/*! \page tui_modifying_meshes_page Modifying Meshes
\anchor tui_adding_nodes_and_elements

Adding Nodes and Elements


\anchor tui_add_node

Add Node

\code import SMESH_mechanic mesh = SMESH_mechanic.mesh # add node new_id = mesh.AddNode(50, 10, 0) print "" if new_id == 0: print "KO node addition." else: print "New Node has been added with ID ", new_id \endcode
\anchor tui_add_edge

Add Edge

\code import SMESH_mechanic mesh = SMESH_mechanic.mesh print "" # add node n1 = mesh.AddNode(50, 10, 0) if n1 == 0: print "KO node addition." # add edge e1 = mesh.AddEdge([n1, 38]) if e1 == 0: print "KO edge addition." else: print "New Edge has been added with ID ", e1 \endcode
\anchor tui_add_triangle

Add Triangle

\code import SMESH_mechanic mesh = SMESH_mechanic.mesh print "" # add node n1 = mesh.AddNode(50, 10, 0) if n1 == 0: print "KO node addition." # add triangle t1 = mesh.AddFace([n1, 38, 39]) if t1 == 0: print "KO triangle addition." else: print "New Triangle has been added with ID ", t1 \endcode
\anchor tui_add_quadrangle

Add Quadrangle

\code import SMESH_mechanic mesh = SMESH_mechanic.mesh print "" # add node n1 = mesh.AddNode(50, 10, 0) if n1 == 0: print "KO node addition." n2 = mesh.AddNode(40, 20, 0) if n2 == 0: print "KO node addition." # add quadrangle q1 = mesh.AddFace([n2, n1, 38, 39]) if q1 == 0: print "KO quadrangle addition." else: print "New Quadrangle has been added with ID ", q1 \endcode
\anchor tui_add_tetrahedron

Add Tetrahedron

\code import SMESH_mechanic mesh = SMESH_mechanic.mesh print "" # add node n1 = mesh.AddNode(50, 10, 0) if n1 == 0: print "KO node addition." # add tetrahedron t1 = mesh.AddVolume([n1, 38, 39, 246]) if t1 == 0: print "KO tetrahedron addition." else: print "New Tetrahedron has been added with ID ", t1 \endcode
\anchor tui_add_hexahedron

Add Hexahedron

\code import SMESH_mechanic mesh = SMESH_mechanic.mesh print "" # add nodes nId1 = mesh.AddNode(50, 10, 0) nId2 = mesh.AddNode(47, 12, 0) nId3 = mesh.AddNode(50, 10, 10) nId4 = mesh.AddNode(47, 12, 10) if nId1 == 0 or nId2 == 0 or nId3 == 0 or nId4 == 0: print "KO node addition." # add hexahedron vId = mesh.AddVolume([nId2, nId1, 38, 39, nId4, nId3, 245, 246]) if vId == 0: print "KO Hexahedron addition." else: print "New Hexahedron has been added with ID ", vId \endcode
\anchor tui_add_polygon

Add Polygon

\code import math import salome import smesh # create an empty mesh structure mesh = smesh.Mesh() # a method to build a polygonal mesh element with angles: def MakePolygon (a_mesh, x0, y0, z0, radius, nb_vert): al = 2.0 * math.pi / nb_vert node_ids = [] # Create nodes for a polygon for ii in range(nb_vert): nid = mesh.AddNode(x0 + radius * math.cos(ii*al), y0 + radius * math.sin(ii*al), z0) node_ids.append(nid) pass # Create a polygon return mesh.AddPolygonalFace(node_ids) # Create three polygons f1 = MakePolygon(mesh, 0, 0, 0, 30, 13) f2 = MakePolygon(mesh, 0, 0, 10, 21, 9) f3 = MakePolygon(mesh, 0, 0, 20, 13, 6) salome.sg.updateObjBrowser(1) \endcode
\anchor tui_add_polyhedron

