smesh/src/StdMeshers/StdMeshers_Quadrangle_2D.cxx

5992 lines
203 KiB
C++

// Copyright (C) 2007-2022 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : StdMeshers_Quadrangle_2D.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
#include "StdMeshers_Quadrangle_2D.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMDS_FacePosition.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESH_Block.hxx"
#include "SMESH_Comment.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MeshAlgos.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_subMesh.hxx"
#include "StdMeshers_FaceSide.hxx"
#include "StdMeshers_QuadrangleParams.hxx"
#include "StdMeshers_ViscousLayers2D.hxx"
#include <BRepBndLib.hxx>
#include <BRepClass_FaceClassifier.hxx>
#include <BRep_Tool.hxx>
#include <Bnd_Box.hxx>
#include <GeomAPI_ProjectPointOnSurf.hxx>
#include <Geom_Surface.hxx>
#include <NCollection_DefineArray2.hxx>
#include <Precision.hxx>
#include <ShapeAnalysis.hxx>
#include <TColStd_SequenceOfInteger.hxx>
#include <TColStd_SequenceOfReal.hxx>
#include <TColgp_SequenceOfXY.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_DataMapOfShapeReal.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
#include "utilities.h"
#include "Utils_ExceptHandlers.hxx"
#include <boost/container/flat_set.hpp>
#include <boost/intrusive/circular_list_algorithms.hpp>
typedef NCollection_Array2<const SMDS_MeshNode*> StdMeshers_Array2OfNode;
typedef gp_XY gp_UV;
typedef SMESH_Comment TComm;
using namespace std;
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_Quadrangle_2D::StdMeshers_Quadrangle_2D (int hypId,
SMESH_Gen* gen)
: SMESH_2D_Algo(hypId, gen),
myQuadranglePreference(false),
myTrianglePreference(false),
myTriaVertexID(-1),
myNeedSmooth(false),
myCheckOri(false),
myParams( NULL ),
myQuadType(QUAD_STANDARD),
myHelper( NULL )
{
_name = "Quadrangle_2D";
_shapeType = (1 << TopAbs_FACE);
_compatibleHypothesis.push_back("QuadrangleParams");
_compatibleHypothesis.push_back("QuadranglePreference");
_compatibleHypothesis.push_back("TrianglePreference");
_compatibleHypothesis.push_back("ViscousLayers2D");
}
//=============================================================================
/*!
*
*/
//=============================================================================
StdMeshers_Quadrangle_2D::~StdMeshers_Quadrangle_2D()
{
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::CheckHypothesis
(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus)
{
myTriaVertexID = -1;
myQuadType = QUAD_STANDARD;
myQuadranglePreference = false;
myTrianglePreference = false;
myHelper = (SMESH_MesherHelper*)NULL;
myParams = NULL;
myProxyMesh.reset();
myQuadList.clear();
aStatus = SMESH_Hypothesis::HYP_OK;
const list <const SMESHDS_Hypothesis * >& hyps =
GetUsedHypothesis(aMesh, aShape, false);
const SMESHDS_Hypothesis * aHyp = 0;
bool isFirstParams = true;
// First assigned hypothesis (if any) is processed now
if (hyps.size() > 0) {
aHyp = hyps.front();
if (strcmp("QuadrangleParams", aHyp->GetName()) == 0)
{
myParams = (const StdMeshers_QuadrangleParams*)aHyp;
myTriaVertexID = myParams->GetTriaVertex();
myQuadType = myParams->GetQuadType();
if (myQuadType == QUAD_QUADRANGLE_PREF ||
myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
myQuadranglePreference = true;
else if (myQuadType == QUAD_TRIANGLE_PREF)
myTrianglePreference = true;
}
else if (strcmp("QuadranglePreference", aHyp->GetName()) == 0) {
isFirstParams = false;
myQuadranglePreference = true;
}
else if (strcmp("TrianglePreference", aHyp->GetName()) == 0){
isFirstParams = false;
myTrianglePreference = true;
}
else {
isFirstParams = false;
}
}
// Second(last) assigned hypothesis (if any) is processed now
if (hyps.size() > 1) {
aHyp = hyps.back();
if (isFirstParams) {
if (strcmp("QuadranglePreference", aHyp->GetName()) == 0) {
myQuadranglePreference = true;
myTrianglePreference = false;
myQuadType = QUAD_STANDARD;
}
else if (strcmp("TrianglePreference", aHyp->GetName()) == 0){
myQuadranglePreference = false;
myTrianglePreference = true;
myQuadType = QUAD_STANDARD;
}
}
else if (const StdMeshers_QuadrangleParams* aHyp2 =
dynamic_cast<const StdMeshers_QuadrangleParams*>( aHyp ))
{
myTriaVertexID = aHyp2->GetTriaVertex();
if (!myQuadranglePreference && !myTrianglePreference) { // priority of hypos
myQuadType = aHyp2->GetQuadType();
if (myQuadType == QUAD_QUADRANGLE_PREF ||
myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
myQuadranglePreference = true;
else if (myQuadType == QUAD_TRIANGLE_PREF)
myTrianglePreference = true;
}
}
}
error( StdMeshers_ViscousLayers2D::CheckHypothesis( aMesh, aShape, aStatus ));
return aStatus == HYP_OK;
}
//=============================================================================
/*!
* Compute the mesh on the given shape
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::Compute( SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape )
{
const TopoDS_Face& F = TopoDS::Face(aShape);
aMesh.GetSubMesh( F );
// do not initialize my fields before this as StdMeshers_ViscousLayers2D
// can call Compute() recursively
SMESH_ProxyMesh::Ptr proxyMesh = StdMeshers_ViscousLayers2D::Compute( aMesh, F );
if ( !proxyMesh )
return false;
myProxyMesh = proxyMesh;
SMESH_MesherHelper helper (aMesh);
myHelper = &helper;
_quadraticMesh = myHelper->IsQuadraticSubMesh(aShape);
myHelper->SetElementsOnShape( true );
myNeedSmooth = false;
myCheckOri = false;
FaceQuadStruct::Ptr quad = CheckNbEdges( aMesh, F, /*considerMesh=*/true, myHelper );
if (!quad)
return false;
myQuadList.clear();
myQuadList.push_back( quad );
if ( !getEnforcedUV() )
return false;
updateDegenUV( quad );
int n1 = quad->side[0].NbPoints();
int n2 = quad->side[1].NbPoints();
int n3 = quad->side[2].NbPoints();
int n4 = quad->side[3].NbPoints();
enum { NOT_COMPUTED = -1, COMPUTE_FAILED = 0, COMPUTE_OK = 1 };
int res = NOT_COMPUTED;
if ( myQuadranglePreference )
{
int nfull = n1+n2+n3+n4;
if ((nfull % 2) == 0 && ((n1 != n3) || (n2 != n4)))
{
// special path generating only quandrangle faces
res = computeQuadPref( aMesh, F, quad );
}
}
else if ( myQuadType == QUAD_REDUCED )
{
int n13 = n1 - n3;
int n24 = n2 - n4;
int n13tmp = n13/2; n13tmp = n13tmp*2;
int n24tmp = n24/2; n24tmp = n24tmp*2;
if ((n1 == n3 && n2 != n4 && n24tmp == n24) ||
(n2 == n4 && n1 != n3 && n13tmp == n13))
{
res = computeReduced( aMesh, F, quad );
}
else
{
if ( n1 != n3 && n2 != n4 )
error( COMPERR_WARNING,
"To use 'Reduced' transition, "
"two opposite sides should have same number of segments, "
"but actual number of segments is different on all sides. "
"'Standard' transion has been used.");
else if ( ! ( n1 == n3 && n2 == n4 ))
error( COMPERR_WARNING,
"To use 'Reduced' transition, "
"two opposite sides should have an even difference in number of segments. "
"'Standard' transion has been used.");
}
}
if ( res == NOT_COMPUTED )
{
if ( n1 != n3 || n2 != n4 )
res = computeTriangles( aMesh, F, quad );
else
res = computeQuadDominant( aMesh, F );
}
if ( res == COMPUTE_OK && myNeedSmooth )
smooth( quad );
if ( res == COMPUTE_OK )
res = check();
return ( res == COMPUTE_OK );
}
//================================================================================
/*!
* \brief Compute quadrangles and triangles on the quad
*/
//================================================================================
bool StdMeshers_Quadrangle_2D::computeTriangles(SMESH_Mesh& aMesh,
const TopoDS_Face& aFace,
FaceQuadStruct::Ptr quad)
{
int nb = quad->side[0].grid->NbPoints();
int nr = quad->side[1].grid->NbPoints();
int nt = quad->side[2].grid->NbPoints();
int nl = quad->side[3].grid->NbPoints();
// rotate the quad to have nbNodeOut sides on TOP [and LEFT]
if ( nb > nt )
quad->shift( nl > nr ? 3 : 2, true );
else if ( nr > nl )
quad->shift( 1, true );
else if ( nl > nr )
quad->shift( nt > nb ? 0 : 3, true );
if ( !setNormalizedGrid( quad ))
return false;
if ( quad->nbNodeOut( QUAD_TOP_SIDE ))
{
splitQuad( quad, 0, quad->jSize-2 );
}
if ( quad->nbNodeOut( QUAD_BOTTOM_SIDE )) // this should not happen
{
splitQuad( quad, 0, 1 );
}
FaceQuadStruct::Ptr newQuad = myQuadList.back();
if ( quad != newQuad ) // split done
{
{ // update left side limit till where to make triangles
FaceQuadStruct::Ptr botQuad = // a bottom part
( quad->side[ QUAD_LEFT_SIDE ].from == 0 ) ? quad : newQuad;
if ( botQuad->nbNodeOut( QUAD_LEFT_SIDE ) > 0 )
botQuad->side[ QUAD_LEFT_SIDE ].to += botQuad->nbNodeOut( QUAD_LEFT_SIDE );
else if ( botQuad->nbNodeOut( QUAD_RIGHT_SIDE ) > 0 )
botQuad->side[ QUAD_RIGHT_SIDE ].to += botQuad->nbNodeOut( QUAD_RIGHT_SIDE );
}
// make quad be a greatest one
if ( quad->side[ QUAD_LEFT_SIDE ].NbPoints() == 2 ||
quad->side[ QUAD_RIGHT_SIDE ].NbPoints() == 2 )
quad = newQuad;
if ( !setNormalizedGrid( quad ))
return false;
}
if ( quad->nbNodeOut( QUAD_RIGHT_SIDE ))
{
splitQuad( quad, quad->iSize-2, 0 );
}
if ( quad->nbNodeOut( QUAD_LEFT_SIDE ))
{
splitQuad( quad, 1, 0 );
if ( quad->nbNodeOut( QUAD_TOP_SIDE ))
{
newQuad = myQuadList.back();
if ( newQuad == quad ) // too narrow to split
{
// update left side limit till where to make triangles
quad->side[ QUAD_LEFT_SIDE ].to--;
}
else
{
FaceQuadStruct::Ptr leftQuad =
( quad->side[ QUAD_BOTTOM_SIDE ].from == 0 ) ? quad : newQuad;
leftQuad->nbNodeOut( QUAD_TOP_SIDE ) = 0;
}
}
}
if ( ! computeQuadDominant( aMesh, aFace ))
return false;
// try to fix zero-area triangles near straight-angle corners
return true;
}
//================================================================================
/*!
* \brief Compute quadrangles and possibly triangles on all quads of myQuadList
*/
//================================================================================
bool StdMeshers_Quadrangle_2D::computeQuadDominant(SMESH_Mesh& aMesh,
const TopoDS_Face& aFace)
{
if ( !addEnforcedNodes() )
return false;
std::list< FaceQuadStruct::Ptr >::iterator quad = myQuadList.begin();
for ( ; quad != myQuadList.end(); ++quad )
if ( !computeQuadDominant( aMesh, aFace, *quad ))
return false;
return true;
}
//================================================================================
/*!
* \brief Compute quadrangles and possibly triangles
*/
//================================================================================
bool StdMeshers_Quadrangle_2D::computeQuadDominant(SMESH_Mesh& aMesh,
const TopoDS_Face& aFace,
FaceQuadStruct::Ptr quad)
{
// --- set normalized grid on unit square in parametric domain
if ( !setNormalizedGrid( quad ))
return false;
// --- create nodes on points, and create quadrangles
int nbhoriz = quad->iSize;
int nbvertic = quad->jSize;
// internal mesh nodes
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
int i,j, geomFaceID = meshDS->ShapeToIndex(aFace);
for (i = 1; i < nbhoriz - 1; i++)
for (j = 1; j < nbvertic - 1; j++)
{
UVPtStruct& uvPnt = quad->UVPt( i, j );
gp_Pnt P = S->Value( uvPnt.u, uvPnt.v );
uvPnt.node = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace( uvPnt.node, geomFaceID, uvPnt.u, uvPnt.v );
}
// mesh faces
// [2]
// --.--.--.--.--.-- nbvertic
// | | ^
// | | ^
// [3] | | ^ j [1]
// | | ^
// | | ^
// ---.----.----.--- 0
// 0 > > > > > > > > nbhoriz
// i
// [0]
int ilow = 0;
int iup = nbhoriz - 1;
if (quad->nbNodeOut(3)) { ilow++; } else { if (quad->nbNodeOut(1)) iup--; }
int jlow = 0;
int jup = nbvertic - 1;
if (quad->nbNodeOut(0)) { jlow++; } else { if (quad->nbNodeOut(2)) jup--; }
// regular quadrangles
for (i = ilow; i < iup; i++) {
for (j = jlow; j < jup; j++) {
const SMDS_MeshNode *a, *b, *c, *d;
a = quad->uv_grid[ j * nbhoriz + i ].node;
b = quad->uv_grid[ j * nbhoriz + i + 1].node;
c = quad->uv_grid[(j + 1) * nbhoriz + i + 1].node;
d = quad->uv_grid[(j + 1) * nbhoriz + i ].node;
myHelper->AddFace(a, b, c, d);
}
}
// Boundary elements (must always be on an outer boundary of the FACE)
const vector<UVPtStruct>& uv_e0 = quad->side[0].grid->GetUVPtStruct();
const vector<UVPtStruct>& uv_e1 = quad->side[1].grid->GetUVPtStruct();
const vector<UVPtStruct>& uv_e2 = quad->side[2].grid->GetUVPtStruct();
const vector<UVPtStruct>& uv_e3 = quad->side[3].grid->GetUVPtStruct();
if (uv_e0.empty() || uv_e1.empty() || uv_e2.empty() || uv_e3.empty())
return error(COMPERR_BAD_INPUT_MESH);
double eps = Precision::Confusion();
int nbdown = (int) uv_e0.size();
int nbup = (int) uv_e2.size();
int nbright = (int) uv_e1.size();
int nbleft = (int) uv_e3.size();
if (quad->nbNodeOut(0) && nbvertic == 2) // this should not occur
{
// Down edge is out
//
// |___|___|___|___|___|___|
// | | | | | | |
// |___|___|___|___|___|___|
// | | | | | | |
// |___|___|___|___|___|___| __ first row of the regular grid
// . . . . . . . . . __ down edge nodes
//
// >->->->->->->->->->->->-> -- direction of processing
int g = 0; // number of last processed node in the regular grid
// number of last node of the down edge to be processed
int stop = nbdown - 1;
// if right edge is out, we will stop at a node, previous to the last one
//if (quad->nbNodeOut(1)) stop--;
if ( quad->nbNodeOut( QUAD_RIGHT_SIDE ))
quad->UVPt( nbhoriz-1, 1 ).node = uv_e1[1].node;
if ( quad->nbNodeOut( QUAD_LEFT_SIDE ))
quad->UVPt( 0, 1 ).node = uv_e3[1].node;
// for each node of the down edge find nearest node
// in the first row of the regular grid and link them
for (i = 0; i < stop; i++) {
const SMDS_MeshNode *a, *b, *c=0, *d;
a = uv_e0[i].node;
b = uv_e0[i + 1].node;
gp_Pnt pb (b->X(), b->Y(), b->Z());
// find node c in the regular grid, which will be linked with node b
int near = g;
if (i == stop - 1) {
// right bound reached, link with the rightmost node
near = iup;
c = quad->uv_grid[nbhoriz + iup].node;
}
else {
// find in the grid node c, nearest to the b
c = 0;
double mind = RealLast();
for (int k = g; k <= iup; k++) {
const SMDS_MeshNode *nk;
if (k < ilow) // this can be, if left edge is out
nk = uv_e3[1].node; // get node from the left edge
else
nk = quad->uv_grid[nbhoriz + k].node; // get one of middle nodes
gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
double dist = pb.Distance(pnk);
if (dist < mind - eps) {
c = nk;
near = k;
mind = dist;
} else {
break;
}
}
}
if (near == g) { // make triangle
myHelper->AddFace(a, b, c);
}
else { // make quadrangle
if (near - 1 < ilow)
d = uv_e3[1].node;
else
d = quad->uv_grid[nbhoriz + near - 1].node;
//SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
if (!myTrianglePreference){
myHelper->AddFace(a, b, c, d);
}
else {
splitQuadFace(meshDS, geomFaceID, a, b, c, d);
}
// if node d is not at position g - make additional triangles
if (near - 1 > g) {
for (int k = near - 1; k > g; k--) {
c = quad->uv_grid[nbhoriz + k].node;
if (k - 1 < ilow)
d = uv_e3[1].node;
else
d = quad->uv_grid[nbhoriz + k - 1].node;
myHelper->AddFace(a, c, d);
}
}
g = near;
}
}
} else {
if (quad->nbNodeOut(2) && nbvertic == 2)
{
// Up edge is out
//
// <-<-<-<-<-<-<-<-<-<-<-<-< -- direction of processing
//
// . . . . . . . . . __ up edge nodes
// ___ ___ ___ ___ ___ ___ __ first row of the regular grid
// | | | | | | |
// |___|___|___|___|___|___|
// | | | | | | |
// |___|___|___|___|___|___|
// | | | | | | |
int g = nbhoriz - 1; // last processed node in the regular grid
ilow = 0;
iup = nbhoriz - 1;
int stop = 0;
if ( quad->side[3].grid->Edge(0).IsNull() ) // left side is simulated one
{
if ( nbright == 2 ) // quad divided at I but not at J (2D_mesh_QuadranglePreference_01/B1)
stop++; // we stop at a second node
}
else
{
if ( quad->nbNodeOut( QUAD_RIGHT_SIDE ))
quad->UVPt( nbhoriz-1, 0 ).node = uv_e1[ nbright-2 ].node;
if ( quad->nbNodeOut( QUAD_LEFT_SIDE ))
quad->UVPt( 0, 0 ).node = uv_e3[ nbleft-2 ].node;
if ( nbright > 2 ) // there was a split at J
quad->nbNodeOut( QUAD_LEFT_SIDE ) = 0;
}
const SMDS_MeshNode *a, *b, *c, *d;
i = nbup - 1;
// avoid creating zero-area triangles near a straight-angle corner
{
a = uv_e2[i].node;
b = uv_e2[i-1].node;
c = uv_e1[nbright-2].node;
SMESH_TNodeXYZ pa( a ), pb( b ), pc( c );
double area = 0.5 * (( pb - pa ) ^ ( pc - pa )).Modulus();
if ( Abs( area ) < 1e-20 )
{
--g;
d = quad->UVPt( g, nbvertic-2 ).node;
if ( myTrianglePreference )
{
myHelper->AddFace(a, d, c);
}
else
{
if ( SMDS_MeshFace* face = myHelper->AddFace(a, b, d, c))
{
SMESH_ComputeErrorPtr& err = aMesh.GetSubMesh( aFace )->GetComputeError();
if ( !err || err->IsOK() || err->myName < COMPERR_WARNING )
{
SMESH_BadInputElements* badElems =
new SMESH_BadInputElements( meshDS, COMPERR_WARNING,
"Bad quality quad created");
badElems->add( face );
err.reset( badElems );
}
}
--i;
}
}
}
// for each node of the up edge find nearest node
// in the first row of the regular grid and link them
for ( ; i > stop; i--)
{
a = uv_e2[i].node;
b = uv_e2[i - 1].node;
gp_Pnt pb = SMESH_TNodeXYZ( b );
// find node c in the grid, which will be linked with node b
int near = g;
if (i == stop + 1) { // left bound reached, link with the leftmost node
c = quad->uv_grid[nbhoriz*(nbvertic - 2) + ilow].node;
near = ilow;
} else {
// find node c in the grid, nearest to the b
double mind = RealLast();
for (int k = g; k >= ilow; k--) {
const SMDS_MeshNode *nk;
if (k > iup)
nk = uv_e1[nbright - 2].node;
else
nk = quad->uv_grid[nbhoriz*(nbvertic - 2) + k].node;
gp_Pnt pnk = SMESH_TNodeXYZ( nk );
double dist = pb.Distance(pnk);
if (dist < mind - eps) {
c = nk;
near = k;
mind = dist;
} else {
break;
}
}
}
if (near == g) { // make triangle
myHelper->AddFace(a, b, c);
}
else { // make quadrangle
if (near + 1 > iup)
d = uv_e1[nbright - 2].node;
else
d = quad->uv_grid[nbhoriz*(nbvertic - 2) + near + 1].node;
//SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
if (!myTrianglePreference){
myHelper->AddFace(a, b, c, d);
}
else {
splitQuadFace(meshDS, geomFaceID, a, b, c, d);
}
if (near + 1 < g) { // if d is not at g - make additional triangles
for (int k = near + 1; k < g; k++) {
c = quad->uv_grid[nbhoriz*(nbvertic - 2) + k].node;
if (k + 1 > iup)
d = uv_e1[nbright - 2].node;
else
d = quad->uv_grid[nbhoriz*(nbvertic - 2) + k + 1].node;
myHelper->AddFace(a, c, d);
}
}
g = near;
}
}
}
}
// right or left boundary quadrangles
if (quad->nbNodeOut( QUAD_RIGHT_SIDE ) && nbhoriz == 2) // this should not occur
{
int g = 0; // last processed node in the grid
int stop = nbright - 1;
i = 0;
if (quad->side[ QUAD_RIGHT_SIDE ].from != i ) i++;
if (quad->side[ QUAD_RIGHT_SIDE ].to != stop ) stop--;
for ( ; i < stop; i++) {
const SMDS_MeshNode *a, *b, *c, *d;
a = uv_e1[i].node;
b = uv_e1[i + 1].node;
gp_Pnt pb (b->X(), b->Y(), b->Z());
// find node c in the grid, nearest to the b
c = 0;
int near = g;
if (i == stop - 1) { // up boundary reached
c = quad->uv_grid[nbhoriz*(jup + 1) - 2].node;
near = jup;
} else {
double mind = RealLast();
for (int k = g; k <= jup; k++) {
const SMDS_MeshNode *nk;
if (k < jlow)
nk = uv_e0[nbdown - 2].node;
else
nk = quad->uv_grid[nbhoriz*(k + 1) - 2].node;
gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
double dist = pb.Distance(pnk);
if (dist < mind - eps) {
c = nk;
near = k;
mind = dist;
} else {
break;
}
}
}
if (near == g) { // make triangle
myHelper->AddFace(a, b, c);
}
else { // make quadrangle
if (near - 1 < jlow)
d = uv_e0[nbdown - 2].node;
else
d = quad->uv_grid[nbhoriz*near - 2].node;
//SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
if (!myTrianglePreference){
myHelper->AddFace(a, b, c, d);
}
else {
splitQuadFace(meshDS, geomFaceID, a, b, c, d);
}
if (near - 1 > g) { // if d not is at g - make additional triangles
for (int k = near - 1; k > g; k--) {
c = quad->uv_grid[nbhoriz*(k + 1) - 2].node;
if (k - 1 < jlow)
d = uv_e0[nbdown - 2].node;
else
d = quad->uv_grid[nbhoriz*k - 2].node;
myHelper->AddFace(a, c, d);
}
}
g = near;
}
}
} else {
if (quad->nbNodeOut(3) && nbhoriz == 2)
{
int g = nbvertic - 1; // last processed node in the grid
int stop = 0;
i = quad->side[ QUAD_LEFT_SIDE ].to-1; // nbleft - 1;
const SMDS_MeshNode *a, *b, *c, *d;
// avoid creating zero-area triangles near a straight-angle corner
{
a = uv_e3[i].node;
b = uv_e3[i-1].node;
c = quad->UVPt( 1, g ).node;
SMESH_TNodeXYZ pa( a ), pb( b ), pc( c );
double area = 0.5 * (( pb - pa ) ^ ( pc - pa )).Modulus();
if ( Abs( area ) < 1e-20 )
{
--g;
d = quad->UVPt( 1, g ).node;
if ( myTrianglePreference )
{
myHelper->AddFace(a, d, c);
}
else
{
if ( SMDS_MeshFace* face = myHelper->AddFace(a, b, d, c))
{
SMESH_ComputeErrorPtr& err = aMesh.GetSubMesh( aFace )->GetComputeError();
if ( !err || err->IsOK() || err->myName < COMPERR_WARNING )
{
SMESH_BadInputElements* badElems =
new SMESH_BadInputElements( meshDS, COMPERR_WARNING,
"Bad quality quad created");
badElems->add( face );
err.reset( badElems );
}
}
--i;
}
}
}
for (; i > stop; i--) // loop on nodes on the left side
{
a = uv_e3[i].node;
b = uv_e3[i - 1].node;
gp_Pnt pb (b->X(), b->Y(), b->Z());
// find node c in the grid, nearest to the b
int near = g;
if (i == stop + 1) { // down boundary reached
c = quad->uv_grid[nbhoriz*jlow + 1].node;
near = jlow;
}
else {
double mind = RealLast();
for (int k = g; k >= jlow; k--) {
const SMDS_MeshNode *nk;
if (k > jup)
nk = quad->uv_grid[nbhoriz*jup + 1].node; //uv_e2[1].node;
else
nk = quad->uv_grid[nbhoriz*k + 1].node;
gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
double dist = pb.Distance(pnk);
if (dist < mind - eps) {
c = nk;
near = k;
mind = dist;
} else {
break;
}
}
}
if (near == g) { // make triangle
myHelper->AddFace(a, b, c);
}
else { // make quadrangle
if (near + 1 > jup)
d = quad->uv_grid[nbhoriz*jup + 1].node; //uv_e2[1].node;
else
d = quad->uv_grid[nbhoriz*(near + 1) + 1].node;
if (!myTrianglePreference) {
myHelper->AddFace(a, b, c, d);
}
else {
splitQuadFace(meshDS, geomFaceID, a, b, c, d);
}
if (near + 1 < g) { // if d not is at g - make additional triangles
for (int k = near + 1; k < g; k++) {
c = quad->uv_grid[nbhoriz*k + 1].node;
if (k + 1 > jup)
d = quad->uv_grid[nbhoriz*jup + 1].node; //uv_e2[1].node;
else
d = quad->uv_grid[nbhoriz*(k + 1) + 1].node;
myHelper->AddFace(a, c, d);
}
}
g = near;
}
}
}
}
bool isOk = true;
return isOk;
}
//=============================================================================
/*!
