smesh/src/SMESH/SMESH_Mesh.cxx
eap 9dd045b97c 23258: [CEA 1804] Do not merge the middle nodes of quadratic elements
Add AvoidMakingHoles argument in MergeNodes()

+ Save mesh name in STL file
+ Fix binary STL export after change of sizeof(Standard_Boolean)
+ Add Import menu to mesh component popup
2017-03-14 15:43:27 +03:00

2445 lines
81 KiB
C++

// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : SMESH_Mesh.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
//
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMDS_MeshVolume.hxx"
#include "SMDS_SetIterator.hxx"
#include "SMESHDS_Document.hxx"
#include "SMESHDS_Group.hxx"
#include "SMESHDS_GroupOnGeom.hxx"
#include "SMESHDS_Script.hxx"
#include "SMESHDS_TSubMeshHolder.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_Group.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Hypothesis.hxx"
#include "SMESH_subMesh.hxx"
#include "utilities.h"
#include "DriverDAT_W_SMDS_Mesh.h"
#include "DriverGMF_Read.hxx"
#include "DriverGMF_Write.hxx"
#include "DriverMED_R_SMESHDS_Mesh.h"
#include "DriverMED_W_SMESHDS_Mesh.h"
#include "DriverSTL_R_SMDS_Mesh.h"
#include "DriverSTL_W_SMDS_Mesh.h"
#include "DriverUNV_R_SMDS_Mesh.h"
#include "DriverUNV_W_SMDS_Mesh.h"
#ifdef WITH_CGNS
#include "DriverCGNS_Read.hxx"
#include "DriverCGNS_Write.hxx"
#endif
#include <GEOMUtils.hxx>
#undef _Precision_HeaderFile
#include <BRepBndLib.hxx>
#include <BRepPrimAPI_MakeBox.hxx>
#include <Bnd_Box.hxx>
#include <TColStd_MapOfInteger.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS_Iterator.hxx>
#include "SMESH_TryCatch.hxx" // include after OCCT headers!
#include "Utils_ExceptHandlers.hxx"
#ifndef WIN32
#include <boost/thread/thread.hpp>
#include <boost/bind.hpp>
#else
#include <pthread.h>
#endif
using namespace std;
// maximum stored group name length in MED file
#define MAX_MED_GROUP_NAME_LENGTH 80
#ifdef _DEBUG_
static int MYDEBUG = 0;
#else
static int MYDEBUG = 0;
#endif
#define cSMESH_Hyp(h) static_cast<const SMESH_Hypothesis*>(h)
typedef SMESH_HypoFilter THypType;
class SMESH_Mesh::SubMeshHolder : public SMESHDS_TSubMeshHolder< SMESH_subMesh >
{
};
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_Mesh::SMESH_Mesh(int theLocalId,
int theStudyId,
SMESH_Gen* theGen,
bool theIsEmbeddedMode,
SMESHDS_Document* theDocument):
_groupId( 0 ), _nbSubShapes( 0 )
{
if(MYDEBUG) MESSAGE("SMESH_Mesh::SMESH_Mesh(int localId)");
_id = theLocalId;
_studyId = theStudyId;
_gen = theGen;
_myDocument = theDocument;
_myMeshDS = theDocument->NewMesh(theIsEmbeddedMode,theLocalId);
_isShapeToMesh = false;
_isAutoColor = false;
_isModified = false;
_shapeDiagonal = 0.0;
_callUp = NULL;
_myMeshDS->ShapeToMesh( PseudoShape() );
_subMeshHolder = new SubMeshHolder;
}
//================================================================================
/*!
* \brief Constructor of SMESH_Mesh being a base of some descendant class
*/
//================================================================================
SMESH_Mesh::SMESH_Mesh():
_id(-1),
_studyId(-1),
_groupId( 0 ),
_nbSubShapes( 0 ),
_isShapeToMesh( false ),
_myDocument( 0 ),
_myMeshDS( 0 ),
_gen( 0 ),
_isAutoColor( false ),
_isModified( false ),
_shapeDiagonal( 0.0 ),
_callUp( 0 )
{
_subMeshHolder = new SubMeshHolder;
}
namespace
{
#ifndef WIN32
void deleteMeshDS(SMESHDS_Mesh* meshDS)
{
//cout << "deleteMeshDS( " << meshDS << endl;
delete meshDS;
}
#else
static void* deleteMeshDS(void* meshDS)
{
//cout << "deleteMeshDS( " << meshDS << endl;
SMESHDS_Mesh* m = (SMESHDS_Mesh*)meshDS;
if(m) {
delete m;
}
return 0;
}
#endif
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_Mesh::~SMESH_Mesh()
{
if(MYDEBUG) MESSAGE("SMESH_Mesh::~SMESH_Mesh");
// avoid usual removal of elements while processing RemoveHypothesis( algo ) event
SMESHDS_SubMeshIteratorPtr smIt = _myMeshDS->SubMeshes();
while ( smIt->more() )
const_cast<SMESHDS_SubMesh*>( smIt->next() )->Clear();
// issue 0020340: EDF 1022 SMESH : Crash with FindNodeClosestTo in a second new study
// Notify event listeners at least that something happens
if ( SMESH_subMesh * sm = GetSubMeshContaining(1))
sm->ComputeStateEngine( SMESH_subMesh::MESH_ENTITY_REMOVED );
// delete groups
map < int, SMESH_Group * >::iterator itg;
for (itg = _mapGroup.begin(); itg != _mapGroup.end(); itg++) {
SMESH_Group *aGroup = (*itg).second;
delete aGroup;
}
_mapGroup.clear();
// delete sub-meshes
delete _subMeshHolder;
if ( _callUp) delete _callUp;
_callUp = 0;
// remove self from studyContext
if ( _gen )
{
StudyContextStruct * studyContext = _gen->GetStudyContext( _studyId );
studyContext->mapMesh.erase( _id );
}
if ( _myDocument )
_myDocument->RemoveMesh( _id );
_myDocument = 0;
if ( _myMeshDS ) {
// delete _myMeshDS, in a thread in order not to block closing a study with large meshes
#ifndef WIN32
boost::thread aThread(boost::bind( & deleteMeshDS, _myMeshDS ));
#else
pthread_t thread;
int result=pthread_create(&thread, NULL, deleteMeshDS, (void*)_myMeshDS);
#endif
}
}
//================================================================================
/*!
* \brief Return true if a mesh with given id exists
*/
//================================================================================
bool SMESH_Mesh::MeshExists( int meshId ) const
{
return _myDocument ? bool( _myDocument->GetMesh( meshId )) : false;
}
//================================================================================
/*!
* \brief Return a mesh by id
*/
//================================================================================
SMESH_Mesh* SMESH_Mesh::FindMesh( int meshId ) const
{
if ( _id == meshId )
return (SMESH_Mesh*) this;
if ( StudyContextStruct *aStudyContext = _gen->GetStudyContext( _studyId ))
{
std::map < int, SMESH_Mesh * >::iterator i_m = aStudyContext->mapMesh.find( meshId );
if ( i_m != aStudyContext->mapMesh.end() )
return i_m->second;
}
return NULL;
}
//=============================================================================
/*!
* \brief Set geometry to be meshed
*/
//=============================================================================
void SMESH_Mesh::ShapeToMesh(const TopoDS_Shape & aShape)
{
if(MYDEBUG) MESSAGE("SMESH_Mesh::ShapeToMesh");
if ( !aShape.IsNull() && _isShapeToMesh ) {
if ( aShape.ShapeType() != TopAbs_COMPOUND && // group contents is allowed to change
_myMeshDS->ShapeToMesh().ShapeType() != TopAbs_COMPOUND )
throw SALOME_Exception(LOCALIZED ("a shape to mesh has already been defined"));
}
// clear current data
if ( !_myMeshDS->ShapeToMesh().IsNull() )
{
// removal of a shape to mesh, delete objects referring to sub-shapes:
// - sub-meshes
_subMeshHolder->DeleteAll();
// - groups on geometry
map <int, SMESH_Group *>::iterator i_gr = _mapGroup.begin();
while ( i_gr != _mapGroup.end() ) {
if ( dynamic_cast<SMESHDS_GroupOnGeom*>( i_gr->second->GetGroupDS() )) {
_myMeshDS->RemoveGroup( i_gr->second->GetGroupDS() );
delete i_gr->second;
_mapGroup.erase( i_gr++ );
}
else
i_gr++;
}
_mapAncestors.Clear();
// clear SMESHDS
TopoDS_Shape aNullShape;
_myMeshDS->ShapeToMesh( aNullShape );
_shapeDiagonal = 0.0;
}
// set a new geometry
if ( !aShape.IsNull() )
{
_myMeshDS->ShapeToMesh(aShape);
_isShapeToMesh = true;
_nbSubShapes = _myMeshDS->MaxShapeIndex();
// fill map of ancestors
fillAncestorsMap(aShape);
}
else
{
_isShapeToMesh = false;
_shapeDiagonal = 0.0;
_myMeshDS->ShapeToMesh( PseudoShape() );
}
_isModified = false;
}
//=======================================================================
/*!
* \brief Return geometry to be meshed. (It may be a PseudoShape()!)
*/
//=======================================================================
TopoDS_Shape SMESH_Mesh::GetShapeToMesh() const
{
return _myMeshDS->ShapeToMesh();
}
//=======================================================================
/*!
* \brief Return a solid which is returned by GetShapeToMesh() if
* a real geometry to be meshed was not set
*/
//=======================================================================
const TopoDS_Solid& SMESH_Mesh::PseudoShape()
{
static TopoDS_Solid aSolid;
if ( aSolid.IsNull() )
{
aSolid = BRepPrimAPI_MakeBox(1,1,1);
}
return aSolid;
}
//=======================================================================
/*!