Add Polyhedron

\code import salome import math # create an empty mesh structure mesh = smesh.Mesh() # Create nodes for 12-hedron with pentagonal faces al = 2 * math.pi / 5.0 cosal = math.cos(al) aa = 13 rr = aa / (2.0 * math.sin(al/2.0)) dr = 2.0 * rr * cosal r1 = rr + dr dh = rr * math.sqrt(2.0 * (1.0 - cosal * (1.0 + 2.0 * cosal))) hh = 2.0 * dh - dr * (rr*(cosal - 1) + (rr + dr)*(math.cos(al/2) - 1)) / dh dd = [] # top cc = [] # below top bb = [] # above bottom aa = [] # bottom for i in range(5): cos_bot = math.cos(i*al) sin_bot = math.sin(i*al) cos_top = math.cos(i*al + al/2.0) sin_top = math.sin(i*al + al/2.0) nd = mesh.AddNode(rr * cos_top, rr * sin_top, hh ) # top nc = mesh.AddNode(r1 * cos_top, r1 * sin_top, hh - dh) # below top nb = mesh.AddNode(r1 * cos_bot, r1 * sin_bot, dh) # above bottom na = mesh.AddNode(rr * cos_bot, rr * sin_bot, 0) # bottom dd.append(nd) # top cc.append(nc) # below top bb.append(nb) # above bottom aa.append(na) # bottom pass # Create a polyhedral volume (12-hedron with pentagonal faces) MeshEditor.AddPolyhedralVolume([dd[0], dd[1], dd[2], dd[3], dd[4], # top dd[0], cc[0], bb[1], cc[1], dd[1], # - dd[1], cc[1], bb[2], cc[2], dd[2], # - dd[2], cc[2], bb[3], cc[3], dd[3], # - below top dd[3], cc[3], bb[4], cc[4], dd[4], # - dd[4], cc[4], bb[0], cc[0], dd[0], # - aa[4], bb[4], cc[4], bb[0], aa[0], # . aa[3], bb[3], cc[3], bb[4], aa[4], # . aa[2], bb[2], cc[2], bb[3], aa[3], # . above bottom aa[1], bb[1], cc[1], bb[2], aa[2], # . aa[0], bb[0], cc[0], bb[1], aa[1], # . aa[0], aa[1], aa[2], aa[3], aa[4]], # bottom [5,5,5,5,5,5,5,5,5,5,5,5]) salome.sg.updateObjBrowser(1) \endcode
\anchor tui_removing_nodes_and_elements

Removing Nodes and Elements


\anchor tui_removing_nodes

Removing Nodes

\code import SMESH_mechanic mesh = SMESH_mechanic.mesh # remove nodes #246 and #255 res = mesh.RemoveNodes([246, 255]) if res == 1: print "Nodes removing is OK!" else: print "KO nodes removing." \endcode
\anchor tui_removing_elements

Removing Elements

\code import SMESH_mechanic mesh = SMESH_mechanic.mesh # remove three elements: #850, #859 and #814 res = mesh.RemoveElements([850, 859, 814]) if res == 1: print "Elements removing is OK!" else: print "KO Elements removing." \endcode
\anchor tui_renumbering_nodes_and_elements

Renumbering Nodes and Elements

\code import SMESH_mechanic mesh = SMESH_mechanic.mesh mesh.RenumberNodes() mesh.RenumberElements() \endcode
\anchor tui_moving_nodes

Moving Nodes

\code import SMESH_mechanic mesh = SMESH_mechanic.mesh # move node #38 mesh.MoveNode(38, 20., 10., 0.) \endcode
\anchor tui_mesh_through_point

Mesh through point

\code from geompy import * from smesh import * box = MakeBoxDXDYDZ(200, 200, 200) mesh = Mesh( box ) mesh.Segment().AutomaticLength(0.1) mesh.Quadrangle() mesh.Compute() # find node at (0,0,0) node000 = None for vId in SubShapeAllIDs( box, ShapeType["VERTEX"]): if node000: break nodeIds = mesh.GetSubMeshNodesId( vId, True ) for node in nodeIds: xyz = mesh.GetNodeXYZ( node ) if xyz[0] == 0 and xyz[1] == 0 and xyz[2] == 0 : node000 = node pass pass pass if not node000: raise "node000 not found" # find node000 using the tested function n = mesh.FindNodeClosestTo( -1,-1,-1 ) if not n == node000: raise "FindNodeClosestTo() returns " + str( n ) + " != " + str( node000 ) # check if any node will be found for a point inside a box n = mesh.FindNodeClosestTo( 100, 100, 100 ) if not n > 0: raise "FindNodeClosestTo( 100, 100, 100 ) fails" # move node000 to a new location x,y,z = -10, -10, -10 n = mesh.MeshToPassThroughAPoint( x,y,z ) if not n == node000: raise "FindNodeClosestTo() returns " + str( n ) + " != " + str( node000 ) # check the coordinates of the node000 xyz = mesh.GetNodeXYZ( node000 ) if not ( xyz[0] == x and xyz[1] == y and xyz[2] == z) : raise "Wrong coordinates: " + str( xyz ) + " != " + str( [x,y,z] ) \endcode
\anchor tui_diagonal_inversion

