// Copyright (C) 2007-2014 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File: SMESH_MesherHelper.cxx // Created: 15.02.06 15:22:41 // Author: Sergey KUUL // #include "SMESH_MesherHelper.hxx" #include "SMDS_EdgePosition.hxx" #include "SMDS_FaceOfNodes.hxx" #include "SMDS_FacePosition.hxx" #include "SMDS_IteratorOnIterators.hxx" #include "SMDS_VolumeTool.hxx" #include "SMESH_Block.hxx" #include "SMESH_MeshAlgos.hxx" #include "SMESH_ProxyMesh.hxx" #include "SMESH_subMesh.hxx" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define RETURN_BAD_RESULT(msg) { MESSAGE(msg); return false; } namespace { gp_XYZ XYZ(const SMDS_MeshNode* n) { return gp_XYZ(n->X(), n->Y(), n->Z()); } enum { U_periodic = 1, V_periodic = 2 }; } //================================================================================ /*! * \brief Constructor */ //================================================================================ SMESH_MesherHelper::SMESH_MesherHelper(SMESH_Mesh& theMesh) : myParIndex(0), myMesh(&theMesh), myShapeID(0), myCreateQuadratic(false), myCreateBiQuadratic(false), myFixNodeParameters(false) { myPar1[0] = myPar2[0] = myPar1[1] = myPar2[1] = 0; mySetElemOnShape = ( ! myMesh->HasShapeToMesh() ); } //======================================================================= //function : ~SMESH_MesherHelper //purpose : //======================================================================= SMESH_MesherHelper::~SMESH_MesherHelper() { { TID2ProjectorOnSurf::iterator i_proj = myFace2Projector.begin(); for ( ; i_proj != myFace2Projector.end(); ++i_proj ) delete i_proj->second; } { TID2ProjectorOnCurve::iterator i_proj = myEdge2Projector.begin(); for ( ; i_proj != myEdge2Projector.end(); ++i_proj ) delete i_proj->second; } } //======================================================================= //function : IsQuadraticSubMesh //purpose : Check submesh for given shape: if all elements on this shape // are quadratic, quadratic elements will be created. // Also fill myTLinkNodeMap //======================================================================= bool SMESH_MesherHelper::IsQuadraticSubMesh(const TopoDS_Shape& aSh) { SMESHDS_Mesh* meshDS = GetMeshDS(); // we can create quadratic elements only if all elements // created on sub-shapes of given shape are quadratic // also we have to fill myTLinkNodeMap myCreateQuadratic = true; mySeamShapeIds.clear(); myDegenShapeIds.clear(); TopAbs_ShapeEnum subType( aSh.ShapeType()==TopAbs_FACE ? TopAbs_EDGE : TopAbs_FACE ); if ( aSh.ShapeType()==TopAbs_COMPOUND ) { TopoDS_Iterator subIt( aSh ); if ( subIt.More() ) subType = ( subIt.Value().ShapeType()==TopAbs_FACE ) ? TopAbs_EDGE : TopAbs_FACE; } SMDSAbs_ElementType elemType( subType==TopAbs_FACE ? SMDSAbs_Face : SMDSAbs_Edge ); int nbOldLinks = myTLinkNodeMap.size(); if ( !myMesh->HasShapeToMesh() ) { if (( myCreateQuadratic = myMesh->NbFaces( ORDER_QUADRATIC ))) { SMDS_FaceIteratorPtr fIt = meshDS->facesIterator(); while ( fIt->more() ) AddTLinks( static_cast< const SMDS_MeshFace* >( fIt->next() )); } } else { TopExp_Explorer exp( aSh, subType ); TopTools_MapOfShape checkedSubShapes; for (; exp.More() && myCreateQuadratic; exp.Next()) { if ( !checkedSubShapes.Add( exp.Current() )) continue; // needed if aSh is compound of solids if ( SMESHDS_SubMesh * subMesh = meshDS->MeshElements( exp.Current() )) { if ( SMDS_ElemIteratorPtr it = subMesh->GetElements() ) { while(it->more()) { const SMDS_MeshElement* e = it->next(); if ( e->GetType() != elemType || !e->IsQuadratic() ) { myCreateQuadratic = false; break; } else { // fill TLinkNodeMap switch ( e->NbCornerNodes() ) { case 2: AddTLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(2)); break; case 3: AddTLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(3)); AddTLinkNode(e->GetNode(1),e->GetNode(2),e->GetNode(4)); AddTLinkNode(e->GetNode(2),e->GetNode(0),e->GetNode(5)); break; case 4: AddTLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(4)); AddTLinkNode(e->GetNode(1),e->GetNode(2),e->GetNode(5)); AddTLinkNode(e->GetNode(2),e->GetNode(3),e->GetNode(6)); AddTLinkNode(e->GetNode(3),e->GetNode(0),e->GetNode(7)); break; default: myCreateQuadratic = false; break; } } } } } } } if ( nbOldLinks == myTLinkNodeMap.size() ) myCreateQuadratic = false; if(!myCreateQuadratic) { myTLinkNodeMap.clear(); } SetSubShape( aSh ); return myCreateQuadratic; } //======================================================================= //function : SetSubShape //purpose : Set geometry to make elements on //======================================================================= void SMESH_MesherHelper::SetSubShape(const int aShID) { if ( aShID == myShapeID ) return; if ( aShID > 0 ) SetSubShape( GetMeshDS()->IndexToShape( aShID )); else SetSubShape( TopoDS_Shape() ); } //======================================================================= //function : SetSubShape //purpose : Set geometry to create elements on //======================================================================= void SMESH_MesherHelper::SetSubShape(const TopoDS_Shape& aSh) { if ( myShape.IsSame( aSh )) return; myShape = aSh; mySeamShapeIds.clear(); myDegenShapeIds.clear(); if ( myShape.IsNull() ) { myShapeID = 0; return; } SMESHDS_Mesh* meshDS = GetMeshDS(); myShapeID = meshDS->ShapeToIndex(aSh); myParIndex = 0; // treatment of periodic faces for ( TopExp_Explorer eF( aSh, TopAbs_FACE ); eF.More(); eF.Next() ) { const TopoDS_Face& face = TopoDS::Face( eF.Current() ); BRepAdaptor_Surface surf( face, false ); if ( surf.IsUPeriodic() || surf.IsUClosed() ) { myParIndex |= U_periodic; myPar1[0] = surf.FirstUParameter(); myPar2[0] = surf.LastUParameter(); } if ( surf.IsVPeriodic() || surf.IsVClosed() ) { myParIndex |= V_periodic; myPar1[1] = surf.FirstVParameter(); myPar2[1] = surf.LastVParameter(); } gp_Pnt2d uv1, uv2; for (TopExp_Explorer exp( face, TopAbs_EDGE ); exp.More(); exp.Next()) { // look for a "seam" edge, a real seam or an edge on period boundary TopoDS_Edge edge = TopoDS::Edge( exp.Current() ); const int edgeID = meshDS->ShapeToIndex( edge ); if ( myParIndex ) { BRep_Tool::UVPoints( edge, face, uv1, uv2 ); const double du = Abs( uv1.Coord(1) - uv2.Coord(1) ); const double dv = Abs( uv1.Coord(2) - uv2.Coord(2) ); bool isSeam = BRep_Tool::IsClosed( edge, face ); if ( isSeam ) // real seam - having two pcurves on face { // pcurve can lie not on pediod boundary (22582, mesh_Quadratic_01/C9) if ( du < dv ) { double u1 = uv1.Coord(1); edge.Reverse(); BRep_Tool::UVPoints( edge, face, uv1, uv2 ); double u2 = uv1.Coord(1); myPar1[0] = Min( u1, u2 ); myPar2[0] = Max( u1, u2 ); } else { double v1 = uv1.Coord(2); edge.Reverse(); BRep_Tool::UVPoints( edge, face, uv1, uv2 ); double v2 = uv1.Coord(2); myPar1[1] = Min( v1, v2 ); myPar2[1] = Max( v1, v2 ); } } else //if ( !isSeam ) { // one pcurve but on period boundary (22772, mesh_Quadratic_01/D1) if (( myParIndex & U_periodic ) && du < Precision::PConfusion() ) { isSeam = ( Abs( uv1.Coord(1) - myPar1[0] ) < Precision::PConfusion() || Abs( uv1.Coord(1) - myPar2[0] ) < Precision::PConfusion() ); } else if (( myParIndex & V_periodic ) && dv < Precision::PConfusion() ) { isSeam = ( Abs( uv1.Coord(2) - myPar1[1] ) < Precision::PConfusion() || Abs( uv1.Coord(2) - myPar2[1] ) < Precision::PConfusion() ); } } if ( isSeam ) { // store seam shape indices, negative if shape encounters twice mySeamShapeIds.insert( IsSeamShape( edgeID ) ? -edgeID : edgeID ); for ( TopExp_Explorer v( edge, TopAbs_VERTEX ); v.More(); v.Next() ) { int vertexID = meshDS->ShapeToIndex( v.Current() ); mySeamShapeIds.insert( IsSeamShape( vertexID ) ? -vertexID : vertexID ); } } } // look for a degenerated edge if ( SMESH_Algo::isDegenerated( edge )) { myDegenShapeIds.insert( edgeID ); for ( TopExp_Explorer v( edge, TopAbs_VERTEX ); v.More(); v.Next() ) myDegenShapeIds.insert( meshDS->ShapeToIndex( v.Current() )); } if ( !BRep_Tool::SameParameter( edge ) || !BRep_Tool::SameRange( edge )) { setPosOnShapeValidity( edgeID, false ); } } } } //======================================================================= //function : GetNodeUVneedInFaceNode //purpose : Check if inFaceNode argument is necessary for call GetNodeUV(F,..) // Return true if the face is periodic. // If F is Null, answer about sub-shape set through IsQuadraticSubMesh() or // * SetSubShape() //======================================================================= bool SMESH_MesherHelper::GetNodeUVneedInFaceNode(const TopoDS_Face& F) const { if ( F.IsNull() ) return !mySeamShapeIds.empty(); if ( !F.IsNull() && !myShape.IsNull() && myShape.IsSame( F )) return !mySeamShapeIds.empty(); TopLoc_Location loc; Handle(Geom_Surface) aSurface = BRep_Tool::Surface( F,loc ); if ( !aSurface.IsNull() ) return ( aSurface->IsUPeriodic() || aSurface->IsVPeriodic() ); return false; } //======================================================================= //function : IsMedium //purpose : //======================================================================= bool SMESH_MesherHelper::IsMedium(const SMDS_MeshNode* node, const SMDSAbs_ElementType typeToCheck) { return SMESH_MeshEditor::IsMedium( node, typeToCheck ); } //======================================================================= //function : GetSubShapeByNode //purpose : Return support shape of a node //======================================================================= TopoDS_Shape SMESH_MesherHelper::GetSubShapeByNode(const SMDS_MeshNode* node, const SMESHDS_Mesh* meshDS) { int shapeID = node ? node->getshapeId() : 0; if ( 0 < shapeID && shapeID <= meshDS->MaxShapeIndex() ) return meshDS->IndexToShape( shapeID ); else return TopoDS_Shape(); } //======================================================================= //function : AddTLinkNode //purpose : add a link in my data structure //======================================================================= void SMESH_MesherHelper::AddTLinkNode(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n12) { // add new record to map SMESH_TLink link( n1, n2 ); myTLinkNodeMap.insert( make_pair(link,n12)); } //================================================================================ /*! * \brief Add quadratic links of edge to own data structure */ //================================================================================ bool SMESH_MesherHelper::AddTLinks(const SMDS_MeshEdge* edge) { if ( edge && edge->IsQuadratic() ) AddTLinkNode(edge->GetNode(0), edge->GetNode(1), edge->GetNode(2)); else return false; return true; } //================================================================================ /*! * \brief Add quadratic links of face to own data structure */ //================================================================================ bool SMESH_MesherHelper::AddTLinks(const SMDS_MeshFace* f) { bool isQuad = true; if ( !f->IsPoly() ) switch ( f->NbNodes() ) { case 7: // myMapWithCentralNode.insert // ( make_pair( TBiQuad( f->GetNode(0),f->GetNode(1),f->GetNode(2) ), // f->GetNode(6))); // break; -- add medium nodes as well case 6: AddTLinkNode(f->GetNode(0),f->GetNode(1),f->GetNode(3)); AddTLinkNode(f->GetNode(1),f->GetNode(2),f->GetNode(4)); AddTLinkNode(f->GetNode(2),f->GetNode(0),f->GetNode(5)); break; case 9: // myMapWithCentralNode.insert // ( make_pair( TBiQuad( f->GetNode(0),f->GetNode(1),f->GetNode(2),f->GetNode(3) ), // f->GetNode(8))); // break; -- add medium nodes as well case 8: AddTLinkNode(f->GetNode(0),f->GetNode(1),f->GetNode(4)); AddTLinkNode(f->GetNode(1),f->GetNode(2),f->GetNode(5)); AddTLinkNode(f->GetNode(2),f->GetNode(3),f->GetNode(6)); AddTLinkNode(f->GetNode(3),f->GetNode(0),f->GetNode(7)); break; default:; isQuad = false; } return isQuad; } //================================================================================ /*! * \brief Add quadratic links of volume to own data structure */ //================================================================================ bool SMESH_MesherHelper::AddTLinks(const SMDS_MeshVolume* volume) { if ( volume->IsQuadratic() ) { SMDS_VolumeTool vTool( volume ); const SMDS_MeshNode** nodes = vTool.GetNodes(); set addedLinks; for ( int iF = 1; iF < vTool.NbFaces(); ++iF ) { const int nbN = vTool.NbFaceNodes( iF ); const int* iNodes = vTool.GetFaceNodesIndices( iF ); for ( int i = 0; i < nbN; ) { int iN1 = iNodes[i++]; int iN12 = iNodes[i++]; int iN2 = iNodes[i]; if ( iN1 > iN2 ) std::swap( iN1, iN2 ); int linkID = iN1 * vTool.NbNodes() + iN2; pair< set::iterator, bool > it_isNew = addedLinks.insert( linkID ); if ( it_isNew.second ) AddTLinkNode( nodes[iN1], nodes[iN2], nodes[iN12] ); else addedLinks.erase( it_isNew.first ); // each link encounters only twice } if ( vTool.NbNodes() == 27 ) { const SMDS_MeshNode* nFCenter = nodes[ vTool.GetCenterNodeIndex( iF )]; if ( nFCenter->GetPosition()->GetTypeOfPosition() == SMDS_TOP_3DSPACE ) myMapWithCentralNode.insert ( make_pair( TBiQuad( nodes[ iNodes[0]], nodes[ iNodes[1]], nodes[ iNodes[2]], nodes[ iNodes[3]] ), nFCenter )); } } return true; } return false; } //================================================================================ /*! * \brief Return true if position of nodes on the shape hasn't yet been checked or * the positions proved to be invalid */ //================================================================================ bool SMESH_MesherHelper::toCheckPosOnShape(int shapeID ) const { map< int,bool >::const_iterator id_ok = myNodePosShapesValidity.find( shapeID ); return ( id_ok == myNodePosShapesValidity.end() || !id_ok->second ); } //================================================================================ /*! * \brief Set validity of positions of nodes on the shape. * Once set, validity is not changed */ //================================================================================ void SMESH_MesherHelper::setPosOnShapeValidity(int shapeID, bool ok ) const { std::map< int,bool >::iterator sh_ok = ((SMESH_MesherHelper*)this)->myNodePosShapesValidity.insert( make_pair( shapeID, ok)).first; if ( !ok ) sh_ok->second = ok; } //======================================================================= //function : ToFixNodeParameters //purpose : Enables fixing node parameters on EDGEs and FACEs in // GetNodeU(...,check=true), GetNodeUV(...,check=true), CheckNodeUV() and // CheckNodeU() in case if a node lies on a shape set via SetSubShape(). // Default is False //======================================================================= void SMESH_MesherHelper::ToFixNodeParameters(bool toFix) { myFixNodeParameters = toFix; } //======================================================================= //function : getUVOnSeam //purpose : Select UV on either of 2 pcurves of a seam edge, closest to the given UV //======================================================================= gp_Pnt2d SMESH_MesherHelper::getUVOnSeam( const gp_Pnt2d& uv1, const gp_Pnt2d& uv2 ) const { gp_Pnt2d result = uv1; for ( int i = U_periodic; i <= V_periodic ; ++i ) { if ( myParIndex & i ) { double p1 = uv1.Coord( i ); double dp1 = Abs( p1-myPar1[i-1]), dp2 = Abs( p1-myPar2[i-1]); if ( myParIndex == i || dp1 < ( myPar2[i-1] - myPar1[i-1] ) / 100. || dp2 < ( myPar2[i-1] - myPar1[i-1] ) / 100. ) { double p2 = uv2.Coord( i ); double p1Alt = ( dp1 < dp2 ) ? myPar2[i-1] : myPar1[i-1]; if ( Abs( p2 - p1 ) > Abs( p2 - p1Alt )) result.SetCoord( i, p1Alt ); } } } return result; } //======================================================================= //function : GetNodeUV //purpose : Return node UV on face //======================================================================= gp_XY SMESH_MesherHelper::GetNodeUV(const TopoDS_Face& F, const SMDS_MeshNode* n, const SMDS_MeshNode* n2, bool* check) const { gp_Pnt2d uv( Precision::Infinite(), Precision::Infinite() ); const SMDS_PositionPtr Pos = n->GetPosition(); bool uvOK = false; if ( Pos->GetTypeOfPosition() == SMDS_TOP_FACE ) { // node has position on face const SMDS_FacePosition* fpos = static_cast( Pos ); uv.SetCoord( fpos->GetUParameter(), fpos->GetVParameter() ); if ( check ) uvOK = CheckNodeUV( F, n, uv.ChangeCoord(), 10*getFaceMaxTol( F )); } else if ( Pos->GetTypeOfPosition() == SMDS_TOP_EDGE ) { // node has position on EDGE => it is needed to find // corresponding EDGE from FACE, get pcurve for this // EDGE and retrieve value from this pcurve const SMDS_EdgePosition* epos = static_cast( Pos ); const int edgeID = n->getshapeId(); const TopoDS_Edge& E = TopoDS::Edge( GetMeshDS()->IndexToShape( edgeID )); double f, l, u = epos->GetUParameter(); Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface( E, F, f, l ); bool validU = ( !C2d.IsNull() && ( f < u ) && ( u < l )); if ( validU ) uv = C2d->Value( u ); else uv.SetCoord( Precision::Infinite(),0.); if ( check || !validU ) uvOK = CheckNodeUV( F, n, uv.ChangeCoord(), 10*getFaceMaxTol( F ),/*force=*/ !validU ); // for a node on a seam EDGE select one of UVs on 2 pcurves if ( n2 && IsSeamShape( edgeID )) { uv = getUVOnSeam( uv, GetNodeUV( F, n2, 0, check )); } else { // adjust uv to period TopLoc_Location loc; Handle(Geom_Surface) S = BRep_Tool::Surface(F,loc); Standard_Boolean isUPeriodic = S->IsUPeriodic(); Standard_Boolean isVPeriodic = S->IsVPeriodic(); gp_Pnt2d newUV = uv; if ( isUPeriodic || isVPeriodic ) { Standard_Real UF,UL,VF,VL; S->Bounds(UF,UL,VF,VL); if ( isUPeriodic ) newUV.SetX( uv.X() + ShapeAnalysis::AdjustToPeriod(uv.X(),UF,UL)); if ( isVPeriodic ) newUV.SetY( uv.Y() + ShapeAnalysis::AdjustToPeriod(uv.Y(),VF,VL)); if ( n2 ) { gp_Pnt2d uv2 = GetNodeUV( F, n2, 0, check ); if ( isUPeriodic && Abs( uv.X()-uv2.X() ) < Abs( newUV.X()-uv2.X() )) newUV.SetX( uv.X() ); if ( isVPeriodic && Abs( uv.Y()-uv2.Y() ) < Abs( newUV.Y()-uv2.Y() )) newUV.SetY( uv.Y() ); } } uv = newUV; } } else if ( Pos->GetTypeOfPosition() == SMDS_TOP_VERTEX ) { if ( int vertexID = n->getshapeId() ) { const TopoDS_Vertex& V = TopoDS::Vertex(GetMeshDS()->IndexToShape(vertexID)); try { uv = BRep_Tool::Parameters( V, F ); uvOK = true; } catch (Standard_Failure& exc) { } if ( !uvOK ) { for ( TopExp_Explorer vert(F,TopAbs_VERTEX); !uvOK && vert.More(); vert.Next() ) uvOK = ( V == vert.Current() ); if ( !uvOK ) { MESSAGE ( "SMESH_MesherHelper::GetNodeUV(); Vertex " << vertexID << " not in face " << GetMeshDS()->ShapeToIndex( F ) ); // get UV of a vertex closest to the node double dist = 1e100; gp_Pnt pn = XYZ( n ); for ( TopExp_Explorer vert( F,TopAbs_VERTEX ); !uvOK && vert.More(); vert.Next() ) { TopoDS_Vertex curV = TopoDS::Vertex( vert.Current() ); gp_Pnt p = BRep_Tool::Pnt( curV ); double curDist = p.SquareDistance( pn ); if ( curDist < dist ) { dist = curDist; uv = BRep_Tool::Parameters( curV, F ); uvOK = ( dist < DBL_MIN ); } } } else { uvOK = false; TopTools_ListIteratorOfListOfShape it( myMesh->GetAncestors( V )); for ( ; it.More(); it.Next() ) { if ( it.Value().ShapeType() == TopAbs_EDGE ) { const TopoDS_Edge & edge = TopoDS::Edge( it.Value() ); double f,l; Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(edge, F, f, l); if ( !C2d.IsNull() ) { double u = ( V == TopExp::FirstVertex( edge ) ) ? f : l; uv = C2d->Value( u ); uvOK = true; break; } } } } } if ( n2 && IsSeamShape( vertexID )) { bool isSeam = ( myShape.IsSame( F )); if ( !isSeam ) { SMESH_MesherHelper h( *myMesh ); h.SetSubShape( F ); isSeam = IsSeamShape( vertexID ); } if ( isSeam ) uv = getUVOnSeam( uv, GetNodeUV( F, n2, 0 )); } } } else { uvOK = CheckNodeUV( F, n, uv.ChangeCoord(), 10*getFaceMaxTol( F )); } if ( check ) *check = uvOK; return