smesh/src/SMESH/SMESH_Algo.cxx

1232 lines
43 KiB
C++

// Copyright (C) 2007-2015 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// SMESH SMESH : implementaion of SMESH idl descriptions
// File : SMESH_Algo.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
#include "SMESH_Algo.hxx"
#include "SMDS_EdgePosition.hxx"
#include "SMDS_FacePosition.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMDS_VolumeTool.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESHDS_SubMesh.hxx"
#include "SMESH_Comment.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MeshAlgos.hxx"
#include "SMESH_TypeDefs.hxx"
#include "SMESH_subMesh.hxx"
#include <Basics_OCCTVersion.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <BRepLProp.hxx>
#include <BRep_Tool.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <Geom_Surface.hxx>
#include <LDOMParser.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopLoc_Location.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Vertex.hxx>
#include <TopoDS_Wire.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec.hxx>
#include <Standard_ErrorHandler.hxx>
#include <Standard_Failure.hxx>
#include "utilities.h"
#include <algorithm>
#include <limits>
#include "SMESH_ProxyMesh.hxx"
#include "SMESH_MesherHelper.hxx"
using namespace std;
//================================================================================
/*!
* \brief Returns \a true if two algorithms (described by \a this and the given
* algo data) are compatible by their output and input types of elements.
*/
//================================================================================
bool SMESH_Algo::Features::IsCompatible( const SMESH_Algo::Features& algo2 ) const
{
if ( _dim > algo2._dim ) return algo2.IsCompatible( *this );
// algo2 is of highter dimension
if ( _outElemTypes.empty() || algo2._inElemTypes.empty() )
return false;
bool compatible = true;
set<SMDSAbs_GeometryType>::const_iterator myOutType = _outElemTypes.begin();
for ( ; myOutType != _outElemTypes.end() && compatible; ++myOutType )
compatible = algo2._inElemTypes.count( *myOutType );
return compatible;
}
//================================================================================
/*!
* \brief Return Data of the algorithm
*/
//================================================================================
const SMESH_Algo::Features& SMESH_Algo::GetFeatures( const std::string& algoType )
{
static map< string, SMESH_Algo::Features > theFeaturesByName;
if ( theFeaturesByName.empty() )
{
// Read Plugin.xml files
vector< string > xmlPaths = SMESH_Gen::GetPluginXMLPaths();
LDOMParser xmlParser;
for ( size_t iXML = 0; iXML < xmlPaths.size(); ++iXML )
{
bool error = xmlParser.parse( xmlPaths[iXML].c_str() );
if ( error )
{
TCollection_AsciiString data;
INFOS( xmlParser.GetError(data) );
continue;
}
// <algorithm type="Regular_1D"
// ...
// input="EDGE"
// output="QUAD,TRIA">
//
LDOM_Document xmlDoc = xmlParser.getDocument();
LDOM_NodeList algoNodeList = xmlDoc.getElementsByTagName( "algorithm" );
for ( int i = 0; i < algoNodeList.getLength(); ++i )
{
LDOM_Node algoNode = algoNodeList.item( i );
LDOM_Element& algoElem = (LDOM_Element&) algoNode;
TCollection_AsciiString algoType = algoElem.getAttribute("type");
TCollection_AsciiString input = algoElem.getAttribute("input");
TCollection_AsciiString output = algoElem.getAttribute("output");
TCollection_AsciiString dim = algoElem.getAttribute("dim");
TCollection_AsciiString label = algoElem.getAttribute("label-id");
if ( algoType.IsEmpty() ) continue;
Features & data = theFeaturesByName[ algoType.ToCString() ];
data._dim = dim.IntegerValue();
data._label = label.ToCString();
for ( int isInput = 0; isInput < 2; ++isInput )
{
TCollection_AsciiString& typeStr = isInput ? input : output;
set<SMDSAbs_GeometryType>& typeSet = isInput ? data._inElemTypes : data._outElemTypes;
int beg = 1, end;
while ( beg <= typeStr.Length() )
{
while ( beg < typeStr.Length() && !isalpha( typeStr.Value( beg ) ))
++beg;
end = beg;
while ( end < typeStr.Length() && isalpha( typeStr.Value( end + 1 ) ))
++end;
if ( end > beg )
{
TCollection_AsciiString typeName = typeStr.SubString( beg, end );
if ( typeName == "EDGE" ) typeSet.insert( SMDSGeom_EDGE );
else if ( typeName == "TRIA" ) typeSet.insert( SMDSGeom_TRIANGLE );
else if ( typeName == "QUAD" ) typeSet.insert( SMDSGeom_QUADRANGLE );
}
beg = end + 1;
}
}
}
}
}
return theFeaturesByName[ algoType ];
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_Algo::SMESH_Algo (int hypId, int studyId, SMESH_Gen * gen)
: SMESH_Hypothesis(hypId, studyId, gen)
{
_compatibleAllHypFilter = _compatibleNoAuxHypFilter = NULL;
_onlyUnaryInput = _requireDiscreteBoundary = _requireShape = true;
_quadraticMesh = _supportSubmeshes = false;
_error = COMPERR_OK;
for ( int i = 0; i < 4; ++i )
_neededLowerHyps[ i ] = false;
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_Algo::~SMESH_Algo()
{
delete _compatibleNoAuxHypFilter;
// delete _compatibleAllHypFilter; -- _compatibleNoAuxHypFilter does it!!!
