mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-02-07 00:14:16 +05:00
8b733351ad
+ StdMeshers_ViscousLayers2D.cxx \
1731 lines
63 KiB
C++
1731 lines
63 KiB
C++
// Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
//
|
|
|
|
// File : StdMeshers_ViscousLayers2D.cxx
|
|
// Created : 23 Jul 2012
|
|
// Author : Edward AGAPOV (eap)
|
|
|
|
#include "StdMeshers_ViscousLayers2D.hxx"
|
|
|
|
#include "SMDS_EdgePosition.hxx"
|
|
#include "SMDS_FaceOfNodes.hxx"
|
|
#include "SMDS_FacePosition.hxx"
|
|
#include "SMDS_MeshNode.hxx"
|
|
#include "SMDS_SetIterator.hxx"
|
|
#include "SMESHDS_Group.hxx"
|
|
#include "SMESHDS_Hypothesis.hxx"
|
|
#include "SMESH_Algo.hxx"
|
|
#include "SMESH_ComputeError.hxx"
|
|
#include "SMESH_ControlsDef.hxx"
|
|
#include "SMESH_Gen.hxx"
|
|
#include "SMESH_Group.hxx"
|
|
#include "SMESH_HypoFilter.hxx"
|
|
#include "SMESH_Mesh.hxx"
|
|
#include "SMESH_MesherHelper.hxx"
|
|
#include "SMESH_ProxyMesh.hxx"
|
|
#include "SMESH_Quadtree.hxx"
|
|
#include "SMESH_subMesh.hxx"
|
|
#include "SMESH_subMeshEventListener.hxx"
|
|
#include "StdMeshers_FaceSide.hxx"
|
|
|
|
#include "utilities.h"
|
|
|
|
#include <BRepAdaptor_Curve.hxx>
|
|
#include <BRepAdaptor_Curve2d.hxx>
|
|
#include <BRep_Tool.hxx>
|
|
#include <Bnd_B2d.hxx>
|
|
#include <Bnd_B3d.hxx>
|
|
#include <ElCLib.hxx>
|
|
#include <GCPnts_AbscissaPoint.hxx>
|
|
#include <Geom2d_Circle.hxx>
|
|
#include <Geom2d_Line.hxx>
|
|
#include <Geom2d_TrimmedCurve.hxx>
|
|
#include <GeomAdaptor_Curve.hxx>
|
|
#include <Geom_Circle.hxx>
|
|
#include <Geom_Curve.hxx>
|
|
#include <Geom_Line.hxx>
|
|
#include <Geom_TrimmedCurve.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Standard_ErrorHandler.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <TopExp.hxx>
|
|
#include <TopExp_Explorer.hxx>
|
|
#include <TopTools_IndexedMapOfShape.hxx>
|
|
#include <TopTools_MapOfShape.hxx>
|
|
#include <TopoDS.hxx>
|
|
#include <TopoDS_Edge.hxx>
|
|
#include <TopoDS_Face.hxx>
|
|
#include <TopoDS_Vertex.hxx>
|
|
#include <gp_Ax1.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <gp_XY.hxx>
|
|
|
|
#include <list>
|
|
#include <string>
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
#define __myDEBUG
|
|
|
|
using namespace std;
|
|
|
|
//================================================================================
|
|
namespace VISCOUS_2D
|
|
{
|
|
typedef int TGeomID;
|
|
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Proxy Mesh of FACE with viscous layers. It's needed only to
|
|
* redefine newSubmesh().
|
|
*/
|
|
struct _ProxyMeshOfFace : public SMESH_ProxyMesh
|
|
{
|
|
//---------------------------------------------------
|
|
// Proxy sub-mesh of an EDGE. It contains nodes in _uvPtStructVec.
|
|
struct _EdgeSubMesh : public SMESH_ProxyMesh::SubMesh
|
|
{
|
|
_EdgeSubMesh(int index=0): SubMesh(index) {}
|
|
//virtual int NbElements() const { return _elements.size()+1; }
|
|
virtual int NbNodes() const { return Max( 0, _uvPtStructVec.size()-2 ); }
|
|
void SetUVPtStructVec(UVPtStructVec& vec) { _uvPtStructVec.swap( vec ); }
|
|
};
|
|
_ProxyMeshOfFace(const SMESH_Mesh& mesh): SMESH_ProxyMesh(mesh) {}
|
|
_EdgeSubMesh* GetEdgeSubMesh(int ID) { return (_EdgeSubMesh*) getProxySubMesh(ID); }
|
|
virtual SubMesh* newSubmesh(int index=0) const { return new _EdgeSubMesh(index); }
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief SMESH_subMeshEventListener used to store _ProxyMeshOfFace, computed
|
|
* by _ViscousBuilder2D, in a SMESH_subMesh of the FACE.