uv.XY(); } //======================================================================= //function : CheckNodeUV //purpose : Check and fix node UV on a face //======================================================================= bool SMESH_MesherHelper::CheckNodeUV(const TopoDS_Face& F, const SMDS_MeshNode* n, gp_XY& uv, const double tol, const bool force, double distXYZ[4]) const { int shapeID = n->getshapeId(); bool infinit; if (( infinit = ( Precision::IsInfinite( uv.X() ) || Precision::IsInfinite( uv.Y() ))) || ( force ) || ( uv.X() == 0. && uv.Y() == 0. ) || ( toCheckPosOnShape( shapeID ))) { // check that uv is correct TopLoc_Location loc; Handle(Geom_Surface) surface = BRep_Tool::Surface( F,loc ); gp_Pnt nodePnt = XYZ( n ), surfPnt(0,0,0); double dist = 0; if ( !loc.IsIdentity() ) nodePnt.Transform( loc.Transformation().Inverted() ); if ( infinit || (dist = nodePnt.Distance( surfPnt = surface->Value( uv.X(), uv.Y() ))) > tol ) { setPosOnShapeValidity( shapeID, false ); if ( !infinit && distXYZ ) { surfPnt.Transform( loc ); distXYZ[0] = dist; distXYZ[1] = surfPnt.X(); distXYZ[2] = surfPnt.Y(); distXYZ[3]=surfPnt.Z(); } // uv incorrect, project the node to surface GeomAPI_ProjectPointOnSurf& projector = GetProjector( F, loc, tol ); projector.Perform( nodePnt ); if ( !projector.IsDone() || projector.NbPoints() < 1 ) { MESSAGE( "SMESH_MesherHelper::CheckNodeUV() failed to project" ); return false; } Quantity_Parameter U,V; projector.LowerDistanceParameters(U,V); uv.SetCoord( U,V ); surfPnt = surface->Value( U, V ); dist = nodePnt.Distance( surfPnt ); if ( distXYZ ) { surfPnt.Transform( loc ); distXYZ[0] = dist; distXYZ[1] = surfPnt.X(); distXYZ[2] = surfPnt.Y(); distXYZ[3]=surfPnt.Z(); } if ( dist > tol ) { MESSAGE( "SMESH_MesherHelper::CheckNodeUV(), invalid projection" ); return false; } // store the fixed UV on the face if ( myShape.IsSame(F) && shapeID == myShapeID && myFixNodeParameters ) const_cast(n)->SetPosition ( SMDS_PositionPtr( new SMDS_FacePosition( U, V ))); } else if ( myShape.IsSame(F) && uv.Modulus() > numeric_limits::min() ) { setPosOnShapeValidity( shapeID, true ); } } return true; } //======================================================================= //function : GetProjector //purpose : Return projector intitialized by given face without location, which is returned //======================================================================= GeomAPI_ProjectPointOnSurf& SMESH_MesherHelper::GetProjector(const TopoDS_Face& F, TopLoc_Location& loc, double tol ) const { Handle(Geom_Surface) surface = BRep_Tool::Surface( F,loc ); int faceID = GetMeshDS()->ShapeToIndex( F ); TID2ProjectorOnSurf& i2proj = const_cast< TID2ProjectorOnSurf&>( myFace2Projector ); TID2ProjectorOnSurf::iterator i_proj = i2proj.find( faceID ); if ( i_proj == i2proj.end() ) { if ( tol == 0 ) tol = BRep_Tool::Tolerance( F ); double U1, U2, V1, V2; surface->Bounds(U1, U2, V1, V2); GeomAPI_ProjectPointOnSurf* proj = new GeomAPI_ProjectPointOnSurf(); proj->Init( surface, U1, U2, V1, V2, tol ); i_proj = i2proj.insert( make_pair( faceID, proj )).first; } return *( i_proj->second ); } namespace { gp_XY AverageUV(const gp_XY& uv1, const gp_XY& uv2) { return ( uv1 + uv2 ) / 2.; } gp_XY_FunPtr(Added); // define gp_XY_Added pointer to function calling gp_XY::Added(gp_XY) gp_XY_FunPtr(Subtracted); } //======================================================================= //function : applyIn2D //purpose : Perform given operation on two 2d points in parameric space of given surface. // It takes into account period of the surface. Use gp_XY_FunPtr macro // to easily define pointer to function of gp_XY class. //======================================================================= gp_XY SMESH_MesherHelper::applyIn2D(const Handle(Geom_Surface)& surface, const gp_XY& uv1, const gp_XY& uv2, xyFunPtr fun, const bool resultInPeriod) { Standard_Boolean isUPeriodic = surface.IsNull() ? false : surface->IsUPeriodic(); Standard_Boolean isVPeriodic = surface.IsNull() ? false : surface->IsVPeriodic(); if ( !isUPeriodic && !isVPeriodic ) return fun(uv1,uv2); // move uv2 not far than half-period from uv1 double u2 = uv2.X()+(isUPeriodic ? ShapeAnalysis::AdjustByPeriod(uv2.X(),uv1.X(),surface->UPeriod()) :0); double v2 = uv2.Y()+(isVPeriodic ? ShapeAnalysis::AdjustByPeriod(uv2.Y(),uv1.Y(),surface->VPeriod()) :0); // execute operation gp_XY res = fun( uv1, gp_XY(u2,v2) ); // move result within period if ( resultInPeriod ) { Standard_Real UF,UL,VF,VL; surface->Bounds(UF,UL,VF,VL); if ( isUPeriodic ) res.SetX( res.X() + ShapeAnalysis::AdjustToPeriod(res.X(),UF,UL)); if ( isVPeriodic ) res.SetY( res.Y() + ShapeAnalysis::AdjustToPeriod(res.Y(),VF,VL)); } return res; } //======================================================================= //function : GetMiddleUV //purpose : Return middle UV taking in account surface period //======================================================================= gp_XY SMESH_MesherHelper::GetMiddleUV(const Handle(Geom_Surface)& surface, const gp_XY& p1, const gp_XY& p2) { // NOTE: // the proper place of getting basic surface seems to be in applyIn2D() // but we put it here to decrease a risk of regressions just before releasing a version Handle(Geom_Surface) surf = surface; while ( !surf.IsNull() && surf->IsKind(STANDARD_TYPE(Geom_RectangularTrimmedSurface ))) surf = Handle(Geom_RectangularTrimmedSurface)::DownCast( surf )->BasisSurface(); return applyIn2D( surf, p1, p2, & AverageUV ); } //======================================================================= //function : GetCenterUV //purpose : Return UV for the central node of a biquadratic triangle //======================================================================= gp_XY SMESH_MesherHelper::GetCenterUV(const gp_XY& uv1, const gp_XY& uv2, const gp_XY& uv3, const gp_XY& uv12, const gp_XY& uv23, const gp_XY& uv31, bool * isBadTria/*=0*/) { bool badTria; gp_XY uvAvg = ( uv12 + uv23 + uv31 ) / 3.; if (( badTria = (( uvAvg - uv1 ) * ( uvAvg - uv23 ) > 0 ))) uvAvg = ( uv1 + uv23 ) / 2.; else if (( badTria = (( uvAvg - uv2 ) * ( uvAvg - uv31 ) > 0 ))) uvAvg = ( uv2 + uv31 ) / 2.; else if (( badTria = (( uvAvg - uv3 ) * ( uvAvg - uv12 ) > 0 ))) uvAvg = ( uv3 + uv12 ) / 2.; if ( isBadTria ) *isBadTria = badTria; return uvAvg; } //======================================================================= //function : GetNodeU //purpose : Return node U on edge //======================================================================= double SMESH_MesherHelper::GetNodeU(const TopoDS_Edge& E, const SMDS_MeshNode* n, const SMDS_MeshNode* inEdgeNode, bool* check) const { double param = Precision::Infinite(); const SMDS_PositionPtr pos = n->GetPosition(); if ( pos->GetTypeOfPosition()==SMDS_TOP_EDGE ) { const SMDS_EdgePosition* epos = static_cast( pos ); param = epos->GetUParameter(); } else if( pos->GetTypeOfPosition() == SMDS_TOP_VERTEX ) { if ( inEdgeNode && TopExp::FirstVertex( E ).IsSame( TopExp::LastVertex( E ))) // issue 0020128 { Standard_Real f,l; BRep_Tool::Range( E, f,l ); double uInEdge = GetNodeU( E, inEdgeNode ); param = ( fabs( uInEdge - f ) < fabs( l - uInEdge )) ? f : l; } else { SMESHDS_Mesh * meshDS = GetMeshDS(); int vertexID = n->getshapeId(); const TopoDS_Vertex& V = TopoDS::Vertex(meshDS->IndexToShape(vertexID)); param = BRep_Tool::Parameter( V, E ); } } if ( check ) { double tol = BRep_Tool::Tolerance( E ); double f,l; BRep_Tool::Range( E, f,l ); bool force = ( param < f-tol || param > l+tol ); if ( !force && pos->GetTypeOfPosition()==SMDS_TOP_EDGE ) force = ( GetMeshDS()->ShapeToIndex( E ) != n->getshapeId() ); *check = CheckNodeU( E, n, param, 2*tol, force ); } return param; } //======================================================================= //function : CheckNodeU //purpose : Check and fix node U on an edge // Return false if U is bad and could not be fixed //======================================================================= bool SMESH_MesherHelper::CheckNodeU(const TopoDS_Edge& E, const SMDS_MeshNode* n, double& u, const double tol, const bool force, double distXYZ[4]) const { int shapeID = n->getshapeId(); bool infinit; if (( infinit = Precision::IsInfinite( u )) || ( force ) || ( u == 0. ) || ( toCheckPosOnShape( shapeID ))) { TopLoc_Location loc; double f,l; Handle(Geom_Curve) curve = BRep_Tool::Curve( E,loc,f,l ); if ( curve.IsNull() ) // degenerated edge { if ( u+tol < f || u-tol > l ) { double r = Max( 0.5, 1 - tol*n->GetID()); // to get a unique u on edge u = f*r + l*(1-r); } } else { gp_Pnt nodePnt = SMESH_TNodeXYZ( n ); if ( !loc.IsIdentity() ) nodePnt.Transform( loc.Transformation().Inverted() ); gp_Pnt curvPnt; double dist = 2*tol; if ( !infinit ) { curvPnt = curve->Value( u ); dist = nodePnt.Distance( curvPnt ); if ( distXYZ ) { curvPnt.Transform( loc ); distXYZ[0] = dist; distXYZ[1] = curvPnt.X(); distXYZ[2] = curvPnt.Y(); distXYZ[3]=curvPnt.Z(); } } if ( dist > tol ) { setPosOnShapeValidity( shapeID, false ); // u incorrect, project the node to the curve int edgeID = GetMeshDS()->ShapeToIndex( E ); TID2ProjectorOnCurve& i2proj = const_cast< TID2ProjectorOnCurve&>( myEdge2Projector ); TID2ProjectorOnCurve::iterator i_proj = i2proj.insert( make_pair( edgeID, (GeomAPI_ProjectPointOnCurve*) 0 )).first; if ( !i_proj->second ) { i_proj->second = new GeomAPI_ProjectPointOnCurve(); i_proj->second->Init( curve, f, l ); } GeomAPI_ProjectPointOnCurve* projector = i_proj->second; projector->Perform( nodePnt ); if ( projector->NbPoints() < 1 ) { MESSAGE( "SMESH_MesherHelper::CheckNodeU() failed to project" ); return false; } Quantity_Parameter U = projector->LowerDistanceParameter(); u = double( U ); MESSAGE(" f " << f << " l " << l << " u " << u); curvPnt = curve->Value( u ); dist = nodePnt.Distance( curvPnt ); if ( distXYZ ) { curvPnt.Transform( loc ); distXYZ[0] = dist; distXYZ[1] = curvPnt.X(); distXYZ[2] = curvPnt.Y(); distXYZ[3]=curvPnt.Z(); } if ( dist > tol ) { MESSAGE( "SMESH_MesherHelper::CheckNodeU(), invalid projection" ); MESSAGE("distance " << dist << " " << tol ); return false; } // store the fixed U on the edge if ( myShape.IsSame(E) && shapeID == myShapeID && myFixNodeParameters ) const_cast(n)->SetPosition ( SMDS_PositionPtr( new SMDS_EdgePosition( U ))); } else if ( fabs( u ) > numeric_limits::min() ) { setPosOnShapeValidity( shapeID, true ); } if (( u < f-tol || u > l+tol ) && force ) { MESSAGE("u < f-tol || u > l+tol ; u " << u << " f " << f << " l " << l); // node is on vertex but is set on periodic but trimmed edge (issue 0020890) try { // do not use IsPeriodic() as Geom_TrimmedCurve::IsPeriodic () returns false double period = curve->Period(); u = ( u < f ) ? u + period : u - period; } catch (Standard_Failure& exc) { return false; } } } } return true; } //======================================================================= //function : GetMediumPos //purpose : Return index and type of the shape (EDGE or FACE only) to // set a medium node on //param : useCurSubShape - if true, returns the shape set via SetSubShape() // if any //param : expectedSupport - shape type corresponding to element being created, // e.g TopAbs_EDGE if SMDSAbs_Edge is created // basing on \a n1 and \a n2 // Calling GetMediumPos() with useCurSubShape=true is OK only for the // case where the lower dim mesh is already constructed and converted to quadratic, // else, nodes on EDGEs are assigned to FACE, for example. //======================================================================= std::pair SMESH_MesherHelper::GetMediumPos(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const bool useCurSubShape, TopAbs_ShapeEnum expectedSupport) { if ( useCurSubShape && !myShape.IsNull() ) return std::make_pair( myShapeID, myShape.ShapeType() ); TopAbs_ShapeEnum shapeType = TopAbs_SHAPE; int shapeID = -1; TopoDS_Shape shape; if (( myShapeID == n1->getshapeId() || myShapeID == n2->getshapeId() ) && myShapeID > 0 ) { shapeType = myShape.ShapeType(); shapeID = myShapeID; } else if ( n1->getshapeId() == n2->getshapeId() ) { shapeID = n2->getshapeId(); shape = GetSubShapeByNode( n1, GetMeshDS() ); } else // 2 different shapes { const SMDS_TypeOfPosition Pos1 = n1->GetPosition()->GetTypeOfPosition(); const SMDS_TypeOfPosition Pos2 = n2->GetPosition()->GetTypeOfPosition(); if ( Pos1 == SMDS_TOP_3DSPACE || Pos2 == SMDS_TOP_3DSPACE ) { // in SOLID } else if ( Pos1 == SMDS_TOP_FACE || Pos2 == SMDS_TOP_FACE ) { // in FACE or SOLID if ( Pos1 != SMDS_TOP_FACE || Pos2 != SMDS_TOP_FACE ) // not 2 FACEs { if ( Pos1 != SMDS_TOP_FACE ) std::swap( n1,n2 ); TopoDS_Shape F = GetSubShapeByNode( n1, GetMeshDS() ); TopoDS_Shape S = GetSubShapeByNode( n2, GetMeshDS() ); if ( IsSubShape( S, F )) { shapeType = TopAbs_FACE; shapeID = n1->getshapeId(); } } } else if ( Pos1 == SMDS_TOP_EDGE && Pos2 == SMDS_TOP_EDGE ) { TopoDS_Shape E1 = GetSubShapeByNode( n1, GetMeshDS() ); TopoDS_Shape E2 = GetSubShapeByNode( n2, GetMeshDS() ); shape = GetCommonAncestor( E1, E2, *myMesh, TopAbs_FACE ); } else if ( Pos1 == SMDS_TOP_VERTEX && Pos2 == SMDS_TOP_VERTEX ) { TopoDS_Shape V1 = GetSubShapeByNode( n1, GetMeshDS() ); TopoDS_Shape V2 = GetSubShapeByNode( n2, GetMeshDS() ); shape = GetCommonAncestor( V1, V2, *myMesh, TopAbs_EDGE ); if ( shape.IsNull() ) shape = GetCommonAncestor( V1, V2, *myMesh, TopAbs_FACE ); } else // on VERTEX and EDGE { if ( Pos1 != SMDS_TOP_VERTEX ) std::swap( n1,n2 ); TopoDS_Shape V = GetSubShapeByNode( n1, GetMeshDS() ); TopoDS_Shape E = GetSubShapeByNode( n2, GetMeshDS() ); if ( IsSubShape( V, E )) shape = E; else shape = GetCommonAncestor( V, E, *myMesh, TopAbs_FACE ); } } if ( !shape.IsNull() ) { if ( shapeID < 1 ) shapeID = GetMeshDS()->ShapeToIndex( shape ); shapeType = shape.ShapeType(); // EDGE or FACE if ( expectedSupport < shapeType && expectedSupport != TopAbs_SHAPE && !myShape.IsNull() && myShape.ShapeType() == expectedSupport ) { // e.g. a side of triangle connects nodes on the same EDGE but does not // lie on this EDGE (an arc with a coarse mesh) // => shapeType == TopAbs_EDGE, expectedSupport == TopAbs_FACE; // hope that myShape is a right shape, return it if the found shape // has converted elements of corresponding dim (segments in our example) int nbConvertedElems = 0; SMDSAbs_ElementType type = ( shapeType == TopAbs_FACE ? SMDSAbs_Face : SMDSAbs_Edge ); for ( int iN = 0; iN < 2; ++iN ) { const SMDS_MeshNode* n = iN ? n2 : n1; SMDS_ElemIteratorPtr it = n->GetInverseElementIterator( type ); while ( it->more() ) { const SMDS_MeshElement* elem = it->next(); if ( elem->getshapeId() == shapeID && elem->IsQuadratic() ) { ++nbConvertedElems; break; } } } if ( nbConvertedElems == 2 ) { shapeType = myShape.ShapeType(); shapeID = myShapeID; } } } return make_pair( shapeID, shapeType ); } //======================================================================= //function : GetCentralNode //purpose : Return existing or create a new central node for a quardilateral // quadratic face given its 8 nodes. //@param : force3d - true means node creation in between the given nodes, // else node position is found on a geometrical face if any. //======================================================================= const SMDS_MeshNode* SMESH_MesherHelper::GetCentralNode(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const SMDS_MeshNode* n12, const SMDS_MeshNode* n23, const SMDS_MeshNode* n34, const SMDS_MeshNode* n41, bool force3d) { SMDS_MeshNode *centralNode = 0; // central node to return // Find an existing central node TBiQuad keyOfMap(n1,n2,n3,n4); std::map::iterator itMapCentralNode; itMapCentralNode = myMapWithCentralNode.find( keyOfMap ); if ( itMapCentralNode != myMapWithCentralNode.end() ) { return (*itMapCentralNode).second; } // Get type of shape for the new central node TopAbs_ShapeEnum shapeType = TopAbs_SHAPE; int solidID = -1; int faceID = -1; TopoDS_Shape shape; TopTools_ListIteratorOfListOfShape it; std::map< int, int > faceId2nbNodes; std::map< int, int > ::iterator itMapWithIdFace; SMESHDS_Mesh* meshDS = GetMeshDS(); // check if a face lies on a FACE, i.e. its all corner nodes lie either on the FACE or // on sub-shapes of the FACE if ( GetMesh()->HasShapeToMesh() ) { const SMDS_MeshNode* nodes[] = { n1, n2, n3, n4 }; for(int i = 0; i < 4; i++) { shape = GetSubShapeByNode( nodes[i], meshDS ); if ( shape.IsNull() ) break; if ( shape.ShapeType() == TopAbs_SOLID ) { solidID = nodes[i]->getshapeId(); shapeType = TopAbs_SOLID; break; } if ( shape.ShapeType() == TopAbs_FACE ) { faceID = nodes[i]->getshapeId(); itMapWithIdFace = faceId2nbNodes.insert( std::make_pair( faceID, 0 ) ).first; itMapWithIdFace->second++; } else { PShapeIteratorPtr it = GetAncestors( shape, *GetMesh(), TopAbs_FACE ); while ( const TopoDS_Shape* face = it->next() ) { faceID = meshDS->ShapeToIndex( *face ); itMapWithIdFace = faceId2nbNodes.insert( std::make_pair( faceID, 0 )).first; itMapWithIdFace->second++; } } } } if ( solidID < 1 && !faceId2nbNodes.empty() ) // SOLID not found { // find ID of the FACE the four corner nodes belong to itMapWithIdFace = faceId2nbNodes.begin(); for ( ; itMapWithIdFace != faceId2nbNodes.end(); ++itMapWithIdFace) { if ( itMapWithIdFace->second == 4 ) { shapeType = TopAbs_FACE; faceID = (*itMapWithIdFace).first; break; } } } TopoDS_Face F; if ( shapeType == TopAbs_FACE ) { F = TopoDS::Face( meshDS->IndexToShape( faceID )); } // Create a node gp_XY uvAvg; gp_Pnt P; bool toCheck = true; if ( !F.IsNull() && !force3d ) { uvAvg = calcTFI (0.5, 0.5, GetNodeUV(F,n1,n3,&toCheck), GetNodeUV(F,n2,n4,&toCheck), GetNodeUV(F,n3,n1,&toCheck), GetNodeUV(F,n4,n2,&toCheck), GetNodeUV(F,n12,n3), GetNodeUV(F,n23,n4), GetNodeUV(F,n34,n2), GetNodeUV(F,n41,n2)); TopLoc_Location loc; Handle( Geom_Surface ) S = BRep_Tool::Surface( F, loc ); P = S->Value( uvAvg.X(), uvAvg.Y() ).Transformed( loc ); centralNode = meshDS->AddNode( P.X(), P.Y(), P.Z() ); // if ( mySetElemOnShape ) node is not elem! meshDS->SetNodeOnFace( centralNode, faceID, uvAvg.X(), uvAvg.Y() ); } else // ( force3d || F.IsNull() ) { P = calcTFI (0.5, 0.5, SMESH_TNodeXYZ(n1), SMESH_TNodeXYZ(n2), SMESH_TNodeXYZ(n3), SMESH_TNodeXYZ(n4), SMESH_TNodeXYZ(n12), SMESH_TNodeXYZ(n23), SMESH_TNodeXYZ(n34), SMESH_TNodeXYZ(n41)); centralNode = meshDS->AddNode( P.X(), P.Y(), P.Z() ); if ( !F.IsNull() ) // force3d { uvAvg = (GetNodeUV(F,n1,n3,&toCheck) + GetNodeUV(F,n2,n4,&toCheck) + GetNodeUV(F,n3,n1,&toCheck) + GetNodeUV(F,n4,n2,&toCheck)) / 4; //CheckNodeUV( F, centralNode, uvAvg, 2*BRep_Tool::Tolerance( F ), /*force=*/true); meshDS->SetNodeOnFace( centralNode, faceID, uvAvg.X(), uvAvg.Y() ); } else if ( solidID > 0 ) { meshDS->SetNodeInVolume( centralNode, solidID ); } else if ( myShapeID > 0 && mySetElemOnShape ) { meshDS->SetMeshElementOnShape( centralNode, myShapeID ); } } myMapWithCentralNode.insert( std::make_pair( keyOfMap, centralNode ) ); return centralNode; } //======================================================================= //function : GetCentralNode //purpose : Return existing or create a new central node for a // quadratic triangle given its 6 nodes. //@param : force3d - true means node creation in between the given nodes, // else node position is found on a geometrical face if any. //======================================================================= const SMDS_MeshNode* SMESH_MesherHelper::GetCentralNode(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n12, const SMDS_MeshNode* n23, const SMDS_MeshNode* n31, bool force3d) { SMDS_MeshNode *centralNode = 0; // central node to return // Find