}
//=============================================================================
/*!
*
*/
//=============================================================================
SMESH_0D_Algo::SMESH_0D_Algo(int hypId, int studyId, SMESH_Gen* gen)
: SMESH_Algo(hypId, studyId, gen)
{
_shapeType = (1 << TopAbs_VERTEX);
_type = ALGO_0D;
}
SMESH_1D_Algo::SMESH_1D_Algo(int hypId, int studyId, SMESH_Gen* gen)
: SMESH_Algo(hypId, studyId, gen)
{
_shapeType = (1 << TopAbs_EDGE);
_type = ALGO_1D;
}
SMESH_2D_Algo::SMESH_2D_Algo(int hypId, int studyId, SMESH_Gen* gen)
: SMESH_Algo(hypId, studyId, gen)
{
_shapeType = (1 << TopAbs_FACE);
_type = ALGO_2D;
}
SMESH_3D_Algo::SMESH_3D_Algo(int hypId, int studyId, SMESH_Gen* gen)
: SMESH_Algo(hypId, studyId, gen)
{
_shapeType = (1 << TopAbs_SOLID);
_type = ALGO_3D;
}
//=============================================================================
/*!
* Usually an algoritm has nothing to save
*/
//=============================================================================
ostream & SMESH_Algo::SaveTo(ostream & save) { return save; }
istream & SMESH_Algo::LoadFrom(istream & load) { return load; }
//=============================================================================
/*!
*
*/
//=============================================================================
const vector < string > &SMESH_Algo::GetCompatibleHypothesis()
{
return _compatibleHypothesis;
}
//=============================================================================
/*!
* List the hypothesis used by the algorithm associated to the shape.
* Hypothesis associated to father shape -are- taken into account (see
* GetAppliedHypothesis). Relevant hypothesis have a name (type) listed in
* the algorithm. This method could be surcharged by specific algorithms, in
* case of several hypothesis simultaneously applicable.
*/
//=============================================================================
const list <const SMESHDS_Hypothesis *> &
SMESH_Algo::GetUsedHypothesis(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const bool ignoreAuxiliary) const
{
SMESH_Algo* me = const_cast< SMESH_Algo* >( this );
me->_usedHypList.clear();
if ( const SMESH_HypoFilter* filter = GetCompatibleHypoFilter( ignoreAuxiliary ))
{
aMesh.GetHypotheses( aShape, *filter, me->_usedHypList, true );
if ( ignoreAuxiliary && _usedHypList.size() > 1 )
me->_usedHypList.clear(); //only one compatible hypothesis allowed
}
return _usedHypList;
}
//=============================================================================
/*!
* List the relevant hypothesis associated to the shape. Relevant hypothesis
* have a name (type) listed in the algorithm. Hypothesis associated to
* father shape -are not- taken into account (see GetUsedHypothesis)
*/
//=============================================================================
const list<const SMESHDS_Hypothesis *> &
SMESH_Algo::GetAppliedHypothesis(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const bool ignoreAuxiliary) const
{
SMESH_Algo* me = const_cast< SMESH_Algo* >( this );
me->_appliedHypList.clear();
if ( const SMESH_HypoFilter* filter = GetCompatibleHypoFilter( ignoreAuxiliary ))
aMesh.GetHypotheses( aShape, *filter, me->_appliedHypList, false );
return _appliedHypList;
}
//=============================================================================
/*!
* Compute length of an edge
*/
//=============================================================================
double SMESH_Algo::EdgeLength(const TopoDS_Edge & E)
{
double UMin = 0, UMax = 0;
TopLoc_Location L;
Handle(Geom_Curve) C = BRep_Tool::Curve(E, L, UMin, UMax);
if ( C.IsNull() )
return 0.;
GeomAdaptor_Curve AdaptCurve(C, UMin, UMax); //range is important for periodic curves
double length = GCPnts_AbscissaPoint::Length(AdaptCurve, UMin, UMax);
return length;
}
//================================================================================
/*!
* \brief Just return false as the algorithm does not hold parameters values
*/
//================================================================================
bool SMESH_Algo::SetParametersByMesh(const SMESH_Mesh* /*theMesh*/,
const TopoDS_Shape& /*theShape*/)
{
return false;
}
bool SMESH_Algo::SetParametersByDefaults(const TDefaults& , const SMESH_Mesh*)
{
return false;
}
//================================================================================
/*!
