# -*- coding: iso-8859-1 -*- # Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE # # Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, # CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com # # GEOM GEOM_SWIG : binding of C++ omplementaion with Python # File : GEOM_Sphere.py # Author : Damien COQUERET, Open CASCADE # Module : GEOM # $Header: # import salome salome.salome_init() import GEOM from salome.geom import geomBuilder geompy = geomBuilder.New(salome.myStudy) import SMESH, SALOMEDS from salome.smesh import smeshBuilder smesh = smeshBuilder.New(salome.myStudy) import math # It is an example of creating a hexahedrical mesh on a sphere. # # Used approach allows to avoid problems with degenerated and # seam edges without special processing of geometrical shapes #----------------------------------------------------------------------- #Variables Radius = 100. Dist = Radius / 2. Factor = 2.5 Angle90 = math.pi / 2. NbSeg = 10 PointsList = [] ShapesList = [] #Basic Elements P0 = geompy.MakeVertex(0., 0., 0.) P1 = geompy.MakeVertex(-Dist, -Dist, -Dist) P2 = geompy.MakeVertex(-Dist, -Dist, Dist) P3 = geompy.MakeVertex(-Dist, Dist, Dist) P4 = geompy.MakeVertex(-Dist, Dist, -Dist) VZ = geompy.MakeVectorDXDYDZ(0., 0., 1.) #Construction Elements PointsList.append(P1) PointsList.append(P2) PointsList.append(P3) PointsList.append(P4) PointsList.append(P1) PolyLine = geompy.MakePolyline(PointsList) Face1 = geompy.MakeFace(PolyLine, 1) Face2 = geompy.MakeScaleTransform(Face1, P0, Factor) Face3 = geompy.MakeScaleTransform(Face1, P0, -1.) #Models Sphere = geompy.MakeSphereR(Radius) Block = geompy.MakeHexa2Faces(Face1, Face2) Cube = geompy.MakeHexa2Faces(Face1, Face3) Common1 = geompy.MakeBoolean(Sphere, Block, 1) Common2 = geompy.MakeRotation(Common1, VZ, Angle90) MultiBlock1 = geompy.MakeMultiTransformation1D(Common1, 20, -1, 3) MultiBlock2 = geompy.MakeMultiTransformation1D(Common2, 30, -1, 3) #Reconstruct sphere from several blocks ShapesList.append(Cube) ShapesList.append(MultiBlock1) ShapesList.append(MultiBlock2) Compound = geompy.MakeCompound(ShapesList) Result = geompy.MakeGlueFaces(Compound, 0.1) #addToStudy Id_Sphere = geompy.addToStudy(Sphere, "Sphere") Id_Cube = geompy.addToStudy(Cube, "Cube") Id_Common1 = geompy.addToStudy(Common1, "Common1") Id_Common2 = geompy.addToStudy(Common2, "Common2") Id_MultiBlock1 = geompy.addToStudy(MultiBlock1, "MultiBlock1") Id_MultiBlock2 = geompy.addToStudy(MultiBlock2, "MultiBlock2") Id_Result = geompy.addToStudy(Result, "Result") #----------------------------------------------------------------------- #Meshing my_hexa = smesh.Mesh(Result, "Sphere_Mesh") algo = my_hexa.Segment() algo.NumberOfSegments(NbSeg) my_hexa.Quadrangle() my_hexa.Hexahedron() my_hexa.Compute() salome.sg.updateObjBrowser(1)