* Evaluate
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::Evaluate(SMESH_Mesh& aMesh,
const TopoDS_Shape& aFace,
MapShapeNbElems& aResMap)
{
aMesh.GetSubMesh(aFace);
std::vector<int> aNbNodes(4);
bool IsQuadratic = false;
if (!checkNbEdgesForEvaluate(aMesh, aFace, aResMap, aNbNodes, IsQuadratic)) {
std::vector<smIdType> aResVec(SMDSEntity_Last);
for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
SMESH_subMesh * sm = aMesh.GetSubMesh(aFace);
aResMap.insert(std::make_pair(sm,aResVec));
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset(new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
return false;
}
if (myQuadranglePreference) {
int n1 = aNbNodes[0];
int n2 = aNbNodes[1];
int n3 = aNbNodes[2];
int n4 = aNbNodes[3];
int nfull = n1+n2+n3+n4;
int ntmp = nfull/2;
ntmp = ntmp*2;
if (nfull==ntmp && ((n1!=n3) || (n2!=n4))) {
// special path for using only quandrangle faces
return evaluateQuadPref(aMesh, aFace, aNbNodes, aResMap, IsQuadratic);
//return true;
}
}
int nbdown = aNbNodes[0];
int nbup = aNbNodes[2];
int nbright = aNbNodes[1];
int nbleft = aNbNodes[3];
int nbhoriz = Min(nbdown, nbup);
int nbvertic = Min(nbright, nbleft);
int dh = Max(nbdown, nbup) - nbhoriz;
int dv = Max(nbright, nbleft) - nbvertic;
//int kdh = 0;
//if (dh>0) kdh = 1;
//int kdv = 0;
//if (dv>0) kdv = 1;
int nbNodes = (nbhoriz-2)*(nbvertic-2);
//int nbFaces3 = dh + dv + kdh*(nbvertic-1)*2 + kdv*(nbhoriz-1)*2;
int nbFaces3 = dh + dv;
//if (kdh==1 && kdv==1) nbFaces3 -= 2;
//if (dh>0 && dv>0) nbFaces3 -= 2;
//int nbFaces4 = (nbhoriz-1-kdh)*(nbvertic-1-kdv);
int nbFaces4 = (nbhoriz-1)*(nbvertic-1);
std::vector<smIdType> aVec(SMDSEntity_Last,0);
if (IsQuadratic) {
aVec[SMDSEntity_Quad_Triangle] = nbFaces3;
aVec[SMDSEntity_Quad_Quadrangle] = nbFaces4;
int nbbndedges = nbdown + nbup + nbright + nbleft -4;
int nbintedges = (nbFaces4*4 + nbFaces3*3 - nbbndedges) / 2;
aVec[SMDSEntity_Node] = nbNodes + nbintedges;
if (aNbNodes.size()==5) {
aVec[SMDSEntity_Quad_Triangle] = nbFaces3 + aNbNodes[3] -1;
aVec[SMDSEntity_Quad_Quadrangle] = nbFaces4 - aNbNodes[3] +1;
}
}
else {
aVec[SMDSEntity_Node] = nbNodes;
aVec[SMDSEntity_Triangle] = nbFaces3;
aVec[SMDSEntity_Quadrangle] = nbFaces4;
if (aNbNodes.size()==5) {
aVec[SMDSEntity_Triangle] = nbFaces3 + aNbNodes[3] - 1;
aVec[SMDSEntity_Quadrangle] = nbFaces4 - aNbNodes[3] + 1;
}
}
SMESH_subMesh * sm = aMesh.GetSubMesh(aFace);
aResMap.insert(std::make_pair(sm,aVec));
return true;
}
//================================================================================
/*!
* \brief Return true if the algorithm can mesh this shape
* \param [in] aShape - shape to check
* \param [in] toCheckAll - if true, this check returns OK if all shapes are OK,
* else, returns OK if at least one shape is OK
*/
//================================================================================
bool StdMeshers_Quadrangle_2D::IsApplicable( const TopoDS_Shape & aShape, bool toCheckAll )
{
int nbFoundFaces = 0;
for (TopExp_Explorer exp( aShape, TopAbs_FACE ); exp.More(); exp.Next(), ++nbFoundFaces )
{
const TopoDS_Shape& aFace = exp.Current();
int nbWire = SMESH_MesherHelper::Count( aFace, TopAbs_WIRE, false );
if ( nbWire != 1 ) {
if ( toCheckAll ) return false;
continue;
}
int nbNoDegenEdges = 0, totalNbEdges = 0;
TopExp_Explorer eExp( aFace, TopAbs_EDGE );
for ( ; eExp.More() && nbNoDegenEdges < 3; eExp.Next(), ++totalNbEdges ) {
if ( !SMESH_Algo::isDegenerated( TopoDS::Edge( eExp.Current() )))
++nbNoDegenEdges;
}
if ( toCheckAll && ( totalNbEdges < 4 && nbNoDegenEdges < 3 )) return false;
if ( !toCheckAll && ( totalNbEdges >= 4 || nbNoDegenEdges >= 3 )) return true;
}
return ( toCheckAll && nbFoundFaces != 0 );
}
namespace
{
//================================================================================
/*!
* \brief Return true if only two given edges meat at their common vertex
*/
//================================================================================
bool twoEdgesMeatAtVertex(const TopoDS_Edge& e1,
const TopoDS_Edge& e2,
SMESH_Mesh & mesh)
{
TopoDS_Vertex v;
if (!TopExp::CommonVertex(e1, e2, v))
return false;
TopTools_ListIteratorOfListOfShape ancestIt(mesh.GetAncestors(v));
for (; ancestIt.More() ; ancestIt.Next())
if (ancestIt.Value().ShapeType() == TopAbs_EDGE)
if (!e1.IsSame(ancestIt.Value()) && !e2.IsSame(ancestIt.Value()))
return false;
return true;
}
//================================================================================
/*!
* \brief Return angle between mesh segments of given EDGEs meeting at theVertexNode
*/
//================================================================================
double getAngleByNodes( const int theE1Index,
const int theE2Index,
const SMDS_MeshNode* theVertexNode,
const StdMeshers_FaceSide& theFaceSide,
const gp_Vec& theFaceNormal)
{
int eID1 = theFaceSide.EdgeID( theE1Index );
int eID2 = theFaceSide.EdgeID( theE2Index );
const SMDS_MeshNode *n1 = 0, *n2 = 0;
bool is1st;
SMDS_ElemIteratorPtr segIt = theVertexNode->GetInverseElementIterator( SMDSAbs_Edge );
while ( segIt->more() )
{
const SMDS_MeshElement* seg = segIt->next();
int shapeID = seg->GetShapeID();
if ( shapeID == eID1 )
is1st = true;
else if ( shapeID == eID2 )
is1st = false;
else
continue;
( is1st ? n1 : n2 ) = seg->GetNodeWrap( 1 + seg->GetNodeIndex( theVertexNode ));
}
if ( !n1 || !n2 )
{
std::vector<const SMDS_MeshNode*> nodes;
for ( int is2nd = 0; is2nd < 2; ++is2nd )
{
const SMDS_MeshNode* & n = is2nd ? n2 : n1;
if ( n ) continue;
nodes.clear();
if ( is2nd ) theFaceSide.GetEdgeNodes( theE2Index, nodes );
else theFaceSide.GetEdgeNodes( theE1Index, nodes );
if ( nodes.size() >= 2 )
{
if ( nodes[0] == theVertexNode )
n = nodes[1];
else
n = nodes[ nodes.size() - 2 ];
}
}
}
double angle = -2 * M_PI;
if ( n1 && n2 )
{
SMESH_NodeXYZ p1 = n1, p2 = theVertexNode, p3 = n2;
gp_Vec v1( p1, p2 ), v2( p2, p3 );
try
{
angle = v1.AngleWithRef( v2, theFaceNormal );
}
catch(...)
{
}
if ( std::isnan( angle ))
angle = -2 * M_PI;
}
return angle;
}
//--------------------------------------------------------------------------------
/*!
* \brief EDGE of a FACE
*/
struct Edge
{
TopoDS_Edge myEdge;
TopoDS_Vertex my1stVertex;
int myIndex;
bool myIsCorner; // is fixed corner
double myAngle; // angle at my1stVertex
int myNbSegments; // discretization
Edge* myPrev; // preceding EDGE
Edge* myNext; // next EDGE
// traits used by boost::intrusive::circular_list_algorithms
typedef Edge node;
typedef Edge * node_ptr;
typedef const Edge * const_node_ptr;
static node_ptr get_next(const_node_ptr n) { return n->myNext; }
static void set_next(node_ptr n, node_ptr next) { n->myNext = next; }
static node_ptr get_previous(const_node_ptr n) { return n->myPrev; }
static void set_previous(node_ptr n, node_ptr prev){ n->myPrev = prev; }
};
//--------------------------------------------------------------------------------
/*!
* \brief Four sides of a quadrangle evaluating its quality
*/
struct QuadQuality
{
typedef std::set< QuadQuality, QuadQuality > set;
Edge* myCornerE[4];
int myNbSeg [4];
// quality criteria to minimize
int myOppDiff;
int myIsFixedCorner;
double myQuartDiff;
double mySumAngle;
// Compute quality criateria and add self to the set of variants
//
void AddSelf( QuadQuality::set& theVariants )
{
if ( myCornerE[2] == myCornerE[1] || // exclude invalid variants
myCornerE[2] == myCornerE[3] ||
myCornerE[0] == myCornerE[3] )
return;
// count nb segments between corners
mySumAngle = 0;
double totNbSeg = 0;
for ( int i1 = 3, i2 = 0; i2 < 4; i1 = i2++ )
{
myNbSeg[ i1 ] = 0;
for ( Edge* e = myCornerE[ i1 ]; e != myCornerE[ i2 ]; e = e->myNext )
myNbSeg[ i1 ] += e->myNbSegments;
mySumAngle -= myCornerE[ i1 ]->myAngle / M_PI; // [-1,1]
totNbSeg += myNbSeg[ i1 ];
}
myOppDiff = ( Abs( myNbSeg[0] - myNbSeg[2] ) +
Abs( myNbSeg[1] - myNbSeg[3] ));
myIsFixedCorner = - totNbSeg * ( myCornerE[0]->myIsCorner +
myCornerE[1]->myIsCorner +
myCornerE[2]->myIsCorner +
myCornerE[3]->myIsCorner );
double nbSideIdeal = totNbSeg / 4.;
myQuartDiff = -( Min( Min( myNbSeg[0], myNbSeg[1] ),
Min( myNbSeg[2], myNbSeg[3] )) / nbSideIdeal );
theVariants.insert( *this );
if (SALOME::VerbosityActivated() && theVariants.size() > 1 ) // erase a worse variant
theVariants.erase( ++theVariants.begin() );
};
// first criterion - equality of nbSeg of opposite sides
int crit1() const { return myOppDiff + myIsFixedCorner; }
// second criterion - equality of nbSeg of adjacent sides and sharpness of angles
double crit2() const { return myQuartDiff + mySumAngle; }
bool operator () ( const QuadQuality& q1, const QuadQuality& q2) const
{
if ( q1.crit1() < q2.crit1() )
return true;
if ( q1.crit1() > q2.crit1() )
return false;
return q1.crit2() < q2.crit2();
}
};
//================================================================================
/*!
* \brief Unite EDGEs to get a required number of sides
* \param [in] theNbCorners - the required number of sides, 3 or 4
* \param [in] theConsiderMesh - to considered only meshed VERTEXes
* \param [in] theFaceSide - the FACE EDGEs
* \param [in] theFixedVertices - VERTEXes to be used as corners
* \param [out] theVertices - the found corner vertices
* \param [out] theHaveConcaveVertices - return if there are concave vertices
*/
//================================================================================
void uniteEdges( const int theNbCorners,
const bool theConsiderMesh,
const StdMeshers_FaceSide& theFaceSide,
const TopTools_MapOfShape& theFixedVertices,
std::vector<TopoDS_Vertex>& theVertices,
bool& theHaveConcaveVertices)
{
// form a circular list of EDGEs
std::vector< Edge > edges( theFaceSide.NbEdges() );
boost::intrusive::circular_list_algorithms< Edge > circularList;
circularList.init_header( &edges[0] );
edges[0].myEdge = theFaceSide.Edge( 0 );
edges[0].myIndex = 0;
edges[0].myNbSegments = 0;
for ( int i = 1; i < theFaceSide.NbEdges(); ++i )
{
edges[ i ].myEdge = theFaceSide.Edge( i );
edges[ i ].myIndex = i;
edges[ i ].myNbSegments = 0;
circularList.link_after( &edges[ i-1 ], &edges[ i ] );
}
// remove degenerated edges
int nbEdges = edges.size();
Edge* edge0 = &edges[0];
for ( size_t i = 0; i < edges.size(); ++i )
if ( SMESH_Algo::isDegenerated( edges[i].myEdge ))
{
edge0 = circularList.unlink( &edges[i] );
--nbEdges;
}
// sort edges by angle
std::multimap< double, Edge* > edgeByAngle;
int i, nbConvexAngles = 0, nbSharpAngles = 0;
const SMDS_MeshNode* vertNode = 0;
gp_Vec faceNormal;
const double angTol = 5. / 180 * M_PI;
const double sharpAngle = 0.5 * M_PI - angTol;
Edge* e = edge0;
for ( i = 0; i < nbEdges; ++i, e = e->myNext )
{
e->my1stVertex = SMESH_MesherHelper::IthVertex( 0, e->myEdge );
e->myIsCorner = theFixedVertices.Contains( e->my1stVertex );
e->myAngle = -2 * M_PI;
if ( !theConsiderMesh || ( vertNode = theFaceSide.VertexNode( e->myIndex )))
{
e->myAngle = SMESH_MesherHelper::GetAngle( e->myPrev->myEdge, e->myEdge,
theFaceSide.Face(), e->my1stVertex,
&faceNormal );
if ( e->myAngle > 2 * M_PI ) // GetAngle() failed
e->myAngle *= -1.;
else if ( vertNode && ( 0. <= e->myAngle ) && ( e->myAngle <= angTol ))
e->myAngle = getAngleByNodes( e->myPrev->myIndex, e->myIndex,
vertNode, theFaceSide, faceNormal );
}
edgeByAngle.insert( std::make_pair( e->myAngle, e ));
nbConvexAngles += ( e->myAngle > angTol );
nbSharpAngles += ( e->myAngle > sharpAngle );
}
theHaveConcaveVertices = ( nbConvexAngles < nbEdges );
if ((int) theVertices.size() == theNbCorners )
return;
theVertices.clear();
if ( !theConsiderMesh || theNbCorners < 4 ||
nbConvexAngles <= theNbCorners ||
nbSharpAngles == theNbCorners )
{
if ( nbEdges == theNbCorners ) // return all vertices
{
for ( e = edge0; (int) theVertices.size() < theNbCorners; e = e->myNext )
theVertices.push_back( e->my1stVertex );
return;
}
// return corners with maximal angles
std::set< int > cornerIndices;
if ( !theFixedVertices.IsEmpty() )
for ( i = 0, e = edge0; i < nbEdges; ++i, e = e->myNext )
if ( e->myIsCorner )
cornerIndices.insert( e->myIndex );
std::multimap< double, Edge* >::reverse_iterator a2e = edgeByAngle.rbegin();
for (; (int) cornerIndices.size() < theNbCorners; ++a2e )
cornerIndices.insert( a2e->second->myIndex );
std::set< int >::iterator i = cornerIndices.begin();
for ( ; i != cornerIndices.end(); ++i )
theVertices.push_back( edges[ *i ].my1stVertex );
return;
}
// get nb of segments
int totNbSeg = 0; // tatal nb segments
std::vector<const SMDS_MeshNode*> nodes;
for ( i = 0, e = edge0; i < nbEdges; ++i, e = e->myNext )
{
nodes.clear();
theFaceSide.GetEdgeNodes( e->myIndex, nodes, /*addVertex=*/true, true );
if ( nodes.size() == 2 && nodes[0] == nodes[1] ) // all nodes merged
{
e->myAngle = -1; // to remove
}
else
{
e->myNbSegments += nodes.size() - 1;
totNbSeg += nodes.size() - 1;
}
// join with the previous edge those edges with concave angles
if ( e->myAngle <= 0 )
{
e->myPrev->myNbSegments += e->myNbSegments;
e = circularList.unlink( e )->myPrev;
--nbEdges;
--i;
}
}
if ( edge0->myNext->myPrev != edge0 ) // edge0 removed, find another edge0
for ( size_t i = 0; i < edges.size(); ++i )
if ( edges[i].myNext->myPrev == & edges[i] )
{
edge0 = &edges[i];
break;
}
// sort different variants by quality
QuadQuality::set quadVariants;
// find index of a corner most opposite to corner of edge0
int iOpposite0, nbHalf = 0;
for ( e = edge0; nbHalf <= totNbSeg / 2; e = e->myNext )
nbHalf += e->myNbSegments;
iOpposite0 = e->myIndex;
// compose different variants of quadrangles
QuadQuality quad;
for ( ; edge0->myIndex != iOpposite0; edge0 = edge0->myNext )
{
quad.myCornerE[ 0 ] = edge0;
// find opposite corner 2
for ( nbHalf = 0, e = edge0; nbHalf < totNbSeg / 2; e = e->myNext )
nbHalf += e->myNbSegments;
if ( e == edge0->myNext ) // no space for corner 1
e = e->myNext;
quad.myCornerE[ 2 ] = e;
bool moreVariants2 = ( totNbSeg % 2 || nbHalf != totNbSeg / 2 );
// enumerate different variants of corners 1 and 3
for ( Edge* e1 = edge0->myNext; e1 != quad.myCornerE[ 2 ]; e1 = e1->myNext )
{
quad.myCornerE[ 1 ] = e1;
// find opposite corner 3
for ( nbHalf = 0, e = e1; nbHalf < totNbSeg / 2; e = e->myNext )
nbHalf += e->myNbSegments;
if ( e == quad.myCornerE[ 2 ] )
e = e->myNext;
quad.myCornerE[ 3 ] = e;
bool moreVariants3 = ( totNbSeg % 2 || nbHalf != totNbSeg / 2 );
quad.AddSelf( quadVariants );
// another variants
if ( moreVariants2 )
{
quad.myCornerE[ 2 ] = quad.myCornerE[ 2 ]->myPrev;
quad.AddSelf( quadVariants );
quad.myCornerE[ 2 ] = quad.myCornerE[ 2 ]->myNext;
}
if ( moreVariants3 )
{
quad.myCornerE[ 3 ] = quad.myCornerE[ 3 ]->myPrev;
quad.AddSelf( quadVariants );
if ( moreVariants2 )
{
quad.myCornerE[ 2 ] = quad.myCornerE[ 2 ]->myPrev;
quad.AddSelf( quadVariants );
quad.myCornerE[ 2 ] = quad.myCornerE[ 2 ]->myNext;
}
}
}
}
const QuadQuality& bestQuad = *quadVariants.begin();
theVertices.resize( 4 );
theVertices[ 0 ] = bestQuad.myCornerE[ 0 ]->my1stVertex;
theVertices[ 1 ] = bestQuad.myCornerE[ 1 ]->my1stVertex;
theVertices[ 2 ] = bestQuad.myCornerE[ 2 ]->my1stVertex;
theVertices[ 3 ] = bestQuad.myCornerE[ 3 ]->my1stVertex;
return;
}
//================================================================================
/*!
* \brief Remove a seam and degenerated edge from a wire if the shape is
* a quadrangle with a seam inside.
*/
//================================================================================
bool removeInternalSeam( std::list<TopoDS_Edge>& theWire,
SMESH_MesherHelper& theHelper)
{
if ( !theHelper.HasRealSeam() ||
theHelper.NbDegeneratedEdges() != 2 ) // 1 EDGE + 1 VERTEX
return false;
typedef std::list<TopoDS_Edge>::iterator TEdgeIter;
std::vector< TEdgeIter > edgesToRemove;
edgesToRemove.reserve( 5 );
for ( TEdgeIter eIt = theWire.begin(); eIt != theWire.end(); ++eIt )
{
int eID = theHelper.ShapeToIndex( *eIt );
if ( theHelper.IsRealSeam( eID ) || theHelper.IsDegenShape( eID ))
edgesToRemove.push_back( eIt );
}
if ( theWire.size() - edgesToRemove.size() < 4 )
return false; // cone e.g.
for ( size_t i = 0; i < edgesToRemove.size(); ++i )
theWire.erase( edgesToRemove[ i ]);
return true;
}
} // namespace
//================================================================================
/*!
* \brief Finds vertices at the most sharp face corners
* \param [in] theFace - the FACE
* \param [in,out] theWire - the ordered edges of the face. It can be modified to
* have the first VERTEX of the first EDGE in \a vertices
* \param [out] theVertices - the found corner vertices in the order corresponding to
* the order of EDGEs in \a theWire
* \param [out] theNbDegenEdges - nb of degenerated EDGEs in theFace
* \param [in] theConsiderMesh - if \c true, only meshed VERTEXes are considered
* as possible corners
* \return int - number of quad sides found: 0, 3 or 4
*/
//================================================================================
int StdMeshers_Quadrangle_2D::getCorners(const TopoDS_Face& theFace,
SMESH_Mesh & theMesh,
std::list<TopoDS_Edge>& theWire,
std::vector<TopoDS_Vertex>& theVertices,
int & theNbDegenEdges,
const bool theConsiderMesh)
{
theNbDegenEdges = 0;
SMESH_MesherHelper helper( theMesh );
if ( myHelper )
helper.CopySubShapeInfo( *myHelper );
if ( removeInternalSeam( theWire, helper ))
theNbDegenEdges = 1;
StdMeshers_FaceSide faceSide( theFace, theWire, &theMesh,
/*isFwd=*/true, /*skipMedium=*/true, &helper );
// count degenerated EDGEs and possible corner VERTEXes
for ( int iE = 0; iE < faceSide.NbEdges(); ++iE )
{
if ( SMESH_Algo::isDegenerated( faceSide.Edge( iE )))
++theNbDegenEdges;
else if ( !theConsiderMesh || faceSide.VertexNode( iE ))
theVertices.push_back( faceSide.FirstVertex( iE ));
}
// find out required nb of corners (3 or 4)
int nbCorners = 4;
TopoDS_Shape triaVertex = helper.GetMeshDS()->IndexToShape( myTriaVertexID );
if ( !triaVertex.IsNull() &&
triaVertex.ShapeType() == TopAbs_VERTEX &&
helper.IsSubShape( triaVertex, theFace ) &&
theVertices.size() != 4 )
nbCorners = 3;
else
triaVertex.Nullify();
// check nb of available EDGEs
if ( faceSide.NbEdges() < nbCorners )
return error(COMPERR_BAD_SHAPE,
TComm("Face must have 4 sides but not ") << faceSide.NbEdges() );
if ( theConsiderMesh )
{
const smIdType nbSegments = std::max( faceSide.NbPoints()-1, faceSide.NbSegments() );
if ( nbSegments < nbCorners )
return error(COMPERR_BAD_INPUT_MESH, TComm("Too few boundary nodes: ") << nbSegments);
}
if ( nbCorners == 3 )
{
if ( theVertices.size() < 3 )
return error(COMPERR_BAD_SHAPE,
TComm("Face must have 3 meshed sides but not ") << theVertices.size() );
}
else // triaVertex not defined or invalid
{
if ( theVertices.size() == 3 && theNbDegenEdges == 0 )
{
if ( myTriaVertexID < 1 )
return error(COMPERR_BAD_PARMETERS,
"No Base vertex provided for a trilateral geometrical face");
TComm comment("Invalid Base vertex: ");
comment << myTriaVertexID << ", which is not in [ ";
comment << helper.GetMeshDS()->ShapeToIndex( faceSide.FirstVertex(0) ) << ", ";
comment << helper.GetMeshDS()->ShapeToIndex( faceSide.FirstVertex(1) ) << ", ";
comment << helper.GetMeshDS()->ShapeToIndex( faceSide.FirstVertex(2) ) << " ]";
return error(COMPERR_BAD_PARMETERS, comment );
}
if ( theVertices.size() + theNbDegenEdges < 4 )
return error(COMPERR_BAD_SHAPE,
TComm("Face must have 4 meshed sides but not ") << theVertices.size() );
}
myCheckOri = false;
if ( theVertices.size() > 3 )
{
TopTools_MapOfShape fixedVertices;
if ( !triaVertex.IsNull() )
fixedVertices.Add( triaVertex );
if ( myParams )
{
const std::vector< int >& vIDs = myParams->GetCorners();
for ( size_t i = 0; i < vIDs.size(); ++i )
{
const TopoDS_Shape& vertex = helper.GetMeshDS()->IndexToShape( vIDs[ i ]);
if ( !vertex.IsNull() )
fixedVertices.Add( vertex );
}
}
uniteEdges( nbCorners, theConsiderMesh, faceSide, fixedVertices, theVertices, myCheckOri );
}
if ( nbCorners == 3 && !triaVertex.IsSame( theVertices[0] ))
{
// make theVertices begin from triaVertex
for ( size_t i = 0; i < theVertices.size(); ++i )
if ( triaVertex.IsSame( theVertices[i] ))
{
theVertices.erase( theVertices.begin(), theVertices.begin() + i );
break;
}
else
{
theVertices.push_back( theVertices[i] );
}
}
// make theWire begin from the 1st corner vertex
while ( !theVertices[0].IsSame( helper.IthVertex( 0, theWire.front() )) ||
SMESH_Algo::isDegenerated( theWire.front() ))
theWire.splice( theWire.end(), theWire, theWire.begin() );
return nbCorners;
}
//=============================================================================
/*!