* \brief Fill vector of node parameters on geometrical edge, including vertex nodes
* \param theMesh - The mesh containing nodes
* \param theEdge - The geometrical edge of interest
* \param theParams - The resulting vector of sorted node parameters
* \retval bool - false if not all parameters are OK
*/
//================================================================================
bool SMESH_Algo::GetNodeParamOnEdge(const SMESHDS_Mesh* theMesh,
const TopoDS_Edge& theEdge,
vector< double > & theParams)
{
theParams.clear();
if ( !theMesh || theEdge.IsNull() )
return false;
SMESHDS_SubMesh * eSubMesh = theMesh->MeshElements( theEdge );
if ( !eSubMesh || !eSubMesh->GetElements()->more() )
return false; // edge is not meshed
//int nbEdgeNodes = 0;
set < double > paramSet;
if ( eSubMesh )
{
// loop on nodes of an edge: sort them by param on edge
SMDS_NodeIteratorPtr nIt = eSubMesh->GetNodes();
while ( nIt->more() )
{
const SMDS_MeshNode* node = nIt->next();
const SMDS_PositionPtr& pos = node->GetPosition();
if ( pos->GetTypeOfPosition() != SMDS_TOP_EDGE )
return false;
const SMDS_EdgePosition* epos =
static_cast<const SMDS_EdgePosition*>(node->GetPosition());
if ( !paramSet.insert( epos->GetUParameter() ).second )
return false; // equal parameters
}
}
// add vertex nodes params
TopoDS_Vertex V1,V2;
TopExp::Vertices( theEdge, V1, V2);
if ( VertexNode( V1, theMesh ) &&
!paramSet.insert( BRep_Tool::Parameter(V1,theEdge) ).second )
return false; // there are equal parameters
if ( VertexNode( V2, theMesh ) &&
!paramSet.insert( BRep_Tool::Parameter(V2,theEdge) ).second )
return false; // there are equal parameters
// fill the vector
theParams.resize( paramSet.size() );
set < double >::iterator par = paramSet.begin();
vector< double >::iterator vecPar = theParams.begin();
for ( ; par != paramSet.end(); ++par, ++vecPar )
*vecPar = *par;
return theParams.size() > 1;
}
//================================================================================
/*!
* \brief Fill vector of node parameters on geometrical edge, including vertex nodes
* \param theMesh - The mesh containing nodes
* \param theEdge - The geometrical edge of interest
* \param theParams - The resulting vector of sorted node parameters
* \retval bool - false if not all parameters are OK
*/
//================================================================================
bool SMESH_Algo::GetSortedNodesOnEdge(const SMESHDS_Mesh* theMesh,
const TopoDS_Edge& theEdge,
const bool ignoreMediumNodes,
map< double, const SMDS_MeshNode* > & theNodes,
const SMDSAbs_ElementType typeToCheck)
{
theNodes.clear();
if ( !theMesh || theEdge.IsNull() )
return false;
SMESHDS_SubMesh * eSubMesh = theMesh->MeshElements( theEdge );
if ( !eSubMesh || ( eSubMesh->NbElements()==0 && eSubMesh->NbNodes() == 0))
return false; // edge is not meshed
int nbNodes = 0;
set < double > paramSet;
if ( eSubMesh )
{
// loop on nodes of an edge: sort them by param on edge
SMDS_NodeIteratorPtr nIt = eSubMesh->GetNodes();
while ( nIt->more() )
{
const SMDS_MeshNode* node = nIt->next();
if ( ignoreMediumNodes && SMESH_MesherHelper::IsMedium( node, typeToCheck ))
continue;
const SMDS_PositionPtr& pos = node->GetPosition();
if ( pos->GetTypeOfPosition() != SMDS_TOP_EDGE )
return false;
const SMDS_EdgePosition* epos =
static_cast<const SMDS_EdgePosition*>(node->GetPosition());
theNodes.insert( theNodes.end(), make_pair( epos->GetUParameter(), node ));
++nbNodes;
}
}
// add vertex nodes
TopoDS_Vertex v1, v2;
TopExp::Vertices(theEdge, v1, v2);
const SMDS_MeshNode* n1 = VertexNode( v1, eSubMesh, 0 );
const SMDS_MeshNode* n2 = VertexNode( v2, eSubMesh, 0 );
Standard_Real f, l;
BRep_Tool::Range(theEdge, f, l);
if ( v1.Orientation() != TopAbs_FORWARD )
std::swap( f, l );
if ( n1 && ++nbNodes )
theNodes.insert( make_pair( f, n1 ));
if ( n2 && ++nbNodes )
theNodes.insert( make_pair( l, n2 ));
return theNodes.size() == nbNodes;
}
//================================================================================
/*!
* \brief Returns the filter recognizing only compatible hypotheses
* \param ignoreAuxiliary - make filter ignore auxiliary hypotheses
* \retval SMESH_HypoFilter* - the filter that can be NULL
*/
//================================================================================
const SMESH_HypoFilter*
SMESH_Algo::GetCompatibleHypoFilter(const bool ignoreAuxiliary) const
{
if ( !_compatibleHypothesis.empty() )
{
if ( !_compatibleAllHypFilter )
{
SMESH_HypoFilter* filter = new SMESH_HypoFilter();
filter->Init( filter->HasName( _compatibleHypothesis[0] ));
for ( int i = 1; i < _compatibleHypothesis.size(); ++i )
filter->Or( filter->HasName( _compatibleHypothesis[ i ] ));
SMESH_HypoFilter* filterNoAux = new SMESH_HypoFilter( filter );
filterNoAux->AndNot( filterNoAux->IsAuxiliary() );
// _compatibleNoAuxHypFilter will detele _compatibleAllHypFilter!!!
SMESH_Algo* me = const_cast< SMESH_Algo* >( this );
me->_compatibleAllHypFilter = filter;
me->_compatibleNoAuxHypFilter = filterNoAux;
}
return ignoreAuxiliary ? _compatibleNoAuxHypFilter : _compatibleAllHypFilter;
}
return 0;
}
//================================================================================
/*!