* \brief Return diagonal size of bounding box of a shape
*/
//=======================================================================
double SMESH_Mesh::GetShapeDiagonalSize(const TopoDS_Shape & aShape)
{
if ( !aShape.IsNull() ) {
Bnd_Box Box;
// avoid too long waiting on large shapes. PreciseBoundingBox() was added
// to assure same result which else depends on presence of triangulation (IPAL52557).
const int maxNbFaces = 4000;
int nbFaces = 0;
for ( TopExp_Explorer f( aShape, TopAbs_FACE ); f.More() && nbFaces < maxNbFaces; f.Next() )
++nbFaces;
bool isPrecise = false;
if ( nbFaces < maxNbFaces )
try {
GEOMUtils::PreciseBoundingBox( aShape, Box );
isPrecise = true;
}
catch (...) {
isPrecise = false;
}
if ( !isPrecise )
{
BRepBndLib::Add( aShape, Box );
}
if ( !Box.IsVoid() )
return sqrt( Box.SquareExtent() );
}
return 0;
}
//=======================================================================
/*!
* \brief Return diagonal size of bounding box of shape to mesh
*/
//=======================================================================
double SMESH_Mesh::GetShapeDiagonalSize() const
{
if ( _shapeDiagonal == 0. && _isShapeToMesh )
const_cast<SMESH_Mesh*>(this)->_shapeDiagonal = GetShapeDiagonalSize( GetShapeToMesh() );
return _shapeDiagonal;
}
//================================================================================
/*!
* \brief Load mesh from study file
*/
//================================================================================
void SMESH_Mesh::Load()
{
if (_callUp)
_callUp->Load();
}
//=======================================================================
/*!
* \brief Remove all nodes and elements
*/
//=======================================================================
void SMESH_Mesh::Clear()
{
if ( HasShapeToMesh() ) // remove all nodes and elements
{
// clear mesh data
_myMeshDS->ClearMesh();
// update compute state of submeshes
if ( SMESH_subMesh *sm = GetSubMeshContaining( GetShapeToMesh() ) )
{
sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
sm->ComputeSubMeshStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
sm->ComputeStateEngine( SMESH_subMesh::CLEAN ); // for event listeners (issue 0020918)
sm->ComputeSubMeshStateEngine( SMESH_subMesh::CLEAN );
}
}
else // remove only nodes/elements computed by algorithms
{
if ( SMESH_subMesh *sm = GetSubMeshContaining( GetShapeToMesh() ) )
{
sm->ComputeStateEngine( SMESH_subMesh::CLEAN );
sm->ComputeSubMeshStateEngine( SMESH_subMesh::CLEAN );
sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
sm->ComputeSubMeshStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
}
}
GetMeshDS()->Modified();
_isModified = false;
}
//=======================================================================
/*!
* \brief Remove all nodes and elements of indicated shape
*/
//=======================================================================
void SMESH_Mesh::ClearSubMesh(const int theShapeId)
{
// clear sub-meshes; get ready to re-compute as a side-effect
if ( SMESH_subMesh *sm = GetSubMeshContaining( theShapeId ) )
{
SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*includeSelf=*/true,
/*complexShapeFirst=*/false);
while ( smIt->more() )
{
sm = smIt->next();
TopAbs_ShapeEnum shapeType = sm->GetSubShape().ShapeType();
if ( shapeType == TopAbs_VERTEX || shapeType < TopAbs_SOLID )
// all other shapes depends on vertices so they are already cleaned
sm->ComputeStateEngine( SMESH_subMesh::CLEAN );
// to recompute even if failed
sm->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
}
}
}
//=======================================================================
//function : UNVToMesh
//purpose :
//=======================================================================
int SMESH_Mesh::UNVToMesh(const char* theFileName)
{
if ( _isShapeToMesh )
throw SALOME_Exception(LOCALIZED("a shape to mesh has already been defined"));
_isShapeToMesh = false;
DriverUNV_R_SMDS_Mesh myReader;
myReader.SetMesh(_myMeshDS);
myReader.SetFile(theFileName);
myReader.SetMeshId(-1);
myReader.Perform();
if ( SMDS_MeshGroup* aGroup = (SMDS_MeshGroup*) myReader.GetGroup() )
{
TGroupNamesMap aGroupNames = myReader.GetGroupNamesMap();
aGroup->InitSubGroupsIterator();
while (aGroup->MoreSubGroups())
{
SMDS_MeshGroup* aSubGroup = (SMDS_MeshGroup*) aGroup->NextSubGroup();
string aName = aGroupNames[aSubGroup];
int aId;
if ( SMESH_Group* aSMESHGroup = AddGroup( aSubGroup->GetType(), aName.c_str(), aId ))
{
SMESHDS_Group* aGroupDS = dynamic_cast<SMESHDS_Group*>( aSMESHGroup->GetGroupDS() );
if ( aGroupDS ) {
aGroupDS->SetStoreName(aName.c_str());
aSubGroup->InitIterator();
const SMDS_MeshElement* aElement = 0;
while ( aSubGroup->More() )
if (( aElement = aSubGroup->Next() ))
aGroupDS->SMDSGroup().Add( aElement );
if (aElement)
aGroupDS->SetType( aElement->GetType() );
}
}
}
}
return 1;
}
//=======================================================================
//function : MEDToMesh
//purpose :
//=======================================================================
int SMESH_Mesh::MEDToMesh(const char* theFileName, const char* theMeshName)
{
if ( _isShapeToMesh )
throw SALOME_Exception(LOCALIZED("a shape to mesh has already been defined"));
_isShapeToMesh = false;
DriverMED_R_SMESHDS_Mesh myReader;
myReader.SetMesh(_myMeshDS);
myReader.SetMeshId(-1);
myReader.SetFile(theFileName);
myReader.SetMeshName(theMeshName);
Driver_Mesh::Status status = myReader.Perform();
#ifdef _DEBUG_
SMESH_ComputeErrorPtr er = myReader.GetError();
if ( er && !er->IsOK() ) cout << er->myComment << endl;
#endif
// Reading groups (sub-meshes are out of scope of MED import functionality)
list<TNameAndType> aGroupNames = myReader.GetGroupNamesAndTypes();
int anId;
list<TNameAndType>::iterator name_type = aGroupNames.begin();
for ( ; name_type != aGroupNames.end(); name_type++ )
{
SMESH_Group* aGroup = AddGroup( name_type->second, name_type->first.c_str(), anId );
if ( aGroup ) {
SMESHDS_Group* aGroupDS = dynamic_cast<SMESHDS_Group*>( aGroup->GetGroupDS() );
if ( aGroupDS ) {
aGroupDS->SetStoreName( name_type->first.c_str() );
myReader.GetGroup( aGroupDS );
}
}
}
return (int) status;
}
//=======================================================================
//function : STLToMesh
//purpose :
//=======================================================================
std::string SMESH_Mesh::STLToMesh(const char* theFileName)
{
if(_isShapeToMesh)
throw SALOME_Exception(LOCALIZED("a shape to mesh has already been defined"));
_isShapeToMesh = false;
DriverSTL_R_SMDS_Mesh myReader;
myReader.SetMesh(_myMeshDS);
myReader.SetFile(theFileName);
myReader.SetMeshId(-1);
myReader.Perform();
return myReader.GetName();
}
//================================================================================
/*!
* \brief Reads the given mesh from the CGNS file
* \param theFileName - name of the file
* \retval int - Driver_Mesh::Status
*/
//================================================================================
int SMESH_Mesh::CGNSToMesh(const char* theFileName,
const int theMeshIndex,
std::string& theMeshName)
{
int res = Driver_Mesh::DRS_FAIL;
#ifdef WITH_CGNS
DriverCGNS_Read myReader;
myReader.SetMesh(_myMeshDS);
myReader.SetFile(theFileName);
myReader.SetMeshId(theMeshIndex);
res = myReader.Perform();
theMeshName = myReader.GetMeshName();
// create groups
SynchronizeGroups();
#endif
return res;
}
//================================================================================
/*!