Diagonal Inversion

\code import salome import smesh # create an empty mesh structure mesh = smesh.Mesh() # create the following mesh: # .----.----.----. # | /| /| /| # | / | / | / | # | / | / | / | # |/ |/ |/ | # .----.----.----. bb = [0, 0, 0, 0] tt = [0, 0, 0, 0] ff = [0, 0, 0, 0, 0, 0] bb[0] = mesh.AddNode( 0., 0., 0.) bb[1] = mesh.AddNode(10., 0., 0.) bb[2] = mesh.AddNode(20., 0., 0.) bb[3] = mesh.AddNode(30., 0., 0.) tt[0] = mesh.AddNode( 0., 15., 0.) tt[1] = mesh.AddNode(10., 15., 0.) tt[2] = mesh.AddNode(20., 15., 0.) tt[3] = mesh.AddNode(30., 15., 0.) ff[0] = mesh.AddFace([bb[0], bb[1], tt[1]]) ff[1] = mesh.AddFace([bb[0], tt[1], tt[0]]) ff[2] = mesh.AddFace([bb[1], bb[2], tt[2]]) ff[3] = mesh.AddFace([bb[1], tt[2], tt[1]]) ff[4] = mesh.AddFace([bb[2], bb[3], tt[3]]) ff[5] = mesh.AddFace([bb[2], tt[3], tt[2]]) # inverse the diagonal bb[1] - tt[2] print "\nDiagonal inversion ... ", res = mesh.InverseDiag(bb[1], tt[2]) if not res: print "failed!" else: print "done." salome.sg.updateObjBrowser(1) \endcode
\anchor tui_uniting_two_triangles

Uniting two Triangles

\code import salome import smesh # create an empty mesh structure mesh = smesh.Mesh() # create the following mesh: # .----.----.----. # | /| /| /| # | / | / | / | # | / | / | / | # |/ |/ |/ | # .----.----.----. bb = [0, 0, 0, 0] tt = [0, 0, 0, 0] ff = [0, 0, 0, 0, 0, 0] bb[0] = mesh.AddNode( 0., 0., 0.) bb[1] = mesh.AddNode(10., 0., 0.) bb[2] = mesh.AddNode(20., 0., 0.) bb[3] = mesh.AddNode(30., 0., 0.) tt[0] = mesh.AddNode( 0., 15., 0.) tt[1] = mesh.AddNode(10., 15., 0.) tt[2] = mesh.AddNode(20., 15., 0.) tt[3] = mesh.AddNode(30., 15., 0.) ff[0] = mesh.AddFace([bb[0], bb[1], tt[1]]) ff[1] = mesh.AddFace([bb[0], tt[1], tt[0]]) ff[2] = mesh.AddFace([bb[1], bb[2], tt[2]]) ff[3] = mesh.AddFace([bb[1], tt[2], tt[1]]) ff[4] = mesh.AddFace([bb[2], bb[3], tt[3]]) ff[5] = mesh.AddFace([bb[2], tt[3], tt[2]]) # delete the diagonal bb[1] - tt[2] print "\nUnite two triangles ... ", res = mesh.DeleteDiag(bb[1], tt[2]) if not res: print "failed!" else: print "done." salome.sg.updateObjBrowser(1) \endcode
\anchor tui_uniting_set_of_triangles