* Return FaceQuadStruct where sides ordered CCW, top and left sides
* reversed to be co-directed with bottom and right sides
*/
//=============================================================================
FaceQuadStruct::Ptr StdMeshers_Quadrangle_2D::CheckNbEdges(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const bool considerMesh,
SMESH_MesherHelper* aFaceHelper)
{
if ( !myQuadList.empty() && myQuadList.front()->face.IsSame( aShape ))
return myQuadList.front();
TopoDS_Face F = TopoDS::Face(aShape);
if ( F.Orientation() >= TopAbs_INTERNAL ) F.Orientation( TopAbs_FORWARD );
const bool ignoreMediumNodes = _quadraticMesh;
// verify 1 wire only
list< TopoDS_Edge > edges;
list< int > nbEdgesInWire;
int nbWire = SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
if (nbWire != 1) {
error(COMPERR_BAD_SHAPE, TComm("Wrong number of wires: ") << nbWire);
return FaceQuadStruct::Ptr();
}
// find corner vertices of the quad
myHelper = ( aFaceHelper && aFaceHelper->GetSubShape() == aShape ) ? aFaceHelper : NULL;
vector<TopoDS_Vertex> corners;
int nbDegenEdges, nbSides = getCorners( F, aMesh, edges, corners, nbDegenEdges, considerMesh );
if ( nbSides == 0 )
{
return FaceQuadStruct::Ptr();
}
FaceQuadStruct::Ptr quad( new FaceQuadStruct );
quad->side.reserve(nbEdgesInWire.front());
quad->face = F;
list< TopoDS_Edge >::iterator edgeIt = edges.begin();
if ( nbSides == 3 ) // 3 sides and corners[0] is a vertex with myTriaVertexID
{
for ( int iSide = 0; iSide < 3; ++iSide )
{
list< TopoDS_Edge > sideEdges;
TopoDS_Vertex nextSideV = corners[( iSide + 1 ) % 3 ];
while ( edgeIt != edges.end() &&
!nextSideV.IsSame( SMESH_MesherHelper::IthVertex( 0, *edgeIt )))
if ( SMESH_Algo::isDegenerated( *edgeIt ))
++edgeIt;
else
sideEdges.push_back( *edgeIt++ );
if ( !sideEdges.empty() )
quad->side.push_back( StdMeshers_FaceSide::New(F, sideEdges, &aMesh, iSide < QUAD_TOP_SIDE,
ignoreMediumNodes, myHelper, myProxyMesh));
else
--iSide;
}
const vector<UVPtStruct>& UVPSleft = quad->side[0].GetUVPtStruct(true,0);
/* vector<UVPtStruct>& UVPStop = */quad->side[1].GetUVPtStruct(false,1);
/* vector<UVPtStruct>& UVPSright = */quad->side[2].GetUVPtStruct(true,1);
const SMDS_MeshNode* aNode = UVPSleft[0].node;
gp_Pnt2d aPnt2d = UVPSleft[0].UV();
quad->side.push_back( StdMeshers_FaceSide::New( quad->side[1].grid.get(), aNode, &aPnt2d ));
myNeedSmooth = ( nbDegenEdges > 0 );
return quad;
}
else // 4 sides
{
myNeedSmooth = ( corners.size() == 4 && nbDegenEdges > 0 );
int iSide = 0, nbUsedDegen = 0, nbLoops = 0;
for ( ; edgeIt != edges.end(); ++nbLoops )
{
list< TopoDS_Edge > sideEdges;
TopoDS_Vertex nextSideV = corners[( iSide + 1 - nbUsedDegen ) % corners.size() ];
bool nextSideVReached = false;
do
{
const TopoDS_Edge& edge = *edgeIt;
nextSideVReached = nextSideV.IsSame( myHelper->IthVertex( 1, edge ));
if ( SMESH_Algo::isDegenerated( edge ))
{
if ( !myNeedSmooth ) // need to make a side on a degen edge
{
if ( sideEdges.empty() )
{
sideEdges.push_back( edge );
++nbUsedDegen;
nextSideVReached = true;
}
else
{
break;
}
}
}
else //if ( !myHelper || !myHelper->IsRealSeam( edge ))
{
sideEdges.push_back( edge );
}
++edgeIt;
}
while ( edgeIt != edges.end() && !nextSideVReached );
if ( !sideEdges.empty() )
{
quad->side.push_back
( StdMeshers_FaceSide::New( F, sideEdges, &aMesh, iSide < QUAD_TOP_SIDE,
ignoreMediumNodes, myHelper, myProxyMesh ));
++iSide;
}
if ( quad->side.size() == 4 )
break;
if ( nbLoops > 8 )
{
error(TComm("Bug: infinite loop in StdMeshers_Quadrangle_2D::CheckNbEdges()"));
quad.reset();
break;
}
}
if ( quad && quad->side.size() != 4 )
{
error(TComm("Bug: ") << quad->side.size() << " sides found instead of 4");
quad.reset();
}
}
return quad;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::checkNbEdgesForEvaluate(SMESH_Mesh& aMesh,
const TopoDS_Shape & aShape,
MapShapeNbElems& aResMap,
std::vector<int>& aNbNodes,
bool& IsQuadratic)
{
const TopoDS_Face & F = TopoDS::Face(aShape);
// verify 1 wire only, with 4 edges
list< TopoDS_Edge > edges;
list< int > nbEdgesInWire;
int nbWire = SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
if (nbWire != 1) {
return false;
}
aNbNodes.resize(4);
int nbSides = 0;
list< TopoDS_Edge >::iterator edgeIt = edges.begin();
SMESH_subMesh * sm = aMesh.GetSubMesh(*edgeIt);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) {
return false;
}
std::vector<smIdType> aVec = (*anIt).second;
IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
if (nbEdgesInWire.front() == 3) { // exactly 3 edges
if (myTriaVertexID>0) {
SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
TopoDS_Vertex V = TopoDS::Vertex(meshDS->IndexToShape(myTriaVertexID));
if (!V.IsNull()) {
TopoDS_Edge E1,E2,E3;
for (; edgeIt != edges.end(); ++edgeIt) {
TopoDS_Edge E = TopoDS::Edge(*edgeIt);
TopoDS_Vertex VF, VL;
TopExp::Vertices(E, VF, VL, true);
if (VF.IsSame(V))
E1 = E;
else if (VL.IsSame(V))
E3 = E;
else
E2 = E;
}
SMESH_subMesh * sm = aMesh.GetSubMesh(E1);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) return false;
std::vector<smIdType> aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[0] = (aVec[SMDSEntity_Node]-1)/2 + 2;
else
aNbNodes[0] = aVec[SMDSEntity_Node] + 2;
sm = aMesh.GetSubMesh(E2);
anIt = aResMap.find(sm);
if (anIt==aResMap.end()) return false;
aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[1] = (aVec[SMDSEntity_Node]-1)/2 + 2;
else
aNbNodes[1] = aVec[SMDSEntity_Node] + 2;
sm = aMesh.GetSubMesh(E3);
anIt = aResMap.find(sm);
if (anIt==aResMap.end()) return false;
aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[2] = (aVec[SMDSEntity_Node]-1)/2 + 2;
else
aNbNodes[2] = aVec[SMDSEntity_Node] + 2;
aNbNodes[3] = aNbNodes[1];
aNbNodes.resize(5);
nbSides = 4;
}
}
}
if (nbEdgesInWire.front() == 4) { // exactly 4 edges
for (; edgeIt != edges.end(); edgeIt++) {
SMESH_subMesh * sm = aMesh.GetSubMesh(*edgeIt);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) {
return false;
}
std::vector<smIdType> aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[nbSides] = (aVec[SMDSEntity_Node]-1)/2 + 2;
else
aNbNodes[nbSides] = aVec[SMDSEntity_Node] + 2;
nbSides++;
}
}
else if (nbEdgesInWire.front() > 4) { // more than 4 edges - try to unite some
list< TopoDS_Edge > sideEdges;
while (!edges.empty()) {
sideEdges.clear();
sideEdges.splice(sideEdges.end(), edges, edges.begin()); // edges.front() -> sideEdges.end()
bool sameSide = true;
while (!edges.empty() && sameSide) {
sameSide = SMESH_Algo::IsContinuous(sideEdges.back(), edges.front());
if (sameSide)
sideEdges.splice(sideEdges.end(), edges, edges.begin());
}
if (nbSides == 0) { // go backward from the first edge
sameSide = true;
while (!edges.empty() && sameSide) {
sameSide = SMESH_Algo::IsContinuous(sideEdges.front(), edges.back());
if (sameSide)
sideEdges.splice(sideEdges.begin(), edges, --edges.end());
}
}
list<TopoDS_Edge>::iterator ite = sideEdges.begin();
if ( nbSides >= (int)aNbNodes.size() )
return false;
aNbNodes[nbSides] = 1;
for (; ite!=sideEdges.end(); ite++) {
SMESH_subMesh * sm = aMesh.GetSubMesh(*ite);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) {
return false;
}
std::vector<smIdType> aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
else
aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
}
++nbSides;
}
// issue 20222. Try to unite only edges shared by two same faces
if (nbSides < 4) {
nbSides = 0;
SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
while (!edges.empty()) {
sideEdges.clear();
sideEdges.splice(sideEdges.end(), edges, edges.begin());
bool sameSide = true;
while (!edges.empty() && sameSide) {
sameSide =
SMESH_Algo::IsContinuous(sideEdges.back(), edges.front()) &&
twoEdgesMeatAtVertex(sideEdges.back(), edges.front(), aMesh);
if (sameSide)
sideEdges.splice(sideEdges.end(), edges, edges.begin());
}
if (nbSides == 0) { // go backward from the first edge
sameSide = true;
while (!edges.empty() && sameSide) {
sameSide =
SMESH_Algo::IsContinuous(sideEdges.front(), edges.back()) &&
twoEdgesMeatAtVertex(sideEdges.front(), edges.back(), aMesh);
if (sameSide)
sideEdges.splice(sideEdges.begin(), edges, --edges.end());
}
}
list<TopoDS_Edge>::iterator ite = sideEdges.begin();
aNbNodes[nbSides] = 1;
for (; ite!=sideEdges.end(); ite++) {
SMESH_subMesh * sm = aMesh.GetSubMesh(*ite);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) {
return false;
}
std::vector<smIdType> aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
else
aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
}
++nbSides;
}
}
}
if (nbSides != 4) {
if (!nbSides)
nbSides = nbEdgesInWire.front();
error(COMPERR_BAD_SHAPE, TComm("Face must have 4 sides but not ") << nbSides);
return false;
}
return true;
}
//=============================================================================
/*!
* CheckAnd2Dcompute
*/
//=============================================================================
FaceQuadStruct::Ptr
StdMeshers_Quadrangle_2D::CheckAnd2Dcompute (SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const bool CreateQuadratic)
{
_quadraticMesh = CreateQuadratic;
FaceQuadStruct::Ptr quad = CheckNbEdges(aMesh, aShape);
if ( quad )
{
// set normalized grid on unit square in parametric domain
if ( ! setNormalizedGrid( quad ))
quad.reset();
}
return quad;
}
namespace
{
inline const vector<UVPtStruct>& getUVPtStructIn(FaceQuadStruct::Ptr& quad, int i, int nbSeg)
{
bool isXConst = (i == QUAD_BOTTOM_SIDE || i == QUAD_TOP_SIDE);
double constValue = (i == QUAD_BOTTOM_SIDE || i == QUAD_LEFT_SIDE) ? 0 : 1;
return
quad->nbNodeOut(i) ?
quad->side[i].grid->SimulateUVPtStruct(nbSeg,isXConst,constValue) :
quad->side[i].grid->GetUVPtStruct (isXConst,constValue);
}
inline gp_UV calcUV(double x, double y,
const gp_UV& a0,const gp_UV& a1,const gp_UV& a2,const gp_UV& a3,
const gp_UV& p0,const gp_UV& p1,const gp_UV& p2,const gp_UV& p3)
{
return
((1 - y) * p0 + x * p1 + y * p2 + (1 - x) * p3 ) -
((1 - x) * (1 - y) * a0 + x * (1 - y) * a1 + x * y * a2 + (1 - x) * y * a3);
}
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::setNormalizedGrid (FaceQuadStruct::Ptr quad)
{
if ( !quad->uv_grid.empty() )
return true;
// Algorithme décrit dans "Génération automatique de maillages"
// P.L. GEORGE, MASSON, § 6.4.1 p. 84-85
// traitement dans le domaine paramétrique 2d u,v
// transport - projection sur le carré unité
// max min 0 x1 1
// |<----north-2-------^ a3 -------------> a2
// | | ^1 1^
// west-3 east-1 =right | |
// | | ==> | |
// y0 | | y1 | |
// | | |0 0|
// v----south-0--------> a0 -------------> a1
// min max 0 x0 1
// =down
//
const FaceQuadStruct::Side & bSide = quad->side[0];
const FaceQuadStruct::Side & rSide = quad->side[1];
const FaceQuadStruct::Side & tSide = quad->side[2];
const FaceQuadStruct::Side & lSide = quad->side[3];
int nbhoriz = Min( bSide.NbPoints(), tSide.NbPoints() );
int nbvertic = Min( rSide.NbPoints(), lSide.NbPoints() );
if ( nbhoriz < 1 || nbvertic < 1 )
return error("Algo error: empty quad");
if ( myQuadList.size() == 1 )
{
// all sub-quads must have NO sides with nbNodeOut > 0
quad->nbNodeOut(0) = Max( 0, bSide.grid->NbPoints() - tSide.grid->NbPoints() );
quad->nbNodeOut(1) = Max( 0, rSide.grid->NbPoints() - lSide.grid->NbPoints() );
quad->nbNodeOut(2) = Max( 0, tSide.grid->NbPoints() - bSide.grid->NbPoints() );
quad->nbNodeOut(3) = Max( 0, lSide.grid->NbPoints() - rSide.grid->NbPoints() );
}
const vector<UVPtStruct>& uv_e0 = bSide.GetUVPtStruct();
const vector<UVPtStruct>& uv_e1 = rSide.GetUVPtStruct();
const vector<UVPtStruct>& uv_e2 = tSide.GetUVPtStruct();
const vector<UVPtStruct>& uv_e3 = lSide.GetUVPtStruct();
if (uv_e0.empty() || uv_e1.empty() || uv_e2.empty() || uv_e3.empty())
//return error("Can't find nodes on sides");
return error(COMPERR_BAD_INPUT_MESH);
quad->uv_grid.resize( nbvertic * nbhoriz );
quad->iSize = nbhoriz;
quad->jSize = nbvertic;
UVPtStruct *uv_grid = & quad->uv_grid[0];
quad->uv_box.Clear();
// copy data of face boundary
FaceQuadStruct::SideIterator sideIter;
{ // BOTTOM
const int j = 0;
const double x0 = bSide.First().normParam;
const double dx = bSide.Last().normParam - bSide.First().normParam;
for ( sideIter.Init( bSide ); sideIter.More(); sideIter.Next() ) {
sideIter.UVPt().x = ( sideIter.UVPt().normParam - x0 ) / dx;
sideIter.UVPt().y = 0.;
uv_grid[ j * nbhoriz + sideIter.Count() ] = sideIter.UVPt();
quad->uv_box.Add( sideIter.UVPt().UV() );
}
}
{ // RIGHT
const int i = nbhoriz - 1;
const double y0 = rSide.First().normParam;
const double dy = rSide.Last().normParam - rSide.First().normParam;
sideIter.Init( rSide );
if ( quad->UVPt( i, sideIter.Count() ).node )
sideIter.Next(); // avoid copying from a split emulated side
for ( ; sideIter.More(); sideIter.Next() ) {
sideIter.UVPt().x = 1.;
sideIter.UVPt().y = ( sideIter.UVPt().normParam - y0 ) / dy;
uv_grid[ sideIter.Count() * nbhoriz + i ] = sideIter.UVPt();
quad->uv_box.Add( sideIter.UVPt().UV() );
}
}
{ // TOP
const int j = nbvertic - 1;
const double x0 = tSide.First().normParam;
const double dx = tSide.Last().normParam - tSide.First().normParam;
int i = 0, nb = nbhoriz;
sideIter.Init( tSide );
if ( quad->UVPt( nb-1, j ).node ) --nb; // avoid copying from a split emulated side
for ( ; i < nb; i++, sideIter.Next()) {
sideIter.UVPt().x = ( sideIter.UVPt().normParam - x0 ) / dx;
sideIter.UVPt().y = 1.;
uv_grid[ j * nbhoriz + i ] = sideIter.UVPt();
quad->uv_box.Add( sideIter.UVPt().UV() );
}
}
{ // LEFT
const int i = 0;
const double y0 = lSide.First().normParam;
const double dy = lSide.Last().normParam - lSide.First().normParam;
int j = 0, nb = nbvertic;
sideIter.Init( lSide );
if ( quad->UVPt( i, j ).node )
++j, sideIter.Next(); // avoid copying from a split emulated side
if ( quad->UVPt( i, nb-1 ).node )
--nb;
for ( ; j < nb; j++, sideIter.Next()) {
sideIter.UVPt().x = 0.;
sideIter.UVPt().y = ( sideIter.UVPt().normParam - y0 ) / dy;
uv_grid[ j * nbhoriz + i ] = sideIter.UVPt();
quad->uv_box.Add( sideIter.UVPt().UV() );
}
}
// normalized 2d parameters on grid
for (int i = 1; i < nbhoriz-1; i++)
{
const double x0 = quad->UVPt( i, 0 ).x;
const double x1 = quad->UVPt( i, nbvertic-1 ).x;
for (int j = 1; j < nbvertic-1; j++)
{
const double y0 = quad->UVPt( 0, j ).y;
const double y1 = quad->UVPt( nbhoriz-1, j ).y;
// --- intersection : x=x0+(y0+x(y1-y0))(x1-x0)
double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
double y = y0 + x * (y1 - y0);
int ij = j * nbhoriz + i;
uv_grid[ij].x = x;
uv_grid[ij].y = y;
uv_grid[ij].node = NULL;
}
}
// projection on 2d domain (u,v)
gp_UV a0 = quad->UVPt( 0, 0 ).UV();
gp_UV a1 = quad->UVPt( nbhoriz-1, 0 ).UV();
gp_UV a2 = quad->UVPt( nbhoriz-1, nbvertic-1 ).UV();
gp_UV a3 = quad->UVPt( 0, nbvertic-1 ).UV();
for (int i = 1; i < nbhoriz-1; i++)
{
gp_UV p0 = quad->UVPt( i, 0 ).UV();
gp_UV p2 = quad->UVPt( i, nbvertic-1 ).UV();
for (int j = 1; j < nbvertic-1; j++)
{
gp_UV p1 = quad->UVPt( nbhoriz-1, j ).UV();
gp_UV p3 = quad->UVPt( 0, j ).UV();
int ij = j * nbhoriz + i;
double x = uv_grid[ij].x;
double y = uv_grid[ij].y;
gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
uv_grid[ij].u = uv.X();
uv_grid[ij].v = uv.Y();
}
}
return true;
}
//=======================================================================
//function : ShiftQuad
//purpose : auxiliary function for computeQuadPref
//=======================================================================
void StdMeshers_Quadrangle_2D::shiftQuad(FaceQuadStruct::Ptr& quad, const int num )
{
quad->shift( num, /*ori=*/true, /*keepGrid=*/myQuadList.size() > 1 );
}
//================================================================================
/*!
* \brief Rotate sides of a quad CCW by given nb of quartes
* \param nb - number of rotation quartes
* \param ori - to keep orientation of sides as in an unit quad or not
* \param keepGrid - if \c true Side::grid is not changed, Side::from and Side::to
* are altered instead
*/
//================================================================================
void FaceQuadStruct::shift( size_t nb, bool ori, bool keepGrid )
{
if ( nb == 0 ) return;
nb = nb % NB_QUAD_SIDES;
vector< Side > newSides( side.size() );
vector< Side* > sidePtrs( side.size() );
for (int i = QUAD_BOTTOM_SIDE; i < NB_QUAD_SIDES; ++i)
{
int id = (i + nb) % NB_QUAD_SIDES;
if ( ori )
{
bool wasForward = (i < QUAD_TOP_SIDE);
bool newForward = (id < QUAD_TOP_SIDE);
if ( wasForward != newForward )
side[ i ].Reverse( keepGrid );
}
newSides[ id ] = side[ i ];
sidePtrs[ i ] = & side[ i ];
}
// make newSides refer newSides via Side::Contact's
for ( size_t i = 0; i < newSides.size(); ++i )
{
FaceQuadStruct::Side& ns = newSides[ i ];
for ( size_t iC = 0; iC < ns.contacts.size(); ++iC )
{
FaceQuadStruct::Side* oSide = ns.contacts[iC].other_side;
vector< Side* >::iterator sIt = std::find( sidePtrs.begin(), sidePtrs.end(), oSide );
if ( sIt != sidePtrs.end() )
ns.contacts[iC].other_side = & newSides[ *sIt - sidePtrs[0] ];
}
}
newSides.swap( side );
if ( keepGrid && !uv_grid.empty() )
{
if ( nb == 2 ) // "PI"
{
std::reverse( uv_grid.begin(), uv_grid.end() );
}
else
{
FaceQuadStruct newQuad;
newQuad.uv_grid.resize( uv_grid.size() );
newQuad.iSize = jSize;
newQuad.jSize = iSize;
int i, j, iRev, jRev;
int *iNew = ( nb == 1 ) ? &jRev : &j;
int *jNew = ( nb == 1 ) ? &i : &iRev;
for ( i = 0, iRev = iSize-1; i < iSize; ++i, --iRev )
for ( j = 0, jRev = jSize-1; j < jSize; ++j, --jRev )
newQuad.UVPt( *iNew, *jNew ) = UVPt( i, j );
std::swap( iSize, jSize );
std::swap( uv_grid, newQuad.uv_grid );
}
}
else
{
uv_grid.clear();
}
}
//=======================================================================
//function : calcUV
//purpose : auxiliary function for computeQuadPref
//=======================================================================
static gp_UV calcUV(double x0, double x1, double y0, double y1,
FaceQuadStruct::Ptr& quad,
const gp_UV& a0, const gp_UV& a1,
const gp_UV& a2, const gp_UV& a3)
{
double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
double y = y0 + x * (y1 - y0);
gp_UV p0 = quad->side[QUAD_BOTTOM_SIDE].grid->Value2d(x).XY();
gp_UV p1 = quad->side[QUAD_RIGHT_SIDE ].grid->Value2d(y).XY();
gp_UV p2 = quad->side[QUAD_TOP_SIDE ].grid->Value2d(x).XY();
gp_UV p3 = quad->side[QUAD_LEFT_SIDE ].grid->Value2d(y).XY();
gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
return uv;
}
//=======================================================================
//function : calcUV2
//purpose : auxiliary function for computeQuadPref
//=======================================================================
static gp_UV calcUV2(double x, double y,
FaceQuadStruct::Ptr& quad,
const gp_UV& a0, const gp_UV& a1,
const gp_UV& a2, const gp_UV& a3)
{
gp_UV p0 = quad->side[QUAD_BOTTOM_SIDE].grid->Value2d(x).XY();
gp_UV p1 = quad->side[QUAD_RIGHT_SIDE ].grid->Value2d(y).XY();
gp_UV p2 = quad->side[QUAD_TOP_SIDE ].grid->Value2d(x).XY();
gp_UV p3 = quad->side[QUAD_LEFT_SIDE ].grid->Value2d(y).XY();
gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
return uv;
}
//=======================================================================
/*!