* \brief Fill its data by reading a GMF file
*/
//================================================================================
SMESH_ComputeErrorPtr SMESH_Mesh::GMFToMesh(const char* theFileName,
bool theMakeRequiredGroups)
{
DriverGMF_Read myReader;
myReader.SetMesh(_myMeshDS);
myReader.SetFile(theFileName);
myReader.SetMakeRequiredGroups( theMakeRequiredGroups );
myReader.Perform();
//theMeshName = myReader.GetMeshName();
// create groups
SynchronizeGroups();
return myReader.GetError();
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_Hypothesis::Hypothesis_Status
SMESH_Mesh::AddHypothesis(const TopoDS_Shape & aSubShape,
int anHypId,
std::string* anError ) throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
if(MYDEBUG) MESSAGE("SMESH_Mesh::AddHypothesis");
if ( anError )
anError->clear();
SMESH_subMesh *subMesh = GetSubMesh(aSubShape);
if ( !subMesh || !subMesh->GetId())
return SMESH_Hypothesis::HYP_BAD_SUBSHAPE;
SMESH_Hypothesis *anHyp = GetHypothesis( anHypId );
if ( !anHyp )
throw SALOME_Exception(LOCALIZED("hypothesis does not exist"));
bool isGlobalHyp = IsMainShape( aSubShape );
// NotConformAllowed can be only global
if ( !isGlobalHyp )
{
// NOTE: this is not a correct way to check a name of hypothesis,
// there should be an attribute of hypothesis saying that it can/can't
// be global/local
string hypName = anHyp->GetName();
if ( hypName == "NotConformAllowed" )
{
if(MYDEBUG) MESSAGE( "Hypotesis <NotConformAllowed> can be only global" );
return SMESH_Hypothesis::HYP_INCOMPATIBLE;
}
}
// shape
bool isAlgo = ( anHyp->GetType() != SMESHDS_Hypothesis::PARAM_ALGO );
SMESH_subMesh::algo_event event = isAlgo ? SMESH_subMesh::ADD_ALGO : SMESH_subMesh::ADD_HYP;
SMESH_Hypothesis::Hypothesis_Status ret = subMesh->AlgoStateEngine(event, anHyp);
if ( anError && SMESH_Hypothesis::IsStatusFatal(ret) && subMesh->GetComputeError() )
*anError = subMesh->GetComputeError()->myComment;
// sub-shapes
if ( !SMESH_Hypothesis::IsStatusFatal(ret) &&
anHyp->GetDim() <= SMESH_Gen::GetShapeDim(aSubShape)) // is added on father
{
event = isAlgo ? SMESH_subMesh::ADD_FATHER_ALGO : SMESH_subMesh::ADD_FATHER_HYP;
SMESH_Hypothesis::Hypothesis_Status ret2 =
subMesh->SubMeshesAlgoStateEngine(event, anHyp, /*exitOnFatal=*/true);
if (ret2 > ret)
{
ret = ret2;
if ( SMESH_Hypothesis::IsStatusFatal( ret ))
{
if ( anError && subMesh->GetComputeError() )
*anError = subMesh->GetComputeError()->myComment;
// remove anHyp
event = isAlgo ? SMESH_subMesh::REMOVE_ALGO : SMESH_subMesh::REMOVE_HYP;
subMesh->AlgoStateEngine(event, anHyp);
}
}
// check concurent hypotheses on ancestors
if (ret < SMESH_Hypothesis::HYP_CONCURENT && !isGlobalHyp )
{
SMESH_subMeshIteratorPtr smIt = subMesh->getDependsOnIterator(false,false);
while ( smIt->more() ) {
SMESH_subMesh* sm = smIt->next();
if ( sm->IsApplicableHypotesis( anHyp )) {
ret2 = sm->CheckConcurentHypothesis( anHyp->GetType() );
if (ret2 > ret) {
ret = ret2;
break;
}
}
}
}
}
HasModificationsToDiscard(); // to reset _isModified flag if a mesh becomes empty
GetMeshDS()->Modified();
if(MYDEBUG) subMesh->DumpAlgoState(true);
if(MYDEBUG) SCRUTE(ret);
return ret;
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_Hypothesis::Hypothesis_Status
SMESH_Mesh::RemoveHypothesis(const TopoDS_Shape & aSubShape,
int anHypId) throw( SALOME_Exception )
{
Unexpect aCatch(SalomeException);
if(MYDEBUG) MESSAGE("SMESH_Mesh::RemoveHypothesis");
StudyContextStruct *sc = _gen->GetStudyContext(_studyId);
if (sc->mapHypothesis.find(anHypId) == sc->mapHypothesis.end())
throw SALOME_Exception(LOCALIZED("hypothesis does not exist"));
SMESH_Hypothesis *anHyp = sc->mapHypothesis[anHypId];
if(MYDEBUG) { SCRUTE(anHyp->GetType()); }
// shape
bool isAlgo = ( !anHyp->GetType() == SMESHDS_Hypothesis::PARAM_ALGO );
SMESH_subMesh::algo_event event = isAlgo ? SMESH_subMesh::REMOVE_ALGO : SMESH_subMesh::REMOVE_HYP;
SMESH_subMesh *subMesh = GetSubMesh(aSubShape);
SMESH_Hypothesis::Hypothesis_Status ret = subMesh->AlgoStateEngine(event, anHyp);
// there may appear concurrent hyps that were covered by the removed hyp
if (ret < SMESH_Hypothesis::HYP_CONCURENT &&
subMesh->IsApplicableHypotesis( anHyp ) &&
subMesh->CheckConcurentHypothesis( anHyp->GetType() ) != SMESH_Hypothesis::HYP_OK)
ret = SMESH_Hypothesis::HYP_CONCURENT;
// sub-shapes
if (!SMESH_Hypothesis::IsStatusFatal(ret) &&
anHyp->GetDim() <= SMESH_Gen::GetShapeDim(aSubShape)) // is removed from father
{
event = isAlgo ? SMESH_subMesh::REMOVE_FATHER_ALGO : SMESH_subMesh::REMOVE_FATHER_HYP;
SMESH_Hypothesis::Hypothesis_Status ret2 =
subMesh->SubMeshesAlgoStateEngine(event, anHyp);
if (ret2 > ret) // more severe
ret = ret2;
// check concurent hypotheses on ancestors
if (ret < SMESH_Hypothesis::HYP_CONCURENT && !IsMainShape( aSubShape ) )
{
SMESH_subMeshIteratorPtr smIt = subMesh->getDependsOnIterator(false,false);
while ( smIt->more() ) {
SMESH_subMesh* sm = smIt->next();
if ( sm->IsApplicableHypotesis( anHyp )) {
ret2 = sm->CheckConcurentHypothesis( anHyp->GetType() );
if (ret2 > ret) {
ret = ret2;
break;
}
}
}
}
}
HasModificationsToDiscard(); // to reset _isModified flag if mesh become empty
GetMeshDS()->Modified();
if(MYDEBUG) subMesh->DumpAlgoState(true);
if(MYDEBUG) SCRUTE(ret);
return ret;
}
//=============================================================================
/*!
*
*/
//=============================================================================
const list<const SMESHDS_Hypothesis*>&
SMESH_Mesh::GetHypothesisList(const TopoDS_Shape & aSubShape) const
throw(SALOME_Exception)
{
return _myMeshDS->GetHypothesis(aSubShape);
}
//=======================================================================
/*!
* \brief Return the hypothesis assigned to the shape
* \param aSubShape - the shape to check
* \param aFilter - the hypothesis filter
* \param andAncestors - flag to check hypos assigned to ancestors of the shape
* \param assignedTo - to return the shape the found hypo is assigned to
* \retval SMESH_Hypothesis* - the first hypo passed through aFilter
*/
//=======================================================================
const SMESH_Hypothesis * SMESH_Mesh::GetHypothesis(const TopoDS_Shape & aSubShape,
const SMESH_HypoFilter& aFilter,
const bool andAncestors,
TopoDS_Shape* assignedTo) const
{
return GetHypothesis( const_cast< SMESH_Mesh* >(this)->GetSubMesh( aSubShape ),
aFilter, andAncestors, assignedTo );
}
//=======================================================================
/*!
* \brief Return the hypothesis assigned to the shape of a sub-mesh
* \param aSubMesh - the sub-mesh to check
* \param aFilter - the hypothesis filter
* \param andAncestors - flag to check hypos assigned to ancestors of the shape
* \param assignedTo - to return the shape the found hypo is assigned to
* \retval SMESH_Hypothesis* - the first hypo passed through aFilter
*/
//=======================================================================
const SMESH_Hypothesis * SMESH_Mesh::GetHypothesis(const SMESH_subMesh * aSubMesh,
const SMESH_HypoFilter& aFilter,
const bool andAncestors,
TopoDS_Shape* assignedTo) const
{
if ( !aSubMesh ) return 0;
{
const TopoDS_Shape & aSubShape = aSubMesh->GetSubShape();
const list<const SMESHDS_Hypothesis*>& hypList = _myMeshDS->GetHypothesis(aSubShape);
list<const SMESHDS_Hypothesis*>::const_iterator hyp = hypList.begin();
for ( ; hyp != hypList.end(); hyp++ ) {
const SMESH_Hypothesis * h = cSMESH_Hyp( *hyp );
if ( aFilter.IsOk( h, aSubShape)) {
if ( assignedTo ) *assignedTo = aSubShape;
return h;
}
}
}
if ( andAncestors )
{
// user sorted submeshes of ancestors, according to stored submesh priority
std::vector< SMESH_subMesh * > & ancestors =
const_cast< std::vector< SMESH_subMesh * > & > ( aSubMesh->GetAncestors() );
SortByMeshOrder( ancestors );
vector<SMESH_subMesh*>::const_iterator smIt = ancestors.begin();
for ( ; smIt != ancestors.end(); smIt++ )
{
const TopoDS_Shape& curSh = (*smIt)->GetSubShape();
const list<const SMESHDS_Hypothesis*>& hypList = _myMeshDS->GetHypothesis(curSh);
list<const SMESHDS_Hypothesis*>::const_iterator hyp = hypList.begin();
for ( ; hyp != hypList.end(); hyp++ ) {
const SMESH_Hypothesis * h = cSMESH_Hyp( *hyp );
if (aFilter.IsOk( h, curSh )) {
if ( assignedTo ) *assignedTo = curSh;
return h;
}
}
}
}
return 0;
}
//================================================================================
/*!
* \brief Return hypotheses assigned to the shape
* \param aSubShape - the shape to check
* \param aFilter - the hypothesis filter
* \param aHypList - the list of the found hypotheses
* \param andAncestors - flag to check hypos assigned to ancestors of the shape
* \retval int - number of unique hypos in aHypList
*/
//================================================================================
int SMESH_Mesh::GetHypotheses(const TopoDS_Shape & aSubShape,
const SMESH_HypoFilter& aFilter,
list <const SMESHDS_Hypothesis * >& aHypList,
const bool andAncestors,
list< TopoDS_Shape > * assignedTo/*=0*/) const
{
return GetHypotheses( const_cast< SMESH_Mesh* >(this)->GetSubMesh( aSubShape ),
aFilter, aHypList, andAncestors, assignedTo );
}
//================================================================================
/*!