Uniting a Set of Triangles

\code import salome import smesh # create an empty mesh structure mesh = smesh.Mesh() # create the following mesh: # .----.----.----. # | /| /| /| # | / | / | / | # | / | / | / | # |/ |/ |/ | # .----.----.----. bb = [0, 0, 0, 0] tt = [0, 0, 0, 0] ff = [0, 0, 0, 0, 0, 0] bb[0] = mesh.AddNode( 0., 0., 0.) bb[1] = mesh.AddNode(10., 0., 0.) bb[2] = mesh.AddNode(20., 0., 0.) bb[3] = mesh.AddNode(30., 0., 0.) tt[0] = mesh.AddNode( 0., 15., 0.) tt[1] = mesh.AddNode(10., 15., 0.) tt[2] = mesh.AddNode(20., 15., 0.) tt[3] = mesh.AddNode(30., 15., 0.) ff[0] = mesh.AddFace([bb[0], bb[1], tt[1]]) ff[1] = mesh.AddFace([bb[0], tt[1], tt[0]]) ff[2] = mesh.AddFace([bb[1], bb[2], tt[2]]) ff[3] = mesh.AddFace([bb[1], tt[2], tt[1]]) ff[4] = mesh.AddFace([bb[2], bb[3], tt[3]]) ff[5] = mesh.AddFace([bb[2], tt[3], tt[2]]) # unite a set of triangles print "\nUnite a set of triangles ... ", res = mesh.TriToQuad([ff[2], ff[3], ff[4], ff[5]], smesh.FT_MinimumAngle, 60.) if not res: print "failed!" else: print "done." salome.sg.updateObjBrowser(1) \endcode
\anchor tui_orientation

Orientation

\code import salome import smesh # create an empty mesh structure mesh = smesh.Mesh() # build five quadrangles: dx = 10 dy = 20 n1 = mesh.AddNode(0.0 * dx, 0, 0) n2 = mesh.AddNode(1.0 * dx, 0, 0) n3 = mesh.AddNode(2.0 * dx, 0, 0) n4 = mesh.AddNode(3.0 * dx, 0, 0) n5 = mesh.AddNode(4.0 * dx, 0, 0) n6 = mesh.AddNode(5.0 * dx, 0, 0) n7 = mesh.AddNode(0.0 * dx, dy, 0) n8 = mesh.AddNode(1.0 * dx, dy, 0) n9 = mesh.AddNode(2.0 * dx, dy, 0) n10 = mesh.AddNode(3.0 * dx, dy, 0) n11 = mesh.AddNode(4.0 * dx, dy, 0) n12 = mesh.AddNode(5.0 * dx, dy, 0) f1 = mesh.AddFace([n1, n2, n8 , n7 ]) f2 = mesh.AddFace([n2, n3, n9 , n8 ]) f3 = mesh.AddFace([n3, n4, n10, n9 ]) f4 = mesh.AddFace([n4, n5, n11, n10]) f5 = mesh.AddFace([n5, n6, n12, n11]) # Change the orientation of the second and the fourth faces. mesh.Reorient([2, 4]) salome.sg.updateObjBrowser(1) \endcode
\anchor tui_cutting_quadrangles

Cutting Quadrangles

\code import SMESH_mechanic smesh = SMESH_mechanic.smesh mesh = SMESH_mechanic.mesh # cut two quadrangles: 405 and 406 mesh.QuadToTri([405, 406], smesh.FT_MinimumAngle) \endcode
\anchor tui_smoothing

Smoothing

\code import salome import geompy import SMESH_mechanic smesh = SMESH_mechanic.smesh mesh = SMESH_mechanic.mesh # select the top face faces = geompy.SubShapeAllSorted(SMESH_mechanic.shape_mesh, geompy.ShapeType["FACE"]) face = faces[3] geompy.addToStudyInFather(SMESH_mechanic.shape_mesh, face, "face planar with hole") # create a group of faces to be smoothed GroupSmooth = mesh.GroupOnGeom(face, "Group of faces (smooth)", smesh.FACE) # perform smoothing # boolean SmoothObject(Object, IDsOfFixedNodes, MaxNbOfIterations, MaxAspectRatio, Method) res = mesh.SmoothObject(GroupSmooth, [], 20, 2., smesh.CENTROIDAL_SMOOTH) print "\nSmoothing ... ", if not res: print "failed!" else: print "done." salome.sg.updateObjBrowser(1) \endcode
\anchor tui_extrusion

Extrusion

\code import salome import geompy import SMESH_mechanic smesh = SMESH_mechanic.smesh mesh = SMESH_mechanic.mesh # select the top face faces = geompy.SubShapeAllSorted(SMESH_mechanic.shape_mesh, geompy.ShapeType["FACE"]) face = faces[7] geompy.addToStudyInFather(SMESH_mechanic.shape_mesh, face, "face circular top") # create a vector for extrusion point = smesh.PointStruct(0., 0., 5.) vector = smesh.DirStruct(point) # create a group to be extruded GroupTri = mesh.GroupOnGeom(face, "Group of faces (extrusion)", smesh.FACE) # perform extrusion of the group mesh.ExtrusionSweepObject(GroupTri, vector, 5) salome.sg.updateObjBrowser(1) \endcode
\anchor tui_extrusion_along_path