an existing central node TBiQuad keyOfMap(n1,n2,n3); std::map::iterator itMapCentralNode; itMapCentralNode = myMapWithCentralNode.find( keyOfMap ); if ( itMapCentralNode != myMapWithCentralNode.end() ) { return (*itMapCentralNode).second; } // Get type of shape for the new central node TopAbs_ShapeEnum shapeType = TopAbs_SHAPE; int solidID = -1; int faceID = -1; TopoDS_Shape shape; TopTools_ListIteratorOfListOfShape it; std::map< int, int > faceId2nbNodes; std::map< int, int > ::iterator itMapWithIdFace; SMESHDS_Mesh* meshDS = GetMeshDS(); // check if a face lies on a FACE, i.e. its all corner nodes lie either on the FACE or // on sub-shapes of the FACE if ( GetMesh()->HasShapeToMesh() ) { const SMDS_MeshNode* nodes[] = { n1, n2, n3 }; for(int i = 0; i < 3; i++) { shape = GetSubShapeByNode( nodes[i], meshDS ); if ( shape.IsNull() ) break; if ( shape.ShapeType() == TopAbs_SOLID ) { solidID = nodes[i]->getshapeId(); shapeType = TopAbs_SOLID; break; } if ( shape.ShapeType() == TopAbs_FACE ) { faceID = nodes[i]->getshapeId(); itMapWithIdFace = faceId2nbNodes.insert( std::make_pair( faceID, 0 ) ).first; itMapWithIdFace->second++; } else { PShapeIteratorPtr it = GetAncestors(shape, *GetMesh(), TopAbs_FACE ); while ( const TopoDS_Shape* face = it->next() ) { faceID = meshDS->ShapeToIndex( *face ); itMapWithIdFace = faceId2nbNodes.insert( std::make_pair( faceID, 0 ) ).first; itMapWithIdFace->second++; } } } } if ( solidID < 1 && !faceId2nbNodes.empty() ) // SOLID not found { // find ID of the FACE the four corner nodes belong to itMapWithIdFace = faceId2nbNodes.begin(); for ( ; itMapWithIdFace != faceId2nbNodes.end(); ++itMapWithIdFace) { if ( itMapWithIdFace->second == 3 ) { shapeType = TopAbs_FACE; faceID = (*itMapWithIdFace).first; break; } } } TopoDS_Face F; gp_XY uvAvg; bool badTria=false; if ( shapeType == TopAbs_FACE ) { F = TopoDS::Face( meshDS->IndexToShape( faceID )); bool check; gp_XY uv1 = GetNodeUV( F, n1, n23, &check ); gp_XY uv2 = GetNodeUV( F, n2, n31, &check ); gp_XY uv3 = GetNodeUV( F, n3, n12, &check ); gp_XY uv12 = GetNodeUV( F, n12, n3, &check ); gp_XY uv23 = GetNodeUV( F, n23, n1, &check ); gp_XY uv31 = GetNodeUV( F, n31, n2, &check ); uvAvg = GetCenterUV( uv1,uv2,uv3, uv12,uv23,uv31, &badTria ); if ( badTria ) force3d = false; } // Create a central node gp_Pnt P; if ( !F.IsNull() && !force3d ) { TopLoc_Location loc; Handle( Geom_Surface ) S = BRep_Tool::Surface( F, loc ); P = S->Value( uvAvg.X(), uvAvg.Y() ).Transformed( loc ); centralNode = meshDS->AddNode( P.X(), P.Y(), P.Z() ); // if ( mySetElemOnShape ) node is not elem! meshDS->SetNodeOnFace( centralNode, faceID, uvAvg.X(), uvAvg.Y() ); } else // ( force3d || F.IsNull() ) { P = ( SMESH_TNodeXYZ( n12 ) + SMESH_TNodeXYZ( n23 ) + SMESH_TNodeXYZ( n31 ) ) / 3; centralNode = meshDS->AddNode( P.X(), P.Y(), P.Z() ); if ( !F.IsNull() ) // force3d { meshDS->SetNodeOnFace( centralNode, faceID, uvAvg.X(), uvAvg.Y() ); } else if ( solidID > 0 ) { meshDS->SetNodeInVolume( centralNode, solidID ); } else if ( myShapeID > 0 && mySetElemOnShape ) { meshDS->SetMeshElementOnShape( centralNode, myShapeID ); } } myMapWithCentralNode.insert( std::make_pair( keyOfMap, centralNode ) ); return centralNode; } //======================================================================= //function : GetMediumNode //purpose : Return existing or create a new medium node between given ones //======================================================================= const SMDS_MeshNode* SMESH_MesherHelper::GetMediumNode(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, bool force3d, TopAbs_ShapeEnum expectedSupport) { // Find existing node SMESH_TLink link(n1,n2); ItTLinkNode itLN = myTLinkNodeMap.find( link ); if ( itLN != myTLinkNodeMap.end() ) { return (*itLN).second; } // Create medium node SMDS_MeshNode* n12; SMESHDS_Mesh* meshDS = GetMeshDS(); if ( IsSeamShape( n1->getshapeId() )) // to get a correct UV of a node on seam, the second node must have checked UV std::swap( n1, n2 ); // get type of shape for the new medium node int faceID = -1, edgeID = -1; TopoDS_Edge E; double u [2]; TopoDS_Face F; gp_XY uv[2]; bool uvOK[2] = { false, false }; const bool useCurSubShape = ( !myShape.IsNull() && myShape.ShapeType() == TopAbs_EDGE ); pair pos = GetMediumPos( n1, n2, useCurSubShape, expectedSupport ); // get positions of the given nodes on shapes if ( pos.second == TopAbs_FACE ) { F = TopoDS::Face(meshDS->IndexToShape( faceID = pos.first )); uv[0] = GetNodeUV(F,n1,n2, force3d ? 0 : &uvOK[0]); uv[1] = GetNodeUV(F,n2,n1, force3d ? 0 : &uvOK[1]); } else if ( pos.second == TopAbs_EDGE ) { const SMDS_PositionPtr Pos1 = n1->GetPosition(); const SMDS_PositionPtr Pos2 = n2->GetPosition(); if ( Pos1->GetTypeOfPosition()==SMDS_TOP_EDGE && Pos2->GetTypeOfPosition()==SMDS_TOP_EDGE && n1->getshapeId() != n2->getshapeId() ) { // issue 0021006 return getMediumNodeOnComposedWire(n1,n2,force3d); } E = TopoDS::Edge(meshDS->IndexToShape( edgeID = pos.first )); try { u[0] = GetNodeU(E,n1,n2, force3d ? 0 : &uvOK[0]); u[1] = GetNodeU(E,n2,n1, force3d ? 0 : &uvOK[1]); } catch ( Standard_Failure& f ) { // issue 22502 / a node is on VERTEX not belonging to E // issue 22568 / both nodes are on non-connected VERTEXes return getMediumNodeOnComposedWire(n1,n2,force3d); } } if ( !force3d & uvOK[0] && uvOK[1] ) { // we try to create medium node using UV parameters of // nodes, else - medium between corresponding 3d points if( ! F.IsNull() ) { //if ( uvOK[0] && uvOK[1] ) { if ( IsDegenShape( n1->getshapeId() )) { if ( myParIndex & U_periodic ) uv[0].SetCoord( 1, uv[1].Coord( 1 )); else uv[0].SetCoord( 2, uv[1].Coord( 2 )); } else if ( IsDegenShape( n2->getshapeId() )) { if ( myParIndex & U_periodic ) uv[1].SetCoord( 1, uv[0].Coord( 1 )); else uv[1].SetCoord( 2, uv[0].Coord( 2 )); } TopLoc_Location loc; Handle(Geom_Surface) S = BRep_Tool::Surface(F,loc); gp_XY UV = GetMiddleUV( S, uv[0], uv[1] ); gp_Pnt P = S->Value( UV.X(), UV.Y() ).Transformed(loc); n12 = meshDS->AddNode(P.X(), P.Y(), P.Z()); // if ( mySetElemOnShape ) node is not elem! meshDS->SetNodeOnFace(n12, faceID, UV.X(), UV.Y()); myTLinkNodeMap.insert(make_pair(link,n12)); return n12; } } else if ( !E.IsNull() ) { double f,l; Handle(Geom_Curve) C = BRep_Tool::Curve(E, f, l); if(!C.IsNull()) { Standard_Boolean isPeriodic = C->IsPeriodic(); double U; if(isPeriodic) { Standard_Real Period = C->Period(); Standard_Real p = u[1]+ShapeAnalysis::AdjustByPeriod(u[1],u[0],Period); Standard_Real pmid = (u[0]+p)/2.; U = pmid+ShapeAnalysis::AdjustToPeriod(pmid,C->FirstParameter(),C->LastParameter()); } else U = (u[0]+u[1])/2.; gp_Pnt P = C->Value( U ); n12 = meshDS->AddNode(P.X(), P.Y(), P.Z()); //if ( mySetElemOnShape ) node is not elem! meshDS->SetNodeOnEdge(n12, edgeID, U); myTLinkNodeMap.insert(make_pair(link,n12)); return n12; } } } // 3d variant double x = ( n1->X() + n2->X() )/2.; double y = ( n1->Y() + n2->Y() )/2.; double z = ( n1->Z() + n2->Z() )/2.; n12 = meshDS->AddNode(x,y,z); //if ( mySetElemOnShape ) node is not elem! { if ( !F.IsNull() ) { gp_XY UV = ( uv[0] + uv[1] ) / 2.; CheckNodeUV( F, n12, UV, 2 * BRep_Tool::Tolerance( F ), /*force=*/true); meshDS->SetNodeOnFace(n12, faceID, UV.X(), UV.Y() ); } else if ( !E.IsNull() ) { double U = ( u[0] + u[1] ) / 2.; CheckNodeU( E, n12, U, 2 * BRep_Tool::Tolerance( E ), /*force=*/true); meshDS->SetNodeOnEdge(n12, edgeID, U); } else if ( myShapeID > 0 && mySetElemOnShape ) { meshDS->SetMeshElementOnShape(n12, myShapeID); } } myTLinkNodeMap.insert( make_pair( link, n12 )); return n12; } //================================================================================ /*! * \brief Makes a medium node if nodes reside different edges */ //================================================================================ const SMDS_MeshNode* SMESH_MesherHelper::getMediumNodeOnComposedWire(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, bool force3d) { SMESH_TNodeXYZ p1( n1 ), p2( n2 ); gp_Pnt middle = 0.5 * p1 + 0.5 * p2; SMDS_MeshNode* n12 = AddNode( middle.X(), middle.Y(), middle.Z() ); // To find position on edge and 3D position for n12, // project to 2 edges and select projection most close to TopoDS_Edge bestEdge; double u = 0, distMiddleProj = Precision::Infinite(), distXYZ[4], f,l; // get shapes under the nodes TopoDS_Shape shape[2]; int nbShapes = 0; for ( int is2nd = 0; is2nd < 2; ++is2nd ) { const SMDS_MeshNode* n = is2nd ? n2 : n1; TopoDS_Shape S = GetSubShapeByNode( n, GetMeshDS() ); if ( !S.IsNull() ) shape[ nbShapes++ ] = S; } // get EDGEs vector< TopoDS_Shape > edges; for ( int iS = 0; iS < nbShapes; ++iS ) { switch ( shape[iS].ShapeType() ) { case TopAbs_EDGE: { edges.push_back( shape[iS] ); break; } case TopAbs_VERTEX: { TopoDS_Shape edge; if ( nbShapes == 2 && iS==0 && shape[1-iS].ShapeType() == TopAbs_VERTEX ) edge = GetCommonAncestor( shape[iS], shape[1-iS], *myMesh, TopAbs_EDGE ); if ( edge.IsNull() ) { PShapeIteratorPtr eIt = GetAncestors( shape[iS], *myMesh, TopAbs_EDGE ); while( const TopoDS_Shape* e = eIt->next() ) edges.push_back( *e ); } break; } case TopAbs_FACE: { if ( nbShapes == 1 || shape[1-iS].ShapeType() < TopAbs_EDGE ) for ( TopExp_Explorer e( shape[iS], TopAbs_EDGE ); e.More(); e.Next() ) edges.push_back( e.Current() ); break; } default: continue; } } // project to get U of projection and distance from middle to projection for ( size_t iE = 0; iE < edges.size(); ++iE ) { const TopoDS_Edge& edge = TopoDS::Edge( edges[ iE ]); distXYZ[0] = distMiddleProj; double testU = 0; CheckNodeU( edge, n12, testU, 2 * BRep_Tool::Tolerance(edge), /*force=*/true, distXYZ ); if ( distXYZ[0] < distMiddleProj ) { distMiddleProj = distXYZ[0]; u = testU; bestEdge = edge; } } // { // // both projections failed; set n12 on the edge of n1 with U of a common vertex // TopoDS_Vertex vCommon; // if ( TopExp::CommonVertex( edges[0], edges[1], vCommon )) // u = BRep_Tool::Parameter( vCommon, edges[0] ); // else // { // double f,l, u0 = GetNodeU( edges[0], n1 ); // BRep_Tool::Range( edges[0],f,l ); // u = ( fabs(u0-f) < fabs(u0-l) ) ? f : l; // } // iOkEdge = 0; // distMiddleProj = 0; // } if ( !bestEdge.IsNull() ) { // move n12 to position of a successfull projection //double tol = BRep_Tool::Tolerance(edges[ iOkEdge ]); if ( !force3d /*&& distMiddleProj > 2*tol*/ ) { TopLoc_Location loc; Handle(Geom_Curve) curve = BRep_Tool::Curve( bestEdge,loc,f,l ); gp_Pnt p = curve->Value( u ).Transformed( loc ); GetMeshDS()->MoveNode( n12, p.X(), p.Y(), p.Z() ); } //if ( mySetElemOnShape ) node is not elem! { int edgeID = GetMeshDS()->ShapeToIndex( bestEdge ); if ( edgeID != n12->getshapeId() ) GetMeshDS()->UnSetNodeOnShape( n12 ); GetMeshDS()->SetNodeOnEdge(n12, edgeID, u); } } myTLinkNodeMap.insert( make_pair( SMESH_TLink(n1,n2), n12 )); return n12; } //======================================================================= //function : AddNode //purpose : Creates a node //======================================================================= SMDS_MeshNode* SMESH_MesherHelper::AddNode(double x, double y, double z, int ID, double u, double v) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshNode* node = 0; if ( ID ) node = meshDS->AddNodeWithID( x, y, z, ID ); else node = meshDS->AddNode( x, y, z ); if ( mySetElemOnShape && myShapeID > 0 ) { // node is not elem ? switch ( myShape.ShapeType() ) { case TopAbs_SOLID: meshDS->SetNodeInVolume( node, myShapeID); break; case TopAbs_SHELL: meshDS->SetNodeInVolume( node, myShapeID); break; case TopAbs_FACE: meshDS->SetNodeOnFace( node, myShapeID, u, v); break; case TopAbs_EDGE: meshDS->SetNodeOnEdge( node, myShapeID, u); break; case TopAbs_VERTEX: meshDS->SetNodeOnVertex( node, myShapeID); break; default: ; } } return node; } //======================================================================= //function : AddEdge //purpose : Creates quadratic or linear edge //======================================================================= SMDS_MeshEdge* SMESH_MesherHelper::AddEdge(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshEdge* edge = 0; if (myCreateQuadratic) { const SMDS_MeshNode* n12 = GetMediumNode(n1,n2,force3d); if(id) edge = meshDS->AddEdgeWithID(n1, n2, n12, id); else edge = meshDS->AddEdge(n1, n2, n12); } else { if(id) edge = meshDS->AddEdgeWithID(n1, n2, id); else edge = meshDS->AddEdge(n1, n2); } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( edge, myShapeID ); return edge; } //======================================================================= //function : AddFace //purpose : Creates quadratic or linear triangle //======================================================================= SMDS_MeshFace* SMESH_MesherHelper::AddFace(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshFace* elem = 0; if( n1==n2 || n2==n3 || n3==n1 ) return elem; if(!myCreateQuadratic) { if(id) elem = meshDS->AddFaceWithID(n1, n2, n3, id); else elem = meshDS->AddFace(n1, n2, n3); } else { const SMDS_MeshNode* n12 = GetMediumNode( n1, n2, force3d, TopAbs_FACE ); const SMDS_MeshNode* n23 = GetMediumNode( n2, n3, force3d, TopAbs_FACE ); const SMDS_MeshNode* n31 = GetMediumNode( n3, n1, force3d, TopAbs_FACE ); if(myCreateBiQuadratic) { const SMDS_MeshNode* nCenter = GetCentralNode(n1, n2, n3, n12, n23, n31, force3d); if(id) elem = meshDS->AddFaceWithID(n1, n2, n3, n12, n23, n31, nCenter, id); else elem = meshDS->AddFace(n1, n2, n3, n12, n23, n31, nCenter); } else { if(id) elem = meshDS->AddFaceWithID(n1, n2, n3, n12, n23, n31, id); else elem = meshDS->AddFace(n1, n2, n3, n12, n23, n31); } } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= //function : AddFace //purpose : Creates bi-quadratic, quadratic or linear quadrangle //======================================================================= SMDS_MeshFace* SMESH_MesherHelper::AddFace(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshFace* elem = 0; if( n1==n2 ) { return AddFace(n1,n3,n4,id,force3d); } if( n1==n3 ) { return AddFace(n1,n2,n4,id,force3d); } if( n1==n4 ) { return AddFace(n1,n2,n3,id,force3d); } if( n2==n3 ) { return AddFace(n1,n2,n4,id,force3d); } if( n2==n4 ) { return AddFace(n1,n2,n3,id,force3d); } if( n3==n4 ) { return AddFace(n1,n2,n3,id,force3d); } if(!myCreateQuadratic) { if(id) elem = meshDS->AddFaceWithID(n1, n2, n3, n4, id); else elem = meshDS->AddFace(n1, n2, n3, n4); } else { const SMDS_MeshNode* n12 = GetMediumNode( n1, n2, force3d, TopAbs_FACE ); const SMDS_MeshNode* n23 = GetMediumNode( n2, n3, force3d, TopAbs_FACE ); const SMDS_MeshNode* n34 = GetMediumNode( n3, n4, force3d, TopAbs_FACE ); const SMDS_MeshNode* n41 = GetMediumNode( n4, n1, force3d, TopAbs_FACE ); if(myCreateBiQuadratic) { const SMDS_MeshNode* nCenter = GetCentralNode(n1, n2, n3, n4, n12, n23, n34, n41, force3d); if(id) elem = meshDS->AddFaceWithID(n1, n2, n3, n4, n12, n23, n34, n41, nCenter, id); else elem = meshDS->AddFace(n1, n2, n3, n4, n12, n23, n34, n41, nCenter); } else { if(id) elem = meshDS->AddFaceWithID(n1, n2, n3, n4, n12, n23, n34, n41, id); else elem = meshDS->AddFace(n1, n2, n3, n4, n12, n23, n34, n41); } } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= //function : AddPolygonalFace //purpose : Creates polygon, with additional nodes in quadratic mesh //======================================================================= SMDS_MeshFace* SMESH_MesherHelper::AddPolygonalFace (const vector& nodes, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshFace* elem = 0; if(!myCreateQuadratic) { if(id) elem = meshDS->AddPolygonalFaceWithID(nodes, id); else elem = meshDS->AddPolygonalFace(nodes); } else { vector newNodes; for ( int i = 0; i < nodes.size(); ++i ) { const SMDS_MeshNode* n1 = nodes[i]; const SMDS_MeshNode* n2 = nodes[(i+1)%nodes.size()]; const SMDS_MeshNode* n12 = GetMediumNode( n1, n2, force3d, TopAbs_FACE ); newNodes.push_back( n1 ); newNodes.push_back( n12 ); } if(id) elem = meshDS->AddPolygonalFaceWithID(newNodes, id); else elem = meshDS->AddPolygonalFace(newNodes); } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= //function : AddVolume //purpose : Creates quadratic or linear prism //======================================================================= SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const SMDS_MeshNode* n5, const SMDS_MeshNode* n6, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshVolume* elem = 0; if(!myCreateQuadratic) { if(id) elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, id); else elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6); } else { const SMDS_MeshNode* n12 = GetMediumNode( n1, n2, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n23 = GetMediumNode( n2, n3, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n31 = GetMediumNode( n3, n1, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n45 = GetMediumNode( n4, n5, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n56 = GetMediumNode( n5, n6, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n64 = GetMediumNode( n6, n4, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n14 = GetMediumNode( n1, n4, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n25 = GetMediumNode( n2, n5, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n36 = GetMediumNode( n3, n6, force3d, TopAbs_SOLID ); if(id) elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, n12, n23, n31, n45, n56, n64, n14, n25, n36, id); else elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6, n12, n23, n31, n45, n56, n64, n14, n25, n36); } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= //function : AddVolume //purpose : Creates quadratic or linear tetrahedron //======================================================================= SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshVolume* elem = 0; if(!myCreateQuadratic) { if(id) elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, id); else elem = meshDS->AddVolume(n1, n2, n3, n4); } else { const SMDS_MeshNode* n12 = GetMediumNode( n1, n2, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n23 = GetMediumNode( n2, n3, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n31 = GetMediumNode( n3, n1, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n14 = GetMediumNode( n1, n4, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n24 = GetMediumNode( n2, n4, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n34 = GetMediumNode( n3, n4, force3d, TopAbs_SOLID ); if(id) elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n12, n23, n31, n14, n24, n34, id); else elem = meshDS->AddVolume(n1, n2, n3, n4, n12, n23, n31, n14, n24, n34); } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= //function : AddVolume //purpose : Creates quadratic or linear pyramid //======================================================================= SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const SMDS_MeshNode* n5, const int id, const bool force3d) { SMDS_MeshVolume* elem = 0; if(!myCreateQuadratic) { if(id) elem = GetMeshDS()->AddVolumeWithID(n1, n2, n3, n4, n5, id); else elem = GetMeshDS()->AddVolume(n1, n2, n3, n4, n5); } else { const SMDS_MeshNode* n12 = GetMediumNode( n1, n2, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n23 = GetMediumNode( n2, n3, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n34 = GetMediumNode( n3, n4, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n41 = GetMediumNode( n4, n1, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n15 = GetMediumNode( n1, n5, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n25 = GetMediumNode( n2, n5, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n35 = GetMediumNode( n3, n5, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n45 = GetMediumNode( n4, n5, force3d, TopAbs_SOLID ); if(id) elem = GetMeshDS()->AddVolumeWithID ( n1, n2, n3, n4, n5, n12, n23, n34, n41, n15, n25, n35, n45, id); else elem = GetMeshDS()->AddVolume( n1, n2, n3, n4, n5, n12, n23, n34, n41, n15, n25, n35, n45); } if ( mySetElemOnShape && myShapeID > 0 ) GetMeshDS()->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= //function : AddVolume //purpose : Creates tri-quadratic, quadratic or linear hexahedron //======================================================================= SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const SMDS_MeshNode* n5, const SMDS_MeshNode* n6, const SMDS_MeshNode* n7, const SMDS_MeshNode* n8, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshVolume* elem = 0; if(!myCreateQuadratic) { if(id) elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, n7, n8, id); else elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6, n7, n8); } else { const SMDS_MeshNode* n12 = GetMediumNode( n1, n2, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n23 = GetMediumNode( n2, n3, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n34 = GetMediumNode( n3, n4, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n41 = GetMediumNode( n4, n1, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n56 = GetMediumNode( n5, n6, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n67 = GetMediumNode( n6, n7, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n78 = GetMediumNode( n7, n8, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n85 = GetMediumNode( n8, n5, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n15 = GetMediumNode( n1, n5, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n26 = GetMediumNode( n2, n6, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n37 = GetMediumNode( n3, n7, force3d, TopAbs_SOLID ); const SMDS_MeshNode* n48 = GetMediumNode( n4, n8, force3d, TopAbs_SOLID ); if(myCreateBiQuadratic) { const SMDS_MeshNode* n1234 = GetCentralNode( n1,n2,n3,n4,n12,n23,n34,n41,force3d ); const SMDS_MeshNode* n1256 = GetCentralNode( n1,n2,n5,n6,n12,n26,n56,n15,force3d ); const SMDS_MeshNode* n2367 = GetCentralNode( n2,n3,n6,n7,n23,n37,n67,n26,force3d ); const SMDS_MeshNode* n3478 = GetCentralNode( n3,n4,n7,n8,n34,n48,n78,n37,force3d ); const SMDS_MeshNode* n1458 = GetCentralNode( n1,n4,n5,n8,n41,n48,n15,n85,force3d ); const SMDS_MeshNode* n5678 = GetCentralNode( n5,n6,n7,n8,n56,n67,n78,n85,force3d ); vector pointsOnShapes( SMESH_Block::ID_Shell ); pointsOnShapes[ SMESH_Block::ID_V000 ] = SMESH_TNodeXYZ( n4 ); pointsOnShapes[ SMESH_Block::ID_V100 ] = SMESH_TNodeXYZ( n8 ); pointsOnShapes[ SMESH_Block::ID_V010 ] = SMESH_TNodeXYZ( n3 ); pointsOnShapes[ SMESH_Block::ID_V110 ] = SMESH_TNodeXYZ( n7 ); pointsOnShapes[ SMESH_Block::ID_V001 ] = SMESH_TNodeXYZ( n1 ); pointsOnShapes[ SMESH_Block::ID_V101 ] = SMESH_TNodeXYZ( n5 ); pointsOnShapes[ SMESH_Block::ID_V011 ] = SMESH_TNodeXYZ( n2 ); pointsOnShapes[ SMESH_Block::ID_V111 ] = SMESH_TNodeXYZ( n6 ); pointsOnShapes[ SMESH_Block::ID_Ex00 ] = SMESH_TNodeXYZ( n48 ); pointsOnShapes[ SMESH_Block::ID_Ex10 ] = SMESH_TNodeXYZ( n37 ); pointsOnShapes[ SMESH_Block::ID_E0y0 ] = SMESH_TNodeXYZ( n15 ); pointsOnShapes[ SMESH_Block::ID_E1y0 ] = SMESH_TNodeXYZ( n26 ); pointsOnShapes[ SMESH_Block::ID_Ex01 ] = SMESH_TNodeXYZ( n34 ); pointsOnShapes[ SMESH_Block::ID_Ex11 ] = SMESH_TNodeXYZ( n78 ); pointsOnShapes[ SMESH_Block::ID_E0y1 ] = SMESH_TNodeXYZ( n12 ); pointsOnShapes[ SMESH_Block::ID_E1y1 ] = SMESH_TNodeXYZ( n56 ); pointsOnShapes[ SMESH_Block::ID_E00z ] = SMESH_TNodeXYZ( n41 ); pointsOnShapes[ SMESH_Block::ID_E10z ] = SMESH_TNodeXYZ( n85 ); pointsOnShapes[ SMESH_Block::ID_E01z ] = SMESH_TNodeXYZ( n23 ); pointsOnShapes[ SMESH_Block::ID_E11z ] = SMESH_TNodeXYZ( n67 ); pointsOnShapes[ SMESH_Block::ID_Fxy0 ] = SMESH_TNodeXYZ( n3478 ); pointsOnShapes[ SMESH_Block::ID_Fxy1 ] = SMESH_TNodeXYZ( n1256 ); pointsOnShapes[ SMESH_Block::ID_Fx0z ] = SMESH_TNodeXYZ( n1458 ); pointsOnShapes[ SMESH_Block::ID_Fx1z ] = SMESH_TNodeXYZ( n2367 ); pointsOnShapes[ SMESH_Block::ID_F0yz ] = SMESH_TNodeXYZ( n1234 ); pointsOnShapes[ SMESH_Block::ID_F1yz ] = SMESH_TNodeXYZ( n5678 ); gp_XYZ centerCube(0.5, 0.5, 0.5); gp_XYZ nCenterElem; SMESH_Block::ShellPoint( centerCube, pointsOnShapes, nCenterElem ); const SMDS_MeshNode* nCenter = meshDS->AddNode( nCenterElem.X(), nCenterElem.Y(), nCenterElem.Z() ); meshDS->SetNodeInVolume( nCenter, myShapeID ); if(id) elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, n7, n8, n12, n23, n34, n41, n56, n67, n78, n85, n15, n26, n37, n48, n1234, n1256, n2367, n3478, n1458, n5678, nCenter, id); else elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6, n7, n8, n12, n23, n34, n41, n56, n67, n78, n85, n15, n26, n37, n48, n1234, n1256, n2367, n3478, n1458, n5678, nCenter); } else { if(id) elem = meshDS->AddVolumeWithID(n1, n2, n3, n4, n5, n6, n7, n8, n12, n23, n34, n41, n56, n67, n78, n85, n15, n26, n37, n48, id); else elem = meshDS->AddVolume(n1, n2, n3, n4, n5, n6, n7, n8, n12, n23, n34, n41, n56, n67, n78, n85, n15, n26, n37, n48); } } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= //function : AddVolume //purpose : Creates LINEAR!!!!!!!!! octahedron //======================================================================= SMDS_MeshVolume* SMESH_MesherHelper::AddVolume(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* n3, const SMDS_MeshNode* n4, const SMDS_MeshNode* n5, const SMDS_MeshNode* n6, const SMDS_MeshNode* n7, const SMDS_MeshNode* n8, const SMDS_MeshNode* n9, const SMDS_MeshNode* n10, const SMDS_MeshNode* n11, const SMDS_MeshNode* n12, const int id, bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshVolume* elem = 0; if(id) elem = meshDS->AddVolumeWithID(n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,id); else elem = meshDS->AddVolume(n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12); if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( elem, myShapeID ); return elem; } //======================================================================= //function : AddPolyhedralVolume //purpose : Creates polyhedron. In quadratic mesh, adds medium nodes //======================================================================= SMDS_MeshVolume* SMESH_MesherHelper::AddPolyhedralVolume (const std::vector& nodes, const std::vector& quantities, const int id, const bool force3d) { SMESHDS_Mesh * meshDS = GetMeshDS(); SMDS_MeshVolume* elem = 0; if(!myCreateQuadratic) { if(id) elem = meshDS->AddPolyhedralVolumeWithID(nodes, quantities, id); else elem = meshDS->AddPolyhedralVolume(nodes, quantities); } else { vector newNodes; vector newQuantities; for ( int iFace=0, iN=0; iFace < quantities.size(); ++iFace) { int nbNodesInFace = quantities[iFace]; newQuantities.push_back(0); for ( int i = 0; i < nbNodesInFace; ++i ) { const SMDS_MeshNode* n1 = nodes[ iN + i ]; newNodes.push_back( n1 ); newQuantities.back()++; const SMDS_MeshNode* n2 = nodes[ iN + ( i+1==nbNodesInFace ? 0 : i+1 )]; // if ( n1->GetPosition()->GetTypeOfPosition() != SMDS_TOP_3DSPACE && // n2->GetPosition()->GetTypeOfPosition() != SMDS_TOP_3DSPACE ) { const SMDS_MeshNode* n12 = GetMediumNode( n1, n2, force3d, TopAbs_SOLID ); newNodes.push_back( n12 ); newQuantities.back()++; } } iN += nbNodesInFace; } if(id) elem = meshDS->AddPolyhedralVolumeWithID( newNodes, newQuantities, id ); else elem = meshDS->AddPolyhedralVolume( newNodes, newQuantities ); } if ( mySetElemOnShape && myShapeID > 0 ) meshDS->SetMeshElementOnShape( elem, myShapeID ); return elem; } namespace { //================================================================================ /*! * \brief Check if a node belongs to any face of sub-mesh */ //================================================================================ bool isNodeInSubMesh( const SMDS_MeshNode* n, const SMESHDS_SubMesh* sm ) { SMDS_ElemIteratorPtr fIt = n->GetInverseElementIterator( SMDSAbs_Face ); while ( fIt->more() ) if ( sm->Contains( fIt->next() )) return true; return false; } } //======================================================================= //function : IsSameElemGeometry //purpose : Returns true if all elements of a sub-mesh are of same shape //======================================================================= bool SMESH_MesherHelper::IsSameElemGeometry(const SMESHDS_SubMesh* smDS, SMDSAbs_GeometryType shape, const bool nullSubMeshRes) { if ( !smDS ) return nullSubMeshRes; SMDS_ElemIteratorPtr elemIt = smDS->GetElements(); while ( elemIt->more() ) { const SMDS_MeshElement* e = elemIt->next(); if ( e->GetGeomType() != shape ) return false; } return true; } //======================================================================= //function : LoadNodeColumns //purpose : Load nodes bound to face into a map of node columns //======================================================================= bool SMESH_MesherHelper::LoadNodeColumns(TParam2ColumnMap & theParam2ColumnMap, const TopoDS_Face& theFace, const TopoDS_Edge& theBaseEdge, SMESHDS_Mesh* theMesh, SMESH_ProxyMesh* theProxyMesh) { return LoadNodeColumns(theParam2ColumnMap, theFace, std::list(1,theBaseEdge), theMesh, theProxyMesh); } //======================================================================= //function : LoadNodeColumns //purpose : Load nodes bound to face into a map of node columns //======================================================================= bool SMESH_MesherHelper::LoadNodeColumns(TParam2ColumnMap & theParam2ColumnMap, const TopoDS_Face& theFace, const std::list& theBaseSide, SMESHDS_Mesh* theMesh, SMESH_ProxyMesh* theProxyMesh) { // get a right sub-mesh of theFace const SMESHDS_SubMesh* faceSubMesh = 0; if ( theProxyMesh ) { faceSubMesh = theProxyMesh->GetSubMesh( theFace ); if ( !faceSubMesh || faceSubMesh->NbElements() == 0 || theProxyMesh->IsTemporary( faceSubMesh->GetElements()->next() )) { // can use a proxy sub-mesh with not temporary elements only faceSubMesh = 0; theProxyMesh = 0; } } if ( !faceSubMesh ) faceSubMesh = theMesh->MeshElements( theFace ); if ( !faceSubMesh || faceSubMesh->NbElements() == 0 ) return false; if ( theParam2ColumnMap.empty() ) { // get data of edges for normalization of params vector< double > length; double fullLen = 0; list::const_iterator edge; { for ( edge = theBaseSide.begin(); edge != theBaseSide.end(); ++edge ) { double len = std::max( 1e-10, SMESH_Algo::EdgeLength( *edge )); fullLen += len; length.push_back( len ); } } // get nodes on theBaseEdge sorted by param on edge and initialize theParam2ColumnMap with them edge = theBaseSide.begin(); for ( int iE = 0; edge != theBaseSide.end(); ++edge, ++iE ) { map< double, const SMDS_MeshNode*> sortedBaseNN; SMESH_Algo::GetSortedNodesOnEdge( theMesh, *edge,/*noMedium=*/true, sortedBaseNN ); map< double, const SMDS_MeshNode*>::iterator u_n; // pb with mesh_Projection_2D_00/A1 fixed by adding expectedSupport arg to GetMediumPos() // so the following solution is commented (hope forever :) // // SMESH_Algo::GetSortedNodesOnEdge( theMesh, *edge,/*noMedium=*/true, sortedBaseNN, // // SMDSAbs_Edge here is needed to be coherent with // // StdMeshers_FaceSide used by Quadrangle to get nodes // // on EDGE; else pb in mesh_Projection_2D_00/A1 where a // // medium node on EDGE is medium in a triangle but not // // in a segment // SMDSAbs_Edge ); // if ( faceSubMesh->GetElements()->next()->IsQuadratic() ) // // filter off nodes medium in faces on theFace (same pb with mesh_Projection_2D_00/A1) // for ( u_n = sortedBaseNN.begin(); u_n != sortedBaseNN.end() ; ) // { // const SMDS_MeshNode* node = u_n->second; // SMDS_ElemIteratorPtr faceIt = node->GetInverseElementIterator( SMDSAbs_Face ); // if ( faceIt->more() && node ) { // const SMDS_MeshElement* face = faceIt->next(); // if ( faceSubMesh->Contains( face ) && face->IsMediumNode( node )) // node = 0; // } // if ( !node ) // sortedBaseNN.erase( u_n++ ); // else // ++u_n; // } if ( sortedBaseNN.empty() ) continue; u_n = sortedBaseNN.begin(); if ( theProxyMesh ) // from sortedBaseNN remove nodes not shared by faces of faceSubMesh { const SMDS_MeshNode* n1 = (++sortedBaseNN.begin())->second; const SMDS_MeshNode* n2 = (++sortedBaseNN.rbegin())->second; bool allNodesAreProxy = ( n1 != theProxyMesh->GetProxyNode( n1 ) && n2 != theProxyMesh->GetProxyNode( n2 )); if ( allNodesAreProxy ) for ( u_n = sortedBaseNN.begin(); u_n != sortedBaseNN.end(); u_n++ ) u_n->second = theProxyMesh->GetProxyNode( u_n->second ); if ( u_n = sortedBaseNN.begin(), !isNodeInSubMesh( u_n->second, faceSubMesh )) { while ( ++u_n != sortedBaseNN.end() && !isNodeInSubMesh( u_n->second, faceSubMesh )); sortedBaseNN.erase( sortedBaseNN.begin(), u_n ); } if ( !sortedBaseNN.empty() ) if ( u_n = --sortedBaseNN.end(), !isNodeInSubMesh( u_n->second, faceSubMesh )) { while ( u_n != sortedBaseNN.begin() && !isNodeInSubMesh( (--u_n)->second, faceSubMesh )); sortedBaseNN.erase( ++u_n, sortedBaseNN.end() ); } if ( sortedBaseNN.empty() ) continue; } double f, l; BRep_Tool::Range( *edge, f, l ); if ( edge->Orientation() == TopAbs_REVERSED ) std::swap( f, l ); const double coeff = 1. / ( l - f ) * length[iE] / fullLen; const double prevPar = theParam2ColumnMap.empty() ? 0 : theParam2ColumnMap.rbegin()->first; for ( u_n = sortedBaseNN.begin(); u_n != sortedBaseNN.end(); u_n++ ) { double par = prevPar + coeff * ( u_n->first - f ); TParam2ColumnMap::iterator u2nn = theParam2ColumnMap.insert( theParam2ColumnMap.end(), make_pair( par, TNodeColumn())); u2nn->second.push_back( u_n->second ); } } if ( theParam2ColumnMap.size() < 2 ) return false; } // nb rows of nodes int prevNbRows = theParam2ColumnMap.begin()->second.size(); // current, at least 1 here int expectedNbRows = faceSubMesh->NbElements() / ( theParam2ColumnMap.size()-1 ); // to be added // fill theParam2ColumnMap column by column by passing from nodes on // theBaseEdge up via mesh faces on theFace TParam2ColumnMap::iterator par_nVec_1, par_nVec_2; par_nVec_2 = theParam2ColumnMap.begin(); par_nVec_1 = par_nVec_2++; TIDSortedElemSet emptySet, avoidSet; for ( ; par_nVec_2 != theParam2ColumnMap.end(); ++par_nVec_1, ++par_nVec_2 ) { vector& nCol1 = par_nVec_1->second; vector& nCol2 = par_nVec_2->second; nCol1.resize( prevNbRows + expectedNbRows ); nCol2.resize( prevNbRows + expectedNbRows ); int i1, i2, foundNbRows = 0; const SMDS_MeshNode *n1 = nCol1[ prevNbRows-1 ]; const SMDS_MeshNode *n2 = nCol2[ prevNbRows-1 ]; // find face sharing node n1 and n2 and belonging to faceSubMesh while ( const SMDS_MeshElement* face = SMESH_MeshAlgos::FindFaceInSet( n1, n2, emptySet, avoidSet, &i1, &i2)) { if ( faceSubMesh->Contains( face )) { int nbNodes = face->NbCornerNodes(); if ( nbNodes != 4 ) return false; if ( foundNbRows + 1 > expectedNbRows ) return false; n1 = face->GetNode( (i2+2) % 4 ); // opposite corner of quadrangle face n2 = face->GetNode( (i1+2) % 4 ); nCol1[ prevNbRows + foundNbRows] = n1; nCol2[ prevNbRows + foundNbRows] = n2; ++foundNbRows; } avoidSet.insert( face ); } if ( foundNbRows != expectedNbRows ) return false; avoidSet.clear(); } return ( theParam2ColumnMap.size() > 1 && theParam2ColumnMap.begin()->second.size() == prevNbRows + expectedNbRows ); } namespace { //================================================================================ /*! * \brief Return true if a node is at a corner of a 2D structured mesh of FACE */ //================================================================================ bool isCornerOfStructure( const SMDS_MeshNode* n, const SMESHDS_SubMesh* faceSM, SMESH_MesherHelper& faceAnalyser ) { int nbFacesInSM = 0; if ( n ) { SMDS_ElemIteratorPtr fIt = n->GetInverseElementIterator( SMDSAbs_Face ); while ( fIt->more() ) nbFacesInSM += faceSM->Contains( fIt->next() ); } if ( nbFacesInSM == 1 ) return true; if ( nbFacesInSM == 2 && n->GetPosition()->GetTypeOfPosition() == SMDS_TOP_VERTEX ) { return faceAnalyser.IsRealSeam( n->getshapeId() ); } return false; } } //======================================================================= //function : IsStructured //purpose : Return true if 2D mesh on FACE is a structured rectangle //======================================================================= bool SMESH_MesherHelper::IsStructured( SMESH_subMesh* faceSM ) { SMESHDS_SubMesh* fSM = faceSM->GetSubMeshDS(); if ( !fSM || fSM->NbElements() == 0 ) return false; list< TopoDS_Edge > edges; list< int > nbEdgesInWires; int nbWires = SMESH_Block::GetOrderedEdges( TopoDS::Face( faceSM->GetSubShape() ), edges, nbEdgesInWires ); if ( nbWires != 1 /*|| nbEdgesInWires.front() != 4*/ ) // allow composite sides return false; // algo: find corners of a structure and then analyze nb of faces and // length of structure sides SMESHDS_Mesh* meshDS = faceSM->GetFather()->GetMeshDS(); SMESH_MesherHelper faceAnalyser( *faceSM->GetFather() ); faceAnalyser.SetSubShape( faceSM->GetSubShape() ); // rotate edges to get the first node being at corner // (in principle it's not necessary but so far none SALOME algo can make // such a structured mesh that all corner nodes are not on VERTEXes) bool isCorner = false; int nbRemainEdges = nbEdgesInWires.front(); do { TopoDS_Vertex V = IthVertex( 0, edges.front() ); isCorner = isCornerOfStructure( SMESH_Algo::VertexNode( V, meshDS ), fSM, faceAnalyser); if ( !isCorner ) { edges.splice( edges.end(), edges, edges.begin() ); --nbRemainEdges; } } while ( !isCorner && nbRemainEdges > 0 ); if ( !isCorner ) return false; // get all nodes from EDGEs list< const SMDS_MeshNode* > nodes; list< TopoDS_Edge >::iterator edge = edges.begin(); for ( ; edge != edges.end(); ++edge ) { map< double, const SMDS_MeshNode* > u2Nodes; if ( !SMESH_Algo::GetSortedNodesOnEdge( meshDS, *edge, /*skipMedium=*/true, u2Nodes )) return false; list< const SMDS_MeshNode* > edgeNodes; map< double, const SMDS_MeshNode* >::iterator u2n = u2Nodes.begin(); for ( ; u2n != u2Nodes.end(); ++u2n ) edgeNodes.push_back( u2n->second ); if ( edge->Orientation() == TopAbs_REVERSED ) edgeNodes.reverse(); if ( !nodes.empty() && nodes.back() == edgeNodes.front() ) edgeNodes.pop_front(); nodes.splice( nodes.end(), edgeNodes, edgeNodes.begin(), edgeNodes.end() ); } // get length of structured sides vector nbEdgesInSide; int nbEdges = 0; list< const SMDS_MeshNode* >::iterator n = ++nodes.begin(); for ( ; n != nodes.end(); ++n ) { ++nbEdges; if ( isCornerOfStructure( *n, fSM, faceAnalyser )) { nbEdgesInSide.push_back( nbEdges ); nbEdges = 0; } } // checks if ( nbEdgesInSide.size() != 4 ) return false; if ( nbEdgesInSide[0] != nbEdgesInSide[2] ) return false; if ( nbEdgesInSide[1] != nbEdgesInSide[3] ) return false; if ( nbEdgesInSide[0] * nbEdgesInSide[1] != fSM->NbElements() ) return false; return true; } //======================================================================= //function : IsDistorted2D //purpose : Return true if 2D mesh on FACE is ditorted //======================================================================= bool SMESH_MesherHelper::IsDistorted2D( SMESH_subMesh* faceSM, bool checkUV) { if ( !faceSM || faceSM->GetSubShape().ShapeType() != TopAbs_FACE ) return false; bool haveBadFaces = false; SMESH_MesherHelper helper( *faceSM->GetFather() ); helper.SetSubShape( faceSM->GetSubShape() ); const TopoDS_Face& F = TopoDS::Face( faceSM->GetSubShape() ); SMESHDS_SubMesh* smDS = helper.GetMeshDS()->MeshElements( F ); if ( !smDS || smDS->NbElements() == 0 ) return false; SMDS_ElemIteratorPtr faceIt = smDS->GetElements(); double prevArea = 0; vector< const SMDS_MeshNode* > nodes; vector< gp_XY > uv; bool* toCheckUV = checkUV ? & checkUV : 0; while ( faceIt->more() && !haveBadFaces ) { const SMDS_MeshElement* face = faceIt->next(); // get nodes nodes.resize( face->NbCornerNodes() ); SMDS_MeshElement::iterator n = face->begin_nodes(); for ( size_t i = 0; i < nodes.size(); ++n, ++i ) nodes[ i ] = *n; // avoid elems on degenarate shapes as UV on them can be wrong if ( helper.HasDegeneratedEdges() ) { bool isOnDegen = false; for ( size_t i = 0; ( i < nodes.size() && !isOnDegen ); ++i ) isOnDegen = helper.IsDegenShape( nodes[ i ]->getshapeId() ); if ( isOnDegen ) continue; } // prepare to getting UVs const SMDS_MeshNode* inFaceNode = 0; if ( helper.HasSeam() ) { for ( size_t i = 0; ( i < nodes.size() && !inFaceNode ); ++i ) if ( !helper.IsSeamShape( nodes[ i ]->getshapeId() )) inFaceNode = nodes[ i ]; if ( !inFaceNode ) continue; } // get UVs uv.resize( nodes.size() ); for ( size_t i = 0; i < nodes.size(); ++i ) uv[ i ] = helper.GetNodeUV( F, nodes[ i ], inFaceNode, toCheckUV ); // compare orientation of triangles double faceArea = 0; for ( int iT = 0, nbT = nodes.size()-2; iT < nbT; ++iT ) { gp_XY v1 = uv[ iT+1 ] - uv[ 0 ]; gp_XY v2 = uv[ iT+2 ] - uv[ 0 ]; faceArea += v2 ^ v1; } haveBadFaces = ( faceArea * prevArea < 0 ); prevArea = faceArea; } return haveBadFaces; } //================================================================================ /*! * \brief Find out elements orientation on a geometrical face * \param theFace - The face correctly oriented in the shape being meshed * \retval bool - true if the face normal and the normal of first element * in the correspoding submesh point in different directions */ //================================================================================ bool SMESH_MesherHelper::IsReversedSubMesh (const TopoDS_Face& theFace) { if ( theFace.IsNull() ) return false; // find out orientation of a meshed face int faceID = GetMeshDS()->ShapeToIndex( theFace ); TopoDS_Shape aMeshedFace = GetMeshDS()->IndexToShape( faceID ); bool isReversed = ( theFace.Orientation() != aMeshedFace.Orientation() ); const SMESHDS_SubMesh * aSubMeshDSFace = GetMeshDS()->MeshElements( faceID ); if ( !aSubMeshDSFace ) return isReversed; // find an element with a good normal gp_Vec Ne; bool normalOK = false; gp_XY uv; SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements(); while ( !normalOK && iteratorElem->more() ) // loop on elements on theFace { const SMDS_MeshElement* elem = iteratorElem->next(); if ( elem && elem->NbCornerNodes() > 2 ) { SMESH_TNodeXYZ nPnt[3]; SMDS_ElemIteratorPtr nodesIt = elem->nodesIterator(); int iNodeOnFace = 0, iPosDim = SMDS_TOP_VERTEX; for ( int iN = 0; nodesIt->more() && iN < 3; ++iN) // loop on nodes { nPnt[ iN ] = nodesIt->next(); if ( nPnt[ iN ]._node->GetPosition()->GetTypeOfPosition() > iPosDim ) { iNodeOnFace = iN; iPosDim = nPnt[ iN ]._node->GetPosition()->GetTypeOfPosition(); } } // compute normal gp_Vec v01( nPnt[0], nPnt[1] ), v02( nPnt[0], nPnt[2] ); if ( v01.SquareMagnitude() > RealSmall() && v02.SquareMagnitude() > RealSmall() ) { Ne = v01 ^ v02; if (( normalOK = ( Ne.SquareMagnitude() > RealSmall() ))) uv = GetNodeUV( theFace, nPnt[iNodeOnFace]._node, 0, &normalOK ); } } } if ( !normalOK ) return isReversed; // face normal at node position TopLoc_Location loc; Handle(Geom_Surface) surf = BRep_Tool::Surface( theFace, loc ); // if ( surf.IsNull() || surf->Continuity() < GeomAbs_C1 ) // some surfaces not detected as GeomAbs_C1 are nevertheless correct for meshing if ( surf.IsNull() || surf->Continuity() < GeomAbs_C0 ) { if (!surf.IsNull()) MESSAGE("surf->Continuity() < GeomAbs_C1 " << (surf->Continuity() < GeomAbs_C1)); return isReversed; } gp_Vec d1u, d1v; gp_Pnt p; surf->D1( uv.X(), uv.Y(), p, d1u, d1v ); gp_Vec Nf = (d1u ^ d1v).Transformed( loc ); if ( theFace.Orientation() == TopAbs_REVERSED ) Nf.Reverse(); return Ne * Nf < 0.; } //======================================================================= //function : Count //purpose : Count nb of sub-shapes //======================================================================= int SMESH_MesherHelper::Count(const TopoDS_Shape& shape, const TopAbs_ShapeEnum type, const bool ignoreSame) { if ( ignoreSame ) { TopTools_IndexedMapOfShape map; TopExp::MapShapes( shape, type, map ); return map.Extent(); } else { int nb = 0; for ( TopExp_Explorer exp( shape, type ); exp.More(); exp.Next() ) ++nb; return nb; } } //======================================================================= //function : NbAncestors //purpose : Return number of unique ancestors of the shape //======================================================================= int SMESH_MesherHelper::NbAncestors(const TopoDS_Shape& shape, const SMESH_Mesh& mesh, TopAbs_ShapeEnum ancestorType/*=TopAbs_SHAPE*/) { TopTools_MapOfShape ancestors; TopTools_ListIteratorOfListOfShape ansIt( mesh.GetAncestors(shape) ); for ( ; ansIt.More(); ansIt.Next() ) { if ( ancestorType == TopAbs_SHAPE || ansIt.Value().ShapeType() == ancestorType ) ancestors.Add( ansIt.Value() ); } return ancestors.Extent(); } //======================================================================= //function : GetSubShapeOri //purpose : Return orientation of sub-shape in the main shape //======================================================================= TopAbs_Orientation SMESH_MesherHelper::GetSubShapeOri(const TopoDS_Shape& shape, const TopoDS_Shape& subShape) { TopAbs_Orientation ori = TopAbs_Orientation(-1); if ( !shape.IsNull() && !subShape.IsNull() ) { TopExp_Explorer e( shape, subShape.ShapeType() ); if ( shape.Orientation() >= TopAbs_INTERNAL ) // TopAbs_INTERNAL or TopAbs_EXTERNAL e.Init( shape.Oriented(TopAbs_FORWARD), subShape.ShapeType() ); for ( ; e.More(); e.Next()) if ( subShape.IsSame( e.Current() )) break; if ( e.More() ) ori = e.Current().Orientation(); } return ori; } //======================================================================= //function : IsSubShape //purpose : //======================================================================= bool SMESH_MesherHelper::IsSubShape( const TopoDS_Shape& shape, const TopoDS_Shape& mainShape ) { if ( !shape.IsNull() && !mainShape.IsNull() ) { for ( TopExp_Explorer exp( mainShape, shape.ShapeType()); exp.More(); exp.Next() ) if ( shape.IsSame( exp.Current() )) return true; } SCRUTE((shape.IsNull())); SCRUTE((mainShape.IsNull())); return false; } //======================================================================= //function : IsSubShape //purpose : //======================================================================= bool SMESH_MesherHelper::IsSubShape( const TopoDS_Shape& shape, SMESH_Mesh* aMesh ) { if ( shape.IsNull() || !aMesh ) return false; return aMesh->GetMeshDS()->ShapeToIndex( shape ) || // PAL16202 (shape.ShapeType() == TopAbs_COMPOUND && aMesh->GetMeshDS()->IsGroupOfSubShapes( shape )); } //======================================================================= //function : IsBlock //purpose : //======================================================================= bool SMESH_MesherHelper::IsBlock( const TopoDS_Shape& shape ) { if ( shape.IsNull() ) return false; TopoDS_Shell shell; TopExp_Explorer exp( shape, TopAbs_SHELL ); if ( !exp.More() ) return false; shell = TopoDS::Shell( exp.Current() ); if ( exp.Next(), exp.More() ) return false; TopoDS_Vertex v; TopTools_IndexedMapOfOrientedShape map; return SMESH_Block::FindBlockShapes( shell, v, v, map ); } //================================================================================ /*! * \brief Return maximal tolerance of shape */ //================================================================================ double SMESH_MesherHelper::MaxTolerance( const TopoDS_Shape& shape ) { double tol = Precision::Confusion(); TopExp_Explorer exp; for ( exp.Init( shape, TopAbs_FACE ); exp.More(); exp.Next() ) tol = Max( tol, BRep_Tool::Tolerance( TopoDS::Face( exp.Current()))); for ( exp.Init( shape, TopAbs_EDGE ); exp.More(); exp.Next() ) tol = Max( tol, BRep_Tool::Tolerance( TopoDS::Edge( exp.Current()))); for ( exp.Init( shape, TopAbs_VERTEX ); exp.More(); exp.Next() ) tol = Max( tol, BRep_Tool::Tolerance( TopoDS::Vertex( exp.Current()))); return tol; } //================================================================================ /*! * \brief Return MaxTolerance( face ), probably cached */ //================================================================================ double SMESH_MesherHelper::getFaceMaxTol( const TopoDS_Shape& face ) const { int faceID = GetMeshDS()->ShapeToIndex( face ); SMESH_MesherHelper* me = const_cast< SMESH_MesherHelper* >( this ); double & tol = me->myFaceMaxTol.insert( make_pair( faceID, -1. )).first->second; if ( tol < 0 ) tol = MaxTolerance( face ); return tol; } //================================================================================ /*! * \brief Return an angle between two EDGEs sharing a common VERTEX with reference * of the FACE normal * \return double - the angle (between -Pi and Pi), negative if the angle is concave, * 1e100 in case of failure * \waring Care about order of the EDGEs and their orientation to be as they are * within the FACE! Don't pass degenerated EDGEs neither! */ //================================================================================ double SMESH_MesherHelper::GetAngle( const TopoDS_Edge & theE1, const TopoDS_Edge & theE2, const TopoDS_Face & theFace, const TopoDS_Vertex & theCommonV, gp_Vec* theFaceNormal) { double angle = 1e100; try { double f,l; Handle(Geom_Curve) c1 = BRep_Tool::Curve( theE1, f,l ); Handle(Geom_Curve) c2 = BRep_Tool::Curve( theE2, f,l ); Handle(Geom2d_Curve) c2d1 = BRep_Tool::CurveOnSurface( theE1, theFace, f,l ); Handle(Geom_Surface) surf = BRep_Tool::Surface( theFace ); double p1 = BRep_Tool::Parameter( theCommonV, theE1 ); double p2 = BRep_Tool::Parameter( theCommonV, theE2 ); if ( c1.IsNull() || c2.IsNull() ) return angle; gp_XY uv = c2d1->Value( p1 ).XY(); gp_Vec du, dv; gp_Pnt p; surf->D1( uv.X(), uv.Y(), p, du, dv ); gp_Vec vec1, vec2, vecRef = du ^ dv; int nbLoops = 0; double p1tmp = p1; while ( vecRef.SquareMagnitude() < 1e-25 ) { double dp = ( l - f ) / 1000.; p1tmp += dp * (( Abs( p1 - f ) > Abs( p1 - l )) ? -1. : +1.); uv = c2d1->Value( p1tmp ).XY(); surf->D1( uv.X(), uv.Y(), p, du, dv ); vecRef = du ^ dv; if ( ++nbLoops > 10 ) { #ifdef _DEBUG_ cout << "SMESH_MesherHelper::GetAngle(): Captured in a sigularity" << endl; #endif return angle; } } if ( theFace.Orientation() == TopAbs_REVERSED ) vecRef.Reverse(); if ( theFaceNormal ) *theFaceNormal = vecRef; c1->D1( p1, p, vec1 ); c2->D1( p2, p, vec2 ); // TopoDS_Face F = theFace; // if ( F.Orientation() == TopAbs_INTERNAL ) // F.Orientation( TopAbs_FORWARD ); if ( theE1.Orientation() /*GetSubShapeOri( F, theE1 )*/ == TopAbs_REVERSED ) vec1.Reverse(); if ( theE2.Orientation() /*GetSubShapeOri( F, theE2 )*/ == TopAbs_REVERSED ) vec2.Reverse(); angle = vec1.AngleWithRef( vec2, vecRef ); if ( Abs ( angle ) >= 0.99 * M_PI ) { BRep_Tool::Range( theE1, f, l ); p1 += 1e-7 * ( p1-f < l-p1 ? +1. : -1. ); c1->D1( p1, p, vec1 ); if ( theE1.Orientation() == TopAbs_REVERSED ) vec1.Reverse(); BRep_Tool::Range( theE2, f, l ); p2 += 1e-7 * ( p2-f < l-p2 ? +1. : -1. ); c2->D1( p2, p, vec2 ); if ( theE2.Orientation() == TopAbs_REVERSED ) vec2.Reverse(); angle = vec1.AngleWithRef( vec2, vecRef ); } } catch (...) { } return angle; } //================================================================================ /*! * \brief Check if the first and last vertices of an edge are the same * \param anEdge - the edge to check * \retval bool - true if same */ //================================================================================ bool SMESH_MesherHelper::IsClosedEdge( const TopoDS_Edge& anEdge ) { if ( anEdge.Orientation() >= TopAbs_INTERNAL ) return IsClosedEdge( TopoDS::Edge( anEdge.Oriented( TopAbs_FORWARD ))); return TopExp::FirstVertex( anEdge ).IsSame( TopExp::LastVertex( anEdge )); } //================================================================================ /*! * \brief Wrapper over TopExp::FirstVertex() and TopExp::LastVertex() fixing them * in the case of INTERNAL edge */ //================================================================================ TopoDS_Vertex SMESH_MesherHelper::IthVertex( const bool is2nd, TopoDS_Edge anEdge, const bool CumOri ) { if ( anEdge.Orientation() >= TopAbs_INTERNAL ) anEdge.Orientation( TopAbs_FORWARD ); const TopAbs_Orientation tgtOri = is2nd ? TopAbs_REVERSED : TopAbs_FORWARD; TopoDS_Iterator vIt( anEdge, CumOri ); while ( vIt.More() && vIt.Value().Orientation() != tgtOri ) vIt.Next(); return ( vIt.More() ? TopoDS::Vertex(vIt.Value()) : TopoDS_Vertex() ); } //================================================================================ /*! * \brief Return type of shape contained in a group * \param group - a shape of type TopAbs_COMPOUND * \param avoidCompound - not to return TopAbs_COMPOUND */ //================================================================================ TopAbs_ShapeEnum SMESH_MesherHelper::GetGroupType(const TopoDS_Shape& group, const bool avoidCompound) { if ( !group.IsNull() ) { if ( group.ShapeType() != TopAbs_COMPOUND ) return group.ShapeType(); // iterate on a compound TopoDS_Iterator it( group ); if ( it.More() ) return avoidCompound ? GetGroupType( it.Value() ) : it.Value().ShapeType(); } return TopAbs_SHAPE; } //======================================================================= //function : IsQuadraticMesh //purpose : Check mesh without geometry for: if all elements on this shape are quadratic, // quadratic elements will be created. // Used then generated 3D mesh without geometry. //======================================================================= SMESH_MesherHelper:: MType SMESH_MesherHelper::IsQuadraticMesh() { int NbAllEdgsAndFaces=0; int NbQuadFacesAndEdgs=0; int NbFacesAndEdges=0; //All faces and edges NbAllEdgsAndFaces = myMesh->NbEdges() + myMesh->NbFaces(); if ( NbAllEdgsAndFaces == 0 ) return SMESH_MesherHelper::LINEAR; //Quadratic faces and edges NbQuadFacesAndEdgs = myMesh->NbEdges(ORDER_QUADRATIC) + myMesh->NbFaces(ORDER_QUADRATIC); //Linear faces and edges NbFacesAndEdges = myMesh->NbEdges(ORDER_LINEAR) + myMesh->NbFaces(ORDER_LINEAR); if (NbAllEdgsAndFaces == NbQuadFacesAndEdgs) { //Quadratic mesh return SMESH_MesherHelper::QUADRATIC; } else if (NbAllEdgsAndFaces == NbFacesAndEdges) { //Linear mesh return SMESH_MesherHelper::LINEAR; } else //Mesh with both type of elements return SMESH_MesherHelper::COMP; } //======================================================================= //function : GetOtherParam //purpose : Return an alternative parameter for a node on seam //======================================================================= double SMESH_MesherHelper::GetOtherParam(const double param) const { int i = myParIndex & U_periodic ? 0 : 1; return fabs(param-myPar1[i]) < fabs(param-myPar2[i]) ? myPar2[i] : myPar1[i]; } namespace { //======================================================================= /*! * \brief Iterator on ancestors of the given type */ //======================================================================= struct TAncestorsIterator : public SMDS_Iterator { TopTools_ListIteratorOfListOfShape _ancIter; TopAbs_ShapeEnum _type; TopTools_MapOfShape _encountered; TAncestorsIterator( const TopTools_ListOfShape& ancestors, TopAbs_ShapeEnum type) : _ancIter( ancestors ), _type( type ) { if ( _ancIter.More() ) { if ( _ancIter.Value().ShapeType() != _type ) next(); else _encountered.Add( _ancIter.Value() ); } } virtual bool more() { return _ancIter.More(); } virtual const TopoDS_Shape* next() { const TopoDS_Shape* s = _ancIter.More() ? & _ancIter.Value() : 0; if ( _ancIter.More() ) for ( _ancIter.Next(); _ancIter.More(); _ancIter.Next()) if ( _ancIter.Value().ShapeType() == _type && _encountered.Add( _ancIter.Value() )) break; return s; } }; } // namespace //======================================================================= /*! * \brief Return iterator on ancestors of the given type */ //======================================================================= PShapeIteratorPtr SMESH_MesherHelper::GetAncestors(const TopoDS_Shape& shape, const SMESH_Mesh& mesh, TopAbs_ShapeEnum ancestorType) { return PShapeIteratorPtr( new TAncestorsIterator( mesh.GetAncestors(shape), ancestorType)); } //======================================================================= //function : GetCommonAncestor //purpose : Find a common ancestors of two shapes of the given type //======================================================================= TopoDS_Shape SMESH_MesherHelper::GetCommonAncestor(const TopoDS_Shape& shape1, const TopoDS_Shape& shape2, const SMESH_Mesh& mesh, TopAbs_ShapeEnum ancestorType) { TopoDS_Shape commonAnc; if ( !shape1.IsNull() && !shape2.IsNull() ) { PShapeIteratorPtr ancIt = GetAncestors( shape1, mesh, ancestorType ); while ( const TopoDS_Shape* anc = ancIt->next() ) if ( IsSubShape( shape2, *anc )) { commonAnc = *anc; break; } } return commonAnc; } //#include //======================================================================= namespace { // Structures used by FixQuadraticElements() //======================================================================= #define __DMP__(txt) \ // cout << txt #define MSG(txt) __DMP__(txt< < 1/15 * return middleNodeMove2 < 1/15./15. * linkLen2; } struct QFace; // --------------------------------------- /*! * \brief Quadratic link knowing its faces */ struct QLink: public SMESH_TLink { const SMDS_MeshNode* _mediumNode; mutable vector _faces; mutable gp_Vec _nodeMove; mutable int _nbMoves; QLink(const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshNode* nm): SMESH_TLink( n1,n2 ), _mediumNode(nm), _nodeMove(0,0,0), _nbMoves(0) { _faces.reserve(4); //if ( MediumPos() != SMDS_TOP_3DSPACE ) _nodeMove = MediumPnt() - MiddlePnt(); } void SetContinuesFaces() const; const QFace* GetContinuesFace( const QFace* face ) const; bool OnBoundary() const; gp_XYZ MiddlePnt() const { return ( XYZ( node1() ) + XYZ( node2() )) / 2.; } gp_XYZ MediumPnt() const { return XYZ( _mediumNode ); } SMDS_TypeOfPosition MediumPos() const { return _mediumNode->GetPosition()->GetTypeOfPosition(); } SMDS_TypeOfPosition EndPos(bool isSecond) const { return (isSecond ? node2() : node1())->GetPosition()->GetTypeOfPosition(); } const SMDS_MeshNode* EndPosNode(SMDS_TypeOfPosition pos) const { return EndPos(0) == pos ? node1() : EndPos(1) == pos ? node2() : 0; } void Move(const gp_Vec& move, bool sum=false) const { _nodeMove += move; _nbMoves += sum ? (_nbMoves==0) : 1; } gp_XYZ Move() const { return _nodeMove.XYZ() / _nbMoves; } bool IsMoved() const { return (_nbMoves > 0 /*&& !IsStraight()*/); } bool IsStraight() const { return isStraightLink( (XYZ(node1())-XYZ(node2())).SquareModulus(), _nodeMove.SquareMagnitude()); } bool operator<(const QLink& other) const { return (node1()->GetID() == other.node1()->GetID() ? node2()->GetID() < other.node2()->GetID() : node1()->GetID() < other.node1()->GetID()); } // struct PtrComparator { // bool operator() (const QLink* l1, const QLink* l2 ) const { return *l1 < *l2; } // }; }; // --------------------------------------------------------- /*! * \brief Link in the chain of links; it connects two faces */ struct TChainLink { const QLink* _qlink; mutable const QFace* _qfaces[2]; TChainLink(const QLink* qlink=0):_qlink(qlink) { _qfaces[0] = _qfaces[1] = 0; } void SetFace(const QFace* face) const { int iF = _qfaces[0] ? 