* \brief Return hypotheses assigned to the shape of a sub-mesh
* \param aSubShape - the sub-mesh to check
* \param aFilter - the hypothesis filter
* \param aHypList - the list of the found hypotheses
* \param andAncestors - flag to check hypos assigned to ancestors of the shape
* \retval int - number of unique hypos in aHypList
*/
//================================================================================
int SMESH_Mesh::GetHypotheses(const SMESH_subMesh * aSubMesh,
const SMESH_HypoFilter& aFilter,
list <const SMESHDS_Hypothesis * >& aHypList,
const bool andAncestors,
list< TopoDS_Shape > * assignedTo/*=0*/) const
{
if ( !aSubMesh ) return 0;
set<string> hypTypes; // to exclude same type hypos from the result list
int nbHyps = 0;
// only one main hypothesis is allowed
bool mainHypFound = false;
// fill in hypTypes
list<const SMESHDS_Hypothesis*>::const_iterator hyp;
for ( hyp = aHypList.begin(); hyp != aHypList.end(); hyp++ ) {
if ( hypTypes.insert( (*hyp)->GetName() ).second )
nbHyps++;
if ( !cSMESH_Hyp(*hyp)->IsAuxiliary() )
mainHypFound = true;
}
// get hypos from aSubShape
{
const TopoDS_Shape & aSubShape = aSubMesh->GetSubShape();
const list<const SMESHDS_Hypothesis*>& hypList = _myMeshDS->GetHypothesis(aSubShape);
for ( hyp = hypList.begin(); hyp != hypList.end(); hyp++ )
{
const SMESH_Hypothesis* h = cSMESH_Hyp( *hyp );
if (( aFilter.IsOk( h, aSubShape )) &&
( h->IsAuxiliary() || !mainHypFound ) &&
( h->IsAuxiliary() || hypTypes.insert( h->GetName() ).second ))
{
aHypList.push_back( *hyp );
nbHyps++;
if ( !h->IsAuxiliary() )
mainHypFound = true;
if ( assignedTo ) assignedTo->push_back( aSubShape );
}
}
}
// get hypos from ancestors of aSubShape
if ( andAncestors )
{
// user sorted submeshes of ancestors, according to stored submesh priority
std::vector< SMESH_subMesh * > & ancestors =
const_cast< std::vector< SMESH_subMesh * > & > ( aSubMesh->GetAncestors() );
SortByMeshOrder( ancestors );
vector<SMESH_subMesh*>::const_iterator smIt = ancestors.begin();
for ( ; smIt != ancestors.end(); smIt++ )
{
const TopoDS_Shape& curSh = (*smIt)->GetSubShape();
const list<const SMESHDS_Hypothesis*>& hypList = _myMeshDS->GetHypothesis(curSh);
for ( hyp = hypList.begin(); hyp != hypList.end(); hyp++ )
{
const SMESH_Hypothesis* h = cSMESH_Hyp( *hyp );
if (( aFilter.IsOk( h, curSh )) &&
( h->IsAuxiliary() || !mainHypFound ) &&
( h->IsAuxiliary() || hypTypes.insert( h->GetName() ).second ))
{
aHypList.push_back( *hyp );
nbHyps++;
if ( !h->IsAuxiliary() )
mainHypFound = true;
if ( assignedTo ) assignedTo->push_back( curSh );
}
}
}
}
return nbHyps;
}
//================================================================================
/*!
* \brief Return a hypothesis by its ID
*/
//================================================================================
SMESH_Hypothesis * SMESH_Mesh::GetHypothesis(const int anHypId) const
{
StudyContextStruct *sc = _gen->GetStudyContext(_studyId);
if (sc->mapHypothesis.find(anHypId) == sc->mapHypothesis.end())
return NULL;
SMESH_Hypothesis *anHyp = sc->mapHypothesis[anHypId];
return anHyp;
}
//=============================================================================
/*!
*
*/
//=============================================================================
const list<SMESHDS_Command*> & SMESH_Mesh::GetLog() throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetScript()->GetCommands();
}
//=============================================================================
/*!
*
*/
//=============================================================================
void SMESH_Mesh::ClearLog() throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
_myMeshDS->GetScript()->Clear();
}
//=============================================================================
/*!
* Get or Create the SMESH_subMesh object implementation
*/
//=============================================================================
SMESH_subMesh * SMESH_Mesh::GetSubMesh(const TopoDS_Shape & aSubShape)
throw(SALOME_Exception)
{
int index = _myMeshDS->ShapeToIndex(aSubShape);
if ( !index && aSubShape.IsNull() )
return 0;
// for submeshes on GEOM Group
if (( !index || index > _nbSubShapes ) && aSubShape.ShapeType() == TopAbs_COMPOUND )
{
TopoDS_Iterator it( aSubShape );
if ( it.More() )
{
index = _myMeshDS->AddCompoundSubmesh( aSubShape, it.Value().ShapeType() );
// fill map of Ancestors
while ( _nbSubShapes < index )
fillAncestorsMap( _myMeshDS->IndexToShape( ++_nbSubShapes ));
}
}
// if ( !index )
// return NULL; // neither sub-shape nor a group
SMESH_subMesh* aSubMesh = _subMeshHolder->Get( index );
if ( !aSubMesh )
{
aSubMesh = new SMESH_subMesh(index, this, _myMeshDS, aSubShape);
_subMeshHolder->Add( index, aSubMesh );
// include non-computable sub-meshes in SMESH_subMesh::_ancestors of sub-submeshes
switch ( aSubShape.ShapeType() ) {
case TopAbs_COMPOUND:
case TopAbs_WIRE:
case TopAbs_SHELL:
for ( TopoDS_Iterator subIt( aSubShape ); subIt.More(); subIt.Next() )
{
SMESH_subMesh* sm = GetSubMesh( subIt.Value() );
SMESH_subMeshIteratorPtr smIt = sm->getDependsOnIterator(/*inclideSelf=*/true);
while ( smIt->more() )
smIt->next()->ClearAncestors();
}
default:;
}
}
return aSubMesh;
}
//=============================================================================
/*!
* Get the SMESH_subMesh object implementation. Don't create it, return null
* if it does not exist.
*/
//=============================================================================
SMESH_subMesh *SMESH_Mesh::GetSubMeshContaining(const TopoDS_Shape & aSubShape) const
throw(SALOME_Exception)
{
int index = _myMeshDS->ShapeToIndex(aSubShape);
return GetSubMeshContaining( index );
}
//=============================================================================
/*!
* Get the SMESH_subMesh object implementation. Don't create it, return null
* if it does not exist.
*/
//=============================================================================
SMESH_subMesh *SMESH_Mesh::GetSubMeshContaining(const int aShapeID) const
throw(SALOME_Exception)
{
SMESH_subMesh *aSubMesh = _subMeshHolder->Get( aShapeID );
return aSubMesh;
}
//================================================================================
/*!
* \brief Return sub-meshes of groups containing the given sub-shape
*/
//================================================================================
list<SMESH_subMesh*>
SMESH_Mesh::GetGroupSubMeshesContaining(const TopoDS_Shape & aSubShape) const
throw(SALOME_Exception)
{
list<SMESH_subMesh*> found;
SMESH_subMesh * subMesh = GetSubMeshContaining(aSubShape);
if ( !subMesh )
return found;
// sub-meshes of groups have max IDs, so search from the map end
SMESH_subMeshIteratorPtr smIt( _subMeshHolder->GetIterator( /*reverse=*/true ) );
while ( smIt->more() ) {
SMESH_subMesh* sm = smIt->next();
SMESHDS_SubMesh * ds = sm->GetSubMeshDS();
if ( ds && ds->IsComplexSubmesh() ) {
if ( SMESH_MesherHelper::IsSubShape( aSubShape, sm->GetSubShape() ))
{
found.push_back( sm );
//break;
}
} else {
break; // the rest sub-meshes are not those of groups
}
}
if ( found.empty() ) // maybe the main shape is a COMPOUND (issue 0021530)
{
if ( SMESH_subMesh * mainSM = GetSubMeshContaining(1) )
if ( mainSM->GetSubShape().ShapeType() == TopAbs_COMPOUND )
{
TopoDS_Iterator it( mainSM->GetSubShape() );
if ( it.Value().ShapeType() == aSubShape.ShapeType() &&
SMESH_MesherHelper::IsSubShape( aSubShape, mainSM->GetSubShape() ))
found.push_back( mainSM );
}
}
else // issue 0023068
{
if ( SMESH_subMesh * mainSM = GetSubMeshContaining(1) )
if ( mainSM->GetSubShape().ShapeType() == TopAbs_COMPOUND )
found.push_back( mainSM );
}
return found;
}
//=======================================================================
//function : IsUsedHypothesis
//purpose : Return True if anHyp is used to mesh aSubShape
//=======================================================================
bool SMESH_Mesh::IsUsedHypothesis(SMESHDS_Hypothesis * anHyp,
const SMESH_subMesh* aSubMesh)
{
SMESH_Hypothesis* hyp = static_cast<SMESH_Hypothesis*>(anHyp);
// check if anHyp can be used to mesh aSubMesh
if ( !aSubMesh || !aSubMesh->IsApplicableHypotesis( hyp ))
return false;
SMESH_Algo *algo = aSubMesh->GetAlgo();
// algorithm
if (anHyp->GetType() > SMESHDS_Hypothesis::PARAM_ALGO)
return ( anHyp == algo );
// algorithm parameter
if (algo)
{
// look trough hypotheses used by algo
const SMESH_HypoFilter* hypoKind;
if (( hypoKind = algo->GetCompatibleHypoFilter( !hyp->IsAuxiliary() ))) {
list <const SMESHDS_Hypothesis * > usedHyps;
if ( GetHypotheses( aSubMesh, *hypoKind, usedHyps, true ))
return ( find( usedHyps.begin(), usedHyps.end(), anHyp ) != usedHyps.end() );