Extrusion along a Path

\code import math import salome # Geometry import geompy # 1. Create points points = [[0, 0], [50, 30], [50, 110], [0, 150], [-80, 150], [-130, 70], [-130, -20]] iv = 1 vertices = [] for point in points: vert = geompy.MakeVertex(point[0], point[1], 0) geompy.addToStudy(vert, "Vertex_" + `iv`) vertices.append(vert) iv += 1 pass # 2. Create edges and wires Edge_straight = geompy.MakeEdge(vertices[0], vertices[4]) Edge_bezierrr = geompy.MakeBezier(vertices) Wire_polyline = geompy.MakePolyline(vertices) Edge_Circle = geompy.MakeCircleThreePnt(vertices[0], vertices[1], vertices[2]) geompy.addToStudy(Edge_straight, "Edge_straight") geompy.addToStudy(Edge_bezierrr, "Edge_bezierrr") geompy.addToStudy(Wire_polyline, "Wire_polyline") geompy.addToStudy(Edge_Circle , "Edge_Circle") # 3. Explode wire on edges, as they will be used for mesh extrusion Wire_polyline_edges = geompy.SubShapeAll(Wire_polyline, geompy.ShapeType["EDGE"]) for ii in range(len(Wire_polyline_edges)): geompy.addToStudyInFather(Wire_polyline, Wire_polyline_edges[ii], "Edge_" + `ii + 1`) pass # Mesh import smesh # Mesh the given shape with the given 1d hypothesis def Mesh1D(shape1d, nbSeg, name): mesh1d_tool = smesh.Mesh(shape1d, name) algo = mesh1d_tool.Segment() hyp = algo.NumberOfSegments(nbSeg) isDone = mesh1d_tool.Compute() if not isDone: print 'Mesh ', name, ': computation failed' return mesh1d_tool # Create a mesh with six nodes, seven edges and two quadrangle faces def MakeQuadMesh2(mesh_name): quad_1 = smesh.Mesh(name = mesh_name) # six nodes n1 = quad_1.AddNode(0, 20, 10) n2 = quad_1.AddNode(0, 40, 10) n3 = quad_1.AddNode(0, 40, 30) n4 = quad_1.AddNode(0, 20, 30) n5 = quad_1.AddNode(0, 0, 30) n6 = quad_1.AddNode(0, 0, 10) # seven edges quad_1.AddEdge([n1, n2]) # 1 quad_1.AddEdge([n2, n3]) # 2 quad_1.AddEdge([n3, n4]) # 3 quad_1.AddEdge([n4, n1]) # 4 quad_1.AddEdge([n4, n5]) # 5 quad_1.AddEdge([n5, n6]) # 6 quad_1.AddEdge([n6, n1]) # 7 # two quadrangle faces quad_1.AddFace([n1, n2, n3, n4]) # 8 quad_1.AddFace([n1, n4, n5, n6]) # 9 return [quad_1, [1,2,3,4,5,6,7], [8,9]] # Path meshes Edge_straight_mesh = Mesh1D(Edge_straight, 7, "Edge_straight") Edge_bezierrr_mesh = Mesh1D(Edge_bezierrr, 7, "Edge_bezierrr") Wire_polyline_mesh = Mesh1D(Wire_polyline, 3, "Wire_polyline") Edge_Circle_mesh = Mesh1D(Edge_Circle , 8, "Edge_Circle") # Initial meshes (to be extruded) [quad_1, ee_1, ff_1] = MakeQuadMesh2("quad_1") [quad_2, ee_2, ff_2] = MakeQuadMesh2("quad_2") [quad_3, ee_3, ff_3] = MakeQuadMesh2("quad_3") [quad_4, ee_4, ff_4] = MakeQuadMesh2("quad_4") [quad_5, ee_5, ff_5] = MakeQuadMesh2("quad_5") [quad_6, ee_6, ff_6] = MakeQuadMesh2("quad_6") [quad_7, ee_7, ff_7] = MakeQuadMesh2("quad_7") # ExtrusionAlongPath # IDsOfElements, PathMesh, PathShape, NodeStart, # HasAngles, Angles, HasRefPoint, RefPoint refPoint = smesh.PointStruct(0, 0, 0) a10 = 10.0*math.pi/180.0 a45 = 45.0*math.pi/180.0 # 1. Extrusion of two mesh edges along a straight path error = quad_1.ExtrusionAlongPath([1,2], Edge_straight_mesh, Edge_straight, 1, 0, [], 0, refPoint) # 2. Extrusion of one mesh edge along a curved path error = quad_2.ExtrusionAlongPath([2], Edge_bezierrr_mesh, Edge_bezierrr, 1, 0, [], 0, refPoint) # 3. Extrusion of one mesh edge along a curved path with usage of angles error = quad_3.ExtrusionAlongPath([2], Edge_bezierrr_mesh, Edge_bezierrr, 1, 1, [a45, a45, a45, 0, -a45, -a45, -a45], 0, refPoint) # 4. Extrusion of one mesh edge along the path, which is a part of a meshed wire error = quad_4.ExtrusionAlongPath([4], Wire_polyline_mesh, Wire_polyline_edges[0], 1, 1, [a10, a10, a10], 0, refPoint) # 5. Extrusion of two mesh faces along the path, which is a part of a meshed wire error = quad_5.ExtrusionAlongPath(ff_5 , Wire_polyline_mesh, Wire_polyline_edges[2], 4, 0, [], 0, refPoint) # 6. Extrusion of two mesh faces along a closed path error = quad_6.ExtrusionAlongPath(ff_6 , Edge_Circle_mesh, Edge_Circle, 1, 0, [], 0, refPoint) # 7. Extrusion of two mesh faces along a closed path with usage of angles error = quad_7.ExtrusionAlongPath(ff_7, Edge_Circle_mesh, Edge_Circle, 1, 1, [a45, -a45, a45, -a45, a45, -a45, a45, -a45], 0, refPoint) salome.sg.updateObjBrowser(1) \endcode
\anchor tui_revolution