* Create only quandrangle faces
*/
//=======================================================================
bool StdMeshers_Quadrangle_2D::computeQuadPref (SMESH_Mesh & aMesh,
const TopoDS_Face& aFace,
FaceQuadStruct::Ptr quad)
{
const bool OldVersion = (myQuadType == QUAD_QUADRANGLE_PREF_REVERSED);
const bool WisF = true;
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
int i,j, geomFaceID = meshDS->ShapeToIndex(aFace);
int nb = quad->side[0].NbPoints();
int nr = quad->side[1].NbPoints();
int nt = quad->side[2].NbPoints();
int nl = quad->side[3].NbPoints();
int dh = abs(nb-nt);
int dv = abs(nr-nl);
if ( myForcedPnts.empty() )
{
// rotate sides to be as in the picture below and to have
// dh >= dv and nt > nb
if ( dh >= dv )
shiftQuad( quad, ( nt > nb ) ? 0 : 2 );
else
shiftQuad( quad, ( nr > nl ) ? 1 : 3 );
}
else
{
// rotate the quad to have nt > nb [and nr > nl]
if ( nb > nt )
shiftQuad ( quad, nr > nl ? 1 : 2 );
else if ( nr > nl )
shiftQuad( quad, nb == nt ? 1 : 0 );
else if ( nl > nr )
shiftQuad( quad, 3 );
}
nb = quad->side[0].NbPoints();
nr = quad->side[1].NbPoints();
nt = quad->side[2].NbPoints();
nl = quad->side[3].NbPoints();
dh = abs(nb-nt);
dv = abs(nr-nl);
int nbh = Max(nb,nt);
int nbv = Max(nr,nl);
int addh = 0;
int addv = 0;
// Orientation of face and 3 main domain for future faces
// ----------- Old version ---------------
// 0 top 1
// 1------------1
// | | | |
// | |C | |
// | L | | R |
// left | |__| | right
// | / \ |
// | / C \ |
// |/ \|
// 0------------0
// 0 bottom 1
// ----------- New version ---------------
// 0 top 1
// 1------------1
// | |__| |
// | / \ |
// | / C \ |
// left |/________\| right
// | |
// | C |
// | |
// 0------------0
// 0 bottom 1
//const int bfrom = quad->side[0].from;
//const int rfrom = quad->side[1].from;
const int tfrom = quad->side[2].from;
//const int lfrom = quad->side[3].from;
{
const vector<UVPtStruct>& uv_eb_vec = quad->side[0].GetUVPtStruct(true,0);
const vector<UVPtStruct>& uv_er_vec = quad->side[1].GetUVPtStruct(false,1);
const vector<UVPtStruct>& uv_et_vec = quad->side[2].GetUVPtStruct(true,1);
const vector<UVPtStruct>& uv_el_vec = quad->side[3].GetUVPtStruct(false,0);
if (uv_eb_vec.empty() ||
uv_er_vec.empty() ||
uv_et_vec.empty() ||
uv_el_vec.empty())
return error(COMPERR_BAD_INPUT_MESH);
}
FaceQuadStruct::SideIterator uv_eb, uv_er, uv_et, uv_el;
uv_eb.Init( quad->side[0] );
uv_er.Init( quad->side[1] );
uv_et.Init( quad->side[2] );
uv_el.Init( quad->side[3] );
gp_UV a0,a1,a2,a3, p0,p1,p2,p3, uv;
double x,y;
a0 = uv_eb[ 0 ].UV();
a1 = uv_er[ 0 ].UV();
a2 = uv_er[ nr-1 ].UV();
a3 = uv_et[ 0 ].UV();
if ( !myForcedPnts.empty() )
{
if ( dv != 0 && dh != 0 ) // here myQuadList.size() == 1
{
const int dmin = Min( dv, dh );
// Make a side separating domains L and Cb
StdMeshers_FaceSidePtr sideLCb;
UVPtStruct p3dom; // a point where 3 domains meat
{ // dmin
vector<UVPtStruct> pointsLCb( dmin+1 ); // 1--------1
pointsLCb[0] = uv_eb[0]; // | | |
for ( int i = 1; i <= dmin; ++i ) // | |Ct|
{ // | L | |
x = uv_et[ i ].normParam; // | |__|
y = uv_er[ i ].normParam; // | / |
p0 = quad->side[0].grid->Value2d( x ).XY(); // | / Cb |dmin
p1 = uv_er[ i ].UV(); // |/ |
p2 = uv_et[ i ].UV(); // 0--------0
p3 = quad->side[3].grid->Value2d( y ).XY();
uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
pointsLCb[ i ].u = uv.X();
pointsLCb[ i ].v = uv.Y();
}
sideLCb = StdMeshers_FaceSide::New( pointsLCb, aFace );
p3dom = pointsLCb.back();
gp_Pnt xyz = S->Value( p3dom.u, p3dom.v );
p3dom.node = myHelper->AddNode( xyz.X(), xyz.Y(), xyz.Z(), 0, p3dom.u, p3dom.v );
pointsLCb.back() = p3dom;
}
// Make a side separating domains L and Ct
StdMeshers_FaceSidePtr sideLCt;
{
vector<UVPtStruct> pointsLCt( nl );
pointsLCt[0] = p3dom;
pointsLCt.back() = uv_et[ dmin ];
x = uv_et[ dmin ].normParam;
p0 = quad->side[0].grid->Value2d( x ).XY();
p2 = uv_et[ dmin ].UV();
double y0 = uv_er[ dmin ].normParam;
for ( int i = 1; i < nl-1; ++i )
{
y = y0 + i / ( nl-1. ) * ( 1. - y0 );
p1 = quad->side[1].grid->Value2d( y ).XY();
p3 = quad->side[3].grid->Value2d( y ).XY();
uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
pointsLCt[ i ].u = uv.X();
pointsLCt[ i ].v = uv.Y();
}
sideLCt = StdMeshers_FaceSide::New( pointsLCt, aFace );
}
// Make a side separating domains Cb and Ct
StdMeshers_FaceSidePtr sideCbCt;
{
vector<UVPtStruct> pointsCbCt( nb );
pointsCbCt[0] = p3dom;
pointsCbCt.back() = uv_er[ dmin ];
y = uv_er[ dmin ].normParam;
p1 = uv_er[ dmin ].UV();
p3 = quad->side[3].grid->Value2d( y ).XY();
double x0 = uv_et[ dmin ].normParam;
for ( int i = 1; i < nb-1; ++i )
{
x = x0 + i / ( nb-1. ) * ( 1. - x0 );
p2 = quad->side[2].grid->Value2d( x ).XY();
p0 = quad->side[0].grid->Value2d( x ).XY();
uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
pointsCbCt[ i ].u = uv.X();
pointsCbCt[ i ].v = uv.Y();
}
sideCbCt = StdMeshers_FaceSide::New( pointsCbCt, aFace );
}
// Make Cb quad
FaceQuadStruct* qCb = new FaceQuadStruct( quad->face, "Cb" );
myQuadList.push_back( FaceQuadStruct::Ptr( qCb ));
qCb->side.resize(4);
qCb->side[0] = quad->side[0];
qCb->side[1] = quad->side[1];
qCb->side[2] = sideCbCt;
qCb->side[3] = sideLCb;
qCb->side[1].to = dmin+1;
// Make L quad
FaceQuadStruct* qL = new FaceQuadStruct( quad->face, "L" );
myQuadList.push_back( FaceQuadStruct::Ptr( qL ));
qL->side.resize(4);
qL->side[0] = sideLCb;
qL->side[1] = sideLCt;
qL->side[2] = quad->side[2];
qL->side[3] = quad->side[3];
qL->side[2].to = dmin+1;
// Make Ct from the main quad
FaceQuadStruct::Ptr qCt = quad;
qCt->side[0] = sideCbCt;
qCt->side[3] = sideLCt;
qCt->side[1].from = dmin;
qCt->side[2].from = dmin;
qCt->uv_grid.clear();
qCt->name = "Ct";
// Connect sides
qCb->side[3].AddContact( dmin, & qCb->side[2], 0 );
qCb->side[3].AddContact( dmin, & qCt->side[3], 0 );
qCt->side[3].AddContact( 0, & qCt->side[0], 0 );
qCt->side[0].AddContact( 0, & qL ->side[0], dmin );
qL ->side[0].AddContact( dmin, & qL ->side[1], 0 );
qL ->side[0].AddContact( dmin, & qCb->side[2], 0 );
if ( dh == dv )
return computeQuadDominant( aMesh, aFace );
else
return computeQuadPref( aMesh, aFace, qCt );
} // if ( dv != 0 && dh != 0 )
//const int db = quad->side[0].IsReversed() ? -1 : +1;
//const int dr = quad->side[1].IsReversed() ? -1 : +1;
const int dt = quad->side[2].IsReversed() ? -1 : +1;
//const int dl = quad->side[3].IsReversed() ? -1 : +1;
// Case dv == 0, here possibly myQuadList.size() > 1
//
// lw nb lw = dh/2
// +------------+
// | | | |
// | | Ct | |
// | L | | R |
// | |____| |
// | / \ |
// | / Cb \ |
// |/ \|
// +------------+
const int lw = dh/2; // lateral width
double yCbL, yCbR;
{
double lL = quad->side[3].Length();
double lLwL = quad->side[2].Length( tfrom,
tfrom + ( lw ) * dt );
yCbL = lLwL / ( lLwL + lL );
double lR = quad->side[1].Length();
double lLwR = quad->side[2].Length( tfrom + ( lw + nb-1 ) * dt,
tfrom + ( lw + nb-1 + lw ) * dt);
yCbR = lLwR / ( lLwR + lR );
}
// Make sides separating domains Cb and L and R
StdMeshers_FaceSidePtr sideLCb, sideRCb;
UVPtStruct pTBL, pTBR; // points where 3 domains meat
{
vector<UVPtStruct> pointsLCb( lw+1 ), pointsRCb( lw+1 );
pointsLCb[0] = uv_eb[ 0 ];
pointsRCb[0] = uv_eb[ nb-1 ];
for ( int i = 1, i2 = nt-2; i <= lw; ++i, --i2 )
{
x = quad->side[2].Param( i );
y = yCbL * i / lw;
p0 = quad->side[0].Value2d( x );
p1 = quad->side[1].Value2d( y );
p2 = uv_et[ i ].UV();
p3 = quad->side[3].Value2d( y );
uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
pointsLCb[ i ].u = uv.X();
pointsLCb[ i ].v = uv.Y();
pointsLCb[ i ].x = x;
x = quad->side[2].Param( i2 );
y = yCbR * i / lw;
p1 = quad->side[1].Value2d( y );
p0 = quad->side[0].Value2d( x );
p2 = uv_et[ i2 ].UV();
p3 = quad->side[3].Value2d( y );
uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
pointsRCb[ i ].u = uv.X();
pointsRCb[ i ].v = uv.Y();
pointsRCb[ i ].x = x;
}
sideLCb = StdMeshers_FaceSide::New( pointsLCb, aFace );
sideRCb = StdMeshers_FaceSide::New( pointsRCb, aFace );
pTBL = pointsLCb.back();
pTBR = pointsRCb.back();
{
gp_Pnt xyz = S->Value( pTBL.u, pTBL.v );
pTBL.node = myHelper->AddNode( xyz.X(), xyz.Y(), xyz.Z(), 0, pTBL.u, pTBL.v );
pointsLCb.back() = pTBL;
}
{
gp_Pnt xyz = S->Value( pTBR.u, pTBR.v );
pTBR.node = myHelper->AddNode( xyz.X(), xyz.Y(), xyz.Z(), 0, pTBR.u, pTBR.v );
pointsRCb.back() = pTBR;
}
}
// Make sides separating domains Ct and L and R
StdMeshers_FaceSidePtr sideLCt, sideRCt;
{
vector<UVPtStruct> pointsLCt( nl ), pointsRCt( nl );
pointsLCt[0] = pTBL;
pointsLCt.back() = uv_et[ lw ];
pointsRCt[0] = pTBR;
pointsRCt.back() = uv_et[ lw + nb - 1 ];
x = pTBL.x;
p0 = quad->side[0].Value2d( x );
p2 = uv_et[ lw ].UV();
int iR = lw + nb - 1;
double xR = pTBR.x;
gp_UV p0R = quad->side[0].Value2d( xR );
gp_UV p2R = uv_et[ iR ].UV();
for ( int i = 1; i < nl-1; ++i )
{
y = yCbL + ( 1. - yCbL ) * i / (nl-1.);
p1 = quad->side[1].Value2d( y );
p3 = quad->side[3].Value2d( y );
uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
pointsLCt[ i ].u = uv.X();
pointsLCt[ i ].v = uv.Y();
y = yCbR + ( 1. - yCbR ) * i / (nl-1.);
p1 = quad->side[1].Value2d( y );
p3 = quad->side[3].Value2d( y );
uv = calcUV( xR,y, a0,a1,a2,a3, p0R,p1,p2R,p3 );
pointsRCt[ i ].u = uv.X();
pointsRCt[ i ].v = uv.Y();
}
sideLCt = StdMeshers_FaceSide::New( pointsLCt, aFace );
sideRCt = StdMeshers_FaceSide::New( pointsRCt, aFace );
}
// Make a side separating domains Cb and Ct
StdMeshers_FaceSidePtr sideCbCt;
{
vector<UVPtStruct> pointsCbCt( nb );
pointsCbCt[0] = pTBL;
pointsCbCt.back() = pTBR;
p1 = quad->side[1].Value2d( yCbR );
p3 = quad->side[3].Value2d( yCbL );
for ( int i = 1; i < nb-1; ++i )
{
x = quad->side[2].Param( i + lw );
y = yCbL + ( yCbR - yCbL ) * i / (nb-1.);
p2 = uv_et[ i + lw ].UV();
p0 = quad->side[0].Value2d( x );
uv = calcUV( x,y, a0,a1,a2,a3, p0,p1,p2,p3 );
pointsCbCt[ i ].u = uv.X();
pointsCbCt[ i ].v = uv.Y();
}
sideCbCt = StdMeshers_FaceSide::New( pointsCbCt, aFace );
}
// Make Cb quad
FaceQuadStruct* qCb = new FaceQuadStruct( quad->face, "Cb" );
myQuadList.push_back( FaceQuadStruct::Ptr( qCb ));
qCb->side.resize(4);
qCb->side[0] = quad->side[0];
qCb->side[1] = sideRCb;
qCb->side[2] = sideCbCt;
qCb->side[3] = sideLCb;
// Make L quad
FaceQuadStruct* qL = new FaceQuadStruct( quad->face, "L" );
myQuadList.push_back( FaceQuadStruct::Ptr( qL ));
qL->side.resize(4);
qL->side[0] = sideLCb;
qL->side[1] = sideLCt;
qL->side[2] = quad->side[2];
qL->side[3] = quad->side[3];
qL->side[2].to = ( lw + 1 ) * dt + tfrom;
// Make R quad
FaceQuadStruct* qR = new FaceQuadStruct( quad->face, "R" );
myQuadList.push_back( FaceQuadStruct::Ptr( qR ));
qR->side.resize(4);
qR->side[0] = sideRCb;
qR->side[0].from = lw;
qR->side[0].to = -1;
qR->side[0].di = -1;
qR->side[1] = quad->side[1];
qR->side[2] = quad->side[2];
qR->side[2].from = ( lw + nb-1 ) * dt + tfrom;
qR->side[3] = sideRCt;
// Make Ct from the main quad
FaceQuadStruct::Ptr qCt = quad;
qCt->side[0] = sideCbCt;
qCt->side[1] = sideRCt;
qCt->side[2].from = ( lw ) * dt + tfrom;
qCt->side[2].to = ( lw + nb ) * dt + tfrom;
qCt->side[3] = sideLCt;
qCt->uv_grid.clear();
qCt->name = "Ct";
// Connect sides
qCb->side[3].AddContact( lw, & qCb->side[2], 0 );
qCb->side[3].AddContact( lw, & qCt->side[3], 0 );
qCt->side[3].AddContact( 0, & qCt->side[0], 0 );
qCt->side[0].AddContact( 0, & qL ->side[0], lw );
qL ->side[0].AddContact( lw, & qL ->side[1], 0 );
qL ->side[0].AddContact( lw, & qCb->side[2], 0 );
//
qCb->side[1].AddContact( lw, & qCb->side[2], nb-1 );
qCb->side[1].AddContact( lw, & qCt->side[1], 0 );
qCt->side[0].AddContact( nb-1, & qCt->side[1], 0 );
qCt->side[0].AddContact( nb-1, & qR ->side[0], lw );
qR ->side[3].AddContact( 0, & qR ->side[0], lw );
qR ->side[3].AddContact( 0, & qCb->side[2], nb-1 );
return computeQuadDominant( aMesh, aFace );
} // if ( !myForcedPnts.empty() )
if ( dh > dv ) {
addv = (dh-dv)/2;
nbv = nbv + addv;
}
else { // dv >= dh
addh = (dv-dh)/2;
nbh = nbh + addh;
}
// arrays for normalized params
TColStd_SequenceOfReal npb, npr, npt, npl;
for (i=0; i<nb; i++) {
npb.Append(uv_eb[i].normParam);
}
for (i=0; i<nr; i++) {
npr.Append(uv_er[i].normParam);
}
for (i=0; i<nt; i++) {
npt.Append(uv_et[i].normParam);
}
for (i=0; i<nl; i++) {
npl.Append(uv_el[i].normParam);
}
int dl = 0, dr = 0;
if (OldVersion) {
// add some params to right and left after the first param
// insert to right
dr = nbv - nr;
double dpr = (npr.Value(2) - npr.Value(1))/(dr+1);
for (i=1; i<=dr; i++) {
npr.InsertAfter(1,npr.Value(2)-dpr);
}
// insert to left
dl = nbv - nl;
dpr = (npl.Value(2) - npl.Value(1))/(dl+1);
for (i=1; i<=dl; i++) {
npl.InsertAfter(1,npl.Value(2)-dpr);
}
}
int nnn = Min(nr,nl);
// auxiliary sequence of XY for creation nodes
// in the bottom part of central domain
// Length of UVL and UVR must be == nbv-nnn
TColgp_SequenceOfXY UVL, UVR, UVT;
if (OldVersion) {
// step1: create faces for left domain
StdMeshers_Array2OfNode NodesL(1,dl+1,1,nl);
// add left nodes
for (j=1; j<=nl; j++)
NodesL.SetValue(1,j,uv_el[j-1].node);
if (dl>0) {
// add top nodes
for (i=1; i<=dl; i++)
NodesL.SetValue(i+1,nl,uv_et[i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
for (i=1; i<=dl; i++) {
double x0 = npt.Value(i+1);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,1,N);
if (UVL.Length()<nbv-nnn) UVL.Append(UV);
// internal nodes
for (j=2; j<nl; j++) {
double y0 = npl.Value(dl+j);
double y1 = npr.Value(dl+j);
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,j,N);
if (i==dl) UVtmp.Append(UV);
}
}
for (i=1; i<=UVtmp.Length() && UVL.Length()<nbv-nnn; i++) {
UVL.Append(UVtmp.Value(i));
}
// create faces
for (i=1; i<=dl; i++) {
for (j=1; j<nl; j++) {
if (WisF) {
myHelper->AddFace(NodesL.Value(i,j), NodesL.Value(i+1,j),
NodesL.Value(i+1,j+1), NodesL.Value(i,j+1));
}
}
}
}
else {
// fill UVL using c2d
for (i=1; i<npl.Length() && UVL.Length()<nbv-nnn; i++) {
UVL.Append(gp_UV (uv_el[i].u, uv_el[i].v));
}
}
// step2: create faces for right domain
StdMeshers_Array2OfNode NodesR(1,dr+1,1,nr);
// add right nodes
for (j=1; j<=nr; j++)
NodesR.SetValue(1,j,uv_er[nr-j].node);
if (dr>0) {
// add top nodes
for (i=1; i<=dr; i++)
NodesR.SetValue(i+1,1,uv_et[nt-1-i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
for (i=1; i<=dr; i++) {
double x0 = npt.Value(nt-i);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,nr,N);
if (UVR.Length()<nbv-nnn) UVR.Append(UV);
// internal nodes
for (j=2; j<nr; j++) {
double y0 = npl.Value(nbv-j+1);
double y1 = npr.Value(nbv-j+1);
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,j,N);
if (i==dr) UVtmp.Prepend(UV);
}
}
for (i=1; i<=UVtmp.Length() && UVR.Length()<nbv-nnn; i++) {
UVR.Append(UVtmp.Value(i));
}
// create faces
for (i=1; i<=dr; i++) {
for (j=1; j<nr; j++) {
if (WisF) {
myHelper->AddFace(NodesR.Value(i,j), NodesR.Value(i+1,j),
NodesR.Value(i+1,j+1), NodesR.Value(i,j+1));
}
}
}
}
else {
// fill UVR using c2d
for (i=1; i<npr.Length() && UVR.Length()<nbv-nnn; i++) {
UVR.Append(gp_UV(uv_er[i].u, uv_er[i].v));
}
}
// step3: create faces for central domain
StdMeshers_Array2OfNode NodesC(1,nb,1,nbv);
// add first line using NodesL
for (i=1; i<=dl+1; i++)
NodesC.SetValue(1,i,NodesL(i,1));
for (i=2; i<=nl; i++)
NodesC.SetValue(1,dl+i,NodesL(dl+1,i));
// add last line using NodesR
for (i=1; i<=dr+1; i++)
NodesC.SetValue(nb,i,NodesR(i,nr));
for (i=1; i<nr; i++)
NodesC.SetValue(nb,dr+i+1,NodesR(dr+1,nr-i));
// add top nodes (last columns)
for (i=dl+2; i<nbh-dr; i++)
NodesC.SetValue(i-dl,nbv,uv_et[i-1].node);
// add bottom nodes (first columns)
for (i=2; i<nb; i++)
NodesC.SetValue(i,1,uv_eb[i-1].node);
// create and add needed nodes
// add linear layers
for (i=2; i<nb; i++) {
double x0 = npt.Value(dl+i);
double x1 = x0;
for (j=1; j<nnn; j++) {
double y0 = npl.Value(nbv-nnn+j);
double y1 = npr.Value(nbv-nnn+j);
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(i,nbv-nnn+j,N);
if ( j==1 )
UVT.Append( UV );
}
}
// add diagonal layers
gp_UV A2 = UVR.Value(nbv-nnn);
gp_UV A3 = UVL.Value(nbv-nnn);
for (i=1; i<nbv-nnn; i++) {
gp_UV p1 = UVR.Value(i);
gp_UV p3 = UVL.Value(i);
double y = i / double(nbv-nnn);
for (j=2; j<nb; j++) {
double x = npb.Value(j);
gp_UV p0( uv_eb[j-1].u, uv_eb[j-1].v );
gp_UV p2 = UVT.Value( j-1 );
gp_UV UV = calcUV(x, y, a0, a1, A2, A3, p0,p1,p2,p3 );
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(),UV.Y());
NodesC.SetValue(j,i+1,N);
}
}
// create faces
for (i=1; i<nb; i++) {
for (j=1; j<nbv; j++) {
if (WisF) {
myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
}
}
}
}
else { // New version (!OldVersion)
// step1: create faces for bottom rectangle domain
StdMeshers_Array2OfNode NodesBRD(1,nb,1,nnn-1);
// fill UVL and UVR using c2d
for (j=0; j<nb; j++) {
NodesBRD.SetValue(j+1,1,uv_eb[j].node);
}
for (i=1; i<nnn-1; i++) {
NodesBRD.SetValue(1,i+1,uv_el[i].node);
NodesBRD.SetValue(nb,i+1,uv_er[i].node);
for (j=2; j<nb; j++) {
double x = npb.Value(j);
double y = (1-x) * npl.Value(i+1) + x * npr.Value(i+1);
gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(),UV.Y());
NodesBRD.SetValue(j,i+1,N);
}
}
for (j=1; j<nnn-1; j++) {
for (i=1; i<nb; i++) {
if (WisF) {
myHelper->AddFace(NodesBRD.Value(i,j), NodesBRD.Value(i+1,j),
NodesBRD.Value(i+1,j+1), NodesBRD.Value(i,j+1));
}
}
}
int drl = abs(nr-nl);
// create faces for region C
StdMeshers_Array2OfNode NodesC(1,nb,1,drl+1+addv);
// add nodes from previous region
for (j=1; j<=nb; j++) {
NodesC.SetValue(j,1,NodesBRD.Value(j,nnn-1));
}
if ((drl+addv) > 0) {
int n1,n2;
if (nr>nl) {
n1 = 1;
n2 = drl + 1;
TColgp_SequenceOfXY UVtmp;
double drparam = npr.Value(nr) - npr.Value(nnn-1);
double dlparam = npl.Value(nnn) - npl.Value(nnn-1);
double y0 = 0, y1 = 0;
for (i=1; i<=drl; i++) {
// add existed nodes from right edge
NodesC.SetValue(nb,i+1,uv_er[nnn+i-2].node);
//double dtparam = npt.Value(i+1);
y1 = npr.Value(nnn+i-1); // param on right edge
double dpar = (y1 - npr.Value(nnn-1))/drparam;
y0 = npl.Value(nnn-1) + dpar*dlparam; // param on left edge
double dy = y1 - y0;
for (j=1; j<nb; j++) {
double x = npt.Value(i+1) + npb.Value(j)*(1-npt.Value(i+1));
double y = y0 + dy*x;
gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(j,i+1,N);
}
}
double dy0 = (1-y0)/(addv+1);
double dy1 = (1-y1)/(addv+1);
for (i=1; i<=addv; i++) {
double yy0 = y0 + dy0*i;
double yy1 = y1 + dy1*i;
double dyy = yy1 - yy0;
for (j=1; j<=nb; j++) {
double x = npt.Value(i+1+drl) +
npb.Value(j) * (npt.Value(nt-i) - npt.Value(i+1+drl));
double y = yy0 + dyy*x;
gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(j,i+drl+1,N);
}
}
}
else { // nr<nl
n2 = 1;
n1 = drl + 1;
TColgp_SequenceOfXY UVtmp;
double dlparam = npl.Value(nl) - npl.Value(nnn-1);
double drparam = npr.Value(nnn) - npr.Value(nnn-1);
double y0 = npl.Value(nnn-1);
double y1 = npr.Value(nnn-1);
for (i=1; i<=drl; i++) {
// add existed nodes from right edge
NodesC.SetValue(1,i+1,uv_el[nnn+i-2].node);
y0 = npl.Value(nnn+i-1); // param on left edge
double dpar = (y0 - npl.Value(nnn-1))/dlparam;
y1 = npr.Value(nnn-1) + dpar*drparam; // param on right edge
double dy = y1 - y0;
for (j=2; j<=nb; j++) {
double x = npb.Value(j)*npt.Value(nt-i);
double y = y0 + dy*x;
gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(j,i+1,N);
}
}
double dy0 = (1-y0)/(addv+1);
double dy1 = (1-y1)/(addv+1);
for (i=1; i<=addv; i++) {
double yy0 = y0 + dy0*i;
double yy1 = y1 + dy1*i;
double dyy = yy1 - yy0;
for (j=1; j<=nb; j++) {
double x = npt.Value(i+1) +
npb.Value(j) * (npt.Value(nt-i-drl) - npt.Value(i+1));
double y = yy0 + dyy*x;
gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(j,i+drl+1,N);
}
}
}
// create faces
for (j=1; j<=drl+addv; j++) {
for (i=1; i<nb; i++) {
if (WisF) {
myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
}
}
} // end nr<nl
StdMeshers_Array2OfNode NodesLast(1,nt,1,2);
for (i=1; i<=nt; i++) {
NodesLast.SetValue(i,2,uv_et[i-1].node);
}
int nnn=0;
for (i=n1; i<drl+addv+1; i++) {
nnn++;
NodesLast.SetValue(nnn,1,NodesC.Value(1,i));
}
for (i=1; i<=nb; i++) {
nnn++;
NodesLast.SetValue(nnn,1,NodesC.Value(i,drl+addv+1));
}
for (i=drl+addv; i>=n2; i--) {
nnn++;
NodesLast.SetValue(nnn,1,NodesC.Value(nb,i));
}
for (i=1; i<nt; i++) {
if (WisF) {
myHelper->AddFace(NodesLast.Value(i,1), NodesLast.Value(i+1,1),
NodesLast.Value(i+1,2), NodesLast.Value(i,2));
}
}
} // if ((drl+addv) > 0)
} // end new version implementation
bool isOk = true;
return isOk;
}
//=======================================================================
/*!