}
}
return false;
}
//=======================================================================
//function : NotifySubMeshesHypothesisModification
//purpose : Say all submeshes using theChangedHyp that it has been modified
//=======================================================================
void SMESH_Mesh::NotifySubMeshesHypothesisModification(const SMESH_Hypothesis* hyp)
{
Unexpect aCatch(SalomeException);
if ( !GetMeshDS()->IsUsedHypothesis( hyp ))
return;
if (_callUp)
_callUp->HypothesisModified();
SMESH_Algo *algo;
const SMESH_HypoFilter* compatibleHypoKind;
list <const SMESHDS_Hypothesis * > usedHyps;
vector< SMESH_subMesh* > smToNotify;
bool allMeshedEdgesNotified = true;
SMESH_subMeshIteratorPtr smIt( _subMeshHolder->GetIterator() );
while ( smIt->more() )
{
SMESH_subMesh* aSubMesh = smIt->next();
bool toNotify = false;
// if aSubMesh meshing depends on hyp,
// we call aSubMesh->AlgoStateEngine( MODIF_HYP, hyp ) that causes either
// 1) clearing already computed aSubMesh or
// 2) changing algo_state from MISSING_HYP to HYP_OK when parameters of hyp becomes valid,
// other possible changes are not interesting. (IPAL0052457 - assigning hyp performance pb)
if ( aSubMesh->GetComputeState() == SMESH_subMesh::COMPUTE_OK ||
aSubMesh->GetComputeState() == SMESH_subMesh::FAILED_TO_COMPUTE ||
aSubMesh->GetAlgoState() == SMESH_subMesh::MISSING_HYP ||
hyp->DataDependOnParams() )
{
const TopoDS_Shape & aSubShape = aSubMesh->GetSubShape();
if (( aSubMesh->IsApplicableHypotesis( hyp )) &&
( algo = aSubMesh->GetAlgo() ) &&
( compatibleHypoKind = algo->GetCompatibleHypoFilter( !hyp->IsAuxiliary() )) &&
( compatibleHypoKind->IsOk( hyp, aSubShape )))
{
// check if hyp is used by algo
usedHyps.clear();
toNotify = ( GetHypotheses( aSubMesh, *compatibleHypoKind, usedHyps, true ) &&
std::find( usedHyps.begin(), usedHyps.end(), hyp ) != usedHyps.end() );
}
}
if ( toNotify )
{
smToNotify.push_back( aSubMesh );
if ( aSubMesh->GetAlgoState() == SMESH_subMesh::MISSING_HYP )
allMeshedEdgesNotified = false; // update of algo state needed, not mesh clearing
}
else
{
if ( !aSubMesh->IsEmpty() &&
aSubMesh->GetSubShape().ShapeType() == TopAbs_EDGE )
allMeshedEdgesNotified = false;
}
}
if ( smToNotify.empty() )
return;
// if all meshed EDGEs will be notified then the notification is equivalent
// to the whole mesh clearing, which is usually faster
if ( allMeshedEdgesNotified && NbNodes() > 0 )
{
Clear();
}
else
{
// notify in reverse order to avoid filling the pool of IDs
for ( int i = smToNotify.size()-1; i >= 0; --i )
smToNotify[i]->AlgoStateEngine(SMESH_subMesh::MODIF_HYP,
const_cast< SMESH_Hypothesis*>( hyp ));
}
HasModificationsToDiscard(); // to reset _isModified flag if mesh becomes empty
GetMeshDS()->Modified();
}
//=============================================================================
/*!
* Auto color functionality
*/
//=============================================================================
void SMESH_Mesh::SetAutoColor(bool theAutoColor) throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
_isAutoColor = theAutoColor;
}
bool SMESH_Mesh::GetAutoColor() throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _isAutoColor;
}
//=======================================================================
//function : SetIsModified
//purpose : Set the flag meaning that the mesh has been edited "manually"
//=======================================================================
void SMESH_Mesh::SetIsModified(bool isModified)
{
_isModified = isModified;
if ( _isModified )
// check if mesh becomes empty as result of modification
HasModificationsToDiscard();
}
//=======================================================================
//function : HasModificationsToDiscard
//purpose : Return true if the mesh has been edited since a total re-compute
// and those modifications may prevent successful partial re-compute.
// As a side effect reset _isModified flag if mesh is empty
//issue : 0020693
//=======================================================================
bool SMESH_Mesh::HasModificationsToDiscard() const
{
if ( ! _isModified )
return false;
// return true if the next Compute() will be partial and
// existing but changed elements may prevent successful re-compute
bool hasComputed = false, hasNotComputed = false;
SMESH_subMeshIteratorPtr smIt( _subMeshHolder->GetIterator() );
while ( smIt->more() )
{
const SMESH_subMesh* aSubMesh = smIt->next();
switch ( aSubMesh->GetSubShape().ShapeType() )
{
case TopAbs_EDGE:
case TopAbs_FACE:
case TopAbs_SOLID:
if ( aSubMesh->IsMeshComputed() )
hasComputed = true;
else
hasNotComputed = true;
if ( hasComputed && hasNotComputed)
return true;
default:;
}
}
if ( NbNodes() < 1 )
const_cast<SMESH_Mesh*>(this)->_isModified = false;
return false;
}
//================================================================================
/*!
* \brief Check if any groups of the same type have equal names
*/
//================================================================================
bool SMESH_Mesh::HasDuplicatedGroupNamesMED()
{
// Corrected for Mantis issue 0020028
map< SMDSAbs_ElementType, set<string> > aGroupNames;
for ( map<int, SMESH_Group*>::iterator it = _mapGroup.begin(); it != _mapGroup.end(); it++ )
{
SMESH_Group* aGroup = it->second;
SMDSAbs_ElementType aType = aGroup->GetGroupDS()->GetType();
string aGroupName = aGroup->GetName();
aGroupName.resize( MAX_MED_GROUP_NAME_LENGTH );
if ( !aGroupNames[aType].insert(aGroupName).second )
return true;
}
return false;
}
//================================================================================
/*!
* \brief Export the mesh to a med file
* \param [in] file - name of the MED file
* \param [in] theMeshName - name of this mesh
* \param [in] theAutoGroups - boolean parameter for creating/not creating
* the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
* the typical use is auto_groups=false.
* \param [in] theVersion - defines the version of format of MED file, that will be created
* \param [in] meshPart - mesh data to export
* \param [in] theAutoDimension - if \c true, a space dimension of a MED mesh can be either
* - 1D if all mesh nodes lie on OX coordinate axis, or
* - 2D if all mesh nodes lie on XOY coordinate plane, or
* - 3D in the rest cases.
* If \a theAutoDimension is \c false, the space dimension is always 3.
* \param [in] theAddODOnVertices - to create 0D elements on all vertices
* \param [in] theAllElemsToGroup - to make every element to belong to any group (PAL23413)
* \return int - mesh index in the file
*/
//================================================================================
void SMESH_Mesh::ExportMED(const char * file,
const char* theMeshName,
bool theAutoGroups,
int theVersion,
const SMESHDS_Mesh* meshPart,
bool theAutoDimension,
bool theAddODOnVertices,
bool theAllElemsToGroup)
throw(SALOME_Exception)
{
SMESH_TRY;
DriverMED_W_SMESHDS_Mesh myWriter;
myWriter.SetFile ( file, MED::EVersion(theVersion) );
myWriter.SetMesh ( meshPart ? (SMESHDS_Mesh*) meshPart : _myMeshDS );
myWriter.SetAutoDimension( theAutoDimension );
myWriter.AddODOnVertices ( theAddODOnVertices );
if ( !theMeshName )
myWriter.SetMeshId ( _id );
else {
myWriter.SetMeshId ( -1 );
myWriter.SetMeshName ( theMeshName );
}
if ( theAutoGroups ) {
myWriter.AddGroupOfNodes();
myWriter.AddGroupOfEdges();
myWriter.AddGroupOfFaces();
myWriter.AddGroupOfVolumes();
myWriter.AddGroupOf0DElems();
myWriter.AddGroupOfBalls();
}
if ( theAllElemsToGroup )
myWriter.AddAllToGroup();
// Pass groups to writer. Provide unique group names.
//set<string> aGroupNames; // Corrected for Mantis issue 0020028
if ( !meshPart )
{
map< SMDSAbs_ElementType, set<string> > aGroupNames;
char aString [256];
int maxNbIter = 10000; // to guarantee cycle finish
for ( map<int, SMESH_Group*>::iterator it = _mapGroup.begin(); it != _mapGroup.end(); it++ ) {
SMESH_Group* aGroup = it->second;
SMESHDS_GroupBase* aGroupDS = aGroup->GetGroupDS();
if ( aGroupDS ) {
SMDSAbs_ElementType aType = aGroupDS->GetType();
string aGroupName0 = aGroup->GetName();
aGroupName0.resize(MAX_MED_GROUP_NAME_LENGTH);
string aGroupName = aGroupName0;
for (int i = 1; !aGroupNames[aType].insert(aGroupName).second && i < maxNbIter; i++) {
sprintf(&aString[0], "GR_%d_%s", i, aGroupName0.c_str());
aGroupName = aString;
aGroupName.resize(MAX_MED_GROUP_NAME_LENGTH);
}
aGroupDS->SetStoreName( aGroupName.c_str() );
myWriter.AddGroup( aGroupDS );
}
}
}
// Perform export
myWriter.Perform();
SMESH_CATCH( SMESH::throwSalomeEx );
}
//================================================================================
/*!