Revolution

\code import math import SMESH import SMESH_mechanic mesh = SMESH_mechanic.mesh smesh = SMESH_mechanic.smesh # create a group of faces to be revolved FacesRotate = [492, 493, 502, 503] GroupRotate = mesh.CreateEmptyGroup(SMESH.FACE,"Group of faces (rotate)") GroupRotate.Add(FacesRotate) # define revolution angle and axis angle45 = 45 * math.pi / 180 axisXYZ = SMESH.AxisStruct(-38.3128, -73.3658, -23.321, -13.3402, -13.3265, 6.66632) # perform revolution of an object mesh.RotationSweepObject(GroupRotate, axisXYZ, angle45, 4, 1e-5) \endcode
\anchor tui_pattern_mapping

Pattern Mapping

\code import geompy import smesh # define the geometry Box_1 = geompy.MakeBoxDXDYDZ(200., 200., 200.) geompy.addToStudy(Box_1, "Box_1") faces = geompy.SubShapeAll(Box_1, geompy.ShapeType["FACE"]) Face_1 = faces[0] Face_2 = faces[1] geompy.addToStudyInFather(Box_1, Face_1, "Face_1") geompy.addToStudyInFather(Box_1, Face_2, "Face_2") # build a quadrangle mesh 3x3 on Face_1 Mesh_1 = smesh.Mesh(Face_1) algo1D = Mesh_1.Segment() algo1D.NumberOfSegments(3) Mesh_1.Quadrangle() isDone = Mesh_1.Compute() if not isDone: print 'Mesh Mesh_1 : computation failed' # build a triangle mesh on Face_2 Mesh_2 = smesh.Mesh(Face_2) algo1D = Mesh_2.Segment() algo1D.NumberOfSegments(1) algo2D = Mesh_2.Triangle() algo2D.MaxElementArea(240) isDone = Mesh_2.Compute() if not isDone: print 'Mesh Mesh_2 : computation failed' # create a 2d pattern pattern = smesh.GetPattern() isDone = pattern.LoadFromFace(Mesh_2.GetMesh(), Face_2, 0) if (isDone != 1): print 'LoadFromFace :', pattern.GetErrorCode() # apply the pattern to a face of the first mesh facesToSplit = Mesh_1.GetElementsByType(smesh.SMESH.FACE) print "Splitting %d rectangular face(s) to %d triangles..."%(len(facesToSplit), 2*len(facesToSplit)) pattern.ApplyToMeshFaces(Mesh_1.GetMesh(), facesToSplit, 0, 0) isDone = pattern.MakeMesh(Mesh_1.GetMesh(), 0, 0) if (isDone != 1): print 'MakeMesh :', pattern.GetErrorCode() # create quadrangle mesh Mesh_3 = smesh.Mesh(Box_1) Mesh_3.Segment().NumberOfSegments(1) Mesh_3.Quadrangle() Mesh_3.Hexahedron() isDone = Mesh_3.Compute() if not isDone: print 'Mesh Mesh_3 : computation failed' # create a 3d pattern (hexahedrons) pattern_hexa = smesh.GetPattern() smp_hexa = """!!! Nb of points: 15 0 0 0 !- 0 1 0 0 !- 1 0 1 0 !- 2 1 1 0 !- 3 0 0 1 !- 4 1 0 1 !- 5 0 1 1 !- 6 1 1 1 !- 7 0.5 0 0.5 !- 8 0.5 0 1 !- 9 0.5 0.5 0.5 !- 10 0.5 0.5 1 !- 11 1 0 0.5 !