* Evaluate only quandrangle faces
*/
//=======================================================================
bool StdMeshers_Quadrangle_2D::evaluateQuadPref(SMESH_Mesh & aMesh,
const TopoDS_Shape& aShape,
std::vector<int>& aNbNodes,
MapShapeNbElems& aResMap,
bool IsQuadratic)
{
// Auxiliary key in order to keep old variant
// of meshing after implementation new variant
// for bug 0016220 from Mantis.
bool OldVersion = false;
if (myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
OldVersion = true;
const TopoDS_Face& F = TopoDS::Face(aShape);
Handle(Geom_Surface) S = BRep_Tool::Surface(F);
int nb = aNbNodes[0];
int nr = aNbNodes[1];
int nt = aNbNodes[2];
int nl = aNbNodes[3];
int dh = abs(nb-nt);
int dv = abs(nr-nl);
if (dh>=dv) {
if (nt>nb) {
// it is a base case => not shift
}
else {
// we have to shift on 2
nb = aNbNodes[2];
nr = aNbNodes[3];
nt = aNbNodes[0];
nl = aNbNodes[1];
}
}
else {
if (nr>nl) {
// we have to shift quad on 1
nb = aNbNodes[3];
nr = aNbNodes[0];
nt = aNbNodes[1];
nl = aNbNodes[2];
}
else {
// we have to shift quad on 3
nb = aNbNodes[1];
nr = aNbNodes[2];
nt = aNbNodes[3];
nl = aNbNodes[0];
}
}
dh = abs(nb-nt);
dv = abs(nr-nl);
int nbh = Max(nb,nt);
int nbv = Max(nr,nl);
int addh = 0;
int addv = 0;
if (dh>dv) {
addv = (dh-dv)/2;
nbv = nbv + addv;
}
else { // dv>=dh
addh = (dv-dh)/2;
nbh = nbh + addh;
}
int dl,dr;
if (OldVersion) {
// add some params to right and left after the first param
// insert to right
dr = nbv - nr;
// insert to left
dl = nbv - nl;
}
int nnn = Min(nr,nl);
int nbNodes = 0;
int nbFaces = 0;
if (OldVersion) {
// step1: create faces for left domain
if (dl>0) {
nbNodes += dl*(nl-1);
nbFaces += dl*(nl-1);
}
// step2: create faces for right domain
if (dr>0) {
nbNodes += dr*(nr-1);
nbFaces += dr*(nr-1);
}
// step3: create faces for central domain
nbNodes += (nb-2)*(nnn-1) + (nbv-nnn-1)*(nb-2);
nbFaces += (nb-1)*(nbv-1);
}
else { // New version (!OldVersion)
nbNodes += (nnn-2)*(nb-2);
nbFaces += (nnn-2)*(nb-1);
int drl = abs(nr-nl);
nbNodes += drl*(nb-1) + addv*nb;
nbFaces += (drl+addv)*(nb-1) + (nt-1);
} // end new version implementation
std::vector<smIdType> aVec(SMDSEntity_Last);
for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aVec[i] = 0;
if (IsQuadratic) {
aVec[SMDSEntity_Quad_Quadrangle] = nbFaces;
aVec[SMDSEntity_Node] = nbNodes + nbFaces*4;
if (aNbNodes.size()==5) {
aVec[SMDSEntity_Quad_Triangle] = aNbNodes[3] - 1;
aVec[SMDSEntity_Quad_Quadrangle] = nbFaces - aNbNodes[3] + 1;
}
}
else {
aVec[SMDSEntity_Node] = nbNodes;
aVec[SMDSEntity_Quadrangle] = nbFaces;
if (aNbNodes.size()==5) {
aVec[SMDSEntity_Triangle] = aNbNodes[3] - 1;
aVec[SMDSEntity_Quadrangle] = nbFaces - aNbNodes[3] + 1;
}
}
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
aResMap.insert(std::make_pair(sm,aVec));
return true;
}
//=============================================================================
/*! Split quadrangle in to 2 triangles by smallest diagonal
*
*/
//=============================================================================
void StdMeshers_Quadrangle_2D::splitQuadFace(SMESHDS_Mesh * /*theMeshDS*/,
int /*theFaceID*/,
const SMDS_MeshNode* theNode1,
const SMDS_MeshNode* theNode2,
const SMDS_MeshNode* theNode3,
const SMDS_MeshNode* theNode4)
{
if ( SMESH_TNodeXYZ( theNode1 ).SquareDistance( theNode3 ) >
SMESH_TNodeXYZ( theNode2 ).SquareDistance( theNode4 ) )
{
myHelper->AddFace(theNode2, theNode4 , theNode1);
myHelper->AddFace(theNode2, theNode3, theNode4);
}
else
{
myHelper->AddFace(theNode1, theNode2 ,theNode3);
myHelper->AddFace(theNode1, theNode3, theNode4);
}
}
namespace
{
enum uvPos { UV_A0, UV_A1, UV_A2, UV_A3, UV_B, UV_R, UV_T, UV_L, UV_SIZE };
inline SMDS_MeshNode* makeNode( UVPtStruct & uvPt,
const double y,
FaceQuadStruct::Ptr& quad,
const gp_UV* UVs,
SMESH_MesherHelper* helper,
Handle(Geom_Surface) S)
{
const vector<UVPtStruct>& uv_eb = quad->side[QUAD_BOTTOM_SIDE].GetUVPtStruct();
const vector<UVPtStruct>& uv_et = quad->side[QUAD_TOP_SIDE ].GetUVPtStruct();
double rBot = ( uv_eb.size() - 1 ) * uvPt.normParam;
double rTop = ( uv_et.size() - 1 ) * uvPt.normParam;
int iBot = int( rBot );
int iTop = int( rTop );
double xBot = uv_eb[ iBot ].normParam + ( rBot - iBot ) * ( uv_eb[ iBot+1 ].normParam - uv_eb[ iBot ].normParam );
double xTop = uv_et[ iTop ].normParam + ( rTop - iTop ) * ( uv_et[ iTop+1 ].normParam - uv_et[ iTop ].normParam );
double x = xBot + y * ( xTop - xBot );
gp_UV uv = calcUV(/*x,y=*/x, y,
/*a0,...=*/UVs[UV_A0], UVs[UV_A1], UVs[UV_A2], UVs[UV_A3],
/*p0=*/quad->side[QUAD_BOTTOM_SIDE].grid->Value2d( x ).XY(),
/*p1=*/UVs[ UV_R ],
/*p2=*/quad->side[QUAD_TOP_SIDE ].grid->Value2d( x ).XY(),
/*p3=*/UVs[ UV_L ]);
gp_Pnt P = S->Value( uv.X(), uv.Y() );
uvPt.u = uv.X();
uvPt.v = uv.Y();
return helper->AddNode(P.X(), P.Y(), P.Z(), 0, uv.X(), uv.Y() );
}
void reduce42( const vector<UVPtStruct>& curr_base,
vector<UVPtStruct>& next_base,
const int j,
int & next_base_len,
FaceQuadStruct::Ptr& quad,
gp_UV* UVs,
const double y,
SMESH_MesherHelper* helper,
Handle(Geom_Surface)& S)
{
// add one "HH": nodes a,b,c,d,e and faces 1,2,3,4,5,6
//
// .-----a-----b i + 1
// |\ 5 | 6 /|
// | \ | / |
// | c--d--e |
// |1 |2 |3 |4 |
// | | | | |
// .--.--.--.--. i
//
// j j+2 j+4
// a (i + 1, j + 2)
const SMDS_MeshNode*& Na = next_base[ ++next_base_len ].node;
if ( !Na )
Na = makeNode( next_base[ next_base_len ], y, quad, UVs, helper, S );
// b (i + 1, j + 4)
const SMDS_MeshNode*& Nb = next_base[ ++next_base_len ].node;
if ( !Nb )
Nb = makeNode( next_base[ next_base_len ], y, quad, UVs, helper, S );
// c
double u = (curr_base[j + 2].u + next_base[next_base_len - 2].u) / 2.0;
double v = (curr_base[j + 2].v + next_base[next_base_len - 2].v) / 2.0;
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Nc = helper->AddNode(P.X(), P.Y(), P.Z(), 0, u, v);
// d
u = (curr_base[j + 2].u + next_base[next_base_len - 1].u) / 2.0;
v = (curr_base[j + 2].v + next_base[next_base_len - 1].v) / 2.0;
P = S->Value(u,v);
SMDS_MeshNode* Nd = helper->AddNode(P.X(), P.Y(), P.Z(), 0, u, v);
// e
u = (curr_base[j + 2].u + next_base[next_base_len].u) / 2.0;
v = (curr_base[j + 2].v + next_base[next_base_len].v) / 2.0;
P = S->Value(u,v);
SMDS_MeshNode* Ne = helper->AddNode(P.X(), P.Y(), P.Z(), 0, u, v);
// Faces
helper->AddFace(curr_base[j + 0].node,
curr_base[j + 1].node, Nc,
next_base[next_base_len - 2].node);
helper->AddFace(curr_base[j + 1].node,
curr_base[j + 2].node, Nd, Nc);
helper->AddFace(curr_base[j + 2].node,
curr_base[j + 3].node, Ne, Nd);
helper->AddFace(curr_base[j + 3].node,
curr_base[j + 4].node, Nb, Ne);
helper->AddFace(Nc, Nd, Na, next_base[next_base_len - 2].node);
helper->AddFace(Nd, Ne, Nb, Na);
}
void reduce31( const vector<UVPtStruct>& curr_base,
vector<UVPtStruct>& next_base,
const int j,
int & next_base_len,
FaceQuadStruct::Ptr& quad,
gp_UV* UVs,
const double y,
SMESH_MesherHelper* helper,
Handle(Geom_Surface)& S)
{
// add one "H": nodes b,c,e and faces 1,2,4,5
//
// .---------b i + 1
// |\ 5 /|
// | \ / |
// | c---e |
// |1 |2 |4 |
// | | | |
// .--.---.--. i
//
// j j+1 j+2 j+3
// b (i + 1, j + 3)
const SMDS_MeshNode*& Nb = next_base[ ++next_base_len ].node;
if ( !Nb )
Nb = makeNode( next_base[ next_base_len ], y, quad, UVs, helper, S );
// c and e
double u1 = (curr_base[ j ].u + next_base[ next_base_len-1 ].u ) / 2.0;
double u2 = (curr_base[ j+3 ].u + next_base[ next_base_len ].u ) / 2.0;
double u3 = (u2 - u1) / 3.0;
//
double v1 = (curr_base[ j ].v + next_base[ next_base_len-1 ].v ) / 2.0;
double v2 = (curr_base[ j+3 ].v + next_base[ next_base_len ].v ) / 2.0;
double v3 = (v2 - v1) / 3.0;
// c
double u = u1 + u3;
double v = v1 + v3;
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Nc = helper->AddNode( P.X(), P.Y(), P.Z(), 0, u, v );
// e
u = u1 + u3 + u3;
v = v1 + v3 + v3;
P = S->Value(u,v);
SMDS_MeshNode* Ne = helper->AddNode( P.X(), P.Y(), P.Z(), 0, u, v );
// Faces
// 1
helper->AddFace( curr_base[ j + 0 ].node,
curr_base[ j + 1 ].node,
Nc,
next_base[ next_base_len - 1 ].node);
// 2
helper->AddFace( curr_base[ j + 1 ].node,
curr_base[ j + 2 ].node, Ne, Nc);
// 4
helper->AddFace( curr_base[ j + 2 ].node,
curr_base[ j + 3 ].node, Nb, Ne);
// 5
helper->AddFace(Nc, Ne, Nb,
next_base[ next_base_len - 1 ].node);
}
typedef void (* PReduceFunction) ( const vector<UVPtStruct>& curr_base,
vector<UVPtStruct>& next_base,
const int j,
int & next_base_len,
FaceQuadStruct::Ptr & quad,
gp_UV* UVs,
const double y,
SMESH_MesherHelper* helper,
Handle(Geom_Surface)& S);
} // namespace
//=======================================================================
/*!
* Implementation of Reduced algorithm (meshing with quadrangles only)
*/
//=======================================================================
bool StdMeshers_Quadrangle_2D::computeReduced (SMESH_Mesh & aMesh,
const TopoDS_Face& aFace,
FaceQuadStruct::Ptr quad)
{
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
int i,j,geomFaceID = meshDS->ShapeToIndex(aFace);
int nb = quad->side[0].NbPoints(); // bottom
int nr = quad->side[1].NbPoints(); // right
int nt = quad->side[2].NbPoints(); // top
int nl = quad->side[3].NbPoints(); // left
// Simple Reduce 10->8->6->4 (3 steps) Multiple Reduce 10->4 (1 step)
//
// .-----.-----.-----.-----. .-----.-----.-----.-----.
// | / \ | / \ | | / \ | / \ |
// | / .--.--. \ | | / \ | / \ |
// | / / | \ \ | | / .----.----. \ |
// .---.---.---.---.---.---. | / / \ | / \ \ |
// | / / \ | / \ \ | | / / \ | / \ \ |
// | / / .-.-. \ \ | | / / .---.---. \ \ |
// | / / / | \ \ \ | | / / / \ | / \ \ \ |
// .--.--.--.--.--.--.--.--. | / / / \ | / \ \ \ |
// | / / / \ | / \ \ \ | | / / / .-.-. \ \ \ |
// | / / / .-.-. \ \ \ | | / / / / | \ \ \ \ |
// | / / / / | \ \ \ \ | | / / / / | \ \ \ \ |
// .-.-.-.--.--.--.--.-.-.-. .-.-.-.--.--.--.--.-.-.-.
bool MultipleReduce = false;
{
int nb1 = nb;
int nr1 = nr;
int nt1 = nt;
if (nr == nl) {
if (nb < nt) {
nt1 = nb;
nb1 = nt;
}
}
else if (nb == nt) {
nr1 = nb; // and == nt
if (nl < nr) {
nt1 = nl;
nb1 = nr;
}
else {
nt1 = nr;
nb1 = nl;
}
}
else {
return false;
}
// number of rows and columns
int nrows = nr1 - 1;
int ncol_top = nt1 - 1;
int ncol_bot = nb1 - 1;
// number of rows needed to reduce ncol_bot to ncol_top using simple 3->1 "tree" (see below)
int nrows_tree31 =
int( ceil( log( double(ncol_bot) / ncol_top) / log( 3.))); // = log x base 3
if ( nrows < nrows_tree31 )
{
MultipleReduce = true;
error( COMPERR_WARNING,
SMESH_Comment("To use 'Reduced' transition, "
"number of face rows should be at least ")
<< nrows_tree31 << ". Actual number of face rows is " << nrows << ". "
"'Quadrangle preference (reversed)' transion has been used.");
}
}
if (MultipleReduce) { // == computeQuadPref QUAD_QUADRANGLE_PREF_REVERSED
//==================================================
int dh = abs(nb-nt);
int dv = abs(nr-nl);
if (dh >= dv) {
if (nt > nb) {
// it is a base case => not shift quad but may be replacement is need
shiftQuad(quad,0);
}
else {
// we have to shift quad on 2
shiftQuad(quad,2);
}
}
else {
if (nr > nl) {
// we have to shift quad on 1
shiftQuad(quad,1);
}
else {
// we have to shift quad on 3
shiftQuad(quad,3);
}
}
nb = quad->side[0].NbPoints();
nr = quad->side[1].NbPoints();
nt = quad->side[2].NbPoints();
nl = quad->side[3].NbPoints();
dh = abs(nb-nt);
dv = abs(nr-nl);
int nbh = Max(nb,nt);
int nbv = Max(nr,nl);
int addh = 0;
int addv = 0;
if (dh>dv) {
addv = (dh-dv)/2;
nbv = nbv + addv;
}
else { // dv>=dh
addh = (dv-dh)/2;
nbh = nbh + addh;
}
const vector<UVPtStruct>& uv_eb = quad->side[0].GetUVPtStruct(true,0);
const vector<UVPtStruct>& uv_er = quad->side[1].GetUVPtStruct(false,1);
const vector<UVPtStruct>& uv_et = quad->side[2].GetUVPtStruct(true,1);
const vector<UVPtStruct>& uv_el = quad->side[3].GetUVPtStruct(false,0);
if ((int) uv_eb.size() != nb || (int) uv_er.size() != nr ||
(int) uv_et.size() != nt || (int) uv_el.size() != nl)
return error(COMPERR_BAD_INPUT_MESH);
// arrays for normalized params
TColStd_SequenceOfReal npb, npr, npt, npl;
for (j = 0; j < nb; j++) {
npb.Append(uv_eb[j].normParam);
}
for (i = 0; i < nr; i++) {
npr.Append(uv_er[i].normParam);
}
for (j = 0; j < nt; j++) {
npt.Append(uv_et[j].normParam);
}
for (i = 0; i < nl; i++) {
npl.Append(uv_el[i].normParam);
}
int dl,dr;
// orientation of face and 3 main domain for future faces
// 0 top 1
// 1------------1
// | | | |
// | | | |
// | L | | R |
// left | | | | right
// | / \ |
// | / C \ |
// |/ \|
// 0------------0
// 0 bottom 1
// add some params to right and left after the first param
// insert to right
dr = nbv - nr;
double dpr = (npr.Value(2) - npr.Value(1))/(dr+1);
for (i=1; i<=dr; i++) {
npr.InsertAfter(1,npr.Value(2)-dpr);
}
// insert to left
dl = nbv - nl;
dpr = (npl.Value(2) - npl.Value(1))/(dl+1);
for (i=1; i<=dl; i++) {
npl.InsertAfter(1,npl.Value(2)-dpr);
}
gp_XY a0 (uv_eb.front().u, uv_eb.front().v);
gp_XY a1 (uv_eb.back().u, uv_eb.back().v);
gp_XY a2 (uv_et.back().u, uv_et.back().v);
gp_XY a3 (uv_et.front().u, uv_et.front().v);
int nnn = Min(nr,nl);
// auxiliary sequence of XY for creation of nodes
// in the bottom part of central domain
// it's length must be == nbv-nnn-1
TColgp_SequenceOfXY UVL;
TColgp_SequenceOfXY UVR;
//==================================================
// step1: create faces for left domain
StdMeshers_Array2OfNode NodesL(1,dl+1,1,nl);
// add left nodes
for (j=1; j<=nl; j++)
NodesL.SetValue(1,j,uv_el[j-1].node);
if (dl>0) {
// add top nodes
for (i=1; i<=dl; i++)
NodesL.SetValue(i+1,nl,uv_et[i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
for (i=1; i<=dl; i++) {
double x0 = npt.Value(i+1);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,1,N);
if (UVL.Length()<nbv-nnn-1) UVL.Append(UV);
// internal nodes
for (j=2; j<nl; j++) {
double y0 = npl.Value(dl+j);
double y1 = npr.Value(dl+j);
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,j,N);
if (i==dl) UVtmp.Append(UV);
}
}
for (i=1; i<=UVtmp.Length() && UVL.Length()<nbv-nnn-1; i++) {
UVL.Append(UVtmp.Value(i));
}
// create faces
for (i=1; i<=dl; i++) {
for (j=1; j<nl; j++) {
myHelper->AddFace(NodesL.Value(i,j), NodesL.Value(i+1,j),
NodesL.Value(i+1,j+1), NodesL.Value(i,j+1));
}
}
}
else {
// fill UVL using c2d
for (i=1; i<npl.Length() && UVL.Length()<nbv-nnn-1; i++) {
UVL.Append(gp_UV (uv_el[i].u, uv_el[i].v));
}
}
// step2: create faces for right domain
StdMeshers_Array2OfNode NodesR(1,dr+1,1,nr);
// add right nodes
for (j=1; j<=nr; j++)
NodesR.SetValue(1,j,uv_er[nr-j].node);
if (dr>0) {
// add top nodes
for (i=1; i<=dr; i++)
NodesR.SetValue(i+1,1,uv_et[nt-1-i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
for (i=1; i<=dr; i++) {
double x0 = npt.Value(nt-i);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,nr,N);
if (UVR.Length()<nbv-nnn-1) UVR.Append(UV);
// internal nodes
for (j=2; j<nr; j++) {
double y0 = npl.Value(nbv-j+1);
double y1 = npr.Value(nbv-j+1);
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,j,N);
if (i==dr) UVtmp.Prepend(UV);
}
}
for (i=1; i<=UVtmp.Length() && UVR.Length()<nbv-nnn-1; i++) {
UVR.Append(UVtmp.Value(i));
}
// create faces
for (i=1; i<=dr; i++) {
for (j=1; j<nr; j++) {
myHelper->AddFace(NodesR.Value(i,j), NodesR.Value(i+1,j),
NodesR.Value(i+1,j+1), NodesR.Value(i,j+1));
}
}
}
else {
// fill UVR using c2d
for (i=1; i<npr.Length() && UVR.Length()<nbv-nnn-1; i++) {
UVR.Append(gp_UV(uv_er[i].u, uv_er[i].v));
}
}
// step3: create faces for central domain
StdMeshers_Array2OfNode NodesC(1,nb,1,nbv);
// add first line using NodesL
for (i=1; i<=dl+1; i++)
NodesC.SetValue(1,i,NodesL(i,1));
for (i=2; i<=nl; i++)
NodesC.SetValue(1,dl+i,NodesL(dl+1,i));
// add last line using NodesR
for (i=1; i<=dr+1; i++)
NodesC.SetValue(nb,i,NodesR(i,nr));
for (i=1; i<nr; i++)
NodesC.SetValue(nb,dr+i+1,NodesR(dr+1,nr-i));
// add top nodes (last columns)
for (i=dl+2; i<nbh-dr; i++)
NodesC.SetValue(i-dl,nbv,uv_et[i-1].node);
// add bottom nodes (first columns)
for (i=2; i<nb; i++)
NodesC.SetValue(i,1,uv_eb[i-1].node);
// create and add needed nodes
// add linear layers
for (i=2; i<nb; i++) {
double x0 = npt.Value(dl+i);
double x1 = x0;
for (j=1; j<nnn; j++) {
double y0 = npl.Value(nbv-nnn+j);
double y1 = npr.Value(nbv-nnn+j);
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(i,nbv-nnn+j,N);
}
}
// add diagonal layers
for (i=1; i<nbv-nnn; i++) {
double du = UVR.Value(i).X() - UVL.Value(i).X();
double dv = UVR.Value(i).Y() - UVL.Value(i).Y();
for (j=2; j<nb; j++) {
double u = UVL.Value(i).X() + du*npb.Value(j);
double v = UVL.Value(i).Y() + dv*npb.Value(j);
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, u, v);
NodesC.SetValue(j,i+1,N);
}
}
// create faces
for (i=1; i<nb; i++) {
for (j=1; j<nbv; j++) {
myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
}
}
} // end Multiple Reduce implementation
else { // Simple Reduce (!MultipleReduce)
//=========================================================
if (nr == nl) {
if (nt < nb) {
// it is a base case => not shift quad
//shiftQuad(quad,0,true);
}
else {
// we have to shift quad on 2
shiftQuad(quad,2);
}
}
else {
if (nl > nr) {
// we have to shift quad on 1
shiftQuad(quad,1);
}
else {
// we have to shift quad on 3
shiftQuad(quad,3);
}
}
nb = quad->side[0].NbPoints();
nr = quad->side[1].NbPoints();
nt = quad->side[2].NbPoints();
nl = quad->side[3].NbPoints();
// number of rows and columns
int nrows = nr - 1; // and also == nl - 1
int ncol_top = nt - 1;
int ncol_bot = nb - 1;
int npair_top = ncol_top / 2;
// maximum number of bottom elements for "linear" simple reduce 4->2
int max_lin42 = ncol_top + npair_top * 2 * nrows;
// maximum number of bottom elements for "linear" simple reduce 3->1
int max_lin31 = ncol_top + ncol_top * 2 * nrows;
// maximum number of bottom elements for "tree" simple reduce 4->2
int max_tree42 = 0;
// number of rows needed to reduce ncol_bot to ncol_top using simple 4->2 "tree"
int nrows_tree42 = int( log( (double)(ncol_bot / ncol_top) )/log((double)2) ); // needed to avoid overflow at pow(2) while computing max_tree42
if (nrows_tree42 < nrows) {
max_tree42 = npair_top * pow(2.0, nrows + 1);
if ( ncol_top > npair_top * 2 ) {
int delta = ncol_bot - max_tree42;
for (int irow = 1; irow < nrows; irow++) {
int nfour = delta / 4;
delta -= nfour * 2;
}
if (delta <= (ncol_top - npair_top * 2))
max_tree42 = ncol_bot;
}
}
// maximum number of bottom elements for "tree" simple reduce 3->1
//int max_tree31 = ncol_top * pow(3.0, nrows);
bool is_lin_31 = false;
bool is_lin_42 = false;
bool is_tree_31 = false;
bool is_tree_42 = false;
int max_lin = max_lin42;
if (ncol_bot > max_lin42) {
if (ncol_bot <= max_lin31) {
is_lin_31 = true;
max_lin = max_lin31;
}
}
else {
// if ncol_bot is a 3*n or not 2*n
if ((ncol_bot/3)*3 == ncol_bot || (ncol_bot/2)*2 != ncol_bot) {
is_lin_31 = true;
max_lin = max_lin31;
}
else {
is_lin_42 = true;
}
}
if (ncol_bot > max_lin) { // not "linear"
is_tree_31 = (ncol_bot > max_tree42);
if (ncol_bot <= max_tree42) {
if ((ncol_bot/3)*3 == ncol_bot || (ncol_bot/2)*2 != ncol_bot) {
is_tree_31 = true;
}
else {
is_tree_42 = true;
}
}
}
const vector<UVPtStruct>& uv_eb = quad->side[0].GetUVPtStruct(true,0);
const vector<UVPtStruct>& uv_er = quad->side[1].GetUVPtStruct(false,1);
const vector<UVPtStruct>& uv_et = quad->side[2].GetUVPtStruct(true,1);
const vector<UVPtStruct>& uv_el = quad->side[3].GetUVPtStruct(false,0);
if ((int) uv_eb.size() != nb || (int) uv_er.size() != nr ||
(int) uv_et.size() != nt || (int) uv_el.size() != nl)
return error(COMPERR_BAD_INPUT_MESH);
gp_UV uv[ UV_SIZE ];
uv[ UV_A0 ].SetCoord( uv_eb.front().u, uv_eb.front().v);
uv[ UV_A1 ].SetCoord( uv_eb.back().u, uv_eb.back().v );
uv[ UV_A2 ].SetCoord( uv_et.back().u, uv_et.back().v );
uv[ UV_A3 ].SetCoord( uv_et.front().u, uv_et.front().v);
vector<UVPtStruct> curr_base = uv_eb, next_base;
UVPtStruct nullUVPtStruct;
nullUVPtStruct.node = 0;
nullUVPtStruct.x = nullUVPtStruct.y = nullUVPtStruct.u = nullUVPtStruct.v = 0;
nullUVPtStruct.param = 0;
int curr_base_len = nb;
int next_base_len = 0;
if ( true )
{ // ------------------------------------------------------------------
// New algorithm implemented by request of IPAL22856
// "2D quadrangle mesher of reduced type works wrong"
// http://bugtracker.opencascade.com/show_bug.cgi?id=22856
// the algorithm is following: all reduces are centred in horizontal
// direction and are distributed among all rows
if (ncol_bot > max_tree42) {
is_lin_31 = true;
}
else {
if ((ncol_top/3)*3 == ncol_top ) {
is_lin_31 = true;
}
else {
is_lin_42 = true;
}
}
const int col_top_size = is_lin_42 ? 2 : 1;
const int col_base_size = is_lin_42 ? 4 : 3;
// Compute nb of "columns" (like in "linear" simple reducing) in all rows
vector<int> nb_col_by_row;
int delta_all = nb - nt;
int delta_one_col = nrows * 2;
int nb_col = delta_all / delta_one_col;
int remainder = delta_all - nb_col * delta_one_col;
if (remainder > 0) {
nb_col++;
}
if ( nb_col * col_top_size >= nt ) // == "tree" reducing situation
{
// top row is full (all elements reduced), add "columns" one by one
// in rows below until all bottom elements are reduced
nb_col = ( nt - 1 ) / col_top_size;
nb_col_by_row.resize( nrows, nb_col );
int nbrows_not_full = nrows - 1;
int cur_top_size = nt - 1;
remainder = delta_all - nb_col * delta_one_col;
while ( remainder > 0 )
{
delta_one_col = nbrows_not_full * 2;
int nb_col_add = remainder / delta_one_col;
cur_top_size += 2 * nb_col_by_row[ nbrows_not_full ];
int nb_col_free = cur_top_size / col_top_size - nb_col_by_row[ nbrows_not_full-1 ];
if ( nb_col_add > nb_col_free )
nb_col_add = nb_col_free;
for ( int irow = 0; irow < nbrows_not_full; ++irow )
nb_col_by_row[ irow ] += nb_col_add;
nbrows_not_full --;
remainder -= nb_col_add * delta_one_col;
}
}
else // == "linear" reducing situation
{
nb_col_by_row.resize( nrows, nb_col );
if (remainder > 0)
for ( int irow = remainder / 2; irow < nrows; ++irow )
nb_col_by_row[ irow ]--;
}
// Make elements
PReduceFunction reduceFunction = & ( is_lin_42 ? reduce42 : reduce31 );
const int reduce_grp_size = is_lin_42 ? 4 : 3;
for (i = 1; i < nr; i++) // layer by layer
{
nb_col = nb_col_by_row[ i-1 ];
int nb_next = curr_base_len - nb_col * 2;
if (nb_next < nt) nb_next = nt;
const double y = uv_el[ i ].normParam;
if ( i + 1 == nr ) // top
{
next_base = uv_et;
}
else
{
next_base.clear();
next_base.resize( nb_next, nullUVPtStruct );
next_base.front() = uv_el[i];
next_base.back() = uv_er[i];
// compute normalized param u
double du = 1. / ( nb_next - 1 );
next_base[0].normParam = 0.;
for ( j = 1; j < nb_next; ++j )
next_base[j].normParam = next_base[j-1].normParam + du;
}
uv[ UV_L ].SetCoord( next_base.front().u, next_base.front().v );
uv[ UV_R ].SetCoord( next_base.back().u, next_base.back().v );
int free_left = ( curr_base_len - 1 - nb_col * col_base_size ) / 2;
int free_middle = curr_base_len - 1 - nb_col * col_base_size - 2 * free_left;
// not reduced left elements
for (j = 0; j < free_left; j++)
{
// f (i + 1, j + 1)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j ].node,
curr_base[ j+1 ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
for (int icol = 1; icol <= nb_col; icol++)
{
// add "H"
reduceFunction( curr_base, next_base, j, next_base_len, quad, uv, y, myHelper, S );
j += reduce_grp_size;
// elements in the middle of "columns" added for symmetry
if ( free_middle > 0 && ( nb_col % 2 == 0 ) && icol == nb_col / 2 )
{
for (int imiddle = 1; imiddle <= free_middle; imiddle++) {
// f (i + 1, j + imiddle)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j-1+imiddle ].node,
curr_base[ j +imiddle ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
j += free_middle;
}
}
// not reduced right elements
for (; j < curr_base_len-1; j++) {
// f (i + 1, j + 1)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j ].node,
curr_base[ j+1 ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
curr_base_len = next_base_len + 1;
next_base_len = 0;
curr_base.swap( next_base );
}
}
else if ( is_tree_42 || is_tree_31 )
{
// "tree" simple reduce "42": 2->4->8->16->32->...