* \brief Export the mesh to a SAUV file
*/
//================================================================================
void SMESH_Mesh::ExportSAUV(const char *file,
const char* theMeshName,
bool theAutoGroups)
throw(SALOME_Exception)
{
std::string medfilename(file);
medfilename += ".med";
std::string cmd;
#ifdef WIN32
cmd = "%PYTHONBIN% ";
#else
cmd = "python ";
#endif
cmd += "-c \"";
cmd += "from medutilities import my_remove ; my_remove(r'" + medfilename + "')";
cmd += "\"";
system(cmd.c_str());
ExportMED(medfilename.c_str(), theMeshName, theAutoGroups, /*theVersion=*/1,
/*meshPart=*/NULL, /*theAutoDimension=*/false, /*theAddODOnVertices=*/false,
/*theAllElemsToGroup=*/true ); // theAllElemsToGroup is for PAL0023413
#ifdef WIN32
cmd = "%PYTHONBIN% ";
#else
cmd = "python ";
#endif
cmd += "-c \"";
cmd += "from medutilities import convert ; convert(r'" + medfilename + "', 'MED', 'GIBI', 1, r'" + file + "')";
cmd += "\"";
system(cmd.c_str());
#ifdef WIN32
cmd = "%PYTHONBIN% ";
#else
cmd = "python ";
#endif
cmd += "-c \"";
cmd += "from medutilities import my_remove ; my_remove(r'" + medfilename + "')";
cmd += "\"";
system(cmd.c_str());
}
//================================================================================
/*!
* \brief Export the mesh to a DAT file
*/
//================================================================================
void SMESH_Mesh::ExportDAT(const char * file,
const SMESHDS_Mesh* meshPart) throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
DriverDAT_W_SMDS_Mesh myWriter;
myWriter.SetFile( file );
myWriter.SetMesh( meshPart ? (SMESHDS_Mesh*) meshPart : _myMeshDS );
myWriter.SetMeshId(_id);
myWriter.Perform();
}
//================================================================================
/*!
* \brief Export the mesh to an UNV file
*/
//================================================================================
void SMESH_Mesh::ExportUNV(const char * file,
const SMESHDS_Mesh* meshPart) throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
DriverUNV_W_SMDS_Mesh myWriter;
myWriter.SetFile( file );
myWriter.SetMesh( meshPart ? (SMESHDS_Mesh*) meshPart : _myMeshDS );
myWriter.SetMeshId(_id);
// myWriter.SetGroups(_mapGroup);
if ( !meshPart )
{
for ( map<int, SMESH_Group*>::iterator it = _mapGroup.begin(); it != _mapGroup.end(); it++ ) {
SMESH_Group* aGroup = it->second;
SMESHDS_GroupBase* aGroupDS = aGroup->GetGroupDS();
if ( aGroupDS ) {
string aGroupName = aGroup->GetName();
aGroupDS->SetStoreName( aGroupName.c_str() );
myWriter.AddGroup( aGroupDS );
}
}
}
myWriter.Perform();
}
//================================================================================
/*!
* \brief Export the mesh to an STL file
*/
//================================================================================
void SMESH_Mesh::ExportSTL(const char * file,
const bool isascii,
const char * name,
const SMESHDS_Mesh* meshPart) throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
DriverSTL_W_SMDS_Mesh myWriter;
myWriter.SetFile( file );
myWriter.SetIsAscii( isascii );
myWriter.SetMesh( meshPart ? (SMESHDS_Mesh*) meshPart : _myMeshDS);
myWriter.SetMeshId(_id);
if ( name ) myWriter.SetName( name );
myWriter.Perform();
}
//================================================================================
/*!
* \brief Export the mesh to the CGNS file
*/
//================================================================================
void SMESH_Mesh::ExportCGNS(const char * file,
const SMESHDS_Mesh* meshDS,
const char * meshName)
{
int res = Driver_Mesh::DRS_FAIL;
#ifdef WITH_CGNS
DriverCGNS_Write myWriter;
myWriter.SetFile( file );
myWriter.SetMesh( const_cast<SMESHDS_Mesh*>( meshDS ));
myWriter.SetMeshName( SMESH_Comment("Mesh_") << meshDS->GetPersistentId());
if ( meshName && meshName[0] )
myWriter.SetMeshName( meshName );
res = myWriter.Perform();
#endif
if ( res != Driver_Mesh::DRS_OK )
throw SALOME_Exception("Export failed");
}
//================================================================================
/*!
* \brief Export the mesh to a GMF file
*/
//================================================================================
void SMESH_Mesh::ExportGMF(const char * file,
const SMESHDS_Mesh* meshDS,
bool withRequiredGroups)
{
DriverGMF_Write myWriter;
myWriter.SetFile( file );
myWriter.SetMesh( const_cast<SMESHDS_Mesh*>( meshDS ));
myWriter.SetExportRequiredGroups( withRequiredGroups );
myWriter.Perform();
}
//================================================================================
/*!
* \brief Return a ratio of "compute cost" of computed sub-meshes to the whole
* "compute cost".
*/
//================================================================================
double SMESH_Mesh::GetComputeProgress() const
{
double totalCost = 1e-100, computedCost = 0;
const SMESH_subMesh* curSM = _gen->GetCurrentSubMesh();
// get progress of a current algo
TColStd_MapOfInteger currentSubIds;
if ( curSM )
if ( SMESH_Algo* algo = curSM->GetAlgo() )
{
int algoNotDoneCost = 0, algoDoneCost = 0;
const std::vector<SMESH_subMesh*>& smToCompute = algo->SubMeshesToCompute();
for ( size_t i = 0; i < smToCompute.size(); ++i )
{
if ( smToCompute[i]->IsEmpty() || smToCompute.size() == 1 )
algoNotDoneCost += smToCompute[i]->GetComputeCost();
else
algoDoneCost += smToCompute[i]->GetComputeCost();
currentSubIds.Add( smToCompute[i]->GetId() );
}
double rate = 0;
try
{
OCC_CATCH_SIGNALS;
rate = algo->GetProgress();
}
catch (...) {
#ifdef _DEBUG_
cerr << "Exception in " << algo->GetName() << "::GetProgress()" << endl;
#endif
}
if ( 0. < rate && rate < 1.001 )
{
computedCost += rate * ( algoDoneCost + algoNotDoneCost );
}
else
{
rate = algo->GetProgressByTic();
computedCost += algoDoneCost + rate * algoNotDoneCost;
}
// cout << "rate: "<<rate << " algoNotDoneCost: " << algoNotDoneCost << endl;
}
// get cost of already treated sub-meshes
if ( SMESH_subMesh* mainSM = GetSubMeshContaining( 1 ))
{
SMESH_subMeshIteratorPtr smIt = mainSM->getDependsOnIterator(/*includeSelf=*/true);
while ( smIt->more() )
{
const SMESH_subMesh* sm = smIt->next();
const int smCost = sm->GetComputeCost();
totalCost += smCost;
if ( !currentSubIds.Contains( sm->GetId() ) )
{
if (( !sm->IsEmpty() ) ||
( sm->GetComputeState() == SMESH_subMesh::FAILED_TO_COMPUTE &&
!sm->DependsOn( curSM ) ))
computedCost += smCost;
}
}
}
// cout << "Total: " << totalCost
// << " computed: " << computedCost << " progress: " << computedCost / totalCost
// << " nbElems: " << GetMeshDS()->GetMeshInfo().NbElements() << endl;
return computedCost / totalCost;
}
//================================================================================
/*!
* \brief Return number of nodes in the mesh
*/
//================================================================================
int SMESH_Mesh::NbNodes() const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->NbNodes();
}
//================================================================================
/*!
* \brief Return number of edges of given order in the mesh
*/
//================================================================================
int SMESH_Mesh::Nb0DElements() const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().Nb0DElements();
}
//================================================================================
/*!
* \brief Return number of edges of given order in the mesh
*/
//================================================================================
int SMESH_Mesh::NbEdges(SMDSAbs_ElementOrder order) const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbEdges(order);
}
//================================================================================
/*!
* \brief Return number of faces of given order in the mesh
*/
//================================================================================
int SMESH_Mesh::NbFaces(SMDSAbs_ElementOrder order) const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbFaces(order);
}
//================================================================================
/*!
* \brief Return the number of faces in the mesh
*/
//================================================================================
int SMESH_Mesh::NbTriangles(SMDSAbs_ElementOrder order) const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbTriangles(order);
}
//================================================================================
/*!
* \brief Return number of biquadratic triangles in the mesh
*/
//================================================================================
int SMESH_Mesh::NbBiQuadTriangles() const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbBiQuadTriangles();
}
//================================================================================
/*!
* \brief Return the number nodes faces in the mesh
*/
//================================================================================
int SMESH_Mesh::NbQuadrangles(SMDSAbs_ElementOrder order) const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbQuadrangles(order);
}
//================================================================================
/*!
* \brief Return number of biquadratic quadrangles in the mesh
*/
//================================================================================
int SMESH_Mesh::NbBiQuadQuadrangles() const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbBiQuadQuadrangles();
}
//================================================================================
/*!
* \brief Return the number of polygonal faces in the mesh
*/
//================================================================================
int SMESH_Mesh::NbPolygons(SMDSAbs_ElementOrder order) const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbPolygons(order);
}
//================================================================================
/*!
* \brief Return number of volumes of given order in the mesh
*/
//================================================================================
int SMESH_Mesh::NbVolumes(SMDSAbs_ElementOrder order) const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbVolumes(order);
}
//================================================================================
/*!
* \brief Return number of tetrahedrons of given order in the mesh
*/
//================================================================================
int SMESH_Mesh::NbTetras(SMDSAbs_ElementOrder order) const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbTetras(order);
}
//================================================================================
/*!
* \brief Return number of hexahedrons of given order in the mesh
*/
//================================================================================
int SMESH_Mesh::NbHexas(SMDSAbs_ElementOrder order) const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbHexas(order);
}
//================================================================================
/*!
* \brief Return number of triquadratic hexahedrons in the mesh
*/
//================================================================================
int SMESH_Mesh::NbTriQuadraticHexas() const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbTriQuadHexas();
}
//================================================================================
/*!
* \brief Return number of pyramids of given order in the mesh
*/
//================================================================================
int SMESH_Mesh::NbPyramids(SMDSAbs_ElementOrder order) const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbPyramids(order);
}
//================================================================================
/*!
