# -*- coding: iso-8859-1 -*- # Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE # # Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, # CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com # # ======================================= # from geompy import * import smesh # Geometry # ======== # A twice holed cube build by points, edges, faces and solids # Values # ------ ox = 0 oy = 0 oz = 0 longueur = 200 largeur = 100 hauteur = 80 cylindre = 50 rayon = 20 # Points # ------ piecePoint1 = MakeVertex(ox , oy, oz) piecePoint2 = MakeVertex(ox+longueur, oy, oz) piecePoint3 = MakeVertex(ox+longueur, oy, oz+largeur) piecePoint4 = MakeVertex(ox , oy, oz+largeur) cz = oz+largeur/2 cylPoint1 = MakeVertex(ox+cylindre , oy, cz-rayon) cylPoint2 = MakeVertex(ox+longueur-cylindre, oy, cz-rayon) cylPoint3 = MakeVertex(ox+longueur-cylindre, oy, cz+rayon) cylPoint4 = MakeVertex(ox+cylindre , oy, cz+rayon) # Edges # ----- pieceEdge1 = MakeEdge(piecePoint1, piecePoint4) pieceEdge2 = MakeEdge(piecePoint1, cylPoint1) pieceEdge3 = MakeEdge(piecePoint4, cylPoint4) pieceEdge4 = MakeEdge(piecePoint2, piecePoint3) pieceEdge5 = MakeEdge(piecePoint2, cylPoint2) pieceEdge6 = MakeEdge(piecePoint3, cylPoint3) pieceEdge7 = MakeEdge(cylPoint1, cylPoint2) pieceEdge8 = MakeEdge(cylPoint3, cylPoint4) cylEdge1 = MakeArc(cylPoint1, MakeVertex(ox+cylindre-rayon , oy, cz), cylPoint4) cylEdge2 = MakeArc(cylPoint1, MakeVertex(ox+cylindre+rayon , oy, cz), cylPoint4) cylEdge3 = MakeArc(cylPoint2, MakeVertex(ox+longueur-cylindre-rayon, oy, cz), cylPoint3) cylEdge4 = MakeArc(cylPoint2, MakeVertex(ox+longueur-cylindre+rayon, oy, cz), cylPoint3) # Faces # ----- pieceFace1 = MakeQuad4Vertices(piecePoint1, piecePoint2, cylPoint2 , cylPoint1 ) pieceFace2 = MakeQuad (pieceEdge1 , pieceEdge2 , cylEdge1 , pieceEdge3) pieceFace3 = MakeQuad4Vertices(piecePoint3, piecePoint4, cylPoint4 , cylPoint3 ) pieceFace4 = MakeQuad (pieceEdge4 , pieceEdge5 , cylEdge4 , pieceEdge6) pieceFace5 = MakeQuad (pieceEdge7 , cylEdge3 , pieceEdge8, cylEdge2 ) # Solids # ------ pieceVector = MakeVectorDXDYDZ(0, 1, 0) pieceSolid1 = MakePrismVecH(pieceFace1, pieceVector, hauteur) pieceSolid2 = MakePrismVecH(pieceFace2, pieceVector, hauteur) pieceSolid3 = MakePrismVecH(pieceFace3, pieceVector, hauteur) pieceSolid4 = MakePrismVecH(pieceFace4, pieceVector, hauteur) pieceSolid5 = MakePrismVecH(pieceFace5, pieceVector, hauteur) # Compound and glue # ----------------- c_cpd = MakeCompound([pieceSolid1, pieceSolid2, pieceSolid3, pieceSolid4, pieceSolid5]) piece = MakeGlueFaces(c_cpd, 1.e-5) # Add in study # ------------ piece_id = addToStudy(piece, "ex08_hole2build") # Meshing # ======= # Create a hexahedral mesh # ------------------------ hexa = smesh.Mesh(piece, "ex08_hole2build:hexa") algo = hexa.Segment() algo.NumberOfSegments(7) hexa.Quadrangle() hexa.Hexahedron() # Mesh calculus # ------------- hexa.Compute()