//
// .-------------------------------.-------------------------------. nr
// | \ | / |
// | \ .---------------.---------------. / |
// | | | | |
// .---------------.---------------.---------------.---------------.
// | \ | / | \ | / |
// | \ .-------.-------. / | \ .-------.-------. / |
// | | | | | | | | |
// .-------.-------.-------.-------.-------.-------.-------.-------. i
// |\ | /|\ | /|\ | /|\ | /|
// | \.---.---./ | \.---.---./ | \.---.---./ | \.---.---./ |
// | | | | | | | | | | | | | | | | |
// .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.
// |\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|
// | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. |
// | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. 1
// 1 j nb
// "tree" simple reduce "31": 1->3->9->27->...
//
// .-----------------------------------------------------. nr
// | \ / |
// | .-----------------. |
// | | | |
// .-----------------.-----------------.-----------------.
// | \ / | \ / | \ / |
// | .-----. | .-----. | .-----. | i
// | | | | | | | | | |
// .-----.-----.-----.-----.-----.-----.-----.-----.-----.
// |\ /|\ /|\ /|\ /|\ /|\ /|\ /|\ /|\ /|
// | .-. | .-. | .-. | .-. | .-. | .-. | .-. | .-. | .-. |
// | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. 1
// 1 j nb
PReduceFunction reduceFunction = & ( is_tree_42 ? reduce42 : reduce31 );
const int reduce_grp_size = is_tree_42 ? 4 : 3;
for (i = 1; i < nr; i++) // layer by layer
{
// to stop reducing, if number of nodes reaches nt
int delta = curr_base_len - nt;
// to calculate normalized parameter, we must know number of points in next layer
int nb_reduce_groups = (curr_base_len - 1) / reduce_grp_size;
int nb_next = nb_reduce_groups * (reduce_grp_size-2) + (curr_base_len - nb_reduce_groups*reduce_grp_size);
if (nb_next < nt) nb_next = nt;
const double y = uv_el[ i ].normParam;
if ( i + 1 == nr ) // top
{
next_base = uv_et;
}
else
{
next_base.clear();
next_base.resize( nb_next, nullUVPtStruct );
next_base.front() = uv_el[i];
next_base.back() = uv_er[i];
// compute normalized param u
double du = 1. / ( nb_next - 1 );
next_base[0].normParam = 0.;
for ( j = 1; j < nb_next; ++j )
next_base[j].normParam = next_base[j-1].normParam + du;
}
uv[ UV_L ].SetCoord( next_base.front().u, next_base.front().v );
uv[ UV_R ].SetCoord( next_base.back().u, next_base.back().v );
for (j = 0; j+reduce_grp_size < curr_base_len && delta > 0; j+=reduce_grp_size, delta-=2)
{
reduceFunction( curr_base, next_base, j, next_base_len, quad, uv, y, myHelper, S );
}
// not reduced side elements (if any)
for (; j < curr_base_len-1; j++)
{
// f (i + 1, j + 1)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j ].node,
curr_base[ j+1 ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
curr_base_len = next_base_len + 1;
next_base_len = 0;
curr_base.swap( next_base );
}
} // end "tree" simple reduce
else if ( is_lin_42 || is_lin_31 ) {
// "linear" simple reduce "31": 2->6->10->14
//
// .-----------------------------.-----------------------------. nr
// | \ / | \ / |
// | .---------. | .---------. |
// | | | | | | |
// .---------.---------.---------.---------.---------.---------.
// | / \ / \ | / \ / \ |
// | / .-----. \ | / .-----. \ | i
// | / | | \ | / | | \ |
// .-----.-----.-----.-----.-----.-----.-----.-----.-----.-----.
// | / / \ / \ \ | / / \ / \ \ |
// | / / .-. \ \ | / / .-. \ \ |
// | / / / \ \ \ | / / / \ \ \ |
// .--.----.---.-----.---.-----.-.--.----.---.-----.---.-----.-. 1
// 1 j nb
// "linear" simple reduce "42": 4->8->12->16
//
// .---------------.---------------.---------------.---------------. nr
// | \ | / | \ | / |
// | \ .-------.-------. / | \ .-------.-------. / |
// | | | | | | | | |
// .-------.-------.-------.-------.-------.-------.-------.-------.
// | / \ | / \ | / \ | / \ |
// | / \.----.----./ \ | / \.----.----./ \ | i
// | / | | | \ | / | | | \ |
// .-----.----.----.----.----.-----.-----.----.----.----.----.-----.
// | / / \ | / \ \ | / / \ | / \ \ |
// | / / .-.-. \ \ | / / .-.-. \ \ |
// | / / / | \ \ \ | / / / | \ \ \ |
// .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---. 1
// 1 j nb
// nt = 5, nb = 7, nr = 4
//int delta_all = 2;
//int delta_one_col = 6;
//int nb_col = 0;
//int remainder = 2;
//if (remainder > 0) nb_col++;
//nb_col = 1;
//int free_left = 1;
//free_left += 2;
//int free_middle = 4;
int delta_all = nb - nt;
int delta_one_col = (nr - 1) * 2;
int nb_col = delta_all / delta_one_col;
int remainder = delta_all - nb_col * delta_one_col;
if (remainder > 0) {
nb_col++;
}
const int col_top_size = is_lin_42 ? 2 : 1;
int free_left = ((nt - 1) - nb_col * col_top_size) / 2;
free_left += nr - 2;
int free_middle = (nr - 2) * 2;
if (remainder > 0 && nb_col == 1) {
int nb_rows_short_col = remainder / 2;
int nb_rows_thrown = (nr - 1) - nb_rows_short_col;
free_left -= nb_rows_thrown;
}
// nt = 5, nb = 17, nr = 4
//int delta_all = 12;
//int delta_one_col = 6;
//int nb_col = 2;
//int remainder = 0;
//int free_left = 2;
//int free_middle = 4;
PReduceFunction reduceFunction = & ( is_lin_42 ? reduce42 : reduce31 );
const int reduce_grp_size = is_lin_42 ? 4 : 3;
for (i = 1; i < nr; i++, free_middle -= 2, free_left -= 1) // layer by layer
{
// to calculate normalized parameter, we must know number of points in next layer
int nb_next = curr_base_len - nb_col * 2;
if (remainder > 0 && i > remainder / 2)
// take into account short "column"
nb_next += 2;
if (nb_next < nt) nb_next = nt;
const double y = uv_el[ i ].normParam;
if ( i + 1 == nr ) // top
{
next_base = uv_et;
}
else
{
next_base.clear();
next_base.resize( nb_next, nullUVPtStruct );
next_base.front() = uv_el[i];
next_base.back() = uv_er[i];
// compute normalized param u
double du = 1. / ( nb_next - 1 );
next_base[0].normParam = 0.;
for ( j = 1; j < nb_next; ++j )
next_base[j].normParam = next_base[j-1].normParam + du;
}
uv[ UV_L ].SetCoord( next_base.front().u, next_base.front().v );
uv[ UV_R ].SetCoord( next_base.back().u, next_base.back().v );
// not reduced left elements
for (j = 0; j < free_left; j++)
{
// f (i + 1, j + 1)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j ].node,
curr_base[ j+1 ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
for (int icol = 1; icol <= nb_col; icol++) {
if (remainder > 0 && icol == nb_col && i > remainder / 2)
// stop short "column"
break;
// add "H"
reduceFunction( curr_base, next_base, j, next_base_len, quad, uv, y, myHelper, S );
j += reduce_grp_size;
// not reduced middle elements
if (icol < nb_col) {
if (remainder > 0 && icol == nb_col - 1 && i > remainder / 2)
// pass middle elements before stopped short "column"
break;
int free_add = free_middle;
if (remainder > 0 && icol == nb_col - 1)
// next "column" is short
free_add -= (nr - 1) - (remainder / 2);
for (int imiddle = 1; imiddle <= free_add; imiddle++) {
// f (i + 1, j + imiddle)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j-1+imiddle ].node,
curr_base[ j +imiddle ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
j += free_add;
}
}
// not reduced right elements
for (; j < curr_base_len-1; j++) {
// f (i + 1, j + 1)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j ].node,
curr_base[ j+1 ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
curr_base_len = next_base_len + 1;
next_base_len = 0;
curr_base.swap( next_base );
}
} // end "linear" simple reduce
else {
return false;
}
} // end Simple Reduce implementation
bool isOk = true;
return isOk;
}
//================================================================================
namespace // data for smoothing
{
struct TSmoothNode;
// --------------------------------------------------------------------------------
/*!
* \brief Structure used to check validity of node position after smoothing.
* It holds two nodes connected to a smoothed node and belonging to
* one mesh face
*/
struct TTriangle
{
TSmoothNode* _n1;
TSmoothNode* _n2;
TTriangle( TSmoothNode* n1=0, TSmoothNode* n2=0 ): _n1(n1), _n2(n2) {}
inline bool IsForward( gp_UV uv ) const;
};
// --------------------------------------------------------------------------------
/*!
* \brief Data of a smoothed node
*/
struct TSmoothNode
{
gp_XY _uv;
gp_XYZ _xyz;
vector< TTriangle > _triangles; // if empty, then node is not movable
};
// --------------------------------------------------------------------------------
inline bool TTriangle::IsForward( gp_UV uv ) const
{
gp_Vec2d v1( uv, _n1->_uv ), v2( uv, _n2->_uv );
double d = v1 ^ v2;
return d > 1e-100;
}
//================================================================================
/*!
* \brief Returns area of a triangle
*/
//================================================================================
double getArea( const gp_UV uv1, const gp_UV uv2, const gp_UV uv3 )
{
gp_XY v1 = uv1 - uv2, v2 = uv3 - uv2;
double a = v2 ^ v1;
return a;
}
}
//================================================================================
/*!
* \brief Set UV of nodes on degenerated VERTEXes in the middle of degenerated EDGE
*
* WARNING: this method must be called AFTER retrieving UVPtStruct's from quad
*/
//================================================================================
void StdMeshers_Quadrangle_2D::updateDegenUV(FaceQuadStruct::Ptr quad)
{
if ( myNeedSmooth )
// Set UV of nodes on degenerated VERTEXes in the middle of degenerated EDGE
// --------------------------------------------------------------------------
for ( unsigned i = 0; i < quad->side.size(); ++i )
{
const vector<UVPtStruct>& uvVec = quad->side[i].GetUVPtStruct();
// find which end of the side is on degenerated shape
int degenInd = -1;
if ( myHelper->IsDegenShape( uvVec[0].node->getshapeId() ))
degenInd = 0;
else if ( myHelper->IsDegenShape( uvVec.back().node->getshapeId() ))
degenInd = uvVec.size() - 1;
else
continue;
// find another side sharing the degenerated shape
bool isPrev = ( degenInd == 0 );
if ( i >= QUAD_TOP_SIDE )
isPrev = !isPrev;
int i2 = ( isPrev ? ( i + 3 ) : ( i + 1 )) % 4;
const vector<UVPtStruct>& uvVec2 = quad->side[ i2 ].GetUVPtStruct();
int degenInd2 = -1;
if ( uvVec[ degenInd ].node == uvVec2.front().node )
degenInd2 = 0;
else if ( uvVec[ degenInd ].node == uvVec2.back().node )
degenInd2 = uvVec2.size() - 1;
else
throw SALOME_Exception( LOCALIZED( "Logical error" ));
// move UV in the middle
uvPtStruct& uv1 = const_cast<uvPtStruct&>( uvVec [ degenInd ]);
uvPtStruct& uv2 = const_cast<uvPtStruct&>( uvVec2[ degenInd2 ]);
uv1.u = uv2.u = 0.5 * ( uv1.u + uv2.u );
uv1.v = uv2.v = 0.5 * ( uv1.v + uv2.v );
}
else if ( quad->side.size() == 4 /*&& myQuadType == QUAD_STANDARD*/)
// Set number of nodes on a degenerated side to be same as on an opposite side
// ----------------------------------------------------------------------------
for ( size_t i = 0; i < quad->side.size(); ++i )
{
StdMeshers_FaceSidePtr degSide = quad->side[i];
if ( !myHelper->IsDegenShape( degSide->EdgeID(0) ))
continue;
StdMeshers_FaceSidePtr oppSide = quad->side[( i+2 ) % quad->side.size() ];
if ( degSide->NbSegments() == oppSide->NbSegments() )
continue;
// make new side data
const vector<UVPtStruct>& uvVecDegOld = degSide->GetUVPtStruct();
const SMDS_MeshNode* n = uvVecDegOld[0].node;
Handle(Geom2d_Curve) c2d = degSide->Curve2d(0);
double f = degSide->FirstU(0), l = degSide->LastU(0);
gp_Pnt2d p1 = uvVecDegOld.front().UV();
gp_Pnt2d p2 = uvVecDegOld.back().UV();
quad->side[i] = StdMeshers_FaceSide::New( oppSide.get(), n, &p1, &p2, c2d, f, l );
}
}
//================================================================================
/*!
* \brief Perform smoothing of 2D elements on a FACE with ignored degenerated EDGE
*/
//================================================================================
void StdMeshers_Quadrangle_2D::smooth (FaceQuadStruct::Ptr quad)
{
if ( !myNeedSmooth ) return;
SMESHDS_Mesh* meshDS = myHelper->GetMeshDS();
const double tol = BRep_Tool::Tolerance( quad->face );
Handle(ShapeAnalysis_Surface) surface = myHelper->GetSurface( quad->face );
if ( myHelper->HasDegeneratedEdges() && myForcedPnts.empty() )
{
// "smooth" by computing node positions using 3D TFI and further projection
list< FaceQuadStruct::Ptr >::iterator q = myQuadList.begin();
for ( ; q != myQuadList.end() ; ++q )
{
quad = *q;
int nbhoriz = quad->iSize;
int nbvertic = quad->jSize;
SMESH_TNodeXYZ a0( quad->UVPt( 0, 0 ).node );
SMESH_TNodeXYZ a1( quad->UVPt( nbhoriz-1, 0 ).node );
SMESH_TNodeXYZ a2( quad->UVPt( nbhoriz-1, nbvertic-1 ).node );
SMESH_TNodeXYZ a3( quad->UVPt( 0, nbvertic-1 ).node );
// compute TFI
for (int i = 1; i < nbhoriz-1; i++)
{
SMESH_TNodeXYZ p0( quad->UVPt( i, 0 ).node );
SMESH_TNodeXYZ p2( quad->UVPt( i, nbvertic-1 ).node );
for (int j = 1; j < nbvertic-1; j++)
{
SMESH_TNodeXYZ p1( quad->UVPt( nbhoriz-1, j ).node );
SMESH_TNodeXYZ p3( quad->UVPt( 0, j ).node );
UVPtStruct& uvp = quad->UVPt( i, j );
gp_Pnt pnew = myHelper->calcTFI(uvp.x,uvp.y, a0,a1,a2,a3, p0,p1,p2,p3);
meshDS->MoveNode( uvp.node, pnew.X(), pnew.Y(), pnew.Z() );
}
}
// project to surface
double cellSize;
for (int i = 1; i < nbhoriz-1; i++)
{
for (int j = 1; j < nbvertic-1; j++)
{
UVPtStruct& uvp = quad->UVPt( i, j );
SMESH_NodeXYZ p = uvp.node;
cellSize = Max( p.SquareDistance( quad->UVPt( i+1, j ).node ),
p.SquareDistance( quad->UVPt( i-1, j ).node ));
cellSize = Max( p.SquareDistance( quad->UVPt( i, j+1 ).node ), cellSize );
cellSize = Max( p.SquareDistance( quad->UVPt( i, j-1 ).node ), cellSize );
gp_Pnt2d uv = surface->NextValueOfUV( uvp.UV(), p, 10*tol );
gp_Pnt pnew = surface->Value( uv );
bool ok = ( pnew.SquareDistance( p ) < 2 * cellSize );
if ( !ok )
{
uv = surface->ValueOfUV( p, 10*tol );
pnew = surface->Value( uv );
ok = ( pnew.SquareDistance( p ) < 2 * cellSize );
}
if ( ok )
{
meshDS->MoveNode( uvp.node, pnew.X(), pnew.Y(), pnew.Z() );
uvp.u = uv.X();
uvp.v = uv.Y();
}
}
}
}
}
else
{
// Get nodes to smooth
typedef map< const SMDS_MeshNode*, TSmoothNode, TIDCompare > TNo2SmooNoMap;
TNo2SmooNoMap smooNoMap;
// fixed nodes
boost::container::flat_set< const SMDS_MeshNode* > fixedNodes;
for ( size_t i = 0; i < myForcedPnts.size(); ++i )
{
fixedNodes.insert( myForcedPnts[i].node );
if ( myForcedPnts[i].node->getshapeId() != myHelper->GetSubShapeID() )
{
TSmoothNode & sNode = smooNoMap[ myForcedPnts[i].node ];
sNode._uv = myForcedPnts[i].uv;
sNode._xyz = SMESH_TNodeXYZ( myForcedPnts[i].node );
}
}
SMESHDS_SubMesh* fSubMesh = meshDS->MeshElements( quad->face );
SMDS_NodeIteratorPtr nIt = fSubMesh->GetNodes();
while ( nIt->more() ) // loop on nodes bound to a FACE
{
const SMDS_MeshNode* node = nIt->next();
TSmoothNode & sNode = smooNoMap[ node ];
sNode._uv = myHelper->GetNodeUV( quad->face, node );
sNode._xyz = SMESH_TNodeXYZ( node );
if ( fixedNodes.count( node ))
continue; // fixed - no triangles
// set sNode._triangles
SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator( SMDSAbs_Face );
while ( fIt->more() )
{
const SMDS_MeshElement* face = fIt->next();
const int nbN = face->NbCornerNodes();
const int nInd = face->GetNodeIndex( node );
const int prevInd = myHelper->WrapIndex( nInd - 1, nbN );
const int nextInd = myHelper->WrapIndex( nInd + 1, nbN );
const SMDS_MeshNode* prevNode = face->GetNode( prevInd );
const SMDS_MeshNode* nextNode = face->GetNode( nextInd );
sNode._triangles.push_back( TTriangle( & smooNoMap[ prevNode ],
& smooNoMap[ nextNode ]));
}
}
// set _uv of smooth nodes on FACE boundary
set< StdMeshers_FaceSide* > sidesOnEdge;
list< FaceQuadStruct::Ptr >::iterator q = myQuadList.begin();
for ( ; q != myQuadList.end() ; ++q )
for ( size_t i = 0; i < (*q)->side.size(); ++i )
if ( ! (*q)->side[i].grid->Edge(0).IsNull() &&
//(*q)->nbNodeOut( i ) == 0 &&
sidesOnEdge.insert( (*q)->side[i].grid.get() ).second )
{
const vector<UVPtStruct>& uvVec = (*q)->side[i].grid->GetUVPtStruct();
for ( unsigned j = 0; j < uvVec.size(); ++j )
{
TSmoothNode & sNode = smooNoMap[ uvVec[j].node ];
sNode._uv = uvVec[j].UV();
sNode._xyz = SMESH_TNodeXYZ( uvVec[j].node );
}
}
// define reference orientation in 2D
TNo2SmooNoMap::iterator n2sn = smooNoMap.begin();
for ( ; n2sn != smooNoMap.end(); ++n2sn )
if ( !n2sn->second._triangles.empty() )
break;
if ( n2sn == smooNoMap.end() ) return;
const TSmoothNode & sampleNode = n2sn->second;
const bool refForward = ( sampleNode._triangles[0].IsForward( sampleNode._uv ));
// Smoothing
for ( int iLoop = 0; iLoop < 5; ++iLoop )
{
for ( n2sn = smooNoMap.begin(); n2sn != smooNoMap.end(); ++n2sn )
{
TSmoothNode& sNode = n2sn->second;
if ( sNode._triangles.empty() )
continue; // not movable node
gp_XY newUV;
bool isValid = false;
bool use3D = ( iLoop > 2 ); // 3 loops in 2D and 2, in 3D
if ( use3D )
{
// compute a new XYZ
gp_XYZ newXYZ (0,0,0);
for ( size_t i = 0; i < sNode._triangles.size(); ++i )
newXYZ += sNode._triangles[i]._n1->_xyz;
newXYZ /= sNode._triangles.size();
// compute a new UV by projection
newUV = surface->NextValueOfUV( sNode._uv, newXYZ, 10*tol ).XY();
// check validity of the newUV
for ( size_t i = 0; i < sNode._triangles.size() && isValid; ++i )
isValid = ( sNode._triangles[i].IsForward( newUV ) == refForward );
}
if ( !isValid )
{
// compute a new UV by averaging
newUV.SetCoord(0.,0.);
for ( unsigned i = 0; i < sNode._triangles.size(); ++i )
newUV += sNode._triangles[i]._n1->_uv;
newUV /= sNode._triangles.size();
// check validity of the newUV
isValid = true;
for ( unsigned i = 0; i < sNode._triangles.size() && isValid; ++i )
isValid = ( sNode._triangles[i].IsForward( newUV ) == refForward );
}
if ( isValid )
{
sNode._uv = newUV;
sNode._xyz = surface->Value( newUV ).XYZ();
}
}
}
// Set new XYZ to the smoothed nodes
for ( n2sn = smooNoMap.begin(); n2sn != smooNoMap.end(); ++n2sn )
{
TSmoothNode& sNode = n2sn->second;
if ( sNode._triangles.empty() )
continue; // not movable node
SMDS_MeshNode* node = const_cast< SMDS_MeshNode*>( n2sn->first );
gp_Pnt xyz = surface->Value( sNode._uv );
meshDS->MoveNode( node, xyz.X(), xyz.Y(), xyz.Z() );
// store the new UV
node->SetPosition( SMDS_PositionPtr( new SMDS_FacePosition( sNode._uv.X(), sNode._uv.Y() )));
}
}
// Move medium nodes in quadratic mesh
if ( _quadraticMesh )
{
const TLinkNodeMap& links = myHelper->GetTLinkNodeMap();
TLinkNodeMap::const_iterator linkIt = links.begin();
for ( ; linkIt != links.end(); ++linkIt )
{
const SMESH_TLink& link = linkIt->first;
SMDS_MeshNode* node = const_cast< SMDS_MeshNode*>( linkIt->second );
if ( node->getshapeId() != myHelper->GetSubShapeID() )
continue; // medium node is on EDGE or VERTEX
gp_XYZ pm = 0.5 * ( SMESH_TNodeXYZ( link.node1() ) + SMESH_TNodeXYZ( link.node2() ));
gp_XY uvm = myHelper->GetNodeUV( quad->face, node );
gp_Pnt2d uv = surface->NextValueOfUV( uvm, pm, 10*tol );
gp_Pnt xyz = surface->Value( uv );
node->SetPosition( SMDS_PositionPtr( new SMDS_FacePosition( uv.X(), uv.Y() )));
meshDS->MoveNode( node, xyz.X(), xyz.Y(), xyz.Z() );
}
}
return;
}
//================================================================================
/*!