* \brief Return number of prisms (penthahedrons) of given order in the mesh
*/
//================================================================================
int SMESH_Mesh::NbPrisms(SMDSAbs_ElementOrder order) const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbPrisms(order);
}
//================================================================================
/*!
* \brief Return number of hexagonal prisms in the mesh
*/
//================================================================================
int SMESH_Mesh::NbHexagonalPrisms() const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbHexPrisms();
}
//================================================================================
/*!
* \brief Return number of polyhedrons in the mesh
*/
//================================================================================
int SMESH_Mesh::NbPolyhedrons() const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbPolyhedrons();
}
//================================================================================
/*!
* \brief Return number of ball elements in the mesh
*/
//================================================================================
int SMESH_Mesh::NbBalls() const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->GetMeshInfo().NbBalls();
}
//================================================================================
/*!
* \brief Return number of submeshes in the mesh
*/
//================================================================================
int SMESH_Mesh::NbSubMesh() const throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
return _myMeshDS->NbSubMesh();
}
//================================================================================
/*!
* \brief Returns number of meshes in the Study, that is supposed to be
* equal to SMESHDS_Document::NbMeshes()
*/
//================================================================================
int SMESH_Mesh::NbMeshes() const // nb meshes in the Study
{
return _myDocument->NbMeshes();
}
//=======================================================================
//function : IsNotConformAllowed
//purpose : check if a hypothesis allowing notconform mesh is present
//=======================================================================
bool SMESH_Mesh::IsNotConformAllowed() const
{
if(MYDEBUG) MESSAGE("SMESH_Mesh::IsNotConformAllowed");
static SMESH_HypoFilter filter( SMESH_HypoFilter::HasName( "NotConformAllowed" ));
return GetHypothesis( _myMeshDS->ShapeToMesh(), filter, false );
}
//=======================================================================
//function : IsMainShape
//purpose :
//=======================================================================
bool SMESH_Mesh::IsMainShape(const TopoDS_Shape& theShape) const
{
return theShape.IsSame(_myMeshDS->ShapeToMesh() );
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_Group* SMESH_Mesh::AddGroup (const SMDSAbs_ElementType theType,
const char* theName,
int& theId,
const TopoDS_Shape& theShape,
const SMESH_PredicatePtr& thePredicate)
{
if (_mapGroup.count(_groupId))
return NULL;
theId = _groupId;
SMESH_Group* aGroup = new SMESH_Group (theId, this, theType, theName, theShape, thePredicate);
GetMeshDS()->AddGroup( aGroup->GetGroupDS() );
_mapGroup[_groupId++] = aGroup;
return aGroup;
}
//================================================================================
/*!
* \brief Creates a group based on an existing SMESHDS group. Group ID should be unique
*/
//================================================================================
SMESH_Group* SMESH_Mesh::AddGroup (SMESHDS_GroupBase* groupDS) throw(SALOME_Exception)
{
if ( !groupDS )
throw SALOME_Exception(LOCALIZED ("SMESH_Mesh::AddGroup(): NULL SMESHDS_GroupBase"));
map <int, SMESH_Group*>::iterator i_g = _mapGroup.find( groupDS->GetID() );
if ( i_g != _mapGroup.end() && i_g->second )
{
if ( i_g->second->GetGroupDS() == groupDS )
return i_g->second;
else
throw SALOME_Exception(LOCALIZED ("SMESH_Mesh::AddGroup() wrong ID of SMESHDS_GroupBase"));
}
SMESH_Group* aGroup = new SMESH_Group (groupDS);
_mapGroup[ groupDS->GetID() ] = aGroup;
GetMeshDS()->AddGroup( aGroup->GetGroupDS() );
_groupId = 1 + _mapGroup.rbegin()->first;
return aGroup;
}
//================================================================================
/*!
* \brief Creates SMESH_Groups for not wrapped SMESHDS_Groups
* \retval bool - true if new SMESH_Groups have been created
*
*/
//================================================================================
bool SMESH_Mesh::SynchronizeGroups()
{
const size_t nbGroups = _mapGroup.size();
const set<SMESHDS_GroupBase*>& groups = _myMeshDS->GetGroups();
set<SMESHDS_GroupBase*>::const_iterator gIt = groups.begin();
for ( ; gIt != groups.end(); ++gIt )
{
SMESHDS_GroupBase* groupDS = (SMESHDS_GroupBase*) *gIt;
_groupId = groupDS->GetID();
if ( !_mapGroup.count( _groupId ))
_mapGroup[_groupId] = new SMESH_Group( groupDS );
}
if ( !_mapGroup.empty() )
_groupId = _mapGroup.rbegin()->first + 1;
return nbGroups < _mapGroup.size();
}
//================================================================================
/*!
* \brief Return iterator on all existing groups
*/
//================================================================================
SMESH_Mesh::GroupIteratorPtr SMESH_Mesh::GetGroups() const
{
typedef map <int, SMESH_Group *> TMap;
return GroupIteratorPtr( new SMDS_mapIterator<TMap>( _mapGroup ));
}
//=============================================================================
/*!
* \brief Return a group by ID
*/
//=============================================================================
SMESH_Group* SMESH_Mesh::GetGroup (const int theGroupID)
{
if (_mapGroup.find(theGroupID) == _mapGroup.end())
return NULL;
return _mapGroup[theGroupID];
}
//=============================================================================
/*!
* \brief Return IDs of all groups
*/
//=============================================================================
list<int> SMESH_Mesh::GetGroupIds() const
{
list<int> anIds;
for ( map<int, SMESH_Group*>::const_iterator it = _mapGroup.begin(); it != _mapGroup.end(); it++ )
anIds.push_back( it->first );
return anIds;
}
//================================================================================
/*!
* \brief Set a caller of methods at level of CORBA API implementation.
* The set upCaller will be deleted by SMESH_Mesh
*/
//================================================================================
void SMESH_Mesh::SetCallUp( TCallUp* upCaller )
{
if ( _callUp ) delete _callUp;
_callUp = upCaller;
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool SMESH_Mesh::RemoveGroup( const int theGroupID )
{
if (_mapGroup.find(theGroupID) == _mapGroup.end())
return false;
GetMeshDS()->RemoveGroup( _mapGroup[theGroupID]->GetGroupDS() );
delete _mapGroup[theGroupID];
_mapGroup.erase (theGroupID);
if (_callUp)
_callUp->RemoveGroup( theGroupID );
return true;
}
//=======================================================================
//function : GetAncestors
//purpose : return list of ancestors of theSubShape in the order
// that lower dimension shapes come first.
//=======================================================================
const TopTools_ListOfShape& SMESH_Mesh::GetAncestors(const TopoDS_Shape& theS) const
{
if ( _mapAncestors.Contains( theS ) )
return _mapAncestors.FindFromKey( theS );
static TopTools_ListOfShape emptyList;
return emptyList;
}
//=======================================================================
//function : Dump
//purpose : dumps contents of mesh to stream [ debug purposes ]
//=======================================================================
ostream& SMESH_Mesh::Dump(ostream& save)
{
int clause = 0;
save << "========================== Dump contents of mesh ==========================" << endl << endl;
save << ++clause << ") Total number of nodes: \t" << NbNodes() << endl;
save << ++clause << ") Total number of edges: \t" << NbEdges() << endl;
save << ++clause << ") Total number of faces: \t" << NbFaces() << endl;
save << ++clause << ") Total number of polygons: \t" << NbPolygons() << endl;
save << ++clause << ") Total number of volumes: \t" << NbVolumes() << endl;
save << ++clause << ") Total number of polyhedrons:\t" << NbPolyhedrons() << endl << endl;
for ( int isQuadratic = 0; isQuadratic < 2; ++isQuadratic )
{
string orderStr = isQuadratic ? "quadratic" : "linear";
SMDSAbs_ElementOrder order = isQuadratic ? ORDER_QUADRATIC : ORDER_LINEAR;
save << ++clause << ") Total number of " << orderStr << " edges:\t" << NbEdges(order) << endl;
save << ++clause << ") Total number of " << orderStr << " faces:\t" << NbFaces(order) << endl;
if ( NbFaces(order) > 0 ) {
int nb3 = NbTriangles(order);
int nb4 = NbQuadrangles(order);
save << clause << ".1) Number of " << orderStr << " triangles: \t" << nb3 << endl;
save << clause << ".2) Number of " << orderStr << " quadrangles:\t" << nb4 << endl;
if ( nb3 + nb4 != NbFaces(order) ) {
map<int,int> myFaceMap;
SMDS_FaceIteratorPtr itFaces=_myMeshDS->facesIterator();
while( itFaces->more( ) ) {
int nbNodes = itFaces->next()->NbNodes();
if ( myFaceMap.find( nbNodes ) == myFaceMap.end() )
myFaceMap[ nbNodes ] = 0;
myFaceMap[ nbNodes ] = myFaceMap[ nbNodes ] + 1;
}
save << clause << ".3) Faces in detail: " << endl;
map <int,int>::iterator itF;
for (itF = myFaceMap.begin(); itF != myFaceMap.end(); itF++)
save << "--> nb nodes: " << itF->first << " - nb elemens:\t" << itF->second << endl;
}
}
save << ++clause << ") Total number of " << orderStr << " volumes:\t" << NbVolumes(order) << endl;
if ( NbVolumes(order) > 0 ) {
int nb8 = NbHexas(order);
int nb4 = NbTetras(order);
int nb5 = NbPyramids(order);
int nb6 = NbPrisms(order);
save << clause << ".1) Number of " << orderStr << " hexahedrons: \t" << nb8 << endl;
save << clause << ".2) Number of " << orderStr << " tetrahedrons:\t" << nb4 << endl;
save << clause << ".3) Number of " << orderStr << " prisms: \t" << nb6 << endl;
save << clause << ".4) Number of " << orderStr << " pyramids: \t" << nb5 << endl;
if ( nb8 + nb4 + nb5 + nb6 != NbVolumes(order) ) {
map<int,int> myVolumesMap;
SMDS_VolumeIteratorPtr itVolumes=_myMeshDS->volumesIterator();
while( itVolumes->more( ) ) {
int nbNodes = itVolumes->next()->NbNodes();
if ( myVolumesMap.find( nbNodes ) == myVolumesMap.end() )
myVolumesMap[ nbNodes ] = 0;
myVolumesMap[ nbNodes ] = myVolumesMap[ nbNodes ] + 1;
}
save << clause << ".5) Volumes in detail: " << endl;
map <int,int>::iterator itV;
for (itV = myVolumesMap.begin(); itV != myVolumesMap.end(); itV++)
save << "--> nb nodes: " << itV->first << " - nb elemens:\t" << itV->second << endl;
}
}
save << endl;
}
save << "===========================================================================" << endl;
return save;
}
//=======================================================================
//function : GetElementType
//purpose : Returns type of mesh element with certain id
//=======================================================================
SMDSAbs_ElementType SMESH_Mesh::GetElementType( const int id, const bool iselem )
{
return _myMeshDS->GetElementType( id, iselem );
}
//=============================================================================
/*!