* \brief Return continuity of two edges
* \param E1 - the 1st edge
* \param E2 - the 2nd edge
* \retval GeomAbs_Shape - regularity at the junction between E1 and E2
*/
//================================================================================
GeomAbs_Shape SMESH_Algo::Continuity(TopoDS_Edge E1,
TopoDS_Edge E2)
{
//E1.Orientation(TopAbs_FORWARD), E2.Orientation(TopAbs_FORWARD); // avoid pb with internal edges
if (E1.Orientation() > TopAbs_REVERSED) // INTERNAL
E1.Orientation( TopAbs_FORWARD );
if (E2.Orientation() > TopAbs_REVERSED) // INTERNAL
E2.Orientation( TopAbs_FORWARD );
TopoDS_Vertex V, VV1[2], VV2[2];
TopExp::Vertices( E1, VV1[0], VV1[1], true );
TopExp::Vertices( E2, VV2[0], VV2[1], true );
if ( VV1[1].IsSame( VV2[0] )) { V = VV1[1]; }
else if ( VV1[0].IsSame( VV2[1] )) { V = VV1[0]; }
else if ( VV1[1].IsSame( VV2[1] )) { V = VV1[1]; E1.Reverse(); }
else if ( VV1[0].IsSame( VV2[0] )) { V = VV1[0]; E1.Reverse(); }
else { return GeomAbs_C0; }
Standard_Real u1 = BRep_Tool::Parameter( V, E1 );
Standard_Real u2 = BRep_Tool::Parameter( V, E2 );
BRepAdaptor_Curve C1( E1 ), C2( E2 );
Standard_Real tol = BRep_Tool::Tolerance( V );
Standard_Real angTol = 2e-3;
try {
OCC_CATCH_SIGNALS;
return BRepLProp::Continuity(C1, C2, u1, u2, tol, angTol);
}
catch (Standard_Failure) {
}
return GeomAbs_C0;
}
//================================================================================
/*!
* \brief Return true if an edge can be considered straight
*/
//================================================================================
bool SMESH_Algo::IsStraight( const TopoDS_Edge & E,
const bool degenResult)
{
{
double f,l;
if ( BRep_Tool::Curve( E, f, l ).IsNull())
return degenResult;
}
BRepAdaptor_Curve curve( E );
switch( curve.GetType() )
{
case GeomAbs_Line:
return true;
case GeomAbs_Circle:
case GeomAbs_Ellipse:
case GeomAbs_Hyperbola:
case GeomAbs_Parabola:
return false;
// case GeomAbs_BezierCurve:
// case GeomAbs_BSplineCurve:
// case GeomAbs_OtherCurve:
default:;
}
const double f = curve.FirstParameter();
const double l = curve.LastParameter();
const gp_Pnt pf = curve.Value( f );
const gp_Pnt pl = curve.Value( l );
const gp_Vec v1( pf, pl );
const double v1Len = v1.Magnitude();
if ( v1Len < std::numeric_limits< double >::min() )
return false; // E seems closed
const double tol = Min( 10 * curve.Tolerance(), v1Len * 1e-2 );
const double nbSamples = 7;
for ( int i = 0; i < nbSamples; ++i )
{
const double r = ( i + 1 ) / nbSamples;
const gp_Pnt pi = curve.Value( f * r + l * ( 1 - r ));
const gp_Vec vi( pf, pi );
const double h = 0.5 * v1.Crossed( vi ).Magnitude() / v1Len;
if ( h > tol )
return false;
}
return true;
}
//================================================================================
/*!
* \brief Return true if an edge has no 3D curve
*/
//================================================================================
bool SMESH_Algo::isDegenerated( const TopoDS_Edge & E )
{
double f,l;
TopLoc_Location loc;
Handle(Geom_Curve) C = BRep_Tool::Curve( E, loc, f,l );
return C.IsNull();
}
//================================================================================
/*!
* \brief Return the node built on a vertex
* \param V - the vertex
* \param meshDS - mesh
* \retval const SMDS_MeshNode* - found node or NULL
* \sa SMESH_MesherHelper::GetSubShapeByNode( const SMDS_MeshNode*, SMESHDS_Mesh* )
*/
//================================================================================
const SMDS_MeshNode* SMESH_Algo::VertexNode(const TopoDS_Vertex& V,
const SMESHDS_Mesh* meshDS)
{
if ( SMESHDS_SubMesh* sm = meshDS->MeshElements(V) ) {
SMDS_NodeIteratorPtr nIt= sm->GetNodes();
if (nIt->more())
return nIt->next();
}
return 0;
}
//=======================================================================
/*!
* \brief Return the node built on a vertex.
* A node moved to other geometry by MergeNodes() is also returned.
* \param V - the vertex
* \param mesh - mesh
* \retval const SMDS_MeshNode* - found node or NULL
*/
//=======================================================================
const SMDS_MeshNode* SMESH_Algo::VertexNode(const TopoDS_Vertex& V,
const SMESH_Mesh* mesh)
{
const SMDS_MeshNode* node = VertexNode( V, mesh->GetMeshDS() );
if ( !node && mesh->HasModificationsToDiscard() )
{
PShapeIteratorPtr edgeIt = SMESH_MesherHelper::GetAncestors( V, *mesh, TopAbs_EDGE );
while ( const TopoDS_Shape* edge = edgeIt->next() )
if ( SMESHDS_SubMesh* edgeSM = mesh->GetMeshDS()->MeshElements( *edge ))
if ( edgeSM->NbElements() > 0 )
return VertexNode( V, edgeSM, mesh, /*checkV=*/false );
}
return node;
}
//=======================================================================
/*!
* \brief Return the node built on a vertex.
* A node moved to other geometry by MergeNodes() is also returned.