* \brief Checks validity of generated faces
*/
//================================================================================
bool StdMeshers_Quadrangle_2D::check()
{
const bool isOK = true;
if ( !myCheckOri || myQuadList.empty() || !myQuadList.front() || !myHelper )
return isOK;
TopoDS_Face geomFace = TopoDS::Face( myHelper->GetSubShape() );
SMESHDS_Mesh* meshDS = myHelper->GetMeshDS();
SMESHDS_SubMesh* fSubMesh = meshDS->MeshElements( geomFace );
bool toCheckUV;
if ( geomFace.Orientation() >= TopAbs_INTERNAL ) geomFace.Orientation( TopAbs_FORWARD );
// Get a reference orientation sign
double okSign;
{
TError err;
TSideVector wireVec =
StdMeshers_FaceSide::GetFaceWires( geomFace, *myHelper->GetMesh(), true, err, myHelper );
StdMeshers_FaceSidePtr wire = wireVec[0];
// find a right angle VERTEX
int iVertex = 0;
double maxAngle = -1e100;
for ( int i = 0; i < wire->NbEdges(); ++i )
{
int iPrev = myHelper->WrapIndex( i-1, wire->NbEdges() );
const TopoDS_Edge& e1 = wire->Edge( iPrev );
const TopoDS_Edge& e2 = wire->Edge( i );
double angle = myHelper->GetAngle( e1, e2, geomFace, wire->FirstVertex( i ));
if (( maxAngle < angle ) &&
( 5.* M_PI/180 < angle && angle < 175.* M_PI/180 ))
{
maxAngle = angle;
iVertex = i;
}
}
if ( maxAngle < -2*M_PI ) return isOK;
// get a sign of 2D area of a corner face
int iPrev = myHelper->WrapIndex( iVertex-1, wire->NbEdges() );
const TopoDS_Edge& e1 = wire->Edge( iPrev );
const TopoDS_Edge& e2 = wire->Edge( iVertex );
gp_Vec2d v1, v2; gp_Pnt2d p;
double u[2];
{
bool rev = ( e1.Orientation() == TopAbs_REVERSED );
Handle(Geom2d_Curve) c = BRep_Tool::CurveOnSurface( e1, geomFace, u[0], u[1] );
c->D1( u[ !rev ], p, v1 );
if ( !rev )
v1.Reverse();
}
{
bool rev = ( e2.Orientation() == TopAbs_REVERSED );
Handle(Geom2d_Curve) c = BRep_Tool::CurveOnSurface( e2, geomFace, u[0], u[1] );
c->D1( u[ rev ], p, v2 );
if ( rev )
v2.Reverse();
}
okSign = v2 ^ v1;
if ( maxAngle < 0 )
okSign *= -1;
}
// Look for incorrectly oriented faces
std::list<const SMDS_MeshElement*> badFaces;
const SMDS_MeshNode* nn [ 8 ]; // 8 is just for safety
gp_UV uv [ 8 ];
SMDS_ElemIteratorPtr fIt = fSubMesh->GetElements();
while ( fIt->more() ) // loop on faces bound to a FACE
{
const SMDS_MeshElement* f = fIt->next();
const int nbN = f->NbCornerNodes();
for ( int i = 0; i < nbN; ++i )
nn[ i ] = f->GetNode( i );
const SMDS_MeshNode* nInFace = 0;
if ( myHelper->HasSeam() )
{
for ( int i = 0; i < nbN && !nInFace; ++i )
if ( !myHelper->IsSeamShape( nn[i]->getshapeId() ))
{
nInFace = nn[i];
gp_XY uv = myHelper->GetNodeUV( geomFace, nInFace );
if ( myHelper->IsOnSeam( uv ))
nInFace = NULL;
}
}
if ( myHelper->GetPeriodicIndex() && !nInFace )
{
for ( int i = 0; i < nbN && !nInFace; ++i )
if ( fSubMesh->Contains( nn[i] ))
nInFace = nn[i];
if ( !nInFace )
for ( int i = 0; i < nbN && !nInFace; ++i )
{
SMDS_ElemIteratorPtr fIt = nn[i]->GetInverseElementIterator( SMDSAbs_Face );
while ( fIt->more() && !nInFace )
{
const SMDS_MeshElement* face = fIt->next();
if ( !fSubMesh->Contains( face ))
continue;
for ( int iN = 0, nN = face->NbCornerNodes(); iN < nN; ++iN )
{
const SMDS_MeshNode* n = face->GetNode( iN );
if ( fSubMesh->Contains( n ))
{
nInFace = n;
break;
}
}
}
}
}
toCheckUV = true;
for ( int i = 0; i < nbN; ++i )
uv[ i ] = myHelper->GetNodeUV( geomFace, nn[i], nInFace, &toCheckUV );
bool isBad = false;
switch ( nbN ) {
case 4:
{
double sign1 = getArea( uv[0], uv[1], uv[2] );
double sign2 = getArea( uv[0], uv[2], uv[3] );
if ( sign1 * sign2 < 0 )
{
sign2 = getArea( uv[1], uv[2], uv[3] );
sign1 = getArea( uv[1], uv[3], uv[0] );
if ( sign1 * sign2 < 0 )
continue; // this should not happen
}
isBad = ( sign1 * okSign < 0 );
break;
}
case 3:
{
double sign = getArea( uv[0], uv[1], uv[2] );
isBad = ( sign * okSign < 0 );
break;
}
default:;
}
if ( isBad && myHelper->HasRealSeam() )
{
// fix uv for a case where a face intersects the seam
for ( int iPar = 1; iPar < 3; ++iPar )
if ( iPar & myHelper->GetPeriodicIndex() )
{
double max = uv[0].Coord( iPar );
for ( int i = 1; i < nbN; ++i )
max = Max( max, uv[i].Coord( iPar ));
for ( int i = 0; i < nbN; ++i )
{
double par = uv[i].Coord( iPar );
double shift = ShapeAnalysis::AdjustByPeriod( par, max, myHelper->GetPeriod( iPar ));
uv[i].SetCoord( iPar, par + shift );
}
}
double sign1 = getArea( uv[0], uv[1], uv[2] );
double sign2 = getArea( uv[0], uv[2], uv[3] );
if ( sign1 * sign2 < 0 )
{
sign2 = getArea( uv[1], uv[2], uv[3] );
sign1 = getArea( uv[1], uv[3], uv[0] );
if ( sign1 * sign2 < 0 )
continue; // this should not happen
}
isBad = ( sign1 * okSign < 0 );
}
if ( isBad )
badFaces.push_back ( f );
}
if ( !badFaces.empty() )
{
SMESH_subMesh* fSM = myHelper->GetMesh()->GetSubMesh( geomFace );
SMESH_ComputeErrorPtr& err = fSM->GetComputeError();
SMESH_BadInputElements* badElems =
new SMESH_BadInputElements( meshDS, COMPERR_ALGO_FAILED,
"Inverted elements generated");
badElems->myBadElements.swap( badFaces );
err.reset( badElems );
return !isOK;
}
return isOK;
}
//================================================================================
/*!
* \brief Constructor of a side of quad
*/
//================================================================================
FaceQuadStruct::Side::Side(StdMeshers_FaceSidePtr theGrid)
: grid(theGrid), from(0), to(theGrid ? theGrid->NbPoints() : 0 ), di(1), nbNodeOut(0)
{
}
//=============================================================================
/*!
* \brief Constructor of a quad
*/
//=============================================================================
FaceQuadStruct::FaceQuadStruct(const TopoDS_Face& F, const std::string& theName)
: face( F ), name( theName )
{
side.reserve(4);
}
//================================================================================
/*!
* \brief Fills myForcedPnts
*/
//================================================================================
bool StdMeshers_Quadrangle_2D::getEnforcedUV()
{
myForcedPnts.clear();
if ( !myParams ) return true; // missing hypothesis
std::vector< TopoDS_Shape > shapes;
std::vector< gp_Pnt > points;
myParams->GetEnforcedNodes( shapes, points );
TopTools_IndexedMapOfShape vMap;
for ( size_t i = 0; i < shapes.size(); ++i )
if ( !shapes[i].IsNull() )
TopExp::MapShapes( shapes[i], TopAbs_VERTEX, vMap );
size_t nbPoints = points.size();
for ( int i = 1; i <= vMap.Extent(); ++i )
points.push_back( BRep_Tool::Pnt( TopoDS::Vertex( vMap( i ))));
// find out if all points must be in the FACE, which is so if
// myParams is a local hypothesis on the FACE being meshed
bool isStrictCheck = false;
{
SMESH_HypoFilter paramFilter( SMESH_HypoFilter::Is( myParams ));
TopoDS_Shape assignedTo;
if ( myHelper->GetMesh()->GetHypothesis( myHelper->GetSubShape(),
paramFilter,
/*ancestors=*/true,
&assignedTo ))
isStrictCheck = ( assignedTo.IsSame( myHelper->GetSubShape() ));
}
multimap< double, ForcedPoint > sortedFP; // sort points by distance from EDGEs
Standard_Real u1,u2,v1,v2;
const TopoDS_Face& face = TopoDS::Face( myHelper->GetSubShape() );
const double tol = BRep_Tool::Tolerance( face );
Handle(ShapeAnalysis_Surface) project = myHelper->GetSurface( face );
project->Bounds( u1,u2,v1,v2 );
Bnd_Box bbox;
BRepBndLib::Add( face, bbox );
double farTol = 0.01 * sqrt( bbox.SquareExtent() );
// get internal VERTEXes of the FACE to use them instead of equal points
typedef map< pair< double, double >, TopoDS_Vertex > TUV2VMap;
TUV2VMap uv2intV;
for ( TopExp_Explorer vExp( face, TopAbs_VERTEX, TopAbs_EDGE ); vExp.More(); vExp.Next() )
{
TopoDS_Vertex v = TopoDS::Vertex( vExp.Current() );
gp_Pnt2d uv = project->ValueOfUV( BRep_Tool::Pnt( v ), tol );
uv2intV.insert( make_pair( make_pair( uv.X(), uv.Y() ), v ));
}
for ( size_t iP = 0; iP < points.size(); ++iP )
{
gp_Pnt2d uv = project->ValueOfUV( points[ iP ], tol );
if ( project->Gap() > farTol )
{
if ( isStrictCheck && iP < nbPoints )
return error
(COMPERR_BAD_PARMETERS, TComm("An enforced point is too far from the face, dist = ")
<< points[ iP ].Distance( project->Value( uv )) << " - ("
<< points[ iP ].X() << ", "<< points[ iP ].Y() << ", "<< points[ iP ].Z() << " )");
continue;
}
BRepClass_FaceClassifier clsf ( face, uv, tol );
switch ( clsf.State() ) {
case TopAbs_IN:
{
double edgeDist = ( Min( Abs( uv.X() - u1 ), Abs( uv.X() - u2 )) +
Min( Abs( uv.Y() - v1 ), Abs( uv.Y() - v2 )));
ForcedPoint fp;
fp.uv = uv.XY();
fp.xyz = points[ iP ].XYZ();
if ( iP >= nbPoints )
fp.vertex = TopoDS::Vertex( vMap( iP - nbPoints + 1 ));
TUV2VMap::iterator uv2v = uv2intV.lower_bound( make_pair( uv.X()-tol, uv.Y()-tol ));
for ( ; uv2v != uv2intV.end() && uv2v->first.first <= uv.X()+tol; ++uv2v )
if ( uv.SquareDistance( gp_Pnt2d( uv2v->first.first, uv2v->first.second )) < tol*tol )
{
fp.vertex = uv2v->second;
break;
}
fp.node = 0;
if ( myHelper->IsSubShape( fp.vertex, myHelper->GetMesh() ))
{
SMESH_subMesh* sm = myHelper->GetMesh()->GetSubMesh( fp.vertex );
sm->ComputeStateEngine( SMESH_subMesh::COMPUTE );
fp.node = SMESH_Algo::VertexNode( fp.vertex, myHelper->GetMeshDS() );
}
else
{
fp.node = myHelper->AddNode( fp.xyz.X(), fp.xyz.Y(), fp.xyz.Z(),
0, fp.uv.X(), fp.uv.Y() );
}
sortedFP.insert( make_pair( edgeDist, fp ));
break;
}
case TopAbs_OUT:
{
if ( isStrictCheck && iP < nbPoints )
return error
(COMPERR_BAD_PARMETERS, TComm("An enforced point is out of the face boundary - ")
<< points[ iP ].X() << ", "<< points[ iP ].Y() << ", "<< points[ iP ].Z() << " )");
break;
}
case TopAbs_ON:
{
if ( isStrictCheck && iP < nbPoints )
return error
(COMPERR_BAD_PARMETERS, TComm("An enforced point is on the face boundary - ")
<< points[ iP ].X() << ", "<< points[ iP ].Y() << ", "<< points[ iP ].Z() << " )");
break;
}
default:
{
if ( isStrictCheck && iP < nbPoints )
return error
(TComm("Classification of an enforced point ralative to the face boundary failed - ")
<< points[ iP ].X() << ", "<< points[ iP ].Y() << ", "<< points[ iP ].Z() << " )");
}
}
}
multimap< double, ForcedPoint >::iterator d2uv = sortedFP.begin();
for ( ; d2uv != sortedFP.end(); ++d2uv )
myForcedPnts.push_back( (*d2uv).second );
return true;
}
//================================================================================
/*!
* \brief Splits quads by adding points of enforced nodes and create nodes on
* the sides shared by quads
*/
//================================================================================
bool StdMeshers_Quadrangle_2D::addEnforcedNodes()
{
// if ( myForcedPnts.empty() )
// return true;
// make a map of quads sharing a side
map< StdMeshers_FaceSidePtr, vector< FaceQuadStruct::Ptr > > quadsBySide;
list< FaceQuadStruct::Ptr >::iterator quadIt = myQuadList.begin();
for ( ; quadIt != myQuadList.end(); ++quadIt )
for ( size_t iSide = 0; iSide < (*quadIt)->side.size(); ++iSide )
{
if ( !setNormalizedGrid( *quadIt ))
return false;
quadsBySide[ (*quadIt)->side[iSide] ].push_back( *quadIt );
}
const TopoDS_Face& face = TopoDS::Face( myHelper->GetSubShape() );
Handle(Geom_Surface) surf = BRep_Tool::Surface( face );
for ( size_t iFP = 0; iFP < myForcedPnts.size(); ++iFP )
{
bool isNodeEnforced = false;
// look for a quad enclosing an enforced point
for ( quadIt = myQuadList.begin(); quadIt != myQuadList.end(); ++quadIt )
{
FaceQuadStruct::Ptr quad = *quadIt;
if ( !setNormalizedGrid( *quadIt ))
return false;
int i,j;
if ( !quad->findCell( myForcedPnts[ iFP ], i, j ))
continue;
// a grid cell is found, select a node of the cell to move
// to the enforced point to and to split the quad at
multimap< double, pair< int, int > > ijByDist;
for ( int di = 0; di < 2; ++di )
for ( int dj = 0; dj < 2; ++dj )
{
double dist2 = ( myForcedPnts[ iFP ].uv - quad->UVPt( i+di,j+dj ).UV() ).SquareModulus();
ijByDist.insert( make_pair( dist2, make_pair( di,dj )));
}
// try all nodes starting from the closest one
set< FaceQuadStruct::Ptr > changedQuads;
multimap< double, pair< int, int > >::iterator d2ij = ijByDist.begin();
for ( ; !isNodeEnforced && d2ij != ijByDist.end(); ++d2ij )
{
int di = d2ij->second.first;
int dj = d2ij->second.second;
// check if a node is at a side
int iSide = -1;
if ( dj== 0 && j == 0 )
iSide = QUAD_BOTTOM_SIDE;
else if ( dj == 1 && j+2 == quad->jSize )
iSide = QUAD_TOP_SIDE;
else if ( di == 0 && i == 0 )
iSide = QUAD_LEFT_SIDE;
else if ( di == 1 && i+2 == quad->iSize )
iSide = QUAD_RIGHT_SIDE;
if ( iSide > -1 ) // ----- node is at a side
{
FaceQuadStruct::Side& side = quad->side[ iSide ];
// check if this node can be moved
if ( quadsBySide[ side ].size() < 2 )
continue; // its a face boundary -> can't move the node
int quadNodeIndex = ( iSide % 2 ) ? j : i;
int sideNodeIndex = side.ToSideIndex( quadNodeIndex );
if ( side.IsForced( sideNodeIndex ))
{
// the node is already moved to another enforced point
isNodeEnforced = quad->isEqual( myForcedPnts[ iFP ], i, j );
continue;
}
// make a node of a side forced
vector<UVPtStruct>& points = (vector<UVPtStruct>&) side.GetUVPtStruct();
points[ sideNodeIndex ].u = myForcedPnts[ iFP ].U();
points[ sideNodeIndex ].v = myForcedPnts[ iFP ].V();
points[ sideNodeIndex ].node = myForcedPnts[ iFP ].node;
updateSideUV( side, sideNodeIndex, quadsBySide );
// update adjacent sides
set< StdMeshers_FaceSidePtr > updatedSides;
updatedSides.insert( side );
for ( size_t i = 0; i < side.contacts.size(); ++i )
if ( side.contacts[i].point == sideNodeIndex )
{
const vector< FaceQuadStruct::Ptr >& adjQuads =
quadsBySide[ *side.contacts[i].other_side ];
if ( adjQuads.size() > 1 &&
updatedSides.insert( * side.contacts[i].other_side ).second )
{
updateSideUV( *side.contacts[i].other_side,
side.contacts[i].other_point,
quadsBySide );
}
changedQuads.insert( adjQuads.begin(), adjQuads.end() );
}
const vector< FaceQuadStruct::Ptr >& adjQuads = quadsBySide[ side ];
changedQuads.insert( adjQuads.begin(), adjQuads.end() );
isNodeEnforced = true;
}
else // ------------------ node is inside the quad
{
i += di;
j += dj;
// make a new side passing through IJ node and split the quad
int indForced, iNewSide;
if ( quad->iSize < quad->jSize ) // split vertically
{
quad->updateUV( myForcedPnts[ iFP ].uv, i, j, /*isVert=*/true );
indForced = j;
iNewSide = splitQuad( quad, i, 0 );
}
else
{
quad->updateUV( myForcedPnts[ iFP ].uv, i, j, /*isVert=*/false );
indForced = i;
iNewSide = splitQuad( quad, 0, j );
}
FaceQuadStruct::Ptr newQuad = myQuadList.back();
FaceQuadStruct::Side& newSide = newQuad->side[ iNewSide ];
vector<UVPtStruct>& points = (vector<UVPtStruct>&) newSide.GetUVPtStruct();
points[ indForced ].node = myForcedPnts[ iFP ].node;
newSide.forced_nodes.insert( indForced );
quad->side[( iNewSide+2 ) % 4 ].forced_nodes.insert( indForced );
quadsBySide[ newSide ].push_back( quad );
quadsBySide[ newQuad->side[0] ].push_back( newQuad );
quadsBySide[ newQuad->side[1] ].push_back( newQuad );
quadsBySide[ newQuad->side[2] ].push_back( newQuad );
quadsBySide[ newQuad->side[3] ].push_back( newQuad );
isNodeEnforced = true;
} // end of "node is inside the quad"
} // loop on nodes of the cell
// remove out-of-date uv grid of changedQuads
set< FaceQuadStruct::Ptr >::iterator qIt = changedQuads.begin();
for ( ; qIt != changedQuads.end(); ++qIt )
(*qIt)->uv_grid.clear();
if ( isNodeEnforced )
break;
} // loop on quads
if ( !isNodeEnforced )
{
if ( !myForcedPnts[ iFP ].vertex.IsNull() )
return error(TComm("Unable to move any node to vertex #")
<<myHelper->GetMeshDS()->ShapeToIndex( myForcedPnts[ iFP ].vertex ));
else
return error(TComm("Unable to move any node to point ( ")
<< myForcedPnts[iFP].xyz.X() << ", "
<< myForcedPnts[iFP].xyz.Y() << ", "
<< myForcedPnts[iFP].xyz.Z() << " )");
}
myNeedSmooth = true;
} // loop on enforced points
// Compute nodes on all sides, where not yet present
for ( quadIt = myQuadList.begin(); quadIt != myQuadList.end(); ++quadIt )
{
FaceQuadStruct::Ptr quad = *quadIt;
for ( int iSide = 0; iSide < 4; ++iSide )
{
FaceQuadStruct::Side & side = quad->side[ iSide ];
if ( side.nbNodeOut > 0 )
continue; // emulated side
vector< FaceQuadStruct::Ptr >& quadVec = quadsBySide[ side ];
if ( quadVec.size() <= 1 )
continue; // outer side
const vector<UVPtStruct>& points = side.grid->GetUVPtStruct();
for ( size_t iC = 0; iC < side.contacts.size(); ++iC )
{
if ( side.contacts[iC].point < side.from ||
side.contacts[iC].point >= side.to )
continue;
if ( side.contacts[iC].other_point < side.contacts[iC].other_side->from ||
side.contacts[iC].other_point >= side.contacts[iC].other_side->to )
continue;
const vector<UVPtStruct>& oGrid = side.contacts[iC].other_side->grid->GetUVPtStruct();
const UVPtStruct& uvPt = points[ side.contacts[iC].point ];
if ( side.contacts[iC].other_point >= (int) oGrid .size() ||
side.contacts[iC].point >= (int) points.size() )
throw SALOME_Exception( "StdMeshers_Quadrangle_2D::addEnforcedNodes(): wrong contact" );
if ( oGrid[ side.contacts[iC].other_point ].node )
(( UVPtStruct& ) uvPt).node = oGrid[ side.contacts[iC].other_point ].node;
}
bool missedNodesOnSide = false;
for ( size_t iP = 0; iP < points.size(); ++iP )
if ( !points[ iP ].node )
{
UVPtStruct& uvPnt = ( UVPtStruct& ) points[ iP ];
gp_Pnt P = surf->Value( uvPnt.u, uvPnt.v );
uvPnt.node = myHelper->AddNode(P.X(), P.Y(), P.Z(), 0, uvPnt.u, uvPnt.v );
missedNodesOnSide = true;
}
if ( missedNodesOnSide )
{
// clear uv_grid where nodes are missing
for ( size_t iQ = 0; iQ < quadVec.size(); ++iQ )
quadVec[ iQ ]->uv_grid.clear();
}
}
}
return true;
}
//================================================================================
/*!