* \brief Convert group on geometry into standalone group
*/
//=============================================================================
SMESH_Group* SMESH_Mesh::ConvertToStandalone ( int theGroupID )
{
SMESH_Group* aGroup = 0;
map < int, SMESH_Group * >::iterator itg = _mapGroup.find( theGroupID );
if ( itg == _mapGroup.end() )
return aGroup;
SMESH_Group* anOldGrp = (*itg).second;
if ( !anOldGrp || !anOldGrp->GetGroupDS() )
return aGroup;
SMESHDS_GroupBase* anOldGrpDS = anOldGrp->GetGroupDS();
// create new standalone group
aGroup = new SMESH_Group (theGroupID, this, anOldGrpDS->GetType(), anOldGrp->GetName() );
_mapGroup[theGroupID] = aGroup;
SMESHDS_Group* aNewGrpDS = dynamic_cast<SMESHDS_Group*>( aGroup->GetGroupDS() );
GetMeshDS()->RemoveGroup( anOldGrpDS );
GetMeshDS()->AddGroup( aNewGrpDS );
// add elements (or nodes) into new created group
SMDS_ElemIteratorPtr anItr = anOldGrpDS->GetElements();
while ( anItr->more() )
aNewGrpDS->Add( (anItr->next())->GetID() );
// set color
aNewGrpDS->SetColor( anOldGrpDS->GetColor() );
// remove old group
delete anOldGrp;
return aGroup;
}
//=============================================================================
/*!
* \brief remove submesh order from Mesh
*/
//=============================================================================
void SMESH_Mesh::ClearMeshOrder()
{
_mySubMeshOrder.clear();
}
//=============================================================================
/*!
* \brief remove submesh order from Mesh
*/
//=============================================================================
void SMESH_Mesh::SetMeshOrder(const TListOfListOfInt& theOrder )
{
_mySubMeshOrder = theOrder;
}
//=============================================================================
/*!
* \brief return submesh order if any
*/
//=============================================================================
const TListOfListOfInt& SMESH_Mesh::GetMeshOrder() const
{
return _mySubMeshOrder;
}
//=============================================================================
/*!
* \brief fill _mapAncestors
*/
//=============================================================================
void SMESH_Mesh::fillAncestorsMap(const TopoDS_Shape& theShape)
{
int desType, ancType;
if ( !theShape.IsSame( GetShapeToMesh()) && theShape.ShapeType() == TopAbs_COMPOUND )
{
// a geom group is added. Insert it into lists of ancestors before
// the first ancestor more complex than group members
TopoDS_Iterator subIt( theShape );
if ( !subIt.More() ) return;
int memberType = subIt.Value().ShapeType();
for ( desType = TopAbs_VERTEX; desType >= memberType; desType-- )
for (TopExp_Explorer des( theShape, TopAbs_ShapeEnum( desType )); des.More(); des.Next())
{
if ( !_mapAncestors.Contains( des.Current() )) continue;// issue 0020982
TopTools_ListOfShape& ancList = _mapAncestors.ChangeFromKey( des.Current() );
TopTools_ListIteratorOfListOfShape ancIt (ancList);
while ( ancIt.More() && ancIt.Value().ShapeType() >= memberType )
ancIt.Next();
if ( ancIt.More() ) ancList.InsertBefore( theShape, ancIt );
else ancList.Append( theShape );
}
}
else // else added for 52457: Addition of hypotheses is 8 time longer than meshing
{
for ( desType = TopAbs_VERTEX; desType > TopAbs_COMPOUND; desType-- )
for ( ancType = desType - 1; ancType >= TopAbs_COMPOUND; ancType-- )
TopExp::MapShapesAndAncestors ( theShape,
(TopAbs_ShapeEnum) desType,
(TopAbs_ShapeEnum) ancType,
_mapAncestors );
}
// visit COMPOUNDs inside a COMPOUND that are not reachable by TopExp_Explorer
if ( theShape.ShapeType() == TopAbs_COMPOUND )
{
TopoDS_Iterator sIt(theShape);
if ( sIt.More() && sIt.Value().ShapeType() == TopAbs_COMPOUND )
for ( ; sIt.More(); sIt.Next() )
if ( sIt.Value().ShapeType() == TopAbs_COMPOUND )
fillAncestorsMap( sIt.Value() );
}
}
//=============================================================================
/*!
* \brief sort submeshes according to stored mesh order
* \param theListToSort in out list to be sorted
* \return FALSE if nothing sorted
*/
//=============================================================================
bool SMESH_Mesh::SortByMeshOrder(std::vector<SMESH_subMesh*>& theListToSort) const
{
if ( !_mySubMeshOrder.size() || theListToSort.size() < 2)
return true;
bool res = false;
vector<SMESH_subMesh*> onlyOrderedList, smVec;
// collect all ordered submeshes in one list as pointers
// and get their positions within theListToSort
typedef vector<SMESH_subMesh*>::iterator TPosInList;
map< int, TPosInList > sortedPos;
TPosInList smBeg = theListToSort.begin(), smEnd = theListToSort.end();
TListOfListOfInt::const_iterator listIdsIt = _mySubMeshOrder.begin();
for( ; listIdsIt != _mySubMeshOrder.end(); listIdsIt++)
{
const TListOfInt& listOfId = *listIdsIt;
// convert sm ids to sm's
smVec.clear();
TListOfInt::const_iterator idIt = listOfId.begin();
for ( ; idIt != listOfId.end(); idIt++ )
{
if ( SMESH_subMesh * sm = GetSubMeshContaining( *idIt ))
{
smVec.push_back( sm );
if ( sm->GetSubMeshDS() && sm->GetSubMeshDS()->IsComplexSubmesh() )
{
SMESHDS_SubMeshIteratorPtr smdsIt = sm->GetSubMeshDS()->GetSubMeshIterator();
while ( smdsIt->more() )
{
const SMESHDS_SubMesh* smDS = smdsIt->next();
if (( sm = GetSubMeshContaining( smDS->GetID() )))
smVec.push_back( sm );
}
}
}
}
// find smVec items in theListToSort
for ( size_t i = 0; i < smVec.size(); ++i )
{
TPosInList smPos = find( smBeg, smEnd, smVec[i] );
if ( smPos != smEnd ) {
onlyOrderedList.push_back( smVec[i] );
sortedPos[ distance( smBeg, smPos )] = smPos;
}
}
}
if (onlyOrderedList.size() < 2)
return res;
res = true;
vector<SMESH_subMesh*>::iterator onlyBIt = onlyOrderedList.begin();
vector<SMESH_subMesh*>::iterator onlyEIt = onlyOrderedList.end();
// iterate on ordered sub-meshes and insert them in detected positions
map< int, TPosInList >::iterator i_pos = sortedPos.begin();
for ( ; onlyBIt != onlyEIt; ++onlyBIt, ++i_pos )
*(i_pos->second) = *onlyBIt;
return res;
}
//================================================================================
/*!
* \brief Return true if given order of sub-meshes is OK
*/
//================================================================================
bool SMESH_Mesh::IsOrderOK( const SMESH_subMesh* smBefore,
const SMESH_subMesh* smAfter ) const
{
TListOfListOfInt::const_iterator listIdsIt = _mySubMeshOrder.begin();
for( ; listIdsIt != _mySubMeshOrder.end(); listIdsIt++)
{
const TListOfInt& listOfId = *listIdsIt;
int iB = -1, iA = -1, i = 0;
for ( TListOfInt::const_iterator id = listOfId.begin(); id != listOfId.end(); ++id, ++i )
{
if ( *id == smBefore->GetId() )
{
iB = i;
if ( iA > -1 )
return iB < iA;
}
else if ( *id == smAfter->GetId() )
{
iA = i;
if ( iB > -1 )
return iB < iA;
}
}
}
return true; // no order imposed to given sub-meshes
}
//=============================================================================
/*!
* \brief sort submeshes according to stored mesh order
* \param theListToSort in out list to be sorted
* \return FALSE if nothing sorted
*/
//=============================================================================
void SMESH_Mesh::getAncestorsSubMeshes (const TopoDS_Shape& theSubShape,
std::vector< SMESH_subMesh* >& theSubMeshes) const
{
theSubMeshes.clear();
TopTools_ListIteratorOfListOfShape it( GetAncestors( theSubShape ));
for (; it.More(); it.Next() )
if ( SMESH_subMesh* sm = GetSubMeshContaining( it.Value() ))
theSubMeshes.push_back(sm);
// sort submeshes according to stored mesh order
SortByMeshOrder( theSubMeshes );
}