// Copyright (C) 2007-2015 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : SMESH_Mesh.cxx // Author : Paul RASCLE, EDF // Module : SMESH // #include "SMESH_Mesh.hxx" #include "SMESH_MesherHelper.hxx" #include "SMDS_MeshVolume.hxx" #include "SMDS_SetIterator.hxx" #include "SMESHDS_Document.hxx" #include "SMESHDS_Group.hxx" #include "SMESHDS_GroupOnGeom.hxx" #include "SMESHDS_Script.hxx" #include "SMESHDS_TSubMeshHolder.hxx" #include "SMESH_Gen.hxx" #include "SMESH_Group.hxx" #include "SMESH_HypoFilter.hxx" #include "SMESH_Hypothesis.hxx" #include "SMESH_subMesh.hxx" #include "utilities.h" #include "DriverDAT_W_SMDS_Mesh.h" #include "DriverGMF_Read.hxx" #include "DriverGMF_Write.hxx" #include "DriverMED_R_SMESHDS_Mesh.h" #include "DriverMED_W_SMESHDS_Mesh.h" #include "DriverSTL_R_SMDS_Mesh.h" #include "DriverSTL_W_SMDS_Mesh.h" #include "DriverUNV_R_SMDS_Mesh.h" #include "DriverUNV_W_SMDS_Mesh.h" #ifdef WITH_CGNS #include "DriverCGNS_Read.hxx" #include "DriverCGNS_Write.hxx" #endif #include #undef _Precision_HeaderFile #include #include #include #include #include #include #include #include #include #include #include "SMESH_TryCatch.hxx" // include after OCCT headers! #include "Utils_ExceptHandlers.hxx" #ifndef WIN32 #include #include #else #include #endif using namespace std; // maximum stored group name length in MED file #define MAX_MED_GROUP_NAME_LENGTH 80 #ifdef _DEBUG_ static int MYDEBUG = 0; #else static int MYDEBUG = 0; #endif #define cSMESH_Hyp(h) static_cast(h) typedef SMESH_HypoFilter THypType; class SMESH_Mesh::SubMeshHolder : public SMESHDS_TSubMeshHolder< SMESH_subMesh > { }; //============================================================================= /*! * */ //============================================================================= SMESH_Mesh::SMESH_Mesh(int theLocalId, int theStudyId, SMESH_Gen* theGen, bool theIsEmbeddedMode, SMESHDS_Document* theDocument): _groupId( 0 ), _nbSubShapes( 0 ) { MESSAGE("SMESH_Mesh::SMESH_Mesh(int localId)"); _id = theLocalId; _studyId = theStudyId; _gen = theGen; _myDocument = theDocument; _myMeshDS = theDocument->NewMesh(theIsEmbeddedMode,theLocalId); _isShapeToMesh = false; _isAutoColor = false; _isModified = false; _shapeDiagonal = 0.0; _callUp = NULL; _myMeshDS->ShapeToMesh( PseudoShape() ); _subMeshHolder = new SubMeshHolder; } //================================================================================ /*! * \brief Constructor of SMESH_Mesh being a base of some descendant class */ //================================================================================ SMESH_Mesh::SMESH_Mesh(): _id(-1), _studyId(-1), _groupId( 0 ), _nbSubShapes( 0 ), _isShapeToMesh( false ), _myDocument( 0 ), _myMeshDS( 0 ), _gen( 0 ), _isAutoColor( false ), _isModified( false ), _shapeDiagonal( 0.0 ), _callUp( 0 ) { _subMeshHolder = new SubMeshHolder; } namespace { #ifndef WIN32 void deleteMeshDS(SMESHDS_Mesh* meshDS) { //cout << "deleteMeshDS( " << meshDS << endl; delete meshDS; } #else static void* deleteMeshDS(void* meshDS) { //cout << "deleteMeshDS( " << meshDS << endl; SMESHDS_Mesh* m = (SMESHDS_Mesh*)meshDS; if(m) { delete m; } return 0; } #endif } //============================================================================= /*! * */ //============================================================================= SMESH_Mesh::~SMESH_Mesh() { MESSAGE("SMESH_Mesh::~SMESH_Mesh"); // avoid usual removal of elements while processing RemoveHypothesis( algo ) event SMESHDS_SubMeshIteratorPtr smIt = _myMeshDS->SubMeshes(); while ( smIt->more() ) const_cast( smIt->next() )->Clear(); // issue 0020340: EDF 1022 SMESH : Crash with FindNodeClosestTo in a second new study // Notify event listeners at least that something happens if ( SMESH_subMesh * sm = GetSubMeshContaining(1)) sm->ComputeStateEngine( SMESH_subMesh::MESH_ENTITY_REMOVED ); // delete groups map < int, SMESH_Group * >::iterator itg; for (itg = _mapGroup.begin(); itg != _mapGroup.end(); itg++) { SMESH_Group *aGroup = (*itg).second; delete aGroup; } _mapGroup.clear(); // delete sub-meshes delete _subMeshHolder; if ( _callUp) delete _callUp; _callUp = 0; // remove self from studyContext if ( _gen ) { StudyContextStruct * studyContext = _gen->GetStudyContext( _studyId ); studyContext->mapMesh.erase( _id ); } if ( _myDocument ) _myDocument->RemoveMesh( _id ); _myDocument = 0; if ( _myMeshDS ) { // delete _myMeshDS, in a thread in order not to block closing a study with large meshes #ifndef WIN32 boost::thread aThread(boost::bind( & deleteMeshDS, _myMeshDS )); #else pthread_t thread; int result=pthread_create(&thread, NULL, deleteMeshDS, (void*)_myMeshDS); #endif } } //================================================================================ /*! * \brief Return true if a mesh with given id exists */ //================================================================================ bool SMESH_Mesh::MeshExists( int meshId ) const { return _myDocument ? bool( _myDocument->GetMesh( meshId )) : false; } //================================================================================ /*! * \brief Return a mesh by id */ //================================================================================ SMESH_Mesh* SMESH_Mesh::FindMesh( int meshId ) const { if ( _id == meshId ) return (SMESH_Mesh*) this; if ( StudyContextStruct *aStudyContext = _gen->GetStudyContext( _studyId )) { std::map < int, SMESH_Mesh * >::iterator i_m = aStudyContext->mapMesh.find( meshId ); if ( i_m != aStudyContext->mapMesh.end() ) return i_m->second; } return NULL; } //============================================================================= /*! * \brief Set geometry to be meshed */ //============================================================================= void SMESH_Mesh::ShapeToMesh(const TopoDS_Shape & aShape) { if(MYDEBUG) MESSAGE("SMESH_Mesh::ShapeToMesh"); if ( !aShape.IsNull() && _isShapeToMesh ) { if ( aShape.ShapeType() != TopAbs_COMPOUND && // group contents is allowed to change _myMeshDS->ShapeToMesh().ShapeType() != TopAbs_COMPOUND ) throw SALOME_Exception(LOCALIZED ("a shape to mesh has already been defined")); } // clear current data if ( !_myMeshDS->ShapeToMesh().IsNull() ) { // removal of a shape to mesh, delete objects referring to sub-shapes: // - sub-meshes _subMeshHolder->DeleteAll(); // - groups on geometry map ::iterator i_gr = _mapGroup.begin(); while ( i_gr != _mapGroup.end() ) { if ( dynamic_cast( i_gr->second->GetGroupDS() )) { _myMeshDS->RemoveGroup( i_gr->second->GetGroupDS() ); delete i_gr->second; _mapGroup.erase( i_gr++ ); } else i_gr++; } _mapAncestors.Clear(); // clear SMESHDS TopoDS_Shape aNullShape; _myMeshDS->ShapeToMesh( aNullShape ); _shapeDiagonal = 0.0; } // set a new geometry if ( !aShape.IsNull() ) { _myMeshDS->ShapeToMesh(aShape); _isShapeToMesh = true; _nbSubShapes = _myMeshDS->MaxShapeIndex(); // fill map of ancestors fillAncestorsMap(aShape); } else { _isShapeToMesh = false; _shapeDiagonal = 0.0; _myMeshDS->ShapeToMesh( PseudoShape() ); } _isModified = false; } //======================================================================= /*! * \brief Return geometry to be meshed. (It may be a PseudoShape()!) */ //======================================================================= TopoDS_Shape SMESH_Mesh::GetShapeToMesh() const { return _myMeshDS->ShapeToMesh(); } //======================================================================= /*! * \brief Return a solid which is returned by GetShapeToMesh() if * a real geometry to be meshed was not set */ //======================================================================= const TopoDS_Solid& SMESH_Mesh::PseudoShape() { static TopoDS_Solid aSolid; if ( aSolid.IsNull() ) { aSolid = BRepPrimAPI_MakeBox(1,1,1); } return aSolid; } //======================================================================= /*! * \brief Return diagonal size of bounding box of a shape */ //======================================================================= double SMESH_Mesh::GetShapeDiagonalSize(const TopoDS_Shape & aShape) { if ( !aShape.IsNull() ) { Bnd_Box Box; // avoid too long waiting on large shapes. PreciseBoundingBox() was added // to assure same result which else depends on presence of triangulation (IPAL52557). const int maxNbFaces = 4000; int nbFaces = 0; for ( TopExp_Explorer f( aShape, TopAbs_FACE ); f.More() && nbFaces < maxNbFaces; f.Next() ) ++nbFaces; if ( nbFaces < maxNbFaces ) GEOMUtils::PreciseBoundingBox(aShape, Box); else BRepBndLib::Add( aShape, Box); if ( !Box.IsVoid() ) return sqrt( Box.SquareExtent() ); } return 0; } //======================================================================= /*! * \brief Return diagonal size of bounding box of shape to mesh */ //======================================================================= double SMESH_Mesh::GetShapeDiagonalSize() const { if ( _shapeDiagonal == 0. && _isShapeToMesh ) const_cast(this)->_shapeDiagonal = GetShapeDiagonalSize( GetShapeToMesh() ); return _shapeDiagonal; } //================================================================================ /*! * \brief Load mesh from study file */ //================================================================================ void SMESH_Mesh::Load() { if (_callUp) _callUp->Load(); } //======================================================================= /*! * \brief Remove all nodes and elements */ //======================================================================= void SMESH_Mesh::Clear() { if ( HasShapeToMesh() ) // remove all nodes and elements { // clear mesh data _myMeshDS->ClearMesh(); // update compute state of submeshes if ( SMESH_subMesh *sm = GetSubMeshContaining( GetShapeToMesh() ) ) { sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); sm->ComputeSubMeshStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); sm->ComputeStateEngine( SMESH_subMesh::CLEAN ); // for event listeners (issue 0020918) sm->ComputeSubMeshStateEngine( SMESH_subMesh::CLEAN ); } } else // remove only nodes/elements computed by algorithms { if ( SMESH_subMesh *sm = GetSubMeshContaining( GetShapeToMesh() ) ) { sm->ComputeStateEngine( SMESH_subMesh::CLEAN ); sm->ComputeSubMeshStateEngine( SMESH_subMesh::CLEAN ); sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); sm->ComputeSubMeshStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); } } _isModified = false; } //======================================================================= /*! * \brief Remove all nodes and elements of indicated shape */ //======================================================================= void SMESH_Mesh::ClearSubMesh(const int theShapeId) { // clear sub-meshes; get ready to re-compute as a side-effect if ( SMESH_subMesh *sm = GetSubMeshContaining( theShapeId ) ) { SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/true, /*complexShapeFirst=*/false); while ( smIt->more() ) { sm = smIt->next(); TopAbs_ShapeEnum shapeType = sm->GetSubShape().ShapeType(); if ( shapeType == TopAbs_VERTEX || shapeType < TopAbs_SOLID ) // all other shapes depends on vertices so they are already cleaned sm->ComputeStateEngine( SMESH_subMesh::CLEAN ); // to recompute even if failed sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE ); } } } //======================================================================= //function : UNVToMesh //purpose : //======================================================================= int SMESH_Mesh::UNVToMesh(const char* theFileName) { if(MYDEBUG) MESSAGE("UNVToMesh - theFileName = "<NbNodes() = "<<_myMeshDS->NbNodes()); MESSAGE("UNVToMesh - _myMeshDS->NbEdges() = "<<_myMeshDS->NbEdges()); MESSAGE("UNVToMesh - _myMeshDS->NbFaces() = "<<_myMeshDS->NbFaces()); MESSAGE("UNVToMesh - _myMeshDS->NbVolumes() = "<<_myMeshDS->NbVolumes()); } SMDS_MeshGroup* aGroup = (SMDS_MeshGroup*) myReader.GetGroup(); if (aGroup != 0) { TGroupNamesMap aGroupNames = myReader.GetGroupNamesMap(); //const TGroupIdMap& aGroupId = myReader.GetGroupIdMap(); aGroup->InitSubGroupsIterator(); while (aGroup->MoreSubGroups()) { SMDS_MeshGroup* aSubGroup = (SMDS_MeshGroup*) aGroup->NextSubGroup(); string aName = aGroupNames[aSubGroup]; int aId; SMESH_Group* aSMESHGroup = AddGroup( aSubGroup->GetType(), aName.c_str(), aId ); if ( aSMESHGroup ) { if(MYDEBUG) MESSAGE("UNVToMesh - group added: "<( aSMESHGroup->GetGroupDS() ); if ( aGroupDS ) { aGroupDS->SetStoreName(aName.c_str()); aSubGroup->InitIterator(); const SMDS_MeshElement* aElement = 0; while (aSubGroup->More()) { aElement = aSubGroup->Next(); if (aElement) { aGroupDS->SMDSGroup().Add(aElement); } } if (aElement) aGroupDS->SetType(aElement->GetType()); } } } } return 1; } //======================================================================= //function : MEDToMesh //purpose : //======================================================================= int SMESH_Mesh::MEDToMesh(const char* theFileName, const char* theMeshName) { if(MYDEBUG) MESSAGE("MEDToMesh - theFileName = "<NbNodes() = "<<_myMeshDS->NbNodes()); MESSAGE("MEDToMesh - _myMeshDS->NbEdges() = "<<_myMeshDS->NbEdges()); MESSAGE("MEDToMesh - _myMeshDS->NbFaces() = "<<_myMeshDS->NbFaces()); MESSAGE("MEDToMesh - _myMeshDS->NbVolumes() = "<<_myMeshDS->NbVolumes()); } #ifdef _DEBUG_ SMESH_ComputeErrorPtr er = myReader.GetError(); if ( er && !er->IsOK() ) cout << er->myComment << endl; #endif // Reading groups (sub-meshes are out of scope of MED import functionality) list aGroupNames = myReader.GetGroupNamesAndTypes(); if(MYDEBUG) MESSAGE("MEDToMesh - Nb groups = "<::iterator name_type = aGroupNames.begin(); for ( ; name_type != aGroupNames.end(); name_type++ ) { SMESH_Group* aGroup = AddGroup( name_type->second, name_type->first.c_str(), anId ); if ( aGroup ) { if(MYDEBUG) MESSAGE("MEDToMesh - group added: "<first.c_str()); SMESHDS_Group* aGroupDS = dynamic_cast( aGroup->GetGroupDS() ); if ( aGroupDS ) { aGroupDS->SetStoreName( name_type->first.c_str() ); myReader.GetGroup( aGroupDS ); } } } return (int) status; } //======================================================================= //function : STLToMesh //purpose : //======================================================================= int SMESH_Mesh::STLToMesh(const char* theFileName) { if(MYDEBUG) MESSAGE("STLToMesh - theFileName = "<NbNodes() = "<<_myMeshDS->NbNodes()); MESSAGE("STLToMesh - _myMeshDS->NbEdges() = "<<_myMeshDS->NbEdges()); MESSAGE("STLToMesh - _myMeshDS->NbFaces() = "<<_myMeshDS->NbFaces()); MESSAGE("STLToMesh - _myMeshDS->NbVolumes() = "<<_myMeshDS->NbVolumes()); } return 1; } //================================================================================ /*! * \brief Reads the given mesh from the CGNS file * \param theFileName - name of the file * \retval int - Driver_Mesh::Status */ //================================================================================ int SMESH_Mesh::CGNSToMesh(const char* theFileName, const int theMeshIndex, std::string& theMeshName) { int res = Driver_Mesh::DRS_FAIL; #ifdef WITH_CGNS DriverCGNS_Read myReader; myReader.SetMesh(_myMeshDS); myReader.SetFile(theFileName); myReader.SetMeshId(theMeshIndex); res = myReader.Perform(); theMeshName = myReader.GetMeshName(); // create groups SynchronizeGroups(); #endif return res; } //================================================================================ /*! * \brief Fill its data by reading a GMF file */ //================================================================================ SMESH_ComputeErrorPtr SMESH_Mesh::GMFToMesh(const char* theFileName, bool theMakeRequiredGroups) { DriverGMF_Read myReader; myReader.SetMesh(_myMeshDS); myReader.SetFile(theFileName); myReader.SetMakeRequiredGroups( theMakeRequiredGroups ); myReader.Perform(); //theMeshName = myReader.GetMeshName(); // create groups SynchronizeGroups(); return myReader.GetError(); } //============================================================================= /*! * */ //============================================================================= SMESH_Hypothesis::Hypothesis_Status SMESH_Mesh::AddHypothesis(const TopoDS_Shape & aSubShape, int anHypId, std::string* anError ) throw(SALOME_Exception) { Unexpect aCatch(SalomeException); if(MYDEBUG) MESSAGE("SMESH_Mesh::AddHypothesis"); if ( anError ) anError->clear(); SMESH_subMesh *subMesh = GetSubMesh(aSubShape); if ( !subMesh || !subMesh->GetId()) return SMESH_Hypothesis::HYP_BAD_SUBSHAPE; SMESH_Hypothesis *anHyp = GetHypothesis( anHypId ); if ( !anHyp ) throw SALOME_Exception(LOCALIZED("hypothesis does not exist")); bool isGlobalHyp = IsMainShape( aSubShape ); // NotConformAllowed can be only global if ( !isGlobalHyp ) { // NOTE: this is not a correct way to check a name of hypothesis, // there should be an attribute of hypothesis saying that it can/can't // be global/local string hypName = anHyp->GetName(); if ( hypName == "NotConformAllowed" ) { if(MYDEBUG) MESSAGE( "Hypotesis can be only global" ); return SMESH_Hypothesis::HYP_INCOMPATIBLE; } } // shape bool isAlgo = ( anHyp->GetType() != SMESHDS_Hypothesis::PARAM_ALGO ); int event = isAlgo ? SMESH_subMesh::ADD_ALGO : SMESH_subMesh::ADD_HYP; SMESH_Hypothesis::Hypothesis_Status ret = subMesh->AlgoStateEngine(event, anHyp); if ( anError && SMESH_Hypothesis::IsStatusFatal(ret) && subMesh->GetComputeError() ) *anError = subMesh->GetComputeError()->myComment; // sub-shapes if ( !SMESH_Hypothesis::IsStatusFatal(ret) && anHyp->GetDim() <= SMESH_Gen::GetShapeDim(aSubShape)) // is added on father { event = isAlgo ? SMESH_subMesh::ADD_FATHER_ALGO : SMESH_subMesh::ADD_FATHER_HYP; SMESH_Hypothesis::Hypothesis_Status ret2 = subMesh->SubMeshesAlgoStateEngine(event, anHyp, /*exitOnFatal=*/true); if (ret2 > ret) { ret = ret2; if ( SMESH_Hypothesis::IsStatusFatal( ret )) { if ( anError && subMesh->GetComputeError() ) *anError = subMesh->GetComputeError()->myComment; // remove anHyp event = isAlgo ? SMESH_subMesh::REMOVE_ALGO : SMESH_subMesh::REMOVE_HYP; subMesh->AlgoStateEngine(event, anHyp); } } // check concurent hypotheses on ancestors if (ret < SMESH_Hypothesis::HYP_CONCURENT && !isGlobalHyp ) { SMESH_subMeshIteratorPtr smIt = subMesh->getDependsOnIterator(false,false); while ( smIt->more() ) { SMESH_subMesh* sm = smIt->next(); if ( sm->IsApplicableHypotesis( anHyp )) { ret2 = sm->CheckConcurentHypothesis( anHyp->GetType() ); if (ret2 > ret) { ret = ret2; break; } } } } } HasModificationsToDiscard(); // to reset _isModified flag if a mesh becomes empty if(MYDEBUG) subMesh->DumpAlgoState(true); if(MYDEBUG) SCRUTE(ret); return ret; } //============================================================================= /*! * */ //============================================================================= SMESH_Hypothesis::Hypothesis_Status SMESH_Mesh::RemoveHypothesis(const TopoDS_Shape & aSubShape, int anHypId)throw(SALOME_Exception) { Unexpect aCatch(SalomeException); if(MYDEBUG) MESSAGE("SMESH_Mesh::RemoveHypothesis"); StudyContextStruct *sc = _gen->GetStudyContext(_studyId); if (sc->mapHypothesis.find(anHypId) == sc->mapHypothesis.end()) throw SALOME_Exception(LOCALIZED("hypothesis does not exist")); SMESH_Hypothesis *anHyp = sc->mapHypothesis[anHypId]; if(MYDEBUG) { SCRUTE(anHyp->GetType()); } // shape bool isAlgo = ( !anHyp->GetType() == SMESHDS_Hypothesis::PARAM_ALGO ); int event = isAlgo ? SMESH_subMesh::REMOVE_ALGO : SMESH_subMesh::REMOVE_HYP; SMESH_subMesh *subMesh = GetSubMesh(aSubShape); SMESH_Hypothesis::Hypothesis_Status ret = subMesh->AlgoStateEngine(event, anHyp); // there may appear concurrent hyps that were covered by the removed hyp if (ret < SMESH_Hypothesis::HYP_CONCURENT && subMesh->IsApplicableHypotesis( anHyp ) && subMesh->CheckConcurentHypothesis( anHyp->GetType() ) != SMESH_Hypothesis::HYP_OK) ret = SMESH_Hypothesis::HYP_CONCURENT; // sub-shapes if (!SMESH_Hypothesis::IsStatusFatal(ret) && anHyp->GetDim() <= SMESH_Gen::GetShapeDim(aSubShape)) // is removed from father { event = isAlgo ? SMESH_subMesh::REMOVE_FATHER_ALGO : SMESH_subMesh::REMOVE_FATHER_HYP; SMESH_Hypothesis::Hypothesis_Status ret2 = subMesh->SubMeshesAlgoStateEngine(event, anHyp); if (ret2 > ret) // more severe ret = ret2; // check concurent hypotheses on ancestors if (ret < SMESH_Hypothesis::HYP_CONCURENT && !IsMainShape( aSubShape ) ) { SMESH_subMeshIteratorPtr smIt = subMesh->getDependsOnIterator(false,false); while ( smIt->more() ) { SMESH_subMesh* sm = smIt->next(); if ( sm->IsApplicableHypotesis( anHyp )) { ret2 = sm->CheckConcurentHypothesis( anHyp->GetType() ); if (ret2 > ret) { ret = ret2; break; } } } } } HasModificationsToDiscard(); // to reset _isModified flag if mesh become empty if(MYDEBUG) subMesh->DumpAlgoState(true); if(MYDEBUG) SCRUTE(ret); return ret; } //============================================================================= /*! * */ //============================================================================= const list& SMESH_Mesh::GetHypothesisList(const TopoDS_Shape & aSubShape) const throw(SALOME_Exception) { return _myMeshDS->GetHypothesis(aSubShape); } //======================================================================= /*! * \brief Return the hypothesis assigned to the shape * \param aSubShape - the shape to check * \param aFilter - the hypothesis filter * \param andAncestors - flag to check hypos assigned to ancestors of the shape * \param assignedTo - to return the shape the found hypo is assigned to * \retval SMESH_Hypothesis* - the first hypo passed through aFilter */ //======================================================================= const SMESH_Hypothesis * SMESH_Mesh::GetHypothesis(const TopoDS_Shape & aSubShape, const SMESH_HypoFilter& aFilter, const bool andAncestors, TopoDS_Shape* assignedTo) const { return GetHypothesis( const_cast< SMESH_Mesh* >(this)->GetSubMesh( aSubShape ), aFilter, andAncestors, assignedTo ); } //======================================================================= /*! * \brief Return the hypothesis assigned to the shape of a sub-mesh * \param aSubMesh - the sub-mesh to check * \param aFilter - the hypothesis filter * \param andAncestors - flag to check hypos assigned to ancestors of the shape * \param assignedTo - to return the shape the found hypo is assigned to * \retval SMESH_Hypothesis* - the first hypo passed through aFilter */ //======================================================================= const SMESH_Hypothesis * SMESH_Mesh::GetHypothesis(const SMESH_subMesh * aSubMesh, const SMESH_HypoFilter& aFilter, const bool andAncestors, TopoDS_Shape* assignedTo) const { if ( !aSubMesh ) return 0; { const TopoDS_Shape & aSubShape = aSubMesh->GetSubShape(); const list& hypList = _myMeshDS->GetHypothesis(aSubShape); list::const_iterator hyp = hypList.begin(); for ( ; hyp != hypList.end(); hyp++ ) { const SMESH_Hypothesis * h = cSMESH_Hyp( *hyp ); if ( aFilter.IsOk( h, aSubShape)) { if ( assignedTo ) *assignedTo = aSubShape; return h; } } } if ( andAncestors ) { // user sorted submeshes of ancestors, according to stored submesh priority std::vector< SMESH_subMesh * > & ancestors = const_cast< std::vector< SMESH_subMesh * > & > ( aSubMesh->GetAncestors() ); SortByMeshOrder( ancestors ); vector::const_iterator smIt = ancestors.begin(); for ( ; smIt != ancestors.end(); smIt++ ) { const TopoDS_Shape& curSh = (*smIt)->GetSubShape(); const list& hypList = _myMeshDS->GetHypothesis(curSh); list::const_iterator hyp = hypList.begin(); for ( ; hyp != hypList.end(); hyp++ ) { const SMESH_Hypothesis * h = cSMESH_Hyp( *hyp ); if (aFilter.IsOk( h, curSh )) { if ( assignedTo ) *assignedTo = curSh; return h; } } } } return 0; } //================================================================================ /*! * \brief Return hypotheses assigned to the shape * \param aSubShape - the shape to check * \param aFilter - the hypothesis filter * \param aHypList - the list of the found hypotheses * \param andAncestors - flag to check hypos assigned to ancestors of the shape * \retval int - number of unique hypos in aHypList */ //================================================================================ int SMESH_Mesh::GetHypotheses(const TopoDS_Shape & aSubShape, const SMESH_HypoFilter& aFilter, list & aHypList, const bool andAncestors, list< TopoDS_Shape > * assignedTo/*=0*/) const { return GetHypotheses( const_cast< SMESH_Mesh* >(this)->GetSubMesh( aSubShape ), aFilter, aHypList, andAncestors, assignedTo ); } //================================================================================ /*! * \brief Return hypotheses assigned to the shape of a sub-mesh * \param aSubShape - the sub-mesh to check * \param aFilter - the hypothesis filter * \param aHypList - the list of the found hypotheses * \param andAncestors - flag to check hypos assigned to ancestors of the shape * \retval int - number of unique hypos in aHypList */ //================================================================================ int SMESH_Mesh::GetHypotheses(const SMESH_subMesh * aSubMesh, const SMESH_HypoFilter& aFilter, list & aHypList, const bool andAncestors, list< TopoDS_Shape > * assignedTo/*=0*/) const { if ( !aSubMesh ) return 0; set hypTypes; // to exclude same type hypos from the result list int nbHyps = 0; // only one main hypothesis is allowed bool mainHypFound = false; // fill in hypTypes list::const_iterator hyp; for ( hyp = aHypList.begin(); hyp != aHypList.end(); hyp++ ) { if ( hypTypes.insert( (*hyp)->GetName() ).second ) nbHyps++; if ( !cSMESH_Hyp(*hyp)->IsAuxiliary() ) mainHypFound = true; } // get hypos from aSubShape { const TopoDS_Shape & aSubShape = aSubMesh->GetSubShape(); const list& hypList = _myMeshDS->GetHypothesis(aSubShape); for ( hyp = hypList.begin(); hyp != hypList.end(); hyp++ ) { const SMESH_Hypothesis* h = cSMESH_Hyp( *hyp ); if (( aFilter.IsOk( h, aSubShape )) && ( h->IsAuxiliary() || !mainHypFound ) && ( h->IsAuxiliary() || hypTypes.insert( h->GetName() ).second )) { aHypList.push_back( *hyp ); nbHyps++; if ( !h->IsAuxiliary() ) mainHypFound = true; if ( assignedTo ) assignedTo->push_back( aSubShape ); } } } // get hypos from ancestors of aSubShape if ( andAncestors ) { // user sorted submeshes of ancestors, according to stored submesh priority std::vector< SMESH_subMesh * > & ancestors = const_cast< std::vector< SMESH_subMesh * > & > ( aSubMesh->GetAncestors() ); SortByMeshOrder( ancestors ); vector::const_iterator smIt = ancestors.begin(); for ( ; smIt != ancestors.end(); smIt++ ) { const TopoDS_Shape& curSh = (*smIt)->GetSubShape(); const list& hypList = _myMeshDS->GetHypothesis(curSh); for ( hyp = hypList.begin(); hyp != hypList.end(); hyp++ ) { const SMESH_Hypothesis* h = cSMESH_Hyp( *hyp ); if (( aFilter.IsOk( h, curSh )) && ( h->IsAuxiliary() || !mainHypFound ) && ( h->IsAuxiliary() || hypTypes.insert( h->GetName() ).second )) { aHypList.push_back( *hyp ); nbHyps++; if ( !h->IsAuxiliary() ) mainHypFound = true; if ( assignedTo ) assignedTo->push_back( curSh ); } } } } return nbHyps; } //================================================================================ /*! * \brief Return a hypothesis by its ID */ //================================================================================ SMESH_Hypothesis * SMESH_Mesh::GetHypothesis(const int anHypId) const { StudyContextStruct *sc = _gen->GetStudyContext(_studyId); if (sc->mapHypothesis.find(anHypId) == sc->mapHypothesis.end()) return NULL; SMESH_Hypothesis *anHyp = sc->mapHypothesis[anHypId]; return anHyp; } //============================================================================= /*! * */ //============================================================================= const list & SMESH_Mesh::GetLog() throw(SALOME_Exception) { Unexpect aCatch(SalomeException); if(MYDEBUG) MESSAGE("SMESH_Mesh::GetLog"); return _myMeshDS->GetScript()->GetCommands(); } //============================================================================= /*! * */ //============================================================================= void SMESH_Mesh::ClearLog() throw(SALOME_Exception) { Unexpect aCatch(SalomeException); if(MYDEBUG) MESSAGE("SMESH_Mesh::ClearLog"); _myMeshDS->GetScript()->Clear(); } //============================================================================= /*! * Get or Create the SMESH_subMesh object implementation */ //============================================================================= SMESH_subMesh *SMESH_Mesh::GetSubMesh(const TopoDS_Shape & aSubShape) throw(SALOME_Exception) { int index = _myMeshDS->ShapeToIndex(aSubShape); if ( !index && aSubShape.IsNull() ) return 0; // for submeshes on GEOM Group if (( !index || index > _nbSubShapes ) && aSubShape.ShapeType() == TopAbs_COMPOUND ) { TopoDS_Iterator it( aSubShape ); if ( it.More() ) { index = _myMeshDS->AddCompoundSubmesh( aSubShape, it.Value().ShapeType() ); // fill map of Ancestors while ( _nbSubShapes < index ) fillAncestorsMap( _myMeshDS->IndexToShape( ++_nbSubShapes )); } } // if ( !index ) // return NULL; // neither sub-shape nor a group SMESH_subMesh* aSubMesh = _subMeshHolder->Get( index ); if ( !aSubMesh ) { aSubMesh = new SMESH_subMesh(index, this, _myMeshDS, aSubShape); _subMeshHolder->Add( index, aSubMesh ); // include non-computable sub-meshes in SMESH_subMesh::_ancestors of sub-submeshes switch ( aSubShape.ShapeType() ) { case TopAbs_COMPOUND: case TopAbs_WIRE: case TopAbs_SHELL: for ( TopoDS_Iterator subIt( aSubShape ); subIt.More(); subIt.Next() ) { SMESH_subMesh* sm = GetSubMesh( subIt.Value() ); SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*inclideSelf=*/true); while ( smIt->more() ) smIt->next()->ClearAncestors(); } default:; } } return aSubMesh; } //============================================================================= /*! * Get the SMESH_subMesh object implementation. Dont create it, return null * if it does not exist. */ //============================================================================= SMESH_subMesh *SMESH_Mesh::GetSubMeshContaining(const TopoDS_Shape & aSubShape) const throw(SALOME_Exception) { int index = _myMeshDS->ShapeToIndex(aSubShape); return GetSubMeshContaining( index ); } //============================================================================= /*! * Get the SMESH_subMesh object implementation. Dont create it, return null * if it does not exist. */ //============================================================================= SMESH_subMesh *SMESH_Mesh::GetSubMeshContaining(const int aShapeID) const throw(SALOME_Exception) { SMESH_subMesh *aSubMesh = _subMeshHolder->Get( aShapeID ); return aSubMesh; } //================================================================================ /*! * \brief Return sub-meshes of groups containing the given sub-shape */ //================================================================================ list SMESH_Mesh::GetGroupSubMeshesContaining(const TopoDS_Shape & aSubShape) const throw(SALOME_Exception) { list found; SMESH_subMesh * subMesh = GetSubMeshContaining(aSubShape); if ( !subMesh ) return found; // sub-meshes of groups have max IDs, so search from the map end SMESH_subMeshIteratorPtr smIt( _subMeshHolder->GetIterator( /*reverse=*/true ) ); while ( smIt->more() ) { SMESH_subMesh* sm = smIt->next(); SMESHDS_SubMesh * ds = sm->GetSubMeshDS(); if ( ds && ds->IsComplexSubmesh() ) { if ( SMESH_MesherHelper::IsSubShape( aSubShape, sm->GetSubShape() )) { found.push_back( sm ); //break; } } else { break; // the rest sub-meshes are not those of groups } } if ( found.empty() ) // maybe the main shape is a COMPOUND (issue 0021530) { if ( SMESH_subMesh * mainSM = GetSubMeshContaining(1) ) if ( mainSM->GetSubShape().ShapeType() == TopAbs_COMPOUND ) { TopoDS_Iterator it( mainSM->GetSubShape() ); if ( it.Value().ShapeType() == aSubShape.ShapeType() && SMESH_MesherHelper::IsSubShape( aSubShape, mainSM->GetSubShape() )) found.push_back( mainSM ); } } else // issue 0023068 { if ( SMESH_subMesh * mainSM = GetSubMeshContaining(1) ) if ( mainSM->GetSubShape().ShapeType() == TopAbs_COMPOUND ) found.push_back( mainSM ); } return found; } //======================================================================= //function : IsUsedHypothesis //purpose : Return True if anHyp is used to mesh aSubShape //======================================================================= bool SMESH_Mesh::IsUsedHypothesis(SMESHDS_Hypothesis * anHyp, const SMESH_subMesh* aSubMesh) { SMESH_Hypothesis* hyp = static_cast(anHyp); // check if anHyp can be used to mesh aSubMesh if ( !aSubMesh || !aSubMesh->IsApplicableHypotesis( hyp )) return false; SMESH_Algo *algo = aSubMesh->GetAlgo(); // algorithm if (anHyp->GetType() > SMESHDS_Hypothesis::PARAM_ALGO) return ( anHyp == algo ); // algorithm parameter if (algo) { // look trough hypotheses used by algo const SMESH_HypoFilter* hypoKind; if (( hypoKind = algo->GetCompatibleHypoFilter( !hyp->IsAuxiliary() ))) { list usedHyps; if ( GetHypotheses( aSubMesh, *hypoKind, usedHyps, true )) return ( find( usedHyps.begin(), usedHyps.end(), anHyp ) != usedHyps.end() ); } } return false; } //============================================================================= /*! * */ //============================================================================= // const list < SMESH_subMesh * >& // SMESH_Mesh::GetSubMeshUsingHypothesis(SMESHDS_Hypothesis * anHyp) // throw(SALOME_Exception) // { // _subMeshesUsingHypothesisList.clear(); // SMESH_subMeshIteratorPtr smIt( _subMeshHolder->GetIterator() ); // while ( smIt->more() ) // { // SMESH_subMesh* aSubMesh = smIt->next(); // if ( IsUsedHypothesis ( anHyp, aSubMesh )) // _subMeshesUsingHypothesisList.push_back( aSubMesh ); // } // return _subMeshesUsingHypothesisList; // } //======================================================================= //function : NotifySubMeshesHypothesisModification //purpose : Say all submeshes using theChangedHyp that it has been modified //======================================================================= void SMESH_Mesh::NotifySubMeshesHypothesisModification(const SMESH_Hypothesis* hyp) { Unexpect aCatch(SalomeException); if ( !GetMeshDS()->IsUsedHypothesis( hyp )) return; if (_callUp) _callUp->HypothesisModified(); SMESH_Algo *algo; const SMESH_HypoFilter* compatibleHypoKind; list usedHyps; // keep sub-meshes not to miss ones whose state can change due to notifying others vector< SMESH_subMesh* > smToNotify; SMESH_subMeshIteratorPtr smIt( _subMeshHolder->GetIterator() ); while ( smIt->more() ) { SMESH_subMesh* aSubMesh = smIt->next(); // if aSubMesh meshing depends on hyp, // we call aSubMesh->AlgoStateEngine( MODIF_HYP, hyp ) that causes either // 1) clearing of already computed aSubMesh or // 2) changing algo_state from MISSING_HYP to HYP_OK when parameters of hyp becomes valid, // other possible changes are not interesting. (IPAL0052457 - assigning hyp performance pb) if ( aSubMesh->GetComputeState() != SMESH_subMesh::COMPUTE_OK && aSubMesh->GetComputeState() != SMESH_subMesh::FAILED_TO_COMPUTE && aSubMesh->GetAlgoState() != SMESH_subMesh::MISSING_HYP && !hyp->DataDependOnParams() ) continue; const TopoDS_Shape & aSubShape = aSubMesh->GetSubShape(); if (( aSubMesh->IsApplicableHypotesis( hyp )) && ( algo = aSubMesh->GetAlgo() ) && ( compatibleHypoKind = algo->GetCompatibleHypoFilter( !hyp->IsAuxiliary() )) && ( compatibleHypoKind->IsOk( hyp, aSubShape ))) { // check if hyp is used by algo usedHyps.clear(); if ( GetHypotheses( aSubMesh, *compatibleHypoKind, usedHyps, true ) && find( usedHyps.begin(), usedHyps.end(), hyp ) != usedHyps.end() ) { smToNotify.push_back( aSubMesh ); } } } for ( size_t i = 0; i < smToNotify.size(); ++i ) { smToNotify[i]->AlgoStateEngine(SMESH_subMesh::MODIF_HYP, const_cast< SMESH_Hypothesis*>( hyp )); } HasModificationsToDiscard(); // to reset _isModified flag if mesh becomes empty GetMeshDS()->Modified(); } //============================================================================= /*! * Auto color functionality */ //============================================================================= void SMESH_Mesh::SetAutoColor(bool theAutoColor) throw(SALOME_Exception) { Unexpect aCatch(SalomeException); _isAutoColor = theAutoColor; } bool SMESH_Mesh::GetAutoColor() throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _isAutoColor; } //======================================================================= //function : SetIsModified //purpose : Set the flag meaning that the mesh has been edited "manually" //======================================================================= void SMESH_Mesh::SetIsModified(bool isModified) { _isModified = isModified; if ( _isModified ) // check if mesh becomes empty as result of modification HasModificationsToDiscard(); } //======================================================================= //function : HasModificationsToDiscard //purpose : Return true if the mesh has been edited since a total re-compute // and those modifications may prevent successful partial re-compute. // As a side effect reset _isModified flag if mesh is empty //issue : 0020693 //======================================================================= bool SMESH_Mesh::HasModificationsToDiscard() const { if ( ! _isModified ) return false; // return true if the next Compute() will be partial and // existing but changed elements may prevent successful re-compute bool hasComputed = false, hasNotComputed = false; SMESH_subMeshIteratorPtr smIt( _subMeshHolder->GetIterator() ); while ( smIt->more() ) { const SMESH_subMesh* aSubMesh = smIt->next(); switch ( aSubMesh->GetSubShape().ShapeType() ) { case TopAbs_EDGE: case TopAbs_FACE: case TopAbs_SOLID: if ( aSubMesh->IsMeshComputed() ) hasComputed = true; else hasNotComputed = true; if ( hasComputed && hasNotComputed) return true; default:; } } if ( NbNodes() < 1 ) const_cast(this)->_isModified = false; return false; } //================================================================================ /*! * \brief Check if any groups of the same type have equal names */ //================================================================================ bool SMESH_Mesh::HasDuplicatedGroupNamesMED() { //set aGroupNames; // Corrected for Mantis issue 0020028 map< SMDSAbs_ElementType, set > aGroupNames; for ( map::iterator it = _mapGroup.begin(); it != _mapGroup.end(); it++ ) { SMESH_Group* aGroup = it->second; SMDSAbs_ElementType aType = aGroup->GetGroupDS()->GetType(); string aGroupName = aGroup->GetName(); aGroupName.resize(MAX_MED_GROUP_NAME_LENGTH); if (!aGroupNames[aType].insert(aGroupName).second) return true; } return false; } //================================================================================ /*! * \brief Export the mesh to a med file * \param [in] file - name of the MED file * \param [in] theMeshName - name of this mesh * \param [in] theAutoGroups - boolean parameter for creating/not creating * the groups Group_On_All_Nodes, Group_On_All_Faces, ... ; * the typical use is auto_groups=false. * \param [in] theVersion - defines the version of format of MED file, that will be created * \param [in] meshPart - mesh data to export * \param [in] theAutoDimension - if \c true, a space dimension of a MED mesh can be either * - 1D if all mesh nodes lie on OX coordinate axis, or * - 2D if all mesh nodes lie on XOY coordinate plane, or * - 3D in the rest cases. * If \a theAutoDimension is \c false, the space dimension is always 3. * \return int - mesh index in the file */ //================================================================================ void SMESH_Mesh::ExportMED(const char * file, const char* theMeshName, bool theAutoGroups, int theVersion, const SMESHDS_Mesh* meshPart, bool theAutoDimension, bool theAddODOnVertices) throw(SALOME_Exception) { SMESH_TRY; DriverMED_W_SMESHDS_Mesh myWriter; myWriter.SetFile ( file, MED::EVersion(theVersion) ); myWriter.SetMesh ( meshPart ? (SMESHDS_Mesh*) meshPart : _myMeshDS ); myWriter.SetAutoDimension( theAutoDimension ); myWriter.AddODOnVertices ( theAddODOnVertices ); if ( !theMeshName ) myWriter.SetMeshId ( _id ); else { myWriter.SetMeshId ( -1 ); myWriter.SetMeshName ( theMeshName ); } if ( theAutoGroups ) { myWriter.AddGroupOfNodes(); myWriter.AddGroupOfEdges(); myWriter.AddGroupOfFaces(); myWriter.AddGroupOfVolumes(); } // Pass groups to writer. Provide unique group names. //set aGroupNames; // Corrected for Mantis issue 0020028 if ( !meshPart ) { map< SMDSAbs_ElementType, set > aGroupNames; char aString [256]; int maxNbIter = 10000; // to guarantee cycle finish for ( map::iterator it = _mapGroup.begin(); it != _mapGroup.end(); it++ ) { SMESH_Group* aGroup = it->second; SMESHDS_GroupBase* aGroupDS = aGroup->GetGroupDS(); if ( aGroupDS ) { SMDSAbs_ElementType aType = aGroupDS->GetType(); string aGroupName0 = aGroup->GetName(); aGroupName0.resize(MAX_MED_GROUP_NAME_LENGTH); string aGroupName = aGroupName0; for (int i = 1; !aGroupNames[aType].insert(aGroupName).second && i < maxNbIter; i++) { sprintf(&aString[0], "GR_%d_%s", i, aGroupName0.c_str()); aGroupName = aString; aGroupName.resize(MAX_MED_GROUP_NAME_LENGTH); } aGroupDS->SetStoreName( aGroupName.c_str() ); myWriter.AddGroup( aGroupDS ); } } } // Perform export myWriter.Perform(); SMESH_CATCH( SMESH::throwSalomeEx ); } //================================================================================ /*! * \brief Export the mesh to a SAUV file */ //================================================================================ void SMESH_Mesh::ExportSAUV(const char *file, const char* theMeshName, bool theAutoGroups) throw(SALOME_Exception) { std::string medfilename(file); medfilename += ".med"; std::string cmd; #ifdef WIN32 cmd = "%PYTHONBIN% "; #else cmd = "python "; #endif cmd += "-c \""; cmd += "from medutilities import my_remove ; my_remove(r'" + medfilename + "')"; cmd += "\""; system(cmd.c_str()); ExportMED(medfilename.c_str(), theMeshName, theAutoGroups, 1); #ifdef WIN32 cmd = "%PYTHONBIN% "; #else cmd = "python "; #endif cmd += "-c \""; cmd += "from medutilities import convert ; convert(r'" + medfilename + "', 'MED', 'GIBI', 1, r'" + file + "')"; cmd += "\""; system(cmd.c_str()); #ifdef WIN32 cmd = "%PYTHONBIN% "; #else cmd = "python "; #endif cmd += "-c \""; cmd += "from medutilities import my_remove ; my_remove(r'" + medfilename + "')"; cmd += "\""; system(cmd.c_str()); } //================================================================================ /*! * \brief Export the mesh to a DAT file */ //================================================================================ void SMESH_Mesh::ExportDAT(const char * file, const SMESHDS_Mesh* meshPart) throw(SALOME_Exception) { Unexpect aCatch(SalomeException); DriverDAT_W_SMDS_Mesh myWriter; myWriter.SetFile( file ); myWriter.SetMesh( meshPart ? (SMESHDS_Mesh*) meshPart : _myMeshDS ); myWriter.SetMeshId(_id); myWriter.Perform(); } //================================================================================ /*! * \brief Export the mesh to an UNV file */ //================================================================================ void SMESH_Mesh::ExportUNV(const char * file, const SMESHDS_Mesh* meshPart) throw(SALOME_Exception) { Unexpect aCatch(SalomeException); DriverUNV_W_SMDS_Mesh myWriter; myWriter.SetFile( file ); myWriter.SetMesh( meshPart ? (SMESHDS_Mesh*) meshPart : _myMeshDS ); myWriter.SetMeshId(_id); // myWriter.SetGroups(_mapGroup); if ( !meshPart ) { for ( map::iterator it = _mapGroup.begin(); it != _mapGroup.end(); it++ ) { SMESH_Group* aGroup = it->second; SMESHDS_GroupBase* aGroupDS = aGroup->GetGroupDS(); if ( aGroupDS ) { string aGroupName = aGroup->GetName(); aGroupDS->SetStoreName( aGroupName.c_str() ); myWriter.AddGroup( aGroupDS ); } } } myWriter.Perform(); } //================================================================================ /*! * \brief Export the mesh to an STL file */ //================================================================================ void SMESH_Mesh::ExportSTL(const char * file, const bool isascii, const SMESHDS_Mesh* meshPart) throw(SALOME_Exception) { Unexpect aCatch(SalomeException); DriverSTL_W_SMDS_Mesh myWriter; myWriter.SetFile( file ); myWriter.SetIsAscii( isascii ); myWriter.SetMesh( meshPart ? (SMESHDS_Mesh*) meshPart : _myMeshDS); myWriter.SetMeshId(_id); myWriter.Perform(); } //================================================================================ /*! * \brief Export the mesh to the CGNS file */ //================================================================================ void SMESH_Mesh::ExportCGNS(const char * file, const