* \brief Splits a quad at I or J. Returns an index of a new side in the new quad
*/
//================================================================================
int StdMeshers_Quadrangle_2D::splitQuad(FaceQuadStruct::Ptr quad, int I, int J)
{
FaceQuadStruct* newQuad = new FaceQuadStruct( quad->face );
myQuadList.push_back( FaceQuadStruct::Ptr( newQuad ));
vector<UVPtStruct> points;
if ( I > 0 && I <= quad->iSize-2 )
{
points.reserve( quad->jSize );
for ( int jP = 0; jP < quad->jSize; ++jP )
points.push_back( quad->UVPt( I, jP ));
newQuad->side.resize( 4 );
newQuad->side[ QUAD_BOTTOM_SIDE ] = quad->side[ QUAD_BOTTOM_SIDE ];
newQuad->side[ QUAD_RIGHT_SIDE ] = quad->side[ QUAD_RIGHT_SIDE ];
newQuad->side[ QUAD_TOP_SIDE ] = quad->side[ QUAD_TOP_SIDE ];
newQuad->side[ QUAD_LEFT_SIDE ] = StdMeshers_FaceSide::New( points, quad->face );
FaceQuadStruct::Side& newSide = newQuad->side[ QUAD_LEFT_SIDE ];
FaceQuadStruct::Side& newSide2 = quad->side [ QUAD_RIGHT_SIDE ];
quad->side[ QUAD_RIGHT_SIDE ] = newSide;
int iBot = quad->side[ QUAD_BOTTOM_SIDE ].ToSideIndex( I );
int iTop = quad->side[ QUAD_TOP_SIDE ].ToSideIndex( I );
newSide.AddContact ( 0, & quad->side[ QUAD_BOTTOM_SIDE ], iBot );
newSide2.AddContact( 0, & quad->side[ QUAD_BOTTOM_SIDE ], iBot );
newSide.AddContact ( quad->jSize - 1, & quad->side[ QUAD_TOP_SIDE ], iTop );
newSide2.AddContact( quad->jSize - 1, & quad->side[ QUAD_TOP_SIDE ], iTop );
// cout << "Contact: L " << &newSide << " "<< newSide.NbPoints()
// << " R " << &newSide2 << " "<< newSide2.NbPoints()
// << " B " << &quad->side[ QUAD_BOTTOM_SIDE ] << " "<< quad->side[ QUAD_BOTTOM_SIDE].NbPoints()
// << " T " << &quad->side[ QUAD_TOP_SIDE ] << " "<< quad->side[ QUAD_TOP_SIDE].NbPoints()<< endl;
newQuad->side[ QUAD_BOTTOM_SIDE ].from = iBot;
newQuad->side[ QUAD_TOP_SIDE ].from = iTop;
newQuad->name = ( TComm("Right of I=") << I );
bool bRev = quad->side[ QUAD_BOTTOM_SIDE ].IsReversed();
bool tRev = quad->side[ QUAD_TOP_SIDE ].IsReversed();
quad->side[ QUAD_BOTTOM_SIDE ].to = iBot + ( bRev ? -1 : +1 );
quad->side[ QUAD_TOP_SIDE ].to = iTop + ( tRev ? -1 : +1 );
quad->uv_grid.clear();
return QUAD_LEFT_SIDE;
}
else if ( J > 0 && J <= quad->jSize-2 ) //// split horizontally, a new quad is below an old one
{
points.reserve( quad->iSize );
for ( int iP = 0; iP < quad->iSize; ++iP )
points.push_back( quad->UVPt( iP, J ));
newQuad->side.resize( 4 );
newQuad->side[ QUAD_BOTTOM_SIDE ] = quad->side[ QUAD_BOTTOM_SIDE ];
newQuad->side[ QUAD_RIGHT_SIDE ] = quad->side[ QUAD_RIGHT_SIDE ];
newQuad->side[ QUAD_TOP_SIDE ] = StdMeshers_FaceSide::New( points, quad->face );
newQuad->side[ QUAD_LEFT_SIDE ] = quad->side[ QUAD_LEFT_SIDE ];
FaceQuadStruct::Side& newSide = newQuad->side[ QUAD_TOP_SIDE ];
FaceQuadStruct::Side& newSide2 = quad->side [ QUAD_BOTTOM_SIDE ];
quad->side[ QUAD_BOTTOM_SIDE ] = newSide;
int iLft = quad->side[ QUAD_LEFT_SIDE ].ToSideIndex( J );
int iRgt = quad->side[ QUAD_RIGHT_SIDE ].ToSideIndex( J );
newSide.AddContact ( 0, & quad->side[ QUAD_LEFT_SIDE ], iLft );
newSide2.AddContact( 0, & quad->side[ QUAD_LEFT_SIDE ], iLft );
newSide.AddContact ( quad->iSize - 1, & quad->side[ QUAD_RIGHT_SIDE ], iRgt );
newSide2.AddContact( quad->iSize - 1, & quad->side[ QUAD_RIGHT_SIDE ], iRgt );
// cout << "Contact: T " << &newSide << " "<< newSide.NbPoints()
// << " B " << &newSide2 << " "<< newSide2.NbPoints()
// << " L " << &quad->side[ QUAD_LEFT_SIDE ] << " "<< quad->side[ QUAD_LEFT_SIDE].NbPoints()
// << " R " << &quad->side[ QUAD_RIGHT_SIDE ] << " "<< quad->side[ QUAD_RIGHT_SIDE].NbPoints()<< endl;
bool rRev = newQuad->side[ QUAD_RIGHT_SIDE ].IsReversed();
bool lRev = newQuad->side[ QUAD_LEFT_SIDE ].IsReversed();
newQuad->side[ QUAD_RIGHT_SIDE ].to = iRgt + ( rRev ? -1 : +1 );
newQuad->side[ QUAD_LEFT_SIDE ].to = iLft + ( lRev ? -1 : +1 );
newQuad->name = ( TComm("Below J=") << J );
quad->side[ QUAD_RIGHT_SIDE ].from = iRgt;
quad->side[ QUAD_LEFT_SIDE ].from = iLft;
quad->uv_grid.clear();
return QUAD_TOP_SIDE;
}
myQuadList.pop_back();
return -1;
}
//================================================================================
/*!
* \brief Updates UV of a side after moving its node
*/
//================================================================================
void StdMeshers_Quadrangle_2D::updateSideUV( FaceQuadStruct::Side& side,
int iForced,
const TQuadsBySide& quadsBySide,
int * iNext)
{
if ( !iNext )
{
side.forced_nodes.insert( iForced );
// update parts of the side before and after iForced
set<int>::iterator iIt = side.forced_nodes.upper_bound( iForced );
int iEnd = Min( side.NbPoints()-1, ( iIt == side.forced_nodes.end() ) ? int(1e7) : *iIt );
if ( iForced + 1 < iEnd )
updateSideUV( side, iForced, quadsBySide, &iEnd );
iIt = side.forced_nodes.lower_bound( iForced );
int iBeg = Max( 0, ( iIt == side.forced_nodes.begin() ) ? 0 : *--iIt );
if ( iForced - 1 > iBeg )
updateSideUV( side, iForced, quadsBySide, &iBeg );
return;
}
const int iFrom = Min ( iForced, *iNext );
const int iTo = Max ( iForced, *iNext ) + 1;
const size_t sideSize = iTo - iFrom;
vector<UVPtStruct> points[4]; // side points of a temporary quad
// from the quads get grid points adjacent to the side
// to make two sides of a temporary quad
vector< FaceQuadStruct::Ptr > quads = quadsBySide.find( side )->second; // copy!
for ( int is2nd = 0; is2nd < 2; ++is2nd )
{
points[ is2nd ].reserve( sideSize );
size_t nbLoops = 0;
while ( points[is2nd].size() < sideSize )
{
int iCur = iFrom + points[is2nd].size() - int( !points[is2nd].empty() );
// look for a quad adjacent to iCur-th point of the side
for ( size_t iQ = 0; iQ < quads.size(); ++iQ )
{
FaceQuadStruct::Ptr q = quads[ iQ ];
if ( !q )
continue;
size_t iS;
for ( iS = 0; iS < q->side.size(); ++iS )
if ( side.grid == q->side[ iS ].grid )
break;
if ( iS == q->side.size() )
continue;
bool isOut;
if ( !q->side[ iS ].IsReversed() )
isOut = ( q->side[ iS ].from > iCur || q->side[ iS ].to-1 <= iCur );
else
isOut = ( q->side[ iS ].to >= iCur || q->side[ iS ].from <= iCur );
if ( isOut )
continue;
if ( !setNormalizedGrid( q ))
continue;
// found - copy points
int i,j,di,dj,nb;
if ( iS % 2 ) // right or left
{
i = ( iS == QUAD_LEFT_SIDE ) ? 1 : q->iSize-2;
j = q->side[ iS ].ToQuadIndex( iCur );
di = 0;
dj = ( q->side[ iS ].IsReversed() ) ? -1 : +1;
nb = ( q->side[ iS ].IsReversed() ) ? j+1 : q->jSize-j;
}
else // bottom or top
{
i = q->side[ iS ].ToQuadIndex( iCur );
j = ( iS == QUAD_BOTTOM_SIDE ) ? 1 : q->jSize-2;
di = ( q->side[ iS ].IsReversed() ) ? -1 : +1;
dj = 0;
nb = ( q->side[ iS ].IsReversed() ) ? i+1 : q->iSize-i;
}
if ( !points[is2nd].empty() )
{
gp_UV lastUV = points[is2nd].back().UV();
gp_UV quadUV = q->UVPt( i, j ).UV();
if ( ( lastUV - quadUV ).SquareModulus() > 1e-10 )
continue; // quad is on the other side of the side
i += di; j += dj; --nb;
}
for ( ; nb > 0 ; --nb )
{
points[ is2nd ].push_back( q->UVPt( i, j ));
if ( points[is2nd].size() >= sideSize )
break;
i += di; j += dj;
}
quads[ iQ ].reset(); // not to use this quad anymore
if ( points[is2nd].size() >= sideSize )
break;
} // loop on quads
if ( nbLoops++ > quads.size() )
throw SALOME_Exception( "StdMeshers_Quadrangle_2D::updateSideUV() bug: infinite loop" );
} // while ( points[is2nd].size() < sideSize )
} // two loops to fill points[0] and points[1]
// points for other pair of opposite sides of the temporary quad
enum { L,R,B,T }; // side index of points[]
points[B].push_back( points[L].front() );
points[B].push_back( side.GetUVPtStruct()[ iFrom ]);
points[B].push_back( points[R].front() );
points[T].push_back( points[L].back() );
points[T].push_back( side.GetUVPtStruct()[ iTo-1 ]);
points[T].push_back( points[R].back() );
// make the temporary quad
FaceQuadStruct::Ptr tmpQuad
( new FaceQuadStruct( TopoDS::Face( myHelper->GetSubShape() ), "tmpQuad"));
tmpQuad->side.push_back( StdMeshers_FaceSide::New( points[B] )); // bottom
tmpQuad->side.push_back( StdMeshers_FaceSide::New( points[R] )); // right
tmpQuad->side.push_back( StdMeshers_FaceSide::New( points[T] ));
tmpQuad->side.push_back( StdMeshers_FaceSide::New( points[L] ));
// compute new UV of the side
setNormalizedGrid( tmpQuad );
gp_UV uv = tmpQuad->UVPt(1,0).UV();
tmpQuad->updateUV( uv, 1,0, /*isVertical=*/true );
// update UV of the side
vector<UVPtStruct>& sidePoints = (vector<UVPtStruct>&) side.GetUVPtStruct();
for ( int i = iFrom; i < iTo; ++i )
{
const uvPtStruct& uvPt = tmpQuad->UVPt( 1, i-iFrom );
sidePoints[ i ].u = uvPt.u;
sidePoints[ i ].v = uvPt.v;
}
}
//================================================================================
/*!
* \brief Finds indices of a grid quad enclosing the given enforced UV
*/
//================================================================================
bool FaceQuadStruct::findCell( const gp_XY& UV, int & I, int & J )
{
// setNormalizedGrid() must be called before!
if ( uv_box.IsOut( UV ))
return false;
// find an approximate position
double x = 0.5, y = 0.5;
gp_XY t0 = UVPt( iSize - 1, 0 ).UV();
gp_XY t1 = UVPt( 0, jSize - 1 ).UV();
gp_XY t2 = UVPt( 0, 0 ).UV();
SMESH_MeshAlgos::GetBarycentricCoords( UV, t0, t1, t2, x, y );
x = Min( 1., Max( 0., x ));
y = Min( 1., Max( 0., y ));
// precise the position
normPa2IJ( x,y, I,J );
if ( !isNear( UV, I,J ))
{
// look for the most close IJ by traversing uv_grid in the middle
double dist2, minDist2 = ( UV - UVPt( I,J ).UV() ).SquareModulus();
for ( int isU = 0; isU < 2; ++isU )
{
int ind1 = isU ? 0 : iSize / 2;
int ind2 = isU ? jSize / 2 : 0;
int di1 = isU ? Max( 2, iSize / 20 ) : 0;
int di2 = isU ? 0 : Max( 2, jSize / 20 );
int i,nb = isU ? iSize / di1 : jSize / di2;
for ( i = 0; i < nb; ++i, ind1 += di1, ind2 += di2 )
if (( dist2 = ( UV - UVPt( ind1,ind2 ).UV() ).SquareModulus() ) < minDist2 )
{
I = ind1;
J = ind2;
if ( isNear( UV, I,J ))
return true;
minDist2 = ( UV - UVPt( I,J ).UV() ).SquareModulus();
}
}
if ( !isNear( UV, I,J, Max( iSize, jSize ) /2 ))
return false;
}
return true;
}
//================================================================================
/*!
* \brief Find indices (i,j) of a point in uv_grid by normalized parameters (x,y)
*/
//================================================================================
void FaceQuadStruct::normPa2IJ(double X, double Y, int & I, int & J )
{
I = Min( int ( iSize * X ), iSize - 2 );
J = Min( int ( jSize * Y ), jSize - 2 );
int oldI, oldJ;
do
{
oldI = I, oldJ = J;
while ( X <= UVPt( I,J ).x && I != 0 )
--I;
while ( X > UVPt( I+1,J ).x && I+2 < iSize )
++I;
while ( Y <= UVPt( I,J ).y && J != 0 )
--J;
while ( Y > UVPt( I,J+1 ).y && J+2 < jSize )
++J;
} while ( oldI != I || oldJ != J );
}
//================================================================================
/*!
* \brief Looks for UV in quads around a given (I,J) and precise (I,J)
*/
//================================================================================
bool FaceQuadStruct::isNear( const gp_XY& UV, int & I, int & J, int nbLoops )
{
if ( I+1 >= iSize ) I = iSize - 2;
if ( J+1 >= jSize ) J = jSize - 2;
double bcI, bcJ;
gp_XY uvI, uvJ, uv0, uv1;
for ( int iLoop = 0; iLoop < nbLoops; ++iLoop )
{
int oldI = I, oldJ = J;
uvI = UVPt( I+1, J ).UV();
uvJ = UVPt( I, J+1 ).UV();
uv0 = UVPt( I, J ).UV();
SMESH_MeshAlgos::GetBarycentricCoords( UV, uvI, uvJ, uv0, bcI, bcJ );
if ( bcI >= 0. && bcJ >= 0. && bcI + bcJ <= 1.)
return true;
if ( I > 0 && bcI < 0. ) --I;
if ( I+2 < iSize && bcI > 1. ) ++I;
if ( J > 0 && bcJ < 0. ) --J;
if ( J+2 < jSize && bcJ > 1. ) ++J;
uv1 = UVPt( I+1,J+1).UV();
if ( I != oldI || J != oldJ )
{
uvI = UVPt( I+1, J ).UV();
uvJ = UVPt( I, J+1 ).UV();
}
SMESH_MeshAlgos::GetBarycentricCoords( UV, uvI, uvJ, uv1, bcI, bcJ );
if ( bcI >= 0. && bcJ >= 0. && bcI + bcJ <= 1.)
return true;
if ( I > 0 && bcI > 1. ) --I;
if ( I+2 < iSize && bcI < 0. ) ++I;
if ( J > 0 && bcJ > 1. ) --J;
if ( J+2 < jSize && bcJ < 0. ) ++J;
if ( I == oldI && J == oldJ )
return false;
if ( iLoop+1 == nbLoops )
{
uvI = UVPt( I+1, J ).UV();
uvJ = UVPt( I, J+1 ).UV();
uv0 = UVPt( I, J ).UV();
SMESH_MeshAlgos::GetBarycentricCoords( UV, uvI, uvJ, uv0, bcI, bcJ );
if ( bcI >= 0. && bcJ >= 0. && bcI + bcJ <= 1.)
return true;
uv1 = UVPt( I+1,J+1).UV();
SMESH_MeshAlgos::GetBarycentricCoords( UV, uvI, uvJ, uv1, bcI, bcJ );
if ( bcI >= 0. && bcJ >= 0. && bcI + bcJ <= 1.)
return true;
}
}
return false;
}
//================================================================================
/*!
* \brief Checks if a given UV is equal to a given grid point
*/
//================================================================================
bool FaceQuadStruct::isEqual( const gp_XY& UV, int I, int J )
{
TopLoc_Location loc;
Handle(Geom_Surface) surf = BRep_Tool::Surface( face, loc );
gp_Pnt p1 = surf->Value( UV.X(), UV.Y() );
gp_Pnt p2 = surf->Value( UVPt( I,J ).u, UVPt( I,J ).v );
double dist2 = 1e100;
for ( int di = -1; di < 2; di += 2 )
{
int i = I + di;
if ( i < 0 || i+1 >= iSize ) continue;
for ( int dj = -1; dj < 2; dj += 2 )
{
int j = J + dj;
if ( j < 0 || j+1 >= jSize ) continue;
dist2 = Min( dist2,
p2.SquareDistance( surf->Value( UVPt( i,j ).u, UVPt( i,j ).v )));
}
}
double tol2 = dist2 / 1000.;
return p1.SquareDistance( p2 ) < tol2;
}
//================================================================================
/*!
* \brief Recompute UV of grid points around a moved point in one direction
*/
//================================================================================
void FaceQuadStruct::updateUV( const gp_XY& UV, int I, int J, bool isVertical )
{
UVPt( I, J ).u = UV.X();
UVPt( I, J ).v = UV.Y();
if ( isVertical )
{
// above J
if ( J+1 < jSize-1 )
{
gp_UV a0 = UVPt( 0, J ).UV();
gp_UV a1 = UVPt( iSize-1, J ).UV();
gp_UV a2 = UVPt( iSize-1, jSize-1 ).UV();
gp_UV a3 = UVPt( 0, jSize-1 ).UV();
gp_UV p0 = UVPt( I, J ).UV();
gp_UV p2 = UVPt( I, jSize-1 ).UV();
const double y0 = UVPt( I, J ).y, dy = 1. - y0;
for (int j = J+1; j < jSize-1; j++)
{
gp_UV p1 = UVPt( iSize-1, j ).UV();
gp_UV p3 = UVPt( 0, j ).UV();
UVPtStruct& uvPt = UVPt( I, j );
gp_UV uv = calcUV( uvPt.x, ( uvPt.y - y0 ) / dy, a0,a1,a2,a3, p0,p1,p2,p3);
uvPt.u = uv.X();
uvPt.v = uv.Y();
}
}
// under J
if ( J-1 > 0 )
{
gp_UV a0 = UVPt( 0, 0 ).UV();
gp_UV a1 = UVPt( iSize-1, 0 ).UV();
gp_UV a2 = UVPt( iSize-1, J ).UV();
gp_UV a3 = UVPt( 0, J ).UV();
gp_UV p0 = UVPt( I, 0 ).UV();
gp_UV p2 = UVPt( I, J ).UV();
const double y0 = 0., dy = UVPt( I, J ).y - y0;
for (int j = 1; j < J; j++)
{
gp_UV p1 = UVPt( iSize-1, j ).UV();
gp_UV p3 = UVPt( 0, j ).UV();
UVPtStruct& uvPt = UVPt( I, j );
gp_UV uv = calcUV( uvPt.x, ( uvPt.y - y0 ) / dy, a0,a1,a2,a3, p0,p1,p2,p3);
uvPt.u = uv.X();
uvPt.v = uv.Y();
}
}
}
else // horizontally
{
// before I
if ( I-1 > 0 )
{
gp_UV a0 = UVPt( 0, 0 ).UV();
gp_UV a1 = UVPt( I, 0 ).UV();
gp_UV a2 = UVPt( I, jSize-1 ).UV();
gp_UV a3 = UVPt( 0, jSize-1 ).UV();
gp_UV p1 = UVPt( I, J ).UV();
gp_UV p3 = UVPt( 0, J ).UV();
const double x0 = 0., dx = UVPt( I, J ).x - x0;
for (int i = 1; i < I; i++)
{
gp_UV p0 = UVPt( i, 0 ).UV();
gp_UV p2 = UVPt( i, jSize-1 ).UV();
UVPtStruct& uvPt = UVPt( i, J );
gp_UV uv = calcUV(( uvPt.x - x0 ) / dx , uvPt.y, a0,a1,a2,a3, p0,p1,p2,p3);
uvPt.u = uv.X();
uvPt.v = uv.Y();
}
}
// after I
if ( I+1 < iSize-1 )
{
gp_UV a0 = UVPt( I, 0 ).UV();
gp_UV a1 = UVPt( iSize-1, 0 ).UV();
gp_UV a2 = UVPt( iSize-1, jSize-1 ).UV();
gp_UV a3 = UVPt( I, jSize-1 ).UV();
gp_UV p1 = UVPt( iSize-1, J ).UV();
gp_UV p3 = UVPt( I, J ).UV();
const double x0 = UVPt( I, J ).x, dx = 1. - x0;
for (int i = I+1; i < iSize-1; i++)
{
gp_UV p0 = UVPt( i, 0 ).UV();
gp_UV p2 = UVPt( i, jSize-1 ).UV();
UVPtStruct& uvPt = UVPt( i, J );
gp_UV uv = calcUV(( uvPt.x - x0 ) / dx , uvPt.y, a0,a1,a2,a3, p0,p1,p2,p3);
uvPt.u = uv.X();
uvPt.v = uv.Y();
}
}
}
}
//================================================================================
/*!
* \brief Side copying
*/
//================================================================================
FaceQuadStruct::Side& FaceQuadStruct::Side::operator=(const Side& otherSide)
{
grid = otherSide.grid;
from = otherSide.from;
to = otherSide.to;
di = otherSide.di;
forced_nodes = otherSide.forced_nodes;
contacts = otherSide.contacts;
nbNodeOut = otherSide.nbNodeOut;
for ( size_t iC = 0; iC < contacts.size(); ++iC )
{
FaceQuadStruct::Side* oSide = contacts[iC].other_side;
for ( size_t iOC = 0; iOC < oSide->contacts.size(); ++iOC )
if ( oSide->contacts[iOC].other_side == & otherSide )
{
// cout << "SHIFT old " << &otherSide << " " << otherSide.NbPoints()
// << " -> new " << this << " " << this->NbPoints() << endl;
oSide->contacts[iOC].other_side = this;
}
}
return *this;
}
//================================================================================
/*!
* \brief Converts node index of a quad to node index of this side
*/
//================================================================================
int FaceQuadStruct::Side::ToSideIndex( int quadNodeIndex ) const
{
return from + di * quadNodeIndex;
}
//================================================================================
/*!
* \brief Converts node index of this side to node index of a quad
*/
//================================================================================
int FaceQuadStruct::Side::ToQuadIndex( int sideNodeIndex ) const
{
return ( sideNodeIndex - from ) * di;
}
//================================================================================
/*!
* \brief Reverse the side
*/
//================================================================================
bool FaceQuadStruct::Side::Reverse(bool keepGrid)
{
if ( grid )
{
if ( keepGrid )
{
from -= di;
to -= di;
std::swap( from, to );
di *= -1;
}
else
{
grid->Reverse();
}
}
return (bool)grid;
}
//================================================================================
/*!
* \brief Checks if a node is enforced
* \param [in] nodeIndex - an index of a node in a size
* \return bool - \c true if the node is forced
*/
//================================================================================
bool FaceQuadStruct::Side::IsForced( int nodeIndex ) const
{
if ( nodeIndex < 0 || nodeIndex >= grid->NbPoints() )
throw SALOME_Exception( " FaceQuadStruct::Side::IsForced(): wrong index" );
if ( forced_nodes.count( nodeIndex ) )
return true;
for ( size_t i = 0; i < this->contacts.size(); ++i )
if ( contacts[ i ].point == nodeIndex &&
contacts[ i ].other_side->forced_nodes.count( contacts[ i ].other_point ))
return true;
return false;
}
//================================================================================
/*!
* \brief Sets up a contact between this and another side
*/
//================================================================================
void FaceQuadStruct::Side::AddContact( int ip, Side* side, int iop )
{
if ( ip >= (int) GetUVPtStruct().size() ||
iop >= (int) side->GetUVPtStruct().size() )
throw SALOME_Exception( "FaceQuadStruct::Side::AddContact(): wrong point" );
if ( ip < from || ip >= to )
return;
{
contacts.resize( contacts.size() + 1 );
Contact& c = contacts.back();
c.point = ip;
c.other_side = side;
c.other_point = iop;
}
{
side->contacts.resize( side->contacts.size() + 1 );
Contact& c = side->contacts.back();
c.point = iop;
c.other_side = this;
c.other_point = ip;
}
}
//================================================================================
/*!
* \brief Returns a normalized parameter of a point indexed within a quadrangle
*/
//================================================================================
double FaceQuadStruct::Side::Param( int i ) const
{
const vector<UVPtStruct>& points = GetUVPtStruct();
return (( points[ from + i * di ].normParam - points[ from ].normParam ) /
( points[ to - 1 * di ].normParam - points[ from ].normParam ));
}
//================================================================================
/*!
* \brief Returns UV by a parameter normalized within a quadrangle
*/
//================================================================================
gp_XY FaceQuadStruct::Side::Value2d( double x ) const
{
const vector<UVPtStruct>& points = GetUVPtStruct();
double u = ( points[ from ].normParam +
x * ( points[ to-di ].normParam - points[ from ].normParam ));
return grid->Value2d( u ).XY();
}
//================================================================================
/*!
* \brief Returns side length
*/
//================================================================================
double FaceQuadStruct::Side::Length(int theFrom, int theTo) const
{
if ( IsReversed() != ( theTo < theFrom ))
std::swap( theTo, theFrom );
const vector<UVPtStruct>& points = GetUVPtStruct();
double r;
if ( theFrom == theTo && theTo == -1 )
r = Abs( First().normParam -
Last ().normParam );
else if ( IsReversed() )
r = Abs( points[ Max( to, theTo+1 ) ].normParam -
points[ Min( from, theFrom ) ].normParam );
else
r = Abs( points[ Min( to, theTo-1 ) ].normParam -
points[ Max( from, theFrom ) ].normParam );
return r * grid->Length();
}