- 12 1 0.5 0.5 !- 13 1 0.5 1 !- 14 !!! Indices of points of 4 elements: 8 12 5 9 10 13 14 11 0 8 9 4 2 10 11 6 2 10 11 6 3 13 14 7 0 1 12 8 2 3 13 10""" pattern_hexa.LoadFromFile(smp_hexa) # apply the pattern to a mesh volsToSplit = Mesh_3.GetElementsByType(smesh.SMESH.VOLUME) print "Splitting %d hexa volume(s) to %d hexas..."%(len(volsToSplit), 4*len(volsToSplit)) pattern_hexa.ApplyToHexahedrons(Mesh_3.GetMesh(), volsToSplit,0,3) isDone = pattern_hexa.MakeMesh(Mesh_3.GetMesh(), True, True) if (isDone != 1): print 'MakeMesh :', pattern_hexa.GetErrorCode() # create one more quadrangle mesh Mesh_4 = smesh.Mesh(Box_1) Mesh_4.Segment().NumberOfSegments(1) Mesh_4.Quadrangle() Mesh_4.Hexahedron() isDone = Mesh_4.Compute() if not isDone: print 'Mesh Mesh_4 : computation failed' # create another 3d pattern (pyramids) pattern_pyra = smesh.GetPattern() smp_pyra = """!!! Nb of points: 9 0 0 0 !- 0 1 0 0 !- 1 0 1 0 !- 2 1 1 0 !- 3 0 0 1 !- 4 1 0 1 !- 5 0 1 1 !- 6 1 1 1 !- 7 0.5 0.5 0.5 !- 8 !!! Indices of points of 6 elements: 0 1 5 4 8 7 5 1 3 8 3 2 6 7 8 2 0 4 6 8 0 2 3 1 8 4 5 7 6 8""" pattern_pyra.LoadFromFile(smp_pyra) # apply the pattern to a face mesh volsToSplit = Mesh_4.GetElementsByType(smesh.SMESH.VOLUME) print "Splitting %d hexa volume(s) to %d hexas..."%(len(volsToSplit), 6*len(volsToSplit)) pattern_pyra.ApplyToHexahedrons(Mesh_4.GetMesh(), volsToSplit,1,0) isDone = pattern_pyra.MakeMesh(Mesh_4.GetMesh(), True, True) if (isDone != 1): print 'MakeMesh :', pattern_pyra.GetErrorCode() \endcode
\anchor tui_quadratic

Convert mesh to/from quadratic

\code import geompy import smesh # create sphere of radius 100 Sphere = geompy.MakeSphereR( 100 ) geompy.addToStudy( Sphere, "Sphere" ) # create simple trihedral mesh Mesh = smesh.Mesh(Sphere) Regular_1D = Mesh.Segment() Nb_Segments = Regular_1D.NumberOfSegments(5) MEFISTO_2D = Mesh.Triangle() Tetrahedron_Netgen = Mesh.Tetrahedron(algo=smesh.NETGEN) # compute mesh isDone = Mesh.Compute() # convert to quadratic # theForce3d = 1; this results in the medium node lying at the # middle of the line segments connecting start and end node of a mesh # element Mesh.ConvertToQuadratic( theForce3d=1 ) # revert back to the non-quadratic mesh Mesh.ConvertFromQuadratic() # convert to quadratic # theForce3d = 0; this results in the medium node lying at the # geometrical edge from which the mesh element is built Mesh.ConvertToQuadratic( theForce3d=0 ) \endcode */