SMESHDS_Mesh* meshDS, const char * meshName) { int res = Driver_Mesh::DRS_FAIL; #ifdef WITH_CGNS DriverCGNS_Write myWriter; myWriter.SetFile( file ); myWriter.SetMesh( const_cast( meshDS )); myWriter.SetMeshName( SMESH_Comment("Mesh_") << meshDS->GetPersistentId()); if ( meshName && meshName[0] ) myWriter.SetMeshName( meshName ); res = myWriter.Perform(); #endif if ( res != Driver_Mesh::DRS_OK ) throw SALOME_Exception("Export failed"); } //================================================================================ /*! * \brief Export the mesh to a GMF file */ //================================================================================ void SMESH_Mesh::ExportGMF(const char * file, const SMESHDS_Mesh* meshDS, bool withRequiredGroups) { DriverGMF_Write myWriter; myWriter.SetFile( file ); myWriter.SetMesh( const_cast( meshDS )); myWriter.SetExportRequiredGroups( withRequiredGroups ); myWriter.Perform(); } //================================================================================ /*! * \brief Return a ratio of "compute cost" of computed sub-meshes to the whole * "compute cost". */ //================================================================================ double SMESH_Mesh::GetComputeProgress() const { double totalCost = 1e-100, computedCost = 0; const SMESH_subMesh* curSM = _gen->GetCurrentSubMesh(); // get progress of a current algo TColStd_MapOfInteger currentSubIds; if ( curSM ) if ( SMESH_Algo* algo = curSM->GetAlgo() ) { int algoNotDoneCost = 0, algoDoneCost = 0; const std::vector& smToCompute = algo->SubMeshesToCompute(); for ( size_t i = 0; i < smToCompute.size(); ++i ) { if ( smToCompute[i]->IsEmpty() ) algoNotDoneCost += smToCompute[i]->GetComputeCost(); else algoDoneCost += smToCompute[i]->GetComputeCost(); currentSubIds.Add( smToCompute[i]->GetId() ); } double rate = 0; try { OCC_CATCH_SIGNALS; rate = algo->GetProgress(); } catch (...) { #ifdef _DEBUG_ cerr << "Exception in " << algo->GetName() << "::GetProgress()" << endl; #endif } if ( 0. < rate && rate < 1.001 ) { computedCost += rate * ( algoDoneCost + algoNotDoneCost ); } else { rate = algo->GetProgressByTic(); computedCost += algoDoneCost + rate * algoNotDoneCost; } // cout << "rate: "<getDependsOnIterator(/*includeSelf=*/true); while ( smIt->more() ) { const SMESH_subMesh* sm = smIt->next(); const int smCost = sm->GetComputeCost(); totalCost += smCost; if ( !currentSubIds.Contains( sm->GetId() ) ) { if (( !sm->IsEmpty() ) || ( sm->GetComputeState() == SMESH_subMesh::FAILED_TO_COMPUTE && !sm->DependsOn( curSM ) )) computedCost += smCost; } } } // cout << "Total: " << totalCost // << " computed: " << computedCost << " progress: " << computedCost / totalCost // << " nbElems: " << GetMeshDS()->GetMeshInfo().NbElements() << endl; return computedCost / totalCost; } //================================================================================ /*! * \brief Return number of nodes in the mesh */ //================================================================================ int SMESH_Mesh::NbNodes() const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->NbNodes(); } //================================================================================ /*! * \brief Return number of edges of given order in the mesh */ //================================================================================ int SMESH_Mesh::Nb0DElements() const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().Nb0DElements(); } //================================================================================ /*! * \brief Return number of edges of given order in the mesh */ //================================================================================ int SMESH_Mesh::NbEdges(SMDSAbs_ElementOrder order) const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbEdges(order); } //================================================================================ /*! * \brief Return number of faces of given order in the mesh */ //================================================================================ int SMESH_Mesh::NbFaces(SMDSAbs_ElementOrder order) const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbFaces(order); } //================================================================================ /*! * \brief Return the number of faces in the mesh */ //================================================================================ int SMESH_Mesh::NbTriangles(SMDSAbs_ElementOrder order) const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbTriangles(order); } //================================================================================ /*! * \brief Return number of biquadratic triangles in the mesh */ //================================================================================ int SMESH_Mesh::NbBiQuadTriangles() const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbBiQuadTriangles(); } //================================================================================ /*! * \brief Return the number nodes faces in the mesh */ //================================================================================ int SMESH_Mesh::NbQuadrangles(SMDSAbs_ElementOrder order) const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbQuadrangles(order); } //================================================================================ /*! * \brief Return number of biquadratic quadrangles in the mesh */ //================================================================================ int SMESH_Mesh::NbBiQuadQuadrangles() const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbBiQuadQuadrangles(); } //================================================================================ /*! * \brief Return the number of polygonal faces in the mesh */ //================================================================================ int SMESH_Mesh::NbPolygons(SMDSAbs_ElementOrder order) const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbPolygons(order); } //================================================================================ /*! * \brief Return number of volumes of given order in the mesh */ //================================================================================ int SMESH_Mesh::NbVolumes(SMDSAbs_ElementOrder order) const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbVolumes(order); } //================================================================================ /*! * \brief Return number of tetrahedrons of given order in the mesh */ //================================================================================ int SMESH_Mesh::NbTetras(SMDSAbs_ElementOrder order) const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbTetras(order); } //================================================================================ /*! * \brief Return number of hexahedrons of given order in the mesh */ //================================================================================ int SMESH_Mesh::NbHexas(SMDSAbs_ElementOrder order) const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbHexas(order); } //================================================================================ /*! * \brief Return number of triquadratic hexahedrons in the mesh */ //================================================================================ int SMESH_Mesh::NbTriQuadraticHexas() const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbTriQuadHexas(); } //================================================================================ /*! * \brief Return number of pyramids of given order in the mesh */ //================================================================================ int SMESH_Mesh::NbPyramids(SMDSAbs_ElementOrder order) const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbPyramids(order); } //================================================================================ /*! * \brief Return number of prisms (penthahedrons) of given order in the mesh */ //================================================================================ int SMESH_Mesh::NbPrisms(SMDSAbs_ElementOrder order) const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbPrisms(order); } //================================================================================ /*! * \brief Return number of hexagonal prisms in the mesh */ //================================================================================ int SMESH_Mesh::NbHexagonalPrisms() const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbHexPrisms(); } //================================================================================ /*! * \brief Return number of polyhedrons in the mesh */ //================================================================================ int SMESH_Mesh::NbPolyhedrons() const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbPolyhedrons(); } //================================================================================ /*! * \brief Return number of ball elements in the mesh */ //================================================================================ int SMESH_Mesh::NbBalls() const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->GetMeshInfo().NbBalls(); } //================================================================================ /*! * \brief Return number of submeshes in the mesh */ //================================================================================ int SMESH_Mesh::NbSubMesh() const throw(SALOME_Exception) { Unexpect aCatch(SalomeException); return _myMeshDS->NbSubMesh(); } //================================================================================ /*! * \brief Returns number of meshes in the Study, that is supposed to be * equal to SMESHDS_Document::NbMeshes() */ //================================================================================ int SMESH_Mesh::NbMeshes() const // nb meshes in the Study { return _myDocument->NbMeshes(); } //======================================================================= //function : IsNotConformAllowed //purpose : check if a hypothesis alowing notconform mesh is present //======================================================================= bool SMESH_Mesh::IsNotConformAllowed() const { if(MYDEBUG) MESSAGE("SMESH_Mesh::IsNotConformAllowed"); static SMESH_HypoFilter filter( SMESH_HypoFilter::HasName( "NotConformAllowed" )); return GetHypothesis( _myMeshDS->ShapeToMesh(), filter, false ); } //======================================================================= //function : IsMainShape //purpose : //======================================================================= bool SMESH_Mesh::IsMainShape(const TopoDS_Shape& theShape) const { return theShape.IsSame(_myMeshDS->ShapeToMesh() ); } //============================================================================= /*! * */ //============================================================================= SMESH_Group* SMESH_Mesh::AddGroup (const SMDSAbs_ElementType theType, const char* theName, int& theId, const TopoDS_Shape& theShape, const SMESH_PredicatePtr& thePredicate) { if (_mapGroup.count(_groupId)) return NULL; theId = _groupId; SMESH_Group* aGroup = new SMESH_Group (theId, this, theType, theName, theShape, thePredicate); GetMeshDS()->AddGroup( aGroup->GetGroupDS() ); _mapGroup[_groupId++] = aGroup; return aGroup; } //================================================================================ /*! * \brief Creates a group based on an existing SMESHDS group. Group ID should be unique */ //================================================================================ SMESH_Group* SMESH_Mesh::AddGroup (SMESHDS_GroupBase* groupDS) throw(SALOME_Exception) { if ( !groupDS ) throw SALOME_Exception(LOCALIZED ("SMESH_Mesh::AddGroup(): NULL SMESHDS_GroupBase")); map ::iterator i_g = _mapGroup.find( groupDS->GetID() ); if ( i_g != _mapGroup.end() && i_g->second ) { if ( i_g->second->GetGroupDS() == groupDS ) return i_g->second; else throw SALOME_Exception(LOCALIZED ("SMESH_Mesh::AddGroup() wrong ID of SMESHDS_GroupBase")); } SMESH_Group* aGroup = new SMESH_Group (groupDS); _mapGroup[ groupDS->GetID() ] = aGroup; GetMeshDS()->AddGroup( aGroup->GetGroupDS() ); _groupId = 1 + _mapGroup.rbegin()->first; return aGroup; } //================================================================================ /*! * \brief Creates SMESH_Groups for not wrapped SMESHDS_Groups * \retval bool - true if new SMESH_Groups have been created * */ //================================================================================ bool SMESH_Mesh::SynchronizeGroups() { size_t nbGroups = _mapGroup.size(); const set& groups = _myMeshDS->GetGroups(); set::const_iterator gIt = groups.begin(); for ( ; gIt != groups.end(); ++gIt ) { SMESHDS_GroupBase* groupDS = (SMESHDS_GroupBase*) *gIt; _groupId = groupDS->GetID(); if ( !_mapGroup.count( _groupId )) _mapGroup[_groupId] = new SMESH_Group( groupDS ); } if ( !_mapGroup.empty() ) _groupId = _mapGroup.rbegin()->first + 1; return nbGroups < _mapGroup.size(); } //================================================================================ /*! * \brief Return iterator on all existing groups */ //================================================================================ SMESH_Mesh::GroupIteratorPtr SMESH_Mesh::GetGroups() const { typedef map TMap; return GroupIteratorPtr( new SMDS_mapIterator( _mapGroup )); } //============================================================================= /*! * \brief Return a group by ID */ //============================================================================= SMESH_Group* SMESH_Mesh::GetGroup (const int theGroupID) { if (_mapGroup.find(theGroupID) == _mapGroup.end()) return NULL; return _mapGroup[theGroupID]; } //============================================================================= /*! * \brief Return IDs of all groups */ //============================================================================= list SMESH_Mesh::GetGroupIds() const { list anIds; for ( map::const_iterator it = _mapGroup.begin(); it != _mapGroup.end(); it++ ) anIds.push_back( it->first ); return anIds; } //================================================================================ /*! * \brief Set a caller of methods at level of CORBA API implementation. * The set upCaller will be deleted by SMESH_Mesh */ //================================================================================ void SMESH_Mesh::SetCallUp( TCallUp* upCaller ) { if ( _callUp ) delete _callUp; _callUp = upCaller; } //============================================================================= /*! * */ //============================================================================= bool SMESH_Mesh::RemoveGroup (const int theGroupID) { if (_mapGroup.find(theGroupID) == _mapGroup.end()) return false; GetMeshDS()->RemoveGroup( _mapGroup[theGroupID]->GetGroupDS() ); delete _mapGroup[theGroupID]; _mapGroup.erase (theGroupID); if (_callUp) _callUp->RemoveGroup( theGroupID ); return true; } //======================================================================= //function : GetAncestors //purpose : return list of ancestors of theSubShape in the order // that lower dimention shapes come first. //======================================================================= const TopTools_ListOfShape& SMESH_Mesh::GetAncestors(const TopoDS_Shape& theS) const { if ( _mapAncestors.Contains( theS ) ) return _mapAncestors.FindFromKey( theS ); static TopTools_ListOfShape emptyList; return emptyList; } //======================================================================= //function : Dump //purpose : dumps contents of mesh to stream [ debug purposes ] //======================================================================= ostream& SMESH_Mesh::Dump(ostream& save) { int clause = 0; save << "========================== Dump contents of mesh ==========================" << endl << endl; save << ++clause << ") Total number of nodes: \t" << NbNodes() << endl; save << ++clause << ") Total number of edges: \t" << NbEdges() << endl; save << ++clause << ") Total number of faces: \t" << NbFaces() << endl; save << ++clause << ") Total number of polygons: \t" << NbPolygons() << endl; save << ++clause << ") Total number of volumes: \t" << NbVolumes() << endl; save << ++clause << ") Total number of polyhedrons:\t" << NbPolyhedrons() << endl << endl; for ( int isQuadratic = 0; isQuadratic < 2; ++isQuadratic ) { string orderStr = isQuadratic ? "quadratic" : "linear"; SMDSAbs_ElementOrder order = isQuadratic ? ORDER_QUADRATIC : ORDER_LINEAR; save << ++clause << ") Total number of " << orderStr << " edges:\t" << NbEdges(order) << endl; save << ++clause << ") Total number of " << orderStr << " faces:\t" << NbFaces(order) << endl; if ( NbFaces(order) > 0 ) { int nb3 = NbTriangles(order); int nb4 = NbQuadrangles(order); save << clause << ".1) Number of " << orderStr << " triangles: \t" << nb3 << endl; save << clause << ".2) Number of " << orderStr << " quadrangles:\t" << nb4 << endl; if ( nb3 + nb4 != NbFaces(order) ) { map myFaceMap; SMDS_FaceIteratorPtr itFaces=_myMeshDS->facesIterator(); while( itFaces->more( ) ) { int nbNodes = itFaces->next()->NbNodes(); if ( myFaceMap.find( nbNodes ) == myFaceMap.end() ) myFaceMap[ nbNodes ] = 0; myFaceMap[ nbNodes ] = myFaceMap[ nbNodes ] + 1; } save << clause << ".3) Faces in detail: " << endl; map ::iterator itF; for (itF = myFaceMap.begin(); itF != myFaceMap.end(); itF++) save << "--> nb nodes: " << itF->first << " - nb elemens:\t" << itF->second << endl; } } save << ++clause << ") Total number of " << orderStr << " volumes:\t" << NbVolumes(order) << endl; if ( NbVolumes(order) > 0 ) { int nb8 = NbHexas(order); int nb4 = NbTetras(order); int nb5 = NbPyramids(order); int nb6 = NbPrisms(order); save << clause << ".1) Number of " << orderStr << " hexahedrons: \t" << nb8 << endl; save << clause << ".2) Number of " << orderStr << " tetrahedrons:\t" << nb4 << endl; save << clause << ".3) Number of " << orderStr << " prisms: \t" << nb6 << endl; save << clause << ".4) Number of " << orderStr << " pyramids: \t" << nb5 << endl; if ( nb8 + nb4 + nb5 + nb6 != NbVolumes(order) ) { map myVolumesMap; SMDS_VolumeIteratorPtr itVolumes=_myMeshDS->volumesIterator(); while( itVolumes->more( ) ) { int nbNodes = itVolumes->next()->NbNodes(); if ( myVolumesMap.find( nbNodes ) == myVolumesMap.end() ) myVolumesMap[ nbNodes ] = 0; myVolumesMap[ nbNodes ] = myVolumesMap[ nbNodes ] + 1; } save << clause << ".5) Volumes in detail: " << endl; map ::iterator itV; for (itV = myVolumesMap.begin(); itV != myVolumesMap.end(); itV++) save << "--> nb nodes: " << itV->first << " - nb elemens:\t" << itV->second << endl; } } save << endl; } save << "===========================================================================" << endl; return save; } //======================================================================= //function : GetElementType //purpose : Returns type of mesh element with certain id //======================================================================= SMDSAbs_ElementType SMESH_Mesh::GetElementType( const int id, const bool iselem ) { return _myMeshDS->GetElementType( id, iselem ); } //============================================================================= /*! * \brief Convert group on geometry into standalone group */ //============================================================================= SMESH_Group* SMESH_Mesh::ConvertToStandalone ( int theGroupID ) { SMESH_Group* aGroup = 0; map < int, SMESH_Group * >::iterator itg = _mapGroup.find( theGroupID ); if ( itg == _mapGroup.end() ) return aGroup; SMESH_Group* anOldGrp = (*itg).second; if ( !anOldGrp || !anOldGrp->GetGroupDS() ) return aGroup; SMESHDS_GroupBase* anOldGrpDS = anOldGrp->GetGroupDS(); // create new standalone group aGroup = new SMESH_Group (theGroupID, this, anOldGrpDS->GetType(), anOldGrp->GetName() ); _mapGroup[theGroupID] = aGroup; SMESHDS_Group* aNewGrpDS = dynamic_cast( aGroup->GetGroupDS() ); GetMeshDS()->RemoveGroup( anOldGrpDS ); GetMeshDS()->AddGroup( aNewGrpDS ); // add elements (or nodes) into new created group SMDS_ElemIteratorPtr anItr = anOldGrpDS->GetElements(); while ( anItr->more() ) aNewGrpDS->Add( (anItr->next())->GetID() ); // set color aNewGrpDS->SetColor( anOldGrpDS->GetColor() ); // remove old group delete anOldGrp; return aGroup; } //============================================================================= /*! * \brief remove submesh order from Mesh */ //============================================================================= void SMESH_Mesh::ClearMeshOrder() { _mySubMeshOrder.clear(); } //============================================================================= /*! * \brief remove submesh order from Mesh */ //============================================================================= void SMESH_Mesh::SetMeshOrder(const TListOfListOfInt& theOrder ) { _mySubMeshOrder = theOrder; } //============================================================================= /*! * \brief return submesh order if any */ //============================================================================= const TListOfListOfInt& SMESH_Mesh::GetMeshOrder() const { return _mySubMeshOrder; } //============================================================================= /*! * \brief fill _mapAncestors */ //============================================================================= void SMESH_Mesh::fillAncestorsMap(const TopoDS_Shape& theShape) { int desType, ancType; if ( !theShape.IsSame( GetShapeToMesh()) && theShape.ShapeType() == TopAbs_COMPOUND ) { // a geom group is added. Insert it into lists of ancestors before // the first ancestor more complex than group members TopoDS_Iterator subIt( theShape ); if ( !subIt.More() ) return; int memberType = subIt.Value().ShapeType(); for ( desType = TopAbs_VERTEX; desType >= memberType; desType-- ) for (TopExp_Explorer des( theShape, TopAbs_ShapeEnum( desType )); des.More(); des.Next()) { if ( !_mapAncestors.Contains( des.Current() )) continue;// issue 0020982 TopTools_ListOfShape& ancList = _mapAncestors.ChangeFromKey( des.Current() ); TopTools_ListIteratorOfListOfShape ancIt (ancList); while ( ancIt.More() && ancIt.Value().ShapeType() >= memberType ) ancIt.Next(); if ( ancIt.More() ) ancList.InsertBefore( theShape, ancIt ); else ancList.Append( theShape ); } } else // else added for 52457: Addition of hypotheses is 8 time longer than meshing { for ( desType = TopAbs_VERTEX; desType > TopAbs_COMPOUND; desType-- ) for ( ancType = desType - 1; ancType >= TopAbs_COMPOUND; ancType-- ) TopExp::MapShapesAndAncestors ( theShape, (TopAbs_ShapeEnum) desType, (TopAbs_ShapeEnum) ancType, _mapAncestors ); } // visit COMPOUNDs inside a COMPOUND that are not reachable by TopExp_Explorer if ( theShape.ShapeType() == TopAbs_COMPOUND ) { TopoDS_Iterator sIt(theShape); if ( sIt.More() && sIt.Value().ShapeType() == TopAbs_COMPOUND ) for ( ; sIt.More(); sIt.Next() ) if ( sIt.Value().ShapeType() == TopAbs_COMPOUND ) fillAncestorsMap( sIt.Value() ); } } //============================================================================= /*! * \brief sort submeshes according to stored mesh order * \param theListToSort in out list to be sorted * \return FALSE if nothing sorted */ //============================================================================= bool SMESH_Mesh::SortByMeshOrder(std::vector& theListToSort) const { if ( !_mySubMeshOrder.size() || theListToSort.size() < 2) return true; bool res = false; vector onlyOrderedList; // collect all ordered submeshes in one list as pointers // and get their positions within theListToSort typedef vector::iterator TPosInList; map< int, TPosInList > sortedPos; TPosInList smBeg = theListToSort.begin(), smEnd = theListToSort.end(); TListOfListOfInt::const_iterator listIdsIt = _mySubMeshOrder.begin(); for( ; listIdsIt != _mySubMeshOrder.end(); listIdsIt++) { const TListOfInt& listOfId = *listIdsIt; // convert sm ids to sm's vector smVec; TListOfInt::const_iterator idIt = listOfId.begin(); for ( ; idIt != listOfId.end(); idIt++ ) { if ( SMESH_subMesh * sm = GetSubMeshContaining( *idIt )) { if ( sm->GetSubMeshDS() && sm->GetSubMeshDS()->IsComplexSubmesh() ) { SMESHDS_SubMeshIteratorPtr smdsIt = sm->GetSubMeshDS()->GetSubMeshIterator(); while ( smdsIt->more() ) { const SMESHDS_SubMesh* smDS = smdsIt->next(); if (( sm = GetSubMeshContaining( smDS->GetID() ))) smVec.push_back( sm ); } } else { smVec.push_back( sm ); } } } // find smVec items in theListToSort for ( size_t i = 0; i < smVec.size(); ++i ) { TPosInList smPos = find( smBeg, smEnd, smVec[i] ); if ( smPos != smEnd ) { onlyOrderedList.push_back( smVec[i] ); sortedPos[ distance( smBeg, smPos )] = smPos; } } } if (onlyOrderedList.size() < 2) return res; res = true; vector::iterator onlyBIt = onlyOrderedList.begin(); vector::iterator onlyEIt = onlyOrderedList.end(); // iterate on ordered submeshes and insert them in detected positions map< int, TPosInList >::iterator i_pos = sortedPos.begin(); for ( ; onlyBIt != onlyEIt; ++onlyBIt, ++i_pos ) *(i_pos->second) = *onlyBIt; return res; } //================================================================================ /*! * \brief Return true if given order of sub-meshes is OK */ //================================================================================ bool SMESH_Mesh::IsOrderOK( const SMESH_subMesh* smBefore, const SMESH_subMesh* smAfter ) const { TListOfListOfInt::const_iterator listIdsIt = _mySubMeshOrder.begin(); TListOfInt::const_iterator idBef, idAft; for( ; listIdsIt != _mySubMeshOrder.end(); listIdsIt++) { const TListOfInt& listOfId = *listIdsIt; idBef = std::find( listOfId.begin(), listOfId.end(), smBefore->GetId() ); if ( idBef != listOfId.end() ) idAft = std::find( listOfId.begin(), listOfId.end(), smAfter->GetId() ); if ( idAft != listOfId.end () ) return ( std::distance( listOfId.begin(), idBef ) < std::distance( listOfId.begin(), idAft ) ); } return true; // no order imposed to given submeshes } //============================================================================= /*! * \brief sort submeshes according to stored mesh order * \param theListToSort in out list to be sorted * \return FALSE if nothing sorted */ //============================================================================= void SMESH_Mesh::getAncestorsSubMeshes (const TopoDS_Shape& theSubShape, std::vector< SMESH_subMesh* >& theSubMeshes) const { theSubMeshes.clear(); TopTools_ListIteratorOfListOfShape it( GetAncestors( theSubShape )); for (; it.More(); it.Next() ) if ( SMESH_subMesh* sm = GetSubMeshContaining( it.Value() )) theSubMeshes.push_back(sm); // sort submeshes according to stored mesh order SortByMeshOrder( theSubMeshes ); }