1 : 0; _qfaces[iF]=face; } bool IsBoundary() const { return !_qfaces[1]; } void RemoveFace( const QFace* face ) const { _qfaces[(face == _qfaces[1])] = 0; if (!_qfaces[0]) std::swap(_qfaces[0],_qfaces[1]); } const QFace* NextFace( const QFace* f ) const { return _qfaces[0]==f ? _qfaces[1] : _qfaces[0]; } const SMDS_MeshNode* NextNode( const SMDS_MeshNode* n ) const { return n == _qlink->node1() ? _qlink->node2() : _qlink->node1(); } bool operator<(const TChainLink& other) const { return *_qlink < *other._qlink; } operator bool() const { return (_qlink); } const QLink* operator->() const { return _qlink; } gp_Vec Normal() const; bool IsStraight() const; }; // -------------------------------------------------------------------- typedef list< TChainLink > TChain; typedef set < TChainLink > TLinkSet; typedef TLinkSet::const_iterator TLinkInSet; const int theFirstStep = 5; enum { ERR_OK, ERR_TRI, ERR_PRISM, ERR_UNKNOWN }; // errors of QFace::GetLinkChain() // -------------------------------------------------------------------- /*! * \brief Quadratic face shared by two volumes and bound by QLinks */ struct QFace: public TIDSortedNodeSet { mutable const SMDS_MeshElement* _volumes[2]; mutable vector< const QLink* > _sides; mutable bool _sideIsAdded[4]; // added in chain of links gp_Vec _normal; #ifdef _DEBUG_ mutable const SMDS_MeshElement* _face; #endif QFace( const vector< const QLink*>& links, const SMDS_MeshElement* face=0 ); void SetVolume(const SMDS_MeshElement* v) const { _volumes[ _volumes[0] ? 1 : 0 ] = v; } int NbVolumes() const { return !_volumes[0] ? 0 : !_volumes[1] ? 1 : 2; } void AddSelfToLinks() const { for ( int i = 0; i < _sides.size(); ++i ) _sides[i]->_faces.push_back( this ); } int LinkIndex( const QLink* side ) const { for (int i=0; i<_sides.size(); ++i ) if ( _sides[i] == side ) return i; return -1; } bool GetLinkChain( int iSide, TChain& chain, SMDS_TypeOfPosition pos, int& err) const; bool GetLinkChain( TChainLink& link, TChain& chain, SMDS_TypeOfPosition pos, int& err) const { int i = LinkIndex( link._qlink ); if ( i < 0 ) return true; _sideIsAdded[i] = true; link.SetFace( this ); // continue from opposite link return GetLinkChain( (i+2)%_sides.size(), chain, pos, err ); } bool IsBoundary() const { return !_volumes[1]; } bool Contains( const SMDS_MeshNode* node ) const { return count(node); } bool IsSpoiled(const QLink* bentLink ) const; TLinkInSet GetBoundaryLink( const TLinkSet& links, const TChainLink& avoidLink, TLinkInSet * notBoundaryLink = 0, const SMDS_MeshNode* nodeToContain = 0, bool * isAdjacentUsed = 0, int nbRecursionsLeft = -1) const; TLinkInSet GetLinkByNode( const TLinkSet& links, const TChainLink& avoidLink, const SMDS_MeshNode* nodeToContain) const; const SMDS_MeshNode* GetNodeInFace() const { for ( int iL = 0; iL < _sides.size(); ++iL ) if ( _sides[iL]->MediumPos() == SMDS_TOP_FACE ) return _sides[iL]->_mediumNode; return 0; } gp_Vec LinkNorm(const int i, SMESH_MesherHelper* theFaceHelper=0) const; double MoveByBoundary( const TChainLink& theLink, const gp_Vec& theRefVec, const TLinkSet& theLinks, SMESH_MesherHelper* theFaceHelper=0, const double thePrevLen=0, const int theStep=theFirstStep, gp_Vec* theLinkNorm=0, double theSign=1.0) const; }; //================================================================================ /*! * \brief Dump QLink and QFace */ ostream& operator << (ostream& out, const QLink& l) { out <<"QLink nodes: " << l.node1()->GetID() << " - " << l._mediumNode->GetID() << " - " << l.node2()->GetID() << endl; return out; } ostream& operator << (ostream& out, const QFace& f) { out <<"QFace nodes: "/*<< &f << " "*/; for ( TIDSortedNodeSet::const_iterator n = f.begin(); n != f.end(); ++n ) out << (*n)->GetID() << " "; out << " \tvolumes: " << (f._volumes[0] ? f._volumes[0]->GetID() : 0) << " " << (f._volumes[1] ? f._volumes[1]->GetID() : 0); out << " \tNormal: "<< f._normal.X() <<", "<& links, const SMDS_MeshElement* face ) { _volumes[0] = _volumes[1] = 0; _sides = links; _sideIsAdded[0]=_sideIsAdded[1]=_sideIsAdded[2]=_sideIsAdded[3]=false; _normal.SetCoord(0,0,0); for ( int i = 1; i < _sides.size(); ++i ) { const QLink *l1 = _sides[i-1], *l2 = _sides[i]; insert( l1->node1() ); insert( l1->node2() ); // compute normal gp_Vec v1( XYZ( l1->node2()), XYZ( l1->node1())); gp_Vec v2( XYZ( l2->node1()), XYZ( l2->node2())); if ( l1->node1() != l2->node1() && l1->node2() != l2->node2() ) v1.Reverse(); _normal += v1 ^ v2; } double normSqSize = _normal.SquareMagnitude(); if ( normSqSize > numeric_limits::min() ) _normal /= sqrt( normSqSize ); else _normal.SetCoord(1e-33,0,0); #ifdef _DEBUG_ _face = face; #endif } //================================================================================ /*! * \brief Make up a chain of links * \param iSide - link to add first * \param chain - chain to fill in * \param pos - postion of medium nodes the links should have * \param error - out, specifies what is wrong * \retval bool - false if valid chain can't be built; "valid" means that links * of the chain belongs to rectangles bounding hexahedrons */ //================================================================================ bool QFace::GetLinkChain( int iSide, TChain& chain, SMDS_TypeOfPosition pos, int& error) const { if ( iSide >= _sides.size() ) // wrong argument iSide return false; if ( _sideIsAdded[ iSide ]) // already in chain return true; if ( _sides.size() != 4 ) { // triangle - visit all my continous faces MSGBEG( *this ); TLinkSet links; list< const QFace* > faces( 1, this ); while ( !faces.empty() ) { const QFace* face = faces.front(); for ( int i = 0; i < face->_sides.size(); ++i ) { if ( !face->_sideIsAdded[i] && face->_sides[i] ) { face->_sideIsAdded[i] = true; // find a face side in the chain TLinkInSet chLink = links.insert( TChainLink(face->_sides[i])).first; // TChain::iterator chLink = chain.begin(); // for ( ; chLink != chain.end(); ++chLink ) // if ( chLink->_qlink == face->_sides[i] ) // break; // if ( chLink == chain.end() ) // chLink = chain.insert( chain.begin(), TChainLink(face->_sides[i])); // add a face to a chained link and put a continues face in the queue chLink->SetFace( face ); if ( face->_sides[i]->MediumPos() == pos ) if ( const QFace* contFace = face->_sides[i]->GetContinuesFace( face )) if ( contFace->_sides.size() == 3 ) faces.push_back( contFace ); } } faces.pop_front(); } if ( error < ERR_TRI ) error = ERR_TRI; chain.insert( chain.end(), links.begin(),links.end() ); return false; } _sideIsAdded[iSide] = true; // not to add this link to chain again const QLink* link = _sides[iSide]; if ( !link) return true; // add link into chain TChain::iterator chLink = chain.insert( chain.begin(), TChainLink(link)); chLink->SetFace( this ); MSGBEG( *this ); // propagate from a quadrangle to neighbour faces if ( link->MediumPos() >= pos ) { int nbLinkFaces = link->_faces.size(); if ( nbLinkFaces == 4 || (/*nbLinkFaces < 4 && */link->OnBoundary())) { // hexahedral mesh or boundary quadrangles - goto a continous face if ( const QFace* f = link->GetContinuesFace( this )) if ( f->_sides.size() == 4 ) return f->GetLinkChain( *chLink, chain, pos, error ); } else { TChainLink chLink(link); // side face of prismatic mesh - visit all faces of iSide for ( int i = 0; i < nbLinkFaces; ++i ) if ( link->_faces[i] ) link->_faces[i]->GetLinkChain( chLink, chain, pos, error ); if ( error < ERR_PRISM ) error = ERR_PRISM; return false; } } return true; } //================================================================================ /*! * \brief Return a boundary link of the triangle face * \param links - set of all links * \param avoidLink - link not to return * \param notBoundaryLink - out, neither the returned link nor avoidLink * \param nodeToContain - node the returned link must contain; if provided, search * also performed on adjacent faces * \param isAdjacentUsed - returns true if link is found in adjacent faces * \param nbRecursionsLeft - to limit recursion */ //================================================================================ TLinkInSet QFace::GetBoundaryLink( const TLinkSet& links, const TChainLink& avoidLink, TLinkInSet * notBoundaryLink, const SMDS_MeshNode* nodeToContain, bool * isAdjacentUsed, int nbRecursionsLeft) const { TLinkInSet linksEnd = links.end(), boundaryLink = linksEnd; typedef list< pair< const QFace*, TLinkInSet > > TFaceLinkList; TFaceLinkList adjacentFaces; for ( int iL = 0; iL < _sides.size(); ++iL ) { if ( avoidLink._qlink == _sides[iL] ) continue; TLinkInSet link = links.find( _sides[iL] ); if ( link == linksEnd ) continue; if ( (*link)->MediumPos() > SMDS_TOP_FACE ) continue; // We work on faces here, don't go inside a solid // check link if ( link->IsBoundary() ) { if ( !nodeToContain || (*link)->node1() == nodeToContain || (*link)->node2() == nodeToContain ) { boundaryLink = link; if ( !notBoundaryLink ) break; } } else if ( notBoundaryLink ) { *notBoundaryLink = link; if ( boundaryLink != linksEnd ) break; } if ( boundaryLink == linksEnd && nodeToContain ) // collect adjacent faces if ( const QFace* adj = link->NextFace( this )) if ( adj->Contains( nodeToContain )) adjacentFaces.push_back( make_pair( adj, link )); } if ( isAdjacentUsed ) *isAdjacentUsed = false; if ( boundaryLink == linksEnd && nodeToContain && nbRecursionsLeft) // check adjacent faces { if ( nbRecursionsLeft < 0 ) nbRecursionsLeft = nodeToContain->NbInverseElements(); TFaceLinkList::iterator adj = adjacentFaces.begin(); for ( ; boundaryLink == linksEnd && adj != adjacentFaces.end(); ++adj ) boundaryLink = adj->first->GetBoundaryLink( links, *(adj->second), 0, nodeToContain, isAdjacentUsed, nbRecursionsLeft-1); if ( isAdjacentUsed ) *isAdjacentUsed = true; } return boundaryLink; } //================================================================================ /*! * \brief Return a link ending at the given node but not avoidLink */ //================================================================================ TLinkInSet QFace::GetLinkByNode( const TLinkSet& links, const TChainLink& avoidLink, const SMDS_MeshNode* nodeToContain) const { for ( int i = 0; i < _sides.size(); ++i ) if ( avoidLink._qlink != _sides[i] && (_sides[i]->node1() == nodeToContain || _sides[i]->node2() == nodeToContain )) return links.find( _sides[ i ]); return links.end(); } //================================================================================ /*! * \brief Return normal to the i-th side pointing outside the face */ //================================================================================ gp_Vec QFace::LinkNorm(const int i, SMESH_MesherHelper* /*uvHelper*/) const { gp_Vec norm = _normal ^ gp_Vec( XYZ(_sides[i]->node1()), XYZ(_sides[i]->node2())); gp_XYZ pIn = ( _sides[ (i+1)%3 ]->MiddlePnt() + _sides[ (i+2)%3 ]->MiddlePnt() ) / 2.; gp_Vec vecOut = ( _sides[i]->MiddlePnt() - pIn ); if ( norm * vecOut < 0 ) norm.Reverse(); double mag2 = norm.SquareMagnitude(); if ( mag2 > numeric_limits::min() ) norm /= sqrt( mag2 ); return norm; } //================================================================================ /*! * \brief Move medium node of theLink according to its distance from boundary * \param theLink - link to fix * \param theRefVec - movement of boundary * \param theLinks - all adjacent links of continous triangles * \param theFaceHelper - helper is not used so far * \param thePrevLen - distance from the boundary * \param theStep - number of steps till movement propagation limit * \param theLinkNorm - out normal to theLink * \param theSign - 1 or -1 depending on movement of boundary * \retval double - distance from boundary to propagation limit or other boundary */ //================================================================================ double QFace::MoveByBoundary( const TChainLink& theLink, const gp_Vec& theRefVec, const TLinkSet& theLinks, SMESH_MesherHelper* theFaceHelper, const double thePrevLen, const int theStep, gp_Vec* theLinkNorm, double theSign) const { if ( !theStep ) return thePrevLen; // propagation limit reached int iL; // index of theLink for ( iL = 0; iL < _sides.size(); ++iL ) if ( theLink._qlink == _sides[ iL ]) break; MSG(string(theStep,'.')<<" Ref( "<NextFace( this ); f2 = link2->NextFace( this ); isBndLink1 = ( theLink->MediumPos() > (*link1)->MediumPos() ); isBndLink2 = ( theLink->MediumPos() > (*link2)->MediumPos() ); if ( theStep == theFirstStep ) // (issue 22541) quad-dominant mesh { if ( !isBndLink1 && !f1 ) f1 = (*link1)->GetContinuesFace( this ); // get a quadrangle face if ( !isBndLink2 && !f2 ) f2 = (*link2)->GetContinuesFace( this ); } } else if ( _sides.size() < 4 ) return thePrevLen; // propagate to adjacent faces till limit step or boundary double len1 = thePrevLen + (theLink->MiddlePnt() - _sides[iL1]->MiddlePnt()).Modulus(); double len2 = thePrevLen + (theLink->MiddlePnt() - _sides[iL2]->MiddlePnt()).Modulus(); gp_Vec linkDir1(0,0,0); // initialize to avoid valgrind error ("Conditional jump...") gp_Vec linkDir2(0,0,0); try { OCC_CATCH_SIGNALS; if ( f1 && !isBndLink1 ) len1 = f1->MoveByBoundary ( *link1, theRefVec, theLinks, theFaceHelper, len1, theStep-1, &linkDir1, theSign); else linkDir1 = LinkNorm( iL1/*, theFaceHelper*/ ); } catch (...) { MSG( " --------------- EXCEPTION"); return thePrevLen; } try { OCC_CATCH_SIGNALS; if ( f2 && !isBndLink2 ) len2 = f2->MoveByBoundary ( *link2, theRefVec, theLinks, theFaceHelper, len2, theStep-1, &linkDir2, theSign); else linkDir2 = LinkNorm( iL2/*, theFaceHelper*/ ); } catch (...) { MSG( " --------------- EXCEPTION"); return thePrevLen; } double fullLen = 0; if ( theStep != theFirstStep ) { // choose chain length by direction of propagation most codirected with theRefVec bool choose1 = ( theRefVec * linkDir1 * theSign > theRefVec * linkDir2 * theSign ); fullLen = choose1 ? len1 : len2; double r = thePrevLen / fullLen; gp_Vec move = linkNorm * refProj * ( 1 - r ); theLink->Move( move, true ); MSG(string(theStep,'.')<<" Move "<< theLink->_mediumNode->GetID()<< " by " << refProj * ( 1 - r ) << " following " << (choose1 ? *link1->_qlink : *link2->_qlink)); // warning: link1 can be invalid if ( theLinkNorm ) *theLinkNorm = linkNorm; } return fullLen; } //================================================================================ /*! * \brief Checks if the face is distorted due to bentLink */ //================================================================================ bool QFace::IsSpoiled(const QLink* bentLink ) const { // code is valid for convex faces only gp_XYZ gc(0,0,0); for ( TIDSortedNodeSet::const_iterator n = begin(); n!=end(); ++n) gc += XYZ( *n ) / size(); for (unsigned i = 0; i < _sides.size(); ++i ) { if ( _sides[i] == bentLink ) continue; gp_Vec linkNorm = _normal ^ gp_Vec( XYZ(_sides[i]->node1()), XYZ(_sides[i]->node2())); gp_Vec vecOut( gc, _sides[i]->MiddlePnt() ); if ( linkNorm * vecOut < 0 ) linkNorm.Reverse(); double mag2 = linkNorm.SquareMagnitude(); if ( mag2 > numeric_limits::min() ) linkNorm /= sqrt( mag2 ); gp_Vec vecBent ( _sides[i]->MiddlePnt(), bentLink->MediumPnt()); gp_Vec vecStraight( _sides[i]->MiddlePnt(), bentLink->MiddlePnt()); if ( vecBent * linkNorm > -0.1*vecStraight.Magnitude() ) return true; } return false; } //================================================================================ /*! * \brief Find pairs of continues faces */ //================================================================================ void QLink::SetContinuesFaces() const { // x0 x - QLink, [-|] - QFace, v - volume // v0 | v1 // | Between _faces of link x2 two vertical faces are continues // x1----x2-----x3 and two horizontal faces are continues. We set vertical faces // | to _faces[0] and _faces[1] and horizontal faces to // v2 | v3 _faces[2] and _faces[3] (or vise versa). // x4 if ( _faces.empty() ) return; int iFaceCont = -1, nbBoundary = 0, iBoundary[2]={-1,-1}; if ( _faces[0]->IsBoundary() ) iBoundary[ nbBoundary++ ] = 0; for ( int iF = 1; iFaceCont < 0 && iF < _faces.size(); ++iF ) { // look for a face bounding none of volumes bound by _faces[0] bool sameVol = false; int nbVol = _faces[iF]->NbVolumes(); for ( int iV = 0; !sameVol && iV < nbVol; ++iV ) sameVol = ( _faces[iF]->_volumes[iV] == _faces[0]->_volumes[0] || _faces[iF]->_volumes[iV] == _faces[0]->_volumes[1]); if ( !sameVol ) iFaceCont = iF; if ( _faces[iF]->IsBoundary() ) iBoundary[ nbBoundary++ ] = iF; } // Set continues faces: arrange _faces to have // _faces[0] continues to _faces[1] // _faces[2] continues to _faces[3] if ( nbBoundary == 2 ) // bnd faces are continues { if (( iBoundary[0] < 2 ) != ( iBoundary[1] < 2 )) { int iNear0 = iBoundary[0] < 2 ? 1-iBoundary[0] : 5-iBoundary[0]; std::swap( _faces[ iBoundary[1] ], _faces[iNear0] ); } } else if ( iFaceCont > 0 ) // continues faces found { if ( iFaceCont != 1 ) std::swap( _faces[1], _faces[iFaceCont] ); } else if ( _faces.size() > 1 ) // not found, set NULL by the first face { _faces.insert( ++_faces.begin(), (QFace*) 0 ); } } //================================================================================ /*! * \brief Return a face continues to the given one */ //================================================================================ const QFace* QLink::GetContinuesFace( const QFace* face ) const { for ( int i = 0; i < _faces.size(); ++i ) { if ( _faces[i] == face ) { int iF = i < 2 ? 1-i : 5-i; return iF < _faces.size() ? _faces[iF] : 0; } } return 0; } //================================================================================ /*! * \brief True if link is on mesh boundary */ //================================================================================ bool QLink::OnBoundary() const { for ( int i = 0; i < _faces.size(); ++i ) if (_faces[i] && _faces[i]->IsBoundary()) return true; return false; } //================================================================================ /*! * \brief Return normal of link of the chain */ //================================================================================ gp_Vec TChainLink::Normal() const { gp_Vec norm; if (_qfaces[0]) norm = _qfaces[0]->_normal; if (_qfaces[1]) norm += _qfaces[1]->_normal; return norm; } //================================================================================ /*! * \brief Test link curvature taking into account size of faces */ //================================================================================ bool TChainLink::IsStraight() const { bool isStraight = _qlink->IsStraight(); if ( isStraight && _qfaces[0] && !