* \param V - the vertex
* \param edgeSM - sub-mesh of a meshed EDGE sharing the vertex
* \param checkV - if \c true, presence of a node on the vertex is checked
* \retval const SMDS_MeshNode* - found node or NULL
*/
//=======================================================================
const SMDS_MeshNode* SMESH_Algo::VertexNode(const TopoDS_Vertex& V,
const SMESHDS_SubMesh* edgeSM,
const SMESH_Mesh* mesh,
const bool checkV)
{
const SMDS_MeshNode* node = checkV ? VertexNode( V, edgeSM->GetParent() ) : 0;
if ( !node && edgeSM )
{
// find nodes not shared by mesh segments
typedef set< const SMDS_MeshNode* > TNodeSet;
typedef map< const SMDS_MeshNode*, const SMDS_MeshNode* > TNodeMap;
TNodeMap notSharedNodes;
TNodeSet otherShapeNodes;
vector< const SMDS_MeshNode* > segNodes(3);
SMDS_ElemIteratorPtr segIt = edgeSM->GetElements();
while ( segIt->more() )
{
const SMDS_MeshElement* seg = segIt->next();
if ( seg->GetType() != SMDSAbs_Edge )
return node;
segNodes.assign( seg->begin_nodes(), seg->end_nodes() );
for ( int i = 0; i < 2; ++i )
{
const SMDS_MeshNode* n1 = segNodes[i];
const SMDS_MeshNode* n2 = segNodes[1-i];
pair<TNodeMap::iterator, bool> it2new = notSharedNodes.insert( make_pair( n1, n2 ));
if ( !it2new.second ) // n encounters twice
notSharedNodes.erase( it2new.first );
if ( n1->getshapeId() != edgeSM->GetID() )
otherShapeNodes.insert( n1 );
}
}
if ( otherShapeNodes.size() == 1 && notSharedNodes.empty() ) // a closed EDGE
return *otherShapeNodes.begin();
if ( notSharedNodes.size() == 2 ) // two end nodes found
{
SMESHDS_Mesh* meshDS = edgeSM->GetParent();
const TopoDS_Shape& E = meshDS->IndexToShape( edgeSM->GetID() );
if ( E.IsNull() || E.ShapeType() != TopAbs_EDGE )
return node;
const SMDS_MeshNode* n1 = notSharedNodes.begin ()->first;
const SMDS_MeshNode* n2 = notSharedNodes.rbegin()->first;
TopoDS_Shape S1 = SMESH_MesherHelper::GetSubShapeByNode( n1, meshDS );
if ( S1.ShapeType() == TopAbs_VERTEX && SMESH_MesherHelper::IsSubShape( S1, E ))
return n2;
TopoDS_Shape S2 = SMESH_MesherHelper::GetSubShapeByNode( n2, meshDS );
if ( S2.ShapeType() == TopAbs_VERTEX && SMESH_MesherHelper::IsSubShape( S2, E ))
return n1;
if ( edgeSM->NbElements() <= 2 || !mesh ) // one-two segments
{
gp_Pnt pV = BRep_Tool::Pnt( V );
double dist1 = pV.SquareDistance( SMESH_TNodeXYZ( n1 ));
double dist2 = pV.SquareDistance( SMESH_TNodeXYZ( n2 ));
return dist1 < dist2 ? n1 : n2;
}
if ( mesh )
{
SMESH_MesherHelper helper( const_cast<SMESH_Mesh&>( *mesh ));
const SMDS_MeshNode* n1i = notSharedNodes.begin ()->second;
const SMDS_MeshNode* n2i = notSharedNodes.rbegin()->second;
const TopoDS_Edge& edge = TopoDS::Edge( E );
bool posOK = true;
double pos1 = helper.GetNodeU( edge, n1i, n2i, &posOK );
double pos2 = helper.GetNodeU( edge, n2i, n1i, &posOK );
double posV = BRep_Tool::Parameter( V, edge );
if ( Abs( pos1 - posV ) < Abs( pos2 - posV )) return n1;
else return n2;
}
}
}
return node;
}
//=======================================================================
//function : GetMeshError
//purpose : Finds topological errors of a sub-mesh
//WARNING : 1D check is NOT implemented so far
//=======================================================================
SMESH_Algo::EMeshError SMESH_Algo::GetMeshError(SMESH_subMesh* subMesh)
{
EMeshError err = MEr_OK;
SMESHDS_SubMesh* smDS = subMesh->GetSubMeshDS();
if ( !smDS )
return MEr_EMPTY;
switch ( subMesh->GetSubShape().ShapeType() )
{
case TopAbs_FACE: { // ====================== 2D =====================
SMDS_ElemIteratorPtr fIt = smDS->GetElements();
if ( !fIt->more() )
return MEr_EMPTY;
// We check that olny links on EDGEs encouter once, the rest links, twice
set< SMESH_TLink > links;
while ( fIt->more() )
{
const SMDS_MeshElement* f = fIt->next();
int nbNodes = f->NbCornerNodes(); // ignore medium nodes
for ( int i = 0; i < nbNodes; ++i )
{
const SMDS_MeshNode* n1 = f->GetNode( i );
const SMDS_MeshNode* n2 = f->GetNode(( i+1 ) % nbNodes);
std::pair< set< SMESH_TLink >::iterator, bool > it_added =
links.insert( SMESH_TLink( n1, n2 ));
if ( !it_added.second )
// As we do NOT(!) check if mesh is manifold, we believe that a link can
// encounter once or twice only (not three times), we erase a link as soon
// as it encounters twice to speed up search in the <links> map.
