) // { // VA = VFirst; // VB = VLast; // } // else // { // VA = VLast; // VB = VFirst; // } VA = quad.side[0]->FirstVertex(); VB = quad.side[0]->LastVertex(); int a1, b1, c1, a2, b2, c2; if (VA.IsSame(V0)) if (VB.IsSame(V1)) { a1 = 1; b1 = 0; c1 = 0; // x a2 = 0; b2 = 1; c2 = 0; // y } else { ASSERT(VB.IsSame(V3)); a1 = 0; b1 = 1; c1 = 0; // y a2 = 1; b2 = 0; c2 = 0; // x } if (VA.IsSame(V1)) if (VB.IsSame(V2)) { a1 = 0; b1 = -1; c1 = 1; // 1-y a2 = 1; b2 = 0; c2 = 0; // x } else { ASSERT(VB.IsSame(V0)); a1 = -1; b1 = 0; c1 = 1; // 1-x a2 = 0; b2 = 1; c2 = 0; // y } if (VA.IsSame(V2)) if (VB.IsSame(V3)) { a1 = -1; b1 = 0; c1 = 1; // 1-x a2 = 0; b2 = -1; c2 = 1; // 1-y } else { ASSERT(VB.IsSame(V1)); a1 = 0; b1 = -1; c1 = 1; // 1-y a2 = -1; b2 = 0; c2 = 1; // 1-x } if (VA.IsSame(V3)) if (VB.IsSame(V0)) { a1 = 0; b1 = 1; c1 = 0; // y a2 = -1; b2 = 0; c2 = 1; // 1-x } else { ASSERT(VB.IsSame(V2)); a1 = 1; b1 = 0; c1 = 0; // x a2 = 0; b2 = -1; c2 = 1; // 1-y } // MESSAGE("X = " << c1 << "+ " << a1 << "*x + " << b1 << "*y"); // MESSAGE("Y = " << c2 << "+ " << a2 << "*x + " << b2 << "*y"); conv.a1 = a1; conv.b1 = b1; conv.c1 = c1; conv.a2 = a2; conv.b2 = b2; conv.c2 = c2; int nbdown = quad.side[0]->NbPoints(); int nbright = quad.side[1]->NbPoints(); conv.ia = int (a1); conv.ib = int (b1); conv.ic = int (c1 * a1 * a1) * (nbdown - 1) + int (c1 * b1 * b1) * (nbright - 1); conv.ja = int (a2); conv.jb = int (b2); conv.jc = int (c2 * a2 * a2) * (nbdown - 1) + int (c2 * b2 * b2) * (nbright - 1); // MESSAGE("I " << conv.ia << " " << conv.ib << " " << conv.ic); // MESSAGE("J " << conv.ja << " " << conv.jb << " " << conv.jc); } //================================================================================ /*! * \brief Find a vertex opposite to the given vertex of aQuads[0] * \param aVertex - the vertex * \param aFace - the face aVertex belongs to * \param aQuads - quads * \retval TopoDS_Vertex - found vertex */ //================================================================================ TopoDS_Vertex StdMeshers_Hexa_3D::OppositeVertex(const TopoDS_Vertex& aVertex, const TopTools_IndexedMapOfShape& aQuads0Vertices, FaceQuadStruct* aQuads[6]) { int i, j; for ( i = 1; i < 6; ++i ) { TopoDS_Vertex VV[] = { aQuads[i]->side[0]->FirstVertex(), aQuads[i]->side[0]->LastVertex() , aQuads[i]->side[2]->LastVertex() , aQuads[i]->side[2]->FirstVertex() }; for ( j = 0; j < 4; ++j ) if ( aVertex.IsSame( VV[ j ])) break; if ( j < 4 ) { int jPrev = j ? j - 1 : 3; int jNext = (j + 1) % 4; if ( aQuads0Vertices.Contains( VV[ jPrev ] )) return VV[ jNext ]; else return VV[ jPrev ]; } } return TopoDS_Vertex(); } //modified by NIZNHY-PKV Wed Nov 17 15:34:13 2004 f /////////////////////////////////////////////////////////////////////////////// //ZZ //#include //======================================================================= //function : ComputePentahedralMesh //purpose : //======================================================================= SMESH_ComputeErrorPtr ComputePentahedralMesh(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape) { //printf(" ComputePentahedralMesh HERE\n"); // bool bOK; SMESH_ComputeErrorPtr err = SMESH_ComputeError::New(); //int iErr; StdMeshers_Penta_3D anAlgo; // bOK=anAlgo.Compute(aMesh, aShape); // err = anAlgo.GetComputeError(); // if ( !bOK && anAlgo.ErrorStatus() == 5 ) { static StdMeshers_Prism_3D * aPrism3D = 0; if ( !aPrism3D ) { SMESH_Gen* gen = aMesh.GetGen(); aPrism3D = new StdMeshers_Prism_3D( gen->GetANewId(), 0, gen ); } SMESH_Hypothesis::Hypothesis_Status aStatus; if ( aPrism3D->CheckHypothesis( aMesh, aShape, aStatus ) ) { aPrism3D->InitComputeError(); bOK = aPrism3D->Compute( aMesh, aShape ); err = aPrism3D->GetComputeError(); } } return err; } //======================================================================= //function : EvaluatePentahedralMesh //purpose : //======================================================================= bool EvaluatePentahedralMesh(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, MapShapeNbElems& aResMap) { StdMeshers_Penta_3D anAlgo; bool bOK = anAlgo.Evaluate(aMesh, aShape, aResMap); //err = anAlgo.GetComputeError(); //if ( !bOK && anAlgo.ErrorStatus() == 5 ) if( !bOK ) { static StdMeshers_Prism_3D * aPrism3D = 0; if ( !aPrism3D ) { SMESH_Gen* gen = aMesh.GetGen(); aPrism3D = new StdMeshers_Prism_3D( gen->GetANewId(), 0, gen ); } SMESH_Hypothesis::Hypothesis_Status aStatus; if ( aPrism3D->CheckHypothesis( aMesh, aShape, aStatus ) ) { return aPrism3D->Evaluate(aMesh, aShape, aResMap); } } return bOK; }