_qfaces[1] ) { int i = _qfaces[0]->LinkIndex( _qlink ); int iOpp = ( i + 2 ) % _qfaces[0]->_sides.size(); gp_XYZ mid1 = _qlink->MiddlePnt(); gp_XYZ mid2 = _qfaces[0]->_sides[ iOpp ]->MiddlePnt(); double faceSize2 = (mid1-mid2).SquareModulus(); isStraight = _qlink->_nodeMove.SquareMagnitude() < 1/10./10. * faceSize2; } return isStraight; } //================================================================================ /*! * \brief Move medium nodes of vertical links of pentahedrons adjacent by side faces */ //================================================================================ void fixPrism( TChain& allLinks ) { // separate boundary links from internal ones typedef set QLinkSet; QLinkSet interLinks, bndLinks1, bndLink2; bool isCurved = false; for ( TChain::iterator lnk = allLinks.begin(); lnk != allLinks.end(); ++lnk ) { if ( (*lnk)->OnBoundary() ) bndLinks1.insert( lnk->_qlink ); else interLinks.insert( lnk->_qlink ); isCurved = isCurved || !lnk->IsStraight(); } if ( !isCurved ) return; // no need to move QLinkSet *curBndLinks = &bndLinks1, *newBndLinks = &bndLink2; while ( !interLinks.empty() && !curBndLinks->empty() ) { // propagate movement from boundary links to connected internal links QLinkSet::iterator bnd = curBndLinks->begin(), bndEnd = curBndLinks->end(); for ( ; bnd != bndEnd; ++bnd ) { const QLink* bndLink = *bnd; for ( int i = 0; i < bndLink->_faces.size(); ++i ) // loop on faces of bndLink { const QFace* face = bndLink->_faces[i]; // quadrange lateral face of a prism if ( !face ) continue; // find and move internal link opposite to bndLink within the face int interInd = ( face->LinkIndex( bndLink ) + 2 ) % face->_sides.size(); const QLink* interLink = face->_sides[ interInd ]; QLinkSet::iterator pInterLink = interLinks.find( interLink ); if ( pInterLink == interLinks.end() ) continue; // not internal link interLink->Move( bndLink->_nodeMove ); // treated internal links become new boundary ones interLinks.erase( pInterLink ); newBndLinks->insert( interLink ); } } curBndLinks->clear(); std::swap( curBndLinks, newBndLinks ); } } //================================================================================ /*! * \brief Fix links of continues triangles near curved boundary */ //================================================================================ void fixTriaNearBoundary( TChain & allLinks, SMESH_MesherHelper& /*helper*/) { if ( allLinks.empty() ) return; TLinkSet linkSet( allLinks.begin(), allLinks.end()); TLinkInSet linkIt = linkSet.begin(), linksEnd = linkSet.end(); for ( linkIt = linkSet.begin(); linkIt != linksEnd; ++linkIt) { if ( linkIt->IsBoundary() && !linkIt->IsStraight() && linkIt->_qfaces[0]) { // move iff a boundary link is bent towards inside of a face (issue 0021084) const QFace* face = linkIt->_qfaces[0]; gp_XYZ pIn = ( face->_sides[0]->MiddlePnt() + face->_sides[1]->MiddlePnt() + face->_sides[2]->MiddlePnt() ) / 3.; gp_XYZ insideDir( pIn - (*linkIt)->MiddlePnt()); bool linkBentInside = ((*linkIt)->_nodeMove.Dot( insideDir ) > 0 ); //if ( face->IsSpoiled( linkIt->_qlink )) if ( linkBentInside ) face->MoveByBoundary( *linkIt, (*linkIt)->_nodeMove, linkSet ); } } } //================================================================================ /*! * \brief Detect rectangular structure of links and build chains from them */ //================================================================================ enum TSplitTriaResult { _OK, _NO_CORNERS, _FEW_ROWS, _MANY_ROWS, _NO_SIDELINK, _BAD_MIDQUAD, _NOT_RECT, _NO_MIDQUAD, _NO_UPTRIA, _BAD_SET_SIZE, _BAD_CORNER, _BAD_START, _NO_BOTLINK, _TWISTED_CHAIN }; TSplitTriaResult splitTrianglesIntoChains( TChain & allLinks, vector< TChain> & resultChains, SMDS_TypeOfPosition pos ) { // put links in the set and evalute number of result chains by number of boundary links TLinkSet linkSet; int nbBndLinks = 0; for ( TChain::iterator lnk = allLinks.begin(); lnk != allLinks.end(); ++lnk ) { linkSet.insert( *lnk ); nbBndLinks += lnk->IsBoundary(); } resultChains.clear(); resultChains.reserve( nbBndLinks / 2 ); TLinkInSet linkIt, linksEnd = linkSet.end(); // find a boundary link with corner node; corner node has position pos-2 // i.e. SMDS_TOP_VERTEX for links on faces and SMDS_TOP_EDGE for // links in volume SMDS_TypeOfPosition cornerPos = SMDS_TypeOfPosition(pos-2); const SMDS_MeshNode* corner = 0; for ( linkIt = linkSet.begin(); linkIt != linksEnd; ++linkIt ) if ( linkIt->IsBoundary() && (corner = (*linkIt)->EndPosNode(cornerPos))) break; if ( !corner) return _NO_CORNERS; TLinkInSet startLink = linkIt; const SMDS_MeshNode* startCorner = corner; vector< TChain* > rowChains; int iCol = 0; while ( startLink != linksEnd) // loop on columns { // We suppose we have a rectangular structure like shown here. We have found a // corner of the rectangle (startCorner) and a boundary link sharing // |/ |/ | the startCorner (startLink). We are going to loop on rows of the // --o---o---o structure making several chains at once. One chain (columnChain) // |\ | /| starts at startLink and continues upward (we look at the structure // \ | \ | / | from such point that startLink is on the bottom of the structure). // \| \|/ | While going upward we also fill horizontal chains (rowChains) we // --o---o---o encounter. // /|\ |\ | // / | \ | \ | startCorner // | \| \|,' // --o---o---o // `.startLink if ( resultChains.size() == nbBndLinks / 2 ) return _NOT_RECT; resultChains.push_back( TChain() ); TChain& columnChain = resultChains.back(); TLinkInSet botLink = startLink; // current horizontal link to go up from corner = startCorner; // current corner the botLink ends at int iRow = 0; while ( botLink != linksEnd ) // loop on rows { // add botLink to the columnChain columnChain.push_back( *botLink ); const QFace* botTria = botLink->_qfaces[0]; // bottom triangle bound by botLink if ( !botTria ) { // the column ends if ( botLink == startLink ) return _TWISTED_CHAIN; // issue 0020951 linkSet.erase( botLink ); if ( iRow != rowChains.size() ) return _FEW_ROWS; // different nb of rows in columns break; } // find the link dividing the quadrangle (midQuadLink) and vertical boundary // link ending at (sideLink); there are two cases: // 1) midQuadLink does not end at , then we easily find it by botTria, // since midQuadLink is not at boundary while sideLink is. // 2) midQuadLink ends at bool isCase2; TLinkInSet midQuadLink = linksEnd; TLinkInSet sideLink = botTria->GetBoundaryLink( linkSet, *botLink, &midQuadLink, corner, &isCase2 ); if ( isCase2 ) { // find midQuadLink among links of botTria midQuadLink = botTria->GetLinkByNode( linkSet, *botLink, corner ); if ( midQuadLink->IsBoundary() ) return _BAD_MIDQUAD; } if ( sideLink == linksEnd || midQuadLink == linksEnd || sideLink == midQuadLink ) return sideLink == linksEnd ? _NO_SIDELINK : _NO_MIDQUAD; // fill chains columnChain.push_back( *midQuadLink ); if ( iRow >= rowChains.size() ) { if ( iCol > 0 ) return _MANY_ROWS; // different nb of rows in columns if ( resultChains.size() == nbBndLinks / 2 ) return _NOT_RECT; resultChains.push_back( TChain() ); rowChains.push_back( & resultChains.back() ); } rowChains[iRow]->push_back( *sideLink ); rowChains[iRow]->push_back( *midQuadLink ); const QFace* upTria = midQuadLink->NextFace( botTria ); // upper tria of the rectangle if ( !upTria) return _NO_UPTRIA; if ( iRow == 0 ) { // prepare startCorner and startLink for the next column startCorner = startLink->NextNode( startCorner ); if (isCase2) startLink = botTria->GetBoundaryLink( linkSet, *botLink, 0, startCorner ); else startLink = upTria->GetBoundaryLink( linkSet, *midQuadLink, 0, startCorner ); // check if no more columns remains if ( startLink != linksEnd ) { const SMDS_MeshNode* botNode = startLink->NextNode( startCorner ); if ( (isCase2 ? botTria : upTria)->Contains( botNode )) startLink = linksEnd; // startLink bounds upTria or botTria else if ( startLink == botLink || startLink == midQuadLink || startLink == sideLink ) return _BAD_START; } } // find bottom link and corner for the next row corner = sideLink->NextNode( corner ); // next bottom link ends at the new corner linkSet.erase( botLink ); botLink = upTria->GetLinkByNode( linkSet, (isCase2 ? *sideLink : *midQuadLink), corner ); if ( botLink == linksEnd || botLink == midQuadLink || botLink == sideLink) return _NO_BOTLINK; if ( midQuadLink == startLink || sideLink == startLink ) return _TWISTED_CHAIN; // issue 0020951 linkSet.erase( midQuadLink ); linkSet.erase( sideLink ); // make faces neighboring the found ones be boundary if ( startLink != linksEnd ) { const QFace* tria = isCase2 ? botTria : upTria; for ( int iL = 0; iL < 3; ++iL ) { linkIt = linkSet.find( tria->_sides[iL] ); if ( linkIt != linksEnd ) linkIt->RemoveFace( tria ); } } if ( botLink->_qfaces[0] == upTria || botLink->_qfaces[1] == upTria ) botLink->RemoveFace( upTria ); // make next botTria first in vector iRow++; } // loop on rows iCol++; } // In the linkSet, there must remain the last links of rowChains; add them if ( linkSet.size() != rowChains.size() ) return _BAD_SET_SIZE; for ( int iRow = 0; iRow < rowChains.size(); ++iRow ) { // find the link (startLink) ending at startCorner corner = 0; for ( startLink = linkSet.begin(); startLink != linksEnd; ++startLink ) { if ( (*startLink)->node1() == startCorner ) { corner = (*startLink)->node2(); break; } else if ( (*startLink)->node2() == startCorner) { corner = (*startLink)->node1(); break; } } if ( startLink == linksEnd ) return _BAD_CORNER; rowChains[ iRow ]->push_back( *startLink ); linkSet.erase( startLink ); startCorner = corner; } return _OK; } //================================================================================ /*! * \brief Place medium nodes at the link middle for elements whose corner nodes * are out of geometrical boundary to prevent distorting elements. * Issue 0020982, note 0013990 */ //================================================================================ void force3DOutOfBoundary( SMESH_MesherHelper& theHelper, SMESH_ComputeErrorPtr& theError) { SMESHDS_Mesh* meshDS = theHelper.GetMeshDS(); TopoDS_Shape shape = theHelper.GetSubShape().Oriented( TopAbs_FORWARD ); if ( shape.IsNull() ) return; if ( !theError ) theError = SMESH_ComputeError::New(); gp_XYZ faceNorm; if ( shape.ShapeType() == TopAbs_FACE ) // 2D { if ( theHelper.GetMesh()->NbTriangles( ORDER_QUADRATIC ) < 1 ) return; SMESHDS_SubMesh* faceSM = meshDS->MeshElements( shape ); if ( !faceSM ) return; const TopoDS_Face& face = TopoDS::Face( shape ); Handle(Geom_Surface) surface = BRep_Tool::Surface( face ); TopExp_Explorer edgeIt( face, TopAbs_EDGE ); for ( ; edgeIt.More(); edgeIt.Next() ) // loop on EDGEs of a FACE { // check if the EDGE needs checking const TopoDS_Edge& edge = TopoDS::Edge( edgeIt.Current() ); if ( SMESH_Algo::isDegenerated( edge ) ) continue; if ( theHelper.IsRealSeam( edge ) && edge.Orientation() == TopAbs_REVERSED ) continue; SMESHDS_SubMesh* edgeSM = meshDS->MeshElements( edge ); if ( !edgeSM ) continue; double f,l; Handle(Geom2d_Curve) pcurve = BRep_Tool::CurveOnSurface( edge, face, f, l ); BRepAdaptor_Curve curve3D( edge ); switch ( curve3D.GetType() ) { case GeomAbs_Line: continue; case GeomAbs_Circle: case GeomAbs_Ellipse: case GeomAbs_Hyperbola: case GeomAbs_Parabola: try { gp_Vec D1, D2, Du1, Dv1; gp_Pnt p; curve3D.D2( 0.5 * ( f + l ), p, D1, D2 ); gp_Pnt2d uv = pcurve->Value( 0.5 * ( f + l ) ); surface->D1( uv.X(), uv.Y(), p, Du1, Dv1 ); gp_Vec fNorm = Du1 ^ Dv1; if ( fNorm.IsParallel( D2, M_PI * 25./180. )) continue; // face is normal to the curve3D gp_Vec curvNorm = fNorm ^ D1; if ( edge.Orientation() == TopAbs_REVERSED ) curvNorm.Reverse(); if ( curvNorm * D2 > 0 ) continue; // convex edge } catch ( Standard_Failure ) { continue; } } // get nodes shared by faces that may be distorted SMDS_NodeIteratorPtr nodeIt; if ( edgeSM->NbNodes() > 0 ) { nodeIt = edgeSM->GetNodes(); } else { SMESHDS_SubMesh* vertexSM = meshDS->MeshElements( theHelper.IthVertex( 0, edge )); if ( !vertexSM ) vertexSM = meshDS->MeshElements( theHelper.IthVertex( 1, edge )); if ( !vertexSM ) continue; nodeIt = vertexSM->GetNodes(); } // find suspicious faces TIDSortedElemSet checkedFaces; vector< const SMDS_MeshNode* > nOnEdge( 2 ); const SMDS_MeshNode* nOnFace; while ( nodeIt->more() ) { const SMDS_MeshNode* n = nodeIt->next(); SMDS_ElemIteratorPtr faceIt = n->GetInverseElementIterator( SMDSAbs_Face ); while ( faceIt->more() ) { const SMDS_MeshElement* f = faceIt->next(); if ( !faceSM->Contains( f ) || f->NbNodes() < 6 || // check quadratic triangles only !checkedFaces.insert( f ).second ) continue; // get nodes on EDGE and on FACE of a suspicious face nOnEdge.clear(); nOnFace = 0; SMDS_MeshElement::iterator triNode = f->begin_nodes(); for ( int nbN = 0; nbN < 3; ++triNode, ++nbN ) { n = *triNode; if ( n->GetPosition()->GetDim() == 2 ) nOnFace = n; else nOnEdge.push_back( n ); } // check if nOnFace is inside the FACE if ( nOnFace && nOnEdge.size() == 2 ) { theHelper.AddTLinks( static_cast< const SMDS_MeshFace* > ( f )); if ( !SMESH_MeshAlgos::FaceNormal( f, faceNorm, /*normalized=*/false )) continue; gp_XYZ edgeDir = SMESH_TNodeXYZ( nOnEdge[0] ) - SMESH_TNodeXYZ( nOnEdge[1] ); gp_XYZ edgeNorm = faceNorm ^ edgeDir; n = theHelper.GetMediumNode( nOnEdge[0], nOnEdge[1], true ); // find n, not create gp_XYZ pN0 = SMESH_TNodeXYZ( nOnEdge[0] ); gp_XYZ pMedium = SMESH_TNodeXYZ( n ); // on-edge node location gp_XYZ pFaceN = SMESH_TNodeXYZ( nOnFace ); // on-face node location double hMedium = edgeNorm * gp_Vec( pN0, pMedium ).XYZ(); double hFace = edgeNorm * gp_Vec( pN0, pFaceN ).XYZ(); if ( Abs( hMedium ) > Abs( hFace * 0.6 )) { // nOnFace is out of FACE, move a medium on-edge node to the middle gp_XYZ pMid3D = 0.5 * ( pN0 + SMESH_TNodeXYZ( nOnEdge[1] )); meshDS->MoveNode( n, pMid3D.X(), pMid3D.Y(), pMid3D.Z() ); MSG( "move OUT of face " << n ); theError->myBadElements.push_back( f ); } } } } } if ( !theError->myBadElements.empty() ) theError->myName = EDITERR_NO_MEDIUM_ON_GEOM; return; } // 2D ============================================================================== if ( shape.ShapeType() == TopAbs_SOLID ) // 3D { if ( theHelper.GetMesh()->NbTetras ( ORDER_QUADRATIC ) < 1 && theHelper.GetMesh()->NbPyramids( ORDER_QUADRATIC ) < 1 ) return; SMESHDS_SubMesh* solidSM = meshDS->MeshElements( shape ); if ( !solidSM ) return; // check if the SOLID is bound by concave FACEs vector< TopoDS_Face > concaveFaces; TopExp_Explorer faceIt( shape, TopAbs_FACE ); for ( ; faceIt.More(); faceIt.Next() ) // loop on FACEs of a SOLID { const TopoDS_Face& face = TopoDS::Face( faceIt.Current() ); if ( !meshDS->MeshElements( face )) continue; BRepAdaptor_Surface surface( face ); switch ( surface.GetType() ) { case GeomAbs_Plane: continue; case GeomAbs_Cylinder: case GeomAbs_Cone: case GeomAbs_Sphere: try { double u = 0.5 * ( surface.FirstUParameter() + surface.LastUParameter() ); double v = 0.5 * ( surface.FirstVParameter() + surface.LastVParameter() ); gp_Vec Du1, Dv1, Du2, Dv2, Duv2; gp_Pnt p; surface.D2( u,v, p, Du1, Dv1, Du2, Dv2, Duv2 ); gp_Vec fNorm = Du1 ^ Dv1; if ( face.Orientation() == TopAbs_REVERSED ) fNorm.Reverse(); bool concaveU = ( fNorm * Du2 > 1e-100 ); bool concaveV = ( fNorm * Dv2 > 1e-100 ); if ( concaveU || concaveV ) concaveFaces.push_back( face ); } catch ( Standard_Failure ) { concaveFaces.push_back( face ); } } } if ( concaveFaces.empty() ) return; // fix 2D mesh on the SOLID for ( faceIt.ReInit(); faceIt.More(); faceIt.Next() ) // loop on FACEs of a SOLID { SMESH_MesherHelper faceHelper( *theHelper.GetMesh() ); faceHelper.SetSubShape( faceIt.Current() ); force3DOutOfBoundary( faceHelper, theError ); } // get an iterator over faces on concaveFaces vector< SMDS_ElemIteratorPtr > faceIterVec( concaveFaces.size() ); for ( size_t i = 0; i < concaveFaces.size(); ++i ) faceIterVec[i] = meshDS->MeshElements( concaveFaces[i] )->GetElements(); typedef SMDS_IteratorOnIterators < const SMDS_MeshElement*, vector< SMDS_ElemIteratorPtr > > TIterOnIter; SMDS_ElemIteratorPtr faceIter( new TIterOnIter( faceIterVec )); // a seacher to check if a volume is close to a concave face std::auto_ptr< SMESH_ElementSearcher > faceSearcher ( SMESH_MeshAlgos::GetElementSearcher( *theHelper.GetMeshDS(), faceIter )); // classifier //BRepClass3d_SolidClassifier solidClassifier( shape ); TIDSortedElemSet checkedVols, movedNodes; //for ( faceIt.ReInit(); faceIt.More(); faceIt.Next() ) // loop on FACEs of a SOLID for ( size_t iF = 0; iF < concaveFaces.size(); ++iF ) // loop on concave FACEs { //const TopoDS_Shape& face = faceIt.Current(); const TopoDS_Shape& face = concaveFaces[ iF ]; SMESHDS_SubMesh* faceSM = meshDS->MeshElements( face ); if ( !faceSM ) continue; // get nodes shared by volumes (tet and pyra) on the FACE that may be distorted SMDS_NodeIteratorPtr nodeIt; if ( faceSM->NbNodes() > 0 ) { nodeIt = faceSM->GetNodes(); } else { TopExp_Explorer vertex( face, TopAbs_VERTEX ); SMESHDS_SubMesh* vertexSM = meshDS->MeshElements( vertex.Current() ); if ( !vertexSM ) continue; nodeIt = vertexSM->GetNodes(); } // get ids of sub-shapes of the FACE set< int > subIDs; SMESH_subMeshIteratorPtr smIt = theHelper.GetMesh()->GetSubMesh( face )->getDependsOnIterator(/*includeSelf=*/true); while ( smIt->more() ) subIDs.insert( smIt->next()->GetId() ); // find suspicious volumes adjacent to the FACE vector< const SMDS_MeshNode* > nOnFace( 4 ); const SMDS_MeshNode* nInSolid; while ( nodeIt->more() ) { const SMDS_MeshNode* n = nodeIt->next(); SMDS_ElemIteratorPtr volIt = n->GetInverseElementIterator( SMDSAbs_Volume ); while ( volIt->more() ) { const SMDS_MeshElement* vol = volIt->next(); int nbN = vol->NbCornerNodes(); if ( ( nbN != 4 && nbN != 5 ) || !solidSM->Contains( vol ) || !checkedVols.insert( vol ).second ) continue; // get nodes on FACE and in SOLID of a suspicious volume nOnFace.clear(); nInSolid = 0; SMDS_MeshElement::iterator volNode = vol->begin_nodes(); for ( int nb = nbN; nb > 0; ++volNode, --nb ) { n = *volNode; if ( n->GetPosition()->GetDim() == 3 ) nInSolid = n; else if ( subIDs.count( n->getshapeId() )) nOnFace.push_back( n ); else nInSolid = n; } if ( !nInSolid || nOnFace.size() != nbN - 1 ) continue; // get size of the vol SMESH_TNodeXYZ pInSolid( nInSolid ), pOnFace0( nOnFace[0] ); double volLength = pInSolid.SquareDistance( nOnFace[0] ); for ( size_t i = 1; i < nOnFace.size(); ++i ) { volLength = Max( volLength, pOnFace0.SquareDistance( nOnFace[i] )); } // check if vol is close to concaveFaces const SMDS_MeshElement* closeFace = faceSearcher->FindClosestTo( pInSolid, SMDSAbs_Face ); if ( !closeFace || pInSolid.SquareDistance( closeFace->GetNode(0) ) > 4 * volLength ) continue; // check if vol is distorted, i.e. a medium node is much closer // to nInSolid than the link middle bool isDistorted = false; SMDS_FaceOfNodes onFaceTria( nOnFace[0], nOnFace[1], nOnFace[2] ); if ( !SMESH_MeshAlgos::FaceNormal( &onFaceTria, faceNorm, /*normalized=*/false )) continue; theHelper.AddTLinks( static_cast< const SMDS_MeshVolume* > ( vol )); vector< pair< SMESH_TLink, const SMDS_MeshNode* > > links; for ( size_t i = 0; i < nOnFace.size(); ++i ) // loop on links between nOnFace for ( size_t j = i+1; j < nOnFace.size(); ++j ) { SMESH_TLink link( nOnFace[i], nOnFace[j] ); TLinkNodeMap::const_iterator linkIt = theHelper.GetTLinkNodeMap().find( link ); if ( linkIt != theHelper.GetTLinkNodeMap().end() ) { links.push_back( make_pair( linkIt->first, linkIt->second )); if ( !isDistorted ) { // compare projections of nInSolid and nMedium to face normal gp_Pnt pMedium = SMESH_TNodeXYZ( linkIt->second ); double hMedium = faceNorm * gp_Vec( pOnFace0, pMedium ).XYZ(); double hVol = faceNorm * gp_Vec( pOnFace0, pInSolid ).XYZ(); isDistorted = ( Abs( hMedium ) > Abs( hVol * 0.5 )); } } } // move medium nodes to link middle if ( isDistorted ) { for ( size_t i = 0; i < links.size(); ++i ) { const SMDS_MeshNode* nMedium = links[i].second; if ( movedNodes.insert( nMedium ).second ) { gp_Pnt pMid3D = 0.5 * ( SMESH_TNodeXYZ( links[i].first.node1() ) + SMESH_TNodeXYZ( links[i].first.node2() )); meshDS->MoveNode( nMedium, pMid3D.X(), pMid3D.Y(), pMid3D.Z() ); MSG( "move OUT of solid " << nMedium ); } } theError->myBadElements.push_back( vol ); } } // loop on volumes sharing a node on FACE } // loop on nodes on FACE } // loop on FACEs of a SOLID if ( !theError->myBadElements.empty() ) theError->myName = EDITERR_NO_MEDIUM_ON_GEOM; } // 3D case } } //namespace //======================================================================= /*! * \brief Move medium nodes of faces and volumes to fix distorted elements * \param error - container of fixed distorted elements * \param volumeOnly - to fix nodes on faces or not, if the shape is solid * * Issue 0020307: EDF 992 SMESH : Linea/Quadratic with Medium Node on Geometry */ //======================================================================= void SMESH_MesherHelper::FixQuadraticElements(SMESH_ComputeErrorPtr& compError, bool volumeOnly) { // setenv NO_FixQuadraticElements to know if FixQuadraticElements() is guilty of bad conversion if ( getenv("NO_FixQuadraticElements") ) return; // 0. Apply algorithm to SOLIDs or FACEs // ---------------------------------------------- if ( myShape.IsNull() ) { if ( !myMesh->HasShapeToMesh() ) return; SetSubShape( myMesh->GetShapeToMesh() ); #ifdef _DEBUG_ int nbSolids = 0; TopTools_IndexedMapOfShape solids; TopExp::MapShapes(myShape,TopAbs_SOLID,solids); nbSolids = solids.Extent(); #endif TopTools_MapOfShape faces; // faces not in solid or in not meshed solid for ( TopExp_Explorer f(myShape,TopAbs_FACE,TopAbs_SOLID); f.More(); f.Next() ) { faces.Add( f.Current() ); // not in solid } for ( TopExp_Explorer s(myShape,TopAbs_SOLID); s.More(); s.Next() ) { if ( myMesh->GetSubMesh( s.Current() )->IsEmpty() ) { // get faces of solid for ( TopExp_Explorer f( s.Current(), TopAbs_FACE); f.More(); f.Next() ) faces.Add( f.Current() ); // in not meshed solid } else { // fix nodes in the solid and its faces #ifdef _DEBUG_ MSG("FIX SOLID " << nbSolids-- << " #" << GetMeshDS()->ShapeToIndex(s.Current())); #endif SMESH_MesherHelper h(*myMesh); h.SetSubShape( s.Current() ); h.ToFixNodeParameters(true); h.FixQuadraticElements( compError, false ); } } // fix nodes on geom faces #ifdef _DEBUG_ int nbfaces = faces.Extent(); /*avoid "unused varianbles": */ nbfaces++, nbfaces--; #endif for ( TopTools_MapIteratorOfMapOfShape fIt( faces ); fIt.More(); fIt.Next() ) { MSG("FIX FACE " << nbfaces-- << " #" << GetMeshDS()->ShapeToIndex(fIt.Key())); SMESH_MesherHelper h(*myMesh); h.SetSubShape( fIt.Key() ); h.ToFixNodeParameters(true); h.FixQuadraticElements( compError, true); } //perf_print_all_meters(1); if ( compError && compError->myName == EDITERR_NO_MEDIUM_ON_GEOM ) compError->myComment = "during conversion to quadratic, " "some medium nodes were not placed on geometry to avoid distorting elements"; return; } // 1. Find out type of elements and get iterator on them // --------------------------------------------------- SMDS_ElemIteratorPtr elemIt; SMDSAbs_ElementType elemType = SMDSAbs_All; SMESH_subMesh* submesh = myMesh->GetSubMeshContaining( myShapeID ); if ( !submesh ) return; if ( SMESHDS_SubMesh* smDS = submesh->GetSubMeshDS() ) { elemIt = smDS->GetElements(); if ( elemIt->more() ) { elemType = elemIt->next()->GetType(); elemIt = smDS->GetElements(); } } if ( !elemIt || !elemIt->more() || elemType < SMDSAbs_Face ) return; // 2. Fill in auxiliary data structures // ---------------------------------- set< QLink > links; set< QFace > faces; set< QLink >::iterator pLink; set< QFace >::iterator pFace; bool isCurved = false; //bool hasRectFaces = false; //set nbElemNodeSet; SMDS_VolumeTool volTool; TIDSortedNodeSet apexOfPyramid; const int apexIndex = 4; // Issue 0020982 // Move medium nodes to the link middle for elements whose corner nodes // are out of geometrical boundary to fix distorted elements. force3DOutOfBoundary( *this, compError ); if ( elemType == SMDSAbs_Volume ) { while ( elemIt->more() ) // loop on volumes { const SMDS_MeshElement* vol = elemIt->next(); if ( !vol->IsQuadratic() || !volTool.Set( vol )) return; double volMinSize2 = -1.; for ( int iF = 0; iF < volTool.NbFaces(); ++iF ) // loop on faces of volume { int nbN = volTool.NbFaceNodes( iF ); //nbElemNodeSet.insert( nbN ); const SMDS_MeshNode** faceNodes = volTool.GetFaceNodes( iF ); vector< const QLink* > faceLinks( nbN/2 ); for ( int iN = 0; iN < nbN; iN += 2 ) // loop on links of a face { // store QLink QLink link( faceNodes[iN], faceNodes[iN+2], faceNodes[iN+1] ); pLink = links.insert( link ).first; faceLinks[ iN/2 ] = & *pLink; if ( link.MediumPos() == SMDS_TOP_3DSPACE ) { if ( !link.IsStraight() ) return; // already fixed } else if ( !isCurved ) { if ( volMinSize2 < 0 ) volMinSize2 = volTool.MinLinearSize2(); isCurved = !isStraightLink( volMinSize2, link._nodeMove.SquareMagnitude() ); } } // store QFace pFace = faces.insert( QFace( faceLinks )).first; if ( pFace->NbVolumes() == 0 ) pFace->AddSelfToLinks(); pFace->SetVolume( vol ); // hasRectFaces = hasRectFaces || // ( volTool.GetVolumeType() == SMDS_VolumeTool::QUAD_HEXA || // volTool.GetVolumeType() == SMDS_VolumeTool::QUAD_PENTA ); #ifdef _DEBUG_ if ( nbN == 6 ) pFace->_face = GetMeshDS()->FindFace(faceNodes[0],faceNodes[2],faceNodes[4]); else pFace->_face = GetMeshDS()->FindFace(faceNodes[0],faceNodes[2], faceNodes[4],faceNodes[6] ); #endif } // collect pyramid apexes for further correction if ( vol->NbCornerNodes() == 5 ) apexOfPyramid.insert( vol->GetNode( apexIndex )); } set< QLink >::iterator pLink = links.begin(); for ( ; pLink != links.end(); ++pLink ) pLink->SetContinuesFaces(); } else { while ( elemIt->more() ) // loop on faces { const SMDS_MeshElement* face = elemIt->next(); if ( !face->IsQuadratic() ) continue; //nbElemNodeSet.insert( face->NbNodes() ); int nbN = face->NbNodes()/2; vector< const QLink* > faceLinks( nbN ); for ( int iN = 0; iN < nbN; ++iN ) // loop on links of a face { // store QLink QLink link( face->GetNode(iN), face->GetNode((iN+1)%nbN), face->GetNode(iN+nbN) ); pLink = links.insert( link ).first; faceLinks[ iN ] = & *pLink; if ( !isCurved && link.node1()->GetPosition()->GetTypeOfPosition() < 2 && link.node2()->GetPosition()->GetTypeOfPosition() < 2 ) isCurved = !link.IsStraight(); } // store QFace pFace = faces.insert( QFace( faceLinks )).first; pFace->AddSelfToLinks(); //hasRectFaces = ( hasRectFaces || nbN == 4 ); } } if ( !isCurved ) return; // no curved edges of faces // 3. Compute displacement of medium nodes // --------------------------------------- SMESH_MesherHelper faceHlp(*myMesh); // two loops on QFaces: the first is to treat boundary links, the second is for internal ones. TopLoc_Location loc; bool checkUV; // not to treat boundary of volumic sub-mesh. int isInside = ( elemType == SMDSAbs_Volume && volumeOnly ) ? 1 : 0; for ( ; isInside < 2; ++isInside ) { MSG( "--------------- LOOP (inside=" << isInside << ") ------------------"); SMDS_TypeOfPosition pos = isInside ? SMDS_TOP_3DSPACE : SMDS_TOP_FACE; SMDS_TypeOfPosition bndPos = isInside ? SMDS_TOP_FACE : SMDS_TOP_EDGE; for ( pFace = faces.begin(); pFace != faces.end(); ++pFace ) { if ( bool(isInside) == pFace->IsBoundary() ) continue; for ( int dir = 0; dir < 2; ++dir ) // 2 directions of propagation from the quadrangle { MSG( "CHAIN"); // make chain of links connected via continues faces int error = ERR_OK; TChain rawChain; if ( !pFace->GetLinkChain( dir, rawChain, pos, error) && error ==ERR_UNKNOWN ) continue; rawChain.reverse(); if ( !pFace->GetLinkChain( dir+2, rawChain, pos, error ) && error ==ERR_UNKNOWN ) continue; vector< TChain > chains; if ( error == ERR_OK ) { // chain contains continues rectangles chains.resize(1); chains[0].splice( chains[0].begin(), rawChain ); } else if ( error == ERR_TRI ) { // chain contains continues triangles TSplitTriaResult res = splitTrianglesIntoChains( rawChain, chains, pos ); if ( res != _OK ) { // not quadrangles split into triangles fixTriaNearBoundary( rawChain, *this ); break; } } else if ( error == ERR_PRISM ) { // quadrangle side faces of prisms fixPrism( rawChain ); break; } else { continue; } for ( int iC = 0; iC < chains.size(); ++iC ) { TChain& chain = chains[iC]; if ( chain.empty() ) continue; if ( chain.front().IsStraight() && chain.back().IsStraight() ) { MSG("3D straight - ignore"); continue; } if ( chain.front()->MediumPos() > bndPos || chain.back() ->MediumPos() > bndPos ) { MSG("Internal chain - ignore"); continue; } // mesure chain length and compute link position along the chain double chainLen = 0; vector< double > linkPos; MSGBEG( "Link medium nodes: "); TChain::iterator link0 = chain.begin(), link1 = chain.begin(), link2; for ( ++link1; link1 != chain.end(); ++link1, ++link0 ) { MSGBEG( (*link0)->_mediumNode->GetID() << "-" <<(*link1)->_mediumNode->GetID()<<" "); double len = ((*link0)->MiddlePnt() - (*link1)->MiddlePnt()).Modulus(); while ( len < numeric_limits::min() ) { // remove degenerated link link1 = chain.erase( link1 ); if ( link1 == chain.end() ) break; len = ((*link0)->MiddlePnt() - (*link1)->MiddlePnt()).Modulus(); } chainLen += len; linkPos.push_back( chainLen ); } MSG(""); if ( linkPos.size() < 2 ) continue; gp_Vec move0 = chain.front()->_nodeMove; gp_Vec move1 = chain.back ()->_nodeMove; TopoDS_Face face; if ( !isInside ) { // compute node displacement of end links of chain in parametric space of FACE TChainLink& linkOnFace = *(++chain.begin()); const SMDS_MeshNode* nodeOnFace = linkOnFace->_mediumNode; TopoDS_Shape f = GetSubShapeByNode( nodeOnFace, GetMeshDS() ); if ( !f.IsNull() && f.ShapeType() == TopAbs_FACE ) { face = TopoDS::Face( f ); faceHlp.SetSubShape( face ); Handle(Geom_Surface) surf = BRep_Tool::Surface(face,loc); bool isStraight[2]; for ( int is1 = 0; is1 < 2; ++is1 ) // move0 or move1 { TChainLink& link = is1 ? chain.back() : chain.front(); gp_XY uvm = faceHlp.GetNodeUV( face, link->_mediumNode, nodeOnFace, &checkUV ); gp_XY uv1 = faceHlp.GetNodeUV( face, link->node1(), nodeOnFace, &checkUV ); gp_XY uv2 = faceHlp.GetNodeUV( face, link->node2(), nodeOnFace, &checkUV ); gp_XY uv12 = faceHlp.GetMiddleUV( surf, uv1, uv2 ); // uvMove = uvm - uv12 gp_XY uvMove = applyIn2D(surf, uvm, uv12, gp_XY_Subtracted, /*inPeriod=*/false); ( is1 ? move1 : move0 ).SetCoord( uvMove.X(), uvMove.Y(), 0 ); if ( !is1 ) // correct nodeOnFace for move1 (issue 0020919) nodeOnFace = (*(++chain.rbegin()))->_mediumNode; isStraight[is1] = isStraightLink( (uv2-uv1).SquareModulus(), 10 * uvMove.SquareModulus()); } if ( isStraight[0] && isStraight[1] ) { MSG("2D straight - ignore"); continue; // straight - no need to move nodes of internal links } // check if a chain is already fixed gp_XY uvm = faceHlp.GetNodeUV( face, linkOnFace->_mediumNode, 0, &checkUV ); gp_XY uv1 = faceHlp.GetNodeUV( face, linkOnFace->node1(), nodeOnFace, &checkUV ); gp_XY uv2 = faceHlp.GetNodeUV( face, linkOnFace->node2(), nodeOnFace, &checkUV ); gp_XY uv12 = faceHlp.GetMiddleUV( surf, uv1, uv2 ); if (( uvm - uv12 ).SquareModulus() > 1e-10 ) { MSG("Already fixed - ignore"); continue; } } } gp_Trsf trsf; if ( isInside || face.IsNull() ) { // compute node displacement of end links in their local coord systems { TChainLink& ln0 = chain.front(), ln1 = *(++chain.begin()); trsf.SetTransformation( gp_Ax3( gp::Origin(), ln0.Normal(), gp_Vec( ln0->MiddlePnt(), ln1->MiddlePnt() ))); move0.Transform(trsf); } { TChainLink& ln0 = *(++chain.rbegin()), ln1 = chain.back(); trsf.SetTransformation( gp_Ax3( gp::Origin(), ln1.Normal(), gp_Vec( ln0->MiddlePnt(), ln1->MiddlePnt() ))); move1.Transform(trsf); } } // compute displacement of medium nodes link2 = chain.begin(); link0 = link2++; link1 = link2++; for ( int i = 0; link2 != chain.end(); ++link0, ++link1, ++link2, ++i ) { double r = linkPos[i] / chainLen; // displacement in local coord system gp_Vec move = (1. - r) * move0 + r * move1; if ( isInside || face.IsNull()) { // transform to global gp_Vec x01( (*link0)->MiddlePnt(), (*link1)->MiddlePnt() ); gp_Vec x12( (*link1)->MiddlePnt(), (*link2)->MiddlePnt() ); gp_Vec x = x01.Normalized() + x12.Normalized(); trsf.SetTransformation( gp_Ax3( gp::Origin(), link1->Normal(), x), gp_Ax3() ); move.Transform(trsf); } else { // compute 3D displacement by 2D one Handle(Geom_Surface) s = BRep_Tool::Surface(face,loc); gp_XY oldUV = faceHlp.GetNodeUV( face, (*link1)->_mediumNode, 0, &checkUV ); gp_XY newUV = applyIn2D( s, oldUV, gp_XY( move.X(),move.Y()), gp_XY_Added ); gp_Pnt newPnt = s->Value( newUV.X(), newUV.Y()); move = gp_Vec( XYZ((*link1)->_mediumNode), newPnt.Transformed(loc) ); if ( SMDS_FacePosition* nPos = dynamic_cast< SMDS_FacePosition* >((*link1)->_mediumNode->GetPosition())) nPos->SetParameters( newUV.X(), newUV.Y() ); #ifdef _DEBUG_ if ( (XYZ((*link1)->node1()) - XYZ((*link1)->node2())).SquareModulus() < move.SquareMagnitude()) { gp_XY uv0 = faceHlp.GetNodeUV( face, (*link0)->_mediumNode, 0, &checkUV ); gp_XY uv2 = faceHlp.GetNodeUV( face, (*link2)->_mediumNode, 0, &checkUV ); MSG( "TOO LONG MOVE \t" << "uv0: "<Move( move ); MSG( "Move " << (*link1)->_mediumNode->GetID() << " following " << chain.front()->_mediumNode->GetID() <<"-" << chain.back ()->_mediumNode->GetID() << " by " << move.Magnitude()); } } // loop on chains of links } // loop on 2 directions of propagation from quadrangle } // loop on faces } // fix faces and/or volumes // 4. Move nodes // ------------- TIDSortedElemSet biQuadQuas, biQuadTris, triQuadHexa; const SMDS_MeshElement *biQuadQua, *triQuadHex; const bool toFixCentralNodes = ( myMesh->NbBiQuadQuadrangles() + myMesh->NbBiQuadTriangles() + myMesh->NbTriQuadraticHexas() ); for ( pLink = links.begin(); pLink != links.end(); ++pLink ) { if ( pLink->IsMoved() ) { gp_Pnt p = pLink->MiddlePnt() + pLink->Move(); GetMeshDS()->MoveNode( pLink->_mediumNode, p.X(), p.Y(), p.Z()); // collect bi-quadratic elements if ( toFixCentralNodes ) { biQuadQua = triQuadHex = 0; SMDS_ElemIteratorPtr eIt = pLink->_mediumNode->GetInverseElementIterator(); while ( eIt->more() ) { const SMDS_MeshElement* e = eIt->next(); switch( e->GetEntityType() ) { case SMDSEntity_BiQuad_Quadrangle: biQuadQuas.insert( e ); break; case SMDSEntity_BiQuad_Triangle: biQuadTris.insert( e ); break; case SMDSEntity_TriQuad_Hexa: triQuadHexa.insert( e ); break; default:; } } } } } // Fix positions of central nodes of bi-tri-quadratic elements // treat bi-quad quadrangles { vector< const SMDS_MeshNode* > nodes( 9 ); gp_XY uv[ 9 ]; TIDSortedElemSet::iterator quadIt = biQuadQuas.begin(); for ( ; quadIt != biQuadQuas.end(); ++quadIt ) { const SMDS_MeshElement* quad = *quadIt; // nodes nodes.clear(); nodes.assign( quad->begin_nodes(), quad->end_nodes() ); // FACE TopoDS_Shape S = GetSubShapeByNode( nodes.back(), GetMeshDS() ); if ( S.IsNull() || S.ShapeType() != TopAbs_FACE ) continue; const TopoDS_Face& F = TopoDS::Face( S ); Handle( Geom_Surface ) surf = BRep_Tool::Surface( F, loc ); const double tol = BRep_Tool::Tolerance( F ); // UV for ( int i = 0; i < 8; ++i ) { uv[ i ] = GetNodeUV( F, nodes[i], nodes[8], &checkUV ); // as this method is used after mesh generation, UV of nodes is not // updated according to bending links, so we update if ( i > 3 && nodes[i]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) CheckNodeUV( F, nodes[i], uv[ i ], 2*tol, /*force=*/true ); } // move the central node gp_XY uvCent = calcTFI (0.5, 0.5, uv[0],uv[1],uv[2],uv[3],uv[4],uv[5],uv[6],uv[7] ); gp_Pnt p = surf->Value( uvCent.X(), uvCent.Y() ).Transformed( loc ); GetMeshDS()->MoveNode( nodes[8], p.X(), p.Y(), p.Z()); } } // treat bi-quad triangles { vector< const SMDS_MeshNode* > nodes; gp_XY uv[ 6 ]; TIDSortedElemSet::iterator triIt = biQuadTris.begin(); for ( ; triIt != biQuadTris.end(); ++triIt ) { const SMDS_MeshElement* tria = *triIt; // FACE const TopoDS_Shape& S = GetMeshDS()->IndexToShape( tria->getshapeId() ); if ( S.IsNull() || S.ShapeType() != TopAbs_FACE ) continue; const TopoDS_Face& F = TopoDS::Face( S ); Handle( Geom_Surface ) surf = BRep_Tool::Surface( F, loc ); const double tol = BRep_Tool::Tolerance( F ); // nodes nodes.assign( tria->begin_nodes(), tria->end_nodes() ); // UV for ( int i = 0; i < 6; ++i ) { uv[ i ] = GetNodeUV( F, nodes[i], nodes[(i+1)%3], &checkUV ); // as this method is used after mesh generation, UV of nodes is not // updated according to bending links, so we update if ( nodes[i]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_FACE ) CheckNodeUV( F, nodes[i], uv[ i ], 2*tol, /*force=*/true ); } // move the central node gp_XY uvCent = GetCenterUV( uv[0], uv[1], uv[2], uv[3], uv[4], uv[5] ); gp_Pnt p = surf->Value( uvCent.X(), uvCent.Y() ).Transformed( loc ); GetMeshDS()->MoveNode( tria->GetNode(6), p.X(), p.Y(), p.Z() ); } } // treat tri-quadratic hexahedra { SMDS_VolumeTool volExp; TIDSortedElemSet::iterator hexIt = triQuadHexa.begin(); for ( ; hexIt != triQuadHexa.end(); ++hexIt ) { volExp.Set( *hexIt, /*ignoreCentralNodes=*/false ); // fix nodes central in sides for ( int iQuad = 0; iQuad < volExp.NbFaces(); ++iQuad ) { const SMDS_MeshNode** quadNodes = volExp.GetFaceNodes( iQuad ); if ( quadNodes[8]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_3DSPACE ) { gp_XYZ p = calcTFI( 0.5, 0.5, SMESH_TNodeXYZ( quadNodes[0] ), SMESH_TNodeXYZ( quadNodes[2] ), SMESH_TNodeXYZ( quadNodes[4] ), SMESH_TNodeXYZ( quadNodes[6] ), SMESH_TNodeXYZ( quadNodes[1] ), SMESH_TNodeXYZ( quadNodes[3] ), SMESH_TNodeXYZ( quadNodes[5] ), SMESH_TNodeXYZ( quadNodes[7] )); GetMeshDS()->MoveNode( quadNodes[8], p.X(), p.Y(), p.Z()); } } // fix the volume central node vector pointsOnShapes( SMESH_Block::ID_Shell ); const SMDS_MeshNode** hexNodes = volExp.GetNodes(); pointsOnShapes[ SMESH_Block::ID_V000 ] = SMESH_TNodeXYZ( hexNodes[ 0 ] ); pointsOnShapes[ SMESH_Block::ID_V100 ] = SMESH_TNodeXYZ( hexNodes[ 3 ] ); pointsOnShapes[ SMESH_Block::ID_V010 ] = SMESH_TNodeXYZ( hexNodes[ 1 ] ); pointsOnShapes[ SMESH_Block::ID_V110 ] = SMESH_TNodeXYZ( hexNodes[ 2 ] ); pointsOnShapes[ SMESH_Block::ID_V001 ] = SMESH_TNodeXYZ( hexNodes[ 4 ] ); pointsOnShapes[ SMESH_Block::ID_V101 ] = SMESH_TNodeXYZ( hexNodes[ 7 ] ); pointsOnShapes[ SMESH_Block::ID_V011 ] = SMESH_TNodeXYZ( hexNodes[ 5 ] ); pointsOnShapes[ SMESH_Block::ID_V111 ] = SMESH_TNodeXYZ( hexNodes[ 6 ] ); pointsOnShapes[ SMESH_Block::ID_Ex00 ] = SMESH_TNodeXYZ( hexNodes[ 11 ] ); pointsOnShapes[ SMESH_Block::ID_Ex10 ] = SMESH_TNodeXYZ( hexNodes[ 9 ] ); pointsOnShapes[ SMESH_Block::ID_E0y0 ] = SMESH_TNodeXYZ( hexNodes[ 8 ] ); pointsOnShapes[ SMESH_Block::ID_E1y0 ] = SMESH_TNodeXYZ( hexNodes[ 10 ] ); pointsOnShapes[ SMESH_Block::ID_Ex01 ] = SMESH_TNodeXYZ( hexNodes[ 15 ] ); pointsOnShapes[ SMESH_Block::ID_Ex11 ] = SMESH_TNodeXYZ( hexNodes[ 13 ] ); pointsOnShapes[ SMESH_Block::ID_E0y1 ] = SMESH_TNodeXYZ( hexNodes[ 12 ] ); pointsOnShapes[ SMESH_Block::ID_E1y1 ] = SMESH_TNodeXYZ( hexNodes[ 14 ] ); pointsOnShapes[ SMESH_Block::ID_E00z ] = SMESH_TNodeXYZ( hexNodes[ 16 ] ); pointsOnShapes[ SMESH_Block::ID_E10z ] = SMESH_TNodeXYZ( hexNodes[ 19 ] ); pointsOnShapes[ SMESH_Block::ID_E01z ] = SMESH_TNodeXYZ( hexNodes[ 17 ] ); pointsOnShapes[ SMESH_Block::ID_E11z ] = SMESH_TNodeXYZ( hexNodes[ 18 ] ); pointsOnShapes[ SMESH_Block::ID_Fxy0 ] = SMESH_TNodeXYZ( hexNodes[ 20 ] ); pointsOnShapes[ SMESH_Block::ID_Fxy1 ] = SMESH_TNodeXYZ( hexNodes[ 25 ] ); pointsOnShapes[ SMESH_Block::ID_Fx0z ] = SMESH_TNodeXYZ( hexNodes[ 21 ] ); pointsOnShapes[ SMESH_Block::ID_Fx1z ] = SMESH_TNodeXYZ( hexNodes[ 23 ] ); pointsOnShapes[ SMESH_Block::ID_F0yz ] = SMESH_TNodeXYZ( hexNodes[ 24 ] ); pointsOnShapes[ SMESH_Block::ID_F1yz ] = SMESH_TNodeXYZ( hexNodes[ 22 ] ); gp_XYZ nCenterParams(0.5, 0.5, 0.5), nCenterCoords; SMESH_Block::ShellPoint( nCenterParams, pointsOnShapes, nCenterCoords ); GetMeshDS()->MoveNode( hexNodes[26], nCenterCoords.X(), nCenterCoords.Y(), nCenterCoords.Z()); } } }