links.erase( it_added.first );
}
}
// the links remaining in the <links> should all be on EDGE
set< SMESH_TLink >::iterator linkIt = links.begin();
for ( ; linkIt != links.end(); ++linkIt )
{
const SMESH_TLink& link = *linkIt;
if ( link.node1()->GetPosition()->GetTypeOfPosition() > SMDS_TOP_EDGE ||
link.node2()->GetPosition()->GetTypeOfPosition() > SMDS_TOP_EDGE )
return MEr_HOLES;
}
// TODO: to check orientation
break;
}
case TopAbs_SOLID: { // ====================== 3D =====================
SMDS_ElemIteratorPtr vIt = smDS->GetElements();
if ( !vIt->more() )
return MEr_EMPTY;
SMDS_VolumeTool vTool;
while ( !vIt->more() )
{
if (!vTool.Set( vIt->next() ))
continue; // strange
for ( int iF = 0; iF < vTool.NbFaces(); ++iF )
if ( vTool.IsFreeFace( iF ))
{
int nbN = vTool.NbFaceNodes( iF );
const SMDS_MeshNode** nodes = vTool.GetFaceNodes( iF );
for ( int i = 0; i < nbN; ++i )
if ( nodes[i]->GetPosition()->GetTypeOfPosition() > SMDS_TOP_FACE )
return MEr_HOLES;
}
}
break;
}
default:;
}
return err;
}
//================================================================================
/*!
* \brief Sets event listener to submeshes if necessary
* \param subMesh - submesh where algo is set
*
* After being set, event listener is notified on each event of a submesh.
* By default non listener is set
*/
//================================================================================
void SMESH_Algo::SetEventListener(SMESH_subMesh* /*subMesh*/)
{
}
//================================================================================
/*!
* \brief Allow algo to do something after persistent restoration
* \param subMesh - restored submesh
*
* This method is called only if a submesh has HYP_OK algo_state.
*/
//================================================================================
void SMESH_Algo::SubmeshRestored(SMESH_subMesh* /*subMesh*/)
{
}
//================================================================================
/*!
* \brief Computes mesh without geometry
* \param aMesh - the mesh
* \param aHelper - helper that must be used for adding elements to \aaMesh
* \retval bool - is a success
*/
//================================================================================
bool SMESH_Algo::Compute(SMESH_Mesh & /*aMesh*/, SMESH_MesherHelper* /*aHelper*/)
{
return error( COMPERR_BAD_INPUT_MESH, "Mesh built on shape expected");
}
//=======================================================================
//function : CancelCompute
//purpose : Sets _computeCanceled to true. It's usage depends on
// * implementation of a particular mesher.
//=======================================================================
void SMESH_Algo::CancelCompute()
{
_computeCanceled = true;
_error = COMPERR_CANCELED;
}
//================================================================================
/*
* If possible, returns progress of computation [0.,1.]
*/
//================================================================================
double SMESH_Algo::GetProgress() const
{
return _progress;
}
//================================================================================
/*!
* \brief store error and comment and then return ( error == COMPERR_OK )
*/
//================================================================================
bool SMESH_Algo::error(int error, const SMESH_Comment& comment)
{
_error = error;
_comment = comment;
return ( error == COMPERR_OK );
}
//================================================================================
/*!
* \brief store error and return ( error == COMPERR_OK )
*/
//================================================================================
bool SMESH_Algo::error(SMESH_ComputeErrorPtr error)
{
if ( error ) {
_error = error->myName;
_comment = error->myComment;
_badInputElements = error->myBadElements;
return error->IsOK();
}
return true;
}
//================================================================================
/*!
* \brief return compute error
*/
//================================================================================
SMESH_ComputeErrorPtr SMESH_Algo::GetComputeError() const
{
SMESH_ComputeErrorPtr err = SMESH_ComputeError::New( _error, _comment, this );
// hope this method is called by only SMESH_subMesh after this->Compute()
err->myBadElements.splice( err->myBadElements.end(),
(list<const SMDS_MeshElement*>&) _badInputElements );
return err;
}
//================================================================================
/*!
* \brief initialize compute error before call of Compute()
*/
//================================================================================
void SMESH_Algo::InitComputeError()
{
_error = COMPERR_OK;
_comment.clear();
list<const SMDS_MeshElement*>::iterator elem = _badInputElements.begin();
for ( ; elem != _badInputElements.end(); ++elem )
if ( (*elem)->GetID() < 1 )
delete *elem;
_badInputElements.clear();
_computeCanceled = false;
_progressTic = 0;
_progress = 0.;
}
//================================================================================
/*!
* \brief Return compute progress by nb of calls of this method
*/
//================================================================================
double SMESH_Algo::GetProgressByTic() const
{
int computeCost = 0;
for ( size_t i = 0; i < _smToCompute.size(); ++i )
computeCost += _smToCompute[i]->GetComputeCost();
const_cast<SMESH_Algo*>( this )->_progressTic++;
double x = 5 * _progressTic;
x = ( x < computeCost ) ? ( x / computeCost ) : 1.;
return 0.9 * sin( x * M_PI / 2 );
}
//================================================================================
/*!
* \brief store a bad input element preventing computation,
* which may be a temporary one i.e. not residing the mesh,
* then it will be deleted by InitComputeError()
*/
//================================================================================
void SMESH_Algo::addBadInputElement(const SMDS_MeshElement* elem)
{
if ( elem )
_badInputElements.push_back( elem );
}
//=======================================================================
//function : addBadInputElements
//purpose : store a bad input elements or nodes preventing computation
//=======================================================================
void SMESH_Algo::addBadInputElements(const SMESHDS_SubMesh* sm,
const bool addNodes)
{
if ( sm )
{
if ( addNodes )
{
SMDS_NodeIteratorPtr nIt = sm->GetNodes();
while ( nIt->more() ) addBadInputElement( nIt->next() );
}
else
{
SMDS_ElemIteratorPtr eIt = sm->GetElements();
while ( eIt->more() ) addBadInputElement( eIt->next() );
}
}
}
//=============================================================================
/*!
*
*/
//=============================================================================
// int SMESH_Algo::NumberOfWires(const TopoDS_Shape& S)
// {
// int i = 0;
// for (TopExp_Explorer exp(S,TopAbs_WIRE); exp.More(); exp.Next())
// i++;
// return i;
// }
//=============================================================================
/*!
*
*/
//=============================================================================
int SMESH_Algo::NumberOfPoints(SMESH_Mesh& aMesh, const TopoDS_Wire& W)
{
int nbPoints = 0;
for (TopExp_Explorer exp(W,TopAbs_EDGE); exp.More(); exp.Next()) {
const TopoDS_Edge& E = TopoDS::Edge(exp.Current());
int nb = aMesh.GetSubMesh(E)->GetSubMeshDS()->NbNodes();
if(_quadraticMesh)
nb = nb/2;
nbPoints += nb + 1; // internal points plus 1 vertex of 2 (last point ?)
}
return nbPoints;
}
//================================================================================
/*!
* Method in which an algorithm generating a structured mesh
* fixes positions of in-face nodes after there movement
* due to insertion of viscous layers.
*/
//================================================================================
bool SMESH_2D_Algo::FixInternalNodes(const SMESH_ProxyMesh& mesh,
const TopoDS_Face& face)
{
const SMESHDS_SubMesh* smDS = mesh.GetSubMesh(face);
if ( !smDS || smDS->NbElements() < 1 )
return false;
SMESH_MesherHelper helper( *mesh.GetMesh() );
// get all faces from a proxy sub-mesh
typedef SMDS_StdIterator< const SMDS_MeshElement*, SMDS_ElemIteratorPtr > TIterator;
TIDSortedElemSet allFaces( TIterator( smDS->GetElements() ), TIterator() );
TIDSortedElemSet avoidSet, firstRowQuads;
// indices of nodes to pass to a neighbour quad using SMESH_MeshAlgos::FindFaceInSet()
int iN1, iN2;
// get two first rows of nodes by passing through the first row of faces
vector< vector< const SMDS_MeshNode* > > nodeRows;
int iRow1 = 0, iRow2 = 1;
const SMDS_MeshElement* quad;
{
// look for a corner quadrangle and it's corner node
const SMDS_MeshElement* cornerQuad = 0;
int cornerNodeInd = -1;
SMDS_ElemIteratorPtr fIt = smDS->GetElements();
while ( !cornerQuad && fIt->more() )
{
cornerQuad = fIt->next();
if ( cornerQuad->NbCornerNodes() != 4 )
return false;
SMDS_NodeIteratorPtr nIt = cornerQuad->nodeIterator();
for ( int i = 0; i < 4; ++i )
{
int nbInverseQuads = 0;
SMDS_ElemIteratorPtr fIt = nIt->next()->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
nbInverseQuads += allFaces.count( fIt->next() );
if ( nbInverseQuads == 1 )
cornerNodeInd = i, i = 4;
}
if ( cornerNodeInd < 0 )
cornerQuad = 0;
}
if ( !cornerQuad || cornerNodeInd < 0 )
return false;
iN1 = helper.WrapIndex( cornerNodeInd + 1, 4 );
iN2 = helper.WrapIndex( cornerNodeInd + 2, 4 );
int iN3 = helper.WrapIndex( cornerNodeInd + 3, 4 );
nodeRows.resize(2);
nodeRows[iRow1].push_back( cornerQuad->GetNode( cornerNodeInd ));
nodeRows[iRow1].push_back( cornerQuad->GetNode( iN1 ));
nodeRows[iRow2].push_back( cornerQuad->GetNode( iN3 ));
nodeRows[iRow2].push_back( cornerQuad->GetNode( iN2 ));
firstRowQuads.insert( cornerQuad );
// pass through the rest quads in a face row
quad = cornerQuad;
while ( quad )
{
avoidSet.clear();
avoidSet.insert( quad );
if (( quad = SMESH_MeshAlgos::FindFaceInSet( nodeRows[iRow1].back(),
nodeRows[iRow2].back(),
allFaces, avoidSet, &iN1, &iN2)))
{
nodeRows[iRow1].push_back( quad->GetNode( helper.WrapIndex( iN2 + 2, 4 )));
nodeRows[iRow2].push_back( quad->GetNode( helper.WrapIndex( iN1 + 2, 4 )));
if ( quad->NbCornerNodes() != 4 )
return false;
}
}
if ( nodeRows[iRow1].size() < 3 )
return true; // there is nothing to fix
}
nodeRows.reserve( smDS->NbElements() / nodeRows[iRow1].size() );
// get the rest node rows
while ( true )
{
++iRow1, ++iRow2;
// get the first quad in the next face row
if (( quad = SMESH_MeshAlgos::FindFaceInSet( nodeRows[iRow1][0],
nodeRows[iRow1][1],
allFaces, /*avoid=*/firstRowQuads,
&iN1, &iN2)))
{
if ( quad->NbCornerNodes() != 4 )
return false;
nodeRows.resize( iRow2+1 );
nodeRows[iRow2].push_back( quad->GetNode( helper.WrapIndex( iN2 + 2, 4 )));
nodeRows[iRow2].push_back( quad->GetNode( helper.WrapIndex( iN1 + 2, 4 )));
firstRowQuads.insert( quad );
}
else
{
break; // no more rows
}
// pass through the rest quads in a face row
while ( quad )
{
avoidSet.clear();
avoidSet.insert( quad );
if (( quad = SMESH_MeshAlgos::FindFaceInSet( nodeRows[iRow1][ nodeRows[iRow2].size()-1 ],
nodeRows[iRow2].back(),
allFaces, avoidSet, &iN1, &iN2)))
{
if ( quad->NbCornerNodes() != 4 )
return false;
nodeRows[iRow2].push_back( quad->GetNode( helper.WrapIndex( iN1 + 2, 4 )));
}
}
if ( nodeRows[iRow1].size() != nodeRows[iRow2].size() )
return false;
}
if ( nodeRows.size() < 3 )
return true; // there is nothing to fix
// get params of the first (bottom) and last (top) node rows
UVPtStructVec uvB( nodeRows[0].size() ), uvT( nodeRows[0].size() );
for ( int isBot = 0; isBot < 2; ++isBot )
{
UVPtStructVec & uvps = isBot ? uvB : uvT;
vector< const SMDS_MeshNode* >& nodes = nodeRows[ isBot ? 0 : nodeRows.size()-1 ];
for ( size_t i = 0; i < nodes.size(); ++i )
{
uvps[i].node = nodes[i];
gp_XY uv = helper.GetNodeUV( face, uvps[i].node );
uvps[i].u = uv.Coord(1);
uvps[i].v = uv.Coord(2);
uvps[i].x = 0;
}
// calculate x (normalized param)
for ( size_t i = 1; i < nodes.size(); ++i )
uvps[i].x = uvps[i-1].x + SMESH_TNodeXYZ( uvps[i-1].node ).Distance( uvps[i].node );
for ( size_t i = 1; i < nodes.size(); ++i )
uvps[i].x /= uvps.back().x;
}
// get params of the left and right node rows
UVPtStructVec uvL( nodeRows.size() ), uvR( nodeRows.size() );
for ( int isLeft = 0; isLeft < 2; ++isLeft )
{
UVPtStructVec & uvps = isLeft ? uvL : uvR;
const int iCol = isLeft ? 0 : nodeRows[0].size() - 1;
for ( size_t i = 0; i < nodeRows.size(); ++i )
{
uvps[i].node = nodeRows[i][iCol];
gp_XY uv = helper.GetNodeUV( face, uvps[i].node );
uvps[i].u = uv.Coord(1);
uvps[i].v = uv.Coord(2);
uvps[i].y = 0;
}
// calculate y (normalized param)
for ( size_t i = 1; i < nodeRows.size(); ++i )
uvps[i].y = uvps[i-1].y + SMESH_TNodeXYZ( uvps[i-1].node ).Distance( uvps[i].node );
for ( size_t i = 1; i < nodeRows.size(); ++i )
uvps[i].y /= uvps.back().y;
}
// update node coordinates
SMESHDS_Mesh* meshDS = mesh.GetMeshDS();
Handle(Geom_Surface) S = BRep_Tool::Surface( face );
gp_XY a0 ( uvB.front().u, uvB.front().v );
gp_XY a1 ( uvB.back().u, uvB.back().v );
gp_XY a2 ( uvT.back().u, uvT.back().v );
gp_XY a3 ( uvT.front().u, uvT.front().v );
for ( size_t iRow = 1; iRow < nodeRows.size()-1; ++iRow )
{
gp_XY p1 ( uvR[ iRow ].u, uvR[ iRow ].v );
gp_XY p3 ( uvL[ iRow ].u, uvL[ iRow ].v );
const double y0 = uvL[ iRow ].y;
const double y1 = uvR[ iRow ].y;
for ( size_t iCol = 1; iCol < nodeRows[0].size()-1; ++iCol )
{
gp_XY p0 ( uvB[ iCol ].u, uvB[ iCol ].v );
gp_XY p2 ( uvT[ iCol ].u, uvT[ iCol ].v );
const double x0 = uvB[ iCol ].x;
const double x1 = uvT[ iCol ].x;
double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
double y = y0 + x * (y1 - y0);
gp_XY uv = helper.calcTFI( x, y, a0,a1,a2,a3, p0,p1,p2,p3 );
gp_Pnt p = S->Value( uv.Coord(1), uv.Coord(2));
const SMDS_MeshNode* n = nodeRows[iRow][iCol];
meshDS->MoveNode( n, p.X(), p.Y(), p.Z() );
if ( SMDS_FacePosition* pos = dynamic_cast< SMDS_FacePosition*>( n->GetPosition() ))
pos->SetParameters( uv.Coord(1), uv.Coord(2) );
}
}
return true;
}