|
|
* This is to delete _ProxyMeshOfFace when StdMeshers_ViscousLayers2D
|
|
* hypothesis is modified
|
|
*/
|
|
struct _ProxyMeshHolder : public SMESH_subMeshEventListener
|
|
{
|
|
_ProxyMeshHolder( const TopoDS_Face& face,
|
|
SMESH_ProxyMesh::Ptr& mesh)
|
|
: SMESH_subMeshEventListener( /*deletable=*/true, Name() )
|
|
{
|
|
SMESH_subMesh* faceSM = mesh->GetMesh()->GetSubMesh( face );
|
|
faceSM->SetEventListener( this, new _Data( mesh ), faceSM );
|
|
}
|
|
// Finds a proxy mesh of face
|
|
static SMESH_ProxyMesh::Ptr FindProxyMeshOfFace( const TopoDS_Shape& face,
|
|
SMESH_Mesh& mesh )
|
|
{
|
|
SMESH_ProxyMesh::Ptr proxy;
|
|
SMESH_subMesh* faceSM = mesh.GetSubMesh( face );
|
|
if ( EventListenerData* ld = faceSM->GetEventListenerData( Name() ))
|
|
proxy = static_cast< _Data* >( ld )->_mesh;
|
|
return proxy;
|
|
}
|
|
// Treat events
|
|
void ProcessEvent(const int event,
|
|
const int eventType,
|
|
SMESH_subMesh* subMesh,
|
|
EventListenerData* data,
|
|
const SMESH_Hypothesis* /*hyp*/)
|
|
{
|
|
if ( event == SMESH_subMesh::CLEAN && eventType == SMESH_subMesh::COMPUTE_EVENT)
|
|
((_Data*) data)->_mesh.reset();
|
|
}
|
|
private:
|
|
// holder of a proxy mesh
|
|
struct _Data : public SMESH_subMeshEventListenerData
|
|
{
|
|
SMESH_ProxyMesh::Ptr _mesh;
|
|
_Data( SMESH_ProxyMesh::Ptr& mesh )
|
|
:SMESH_subMeshEventListenerData( /*isDeletable=*/true), _mesh( mesh )
|
|
{}
|
|
};
|
|
// Returns identifier string
|
|
static const char* Name() { return "VISCOUS_2D::_ProxyMeshHolder"; }
|
|
};
|
|
|
|
struct _PolyLine;
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Segment connecting inner ends of two _LayerEdge's.
|
|
*/
|
|
struct _Segment
|
|
{
|
|
const gp_XY* _uv[2]; // poiter to _LayerEdge::_uvIn
|
|
int _indexInLine; // position in _PolyLine
|
|
|
|
_Segment() {}
|
|
_Segment(const gp_XY& p1, const gp_XY& p2):_indexInLine(-1) { _uv[0] = &p1; _uv[1] = &p2; }
|
|
const gp_XY& p1() const { return *_uv[0]; }
|
|
const gp_XY& p2() const { return *_uv[1]; }
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Tree of _Segment's used for a faster search of _Segment's.
|
|
*/
|
|
struct _SegmentTree : public SMESH_Quadtree
|
|
{
|
|
typedef boost::shared_ptr< _SegmentTree > Ptr;
|
|
|
|
_SegmentTree( const vector< _Segment >& segments );
|
|
void GetSegmentsNear( const _Segment& seg, vector< const _Segment* >& found );
|
|
void GetSegmentsNear( const gp_Ax2d& ray, vector< const _Segment* >& found );
|
|
protected:
|
|
_SegmentTree() {}
|
|
_SegmentTree* newChild() const { return new _SegmentTree; }
|
|
void buildChildrenData();
|
|
Bnd_B2d* buildRootBox();
|
|
private:
|
|
static int maxNbSegInLeaf() { return 5; }
|
|
struct _SegBox
|
|
{
|
|
const _Segment* _seg;
|
|
bool _iMin[2];
|
|
void Set( const _Segment& seg )
|
|
{
|
|
_seg = &seg;
|
|
_iMin[0] = ( seg._uv[1]->X() < seg._uv[0]->X() );
|
|
_iMin[1] = ( seg._uv[1]->Y() < seg._uv[0]->Y() );
|
|
}
|
|
bool IsOut( const _Segment& seg ) const;
|
|
bool IsOut( const gp_Ax2d& ray ) const;
|
|
};
|
|
vector< _SegBox > _segments;
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Edge normal to FACE boundary, connecting a point on EDGE (_uvOut)
|
|
* and a point of a layer internal boundary (_uvIn)
|
|
*/
|
|
struct _LayerEdge
|
|
{
|
|
gp_XY _uvOut; // UV on the FACE boundary
|
|
gp_XY _uvIn; // UV inside the FACE
|
|
double _length2D; // distance between _uvOut and _uvIn
|
|
|
|
bool _isBlocked;// is more inflation possible or not
|
|
|
|
gp_XY _normal2D; // to pcurve
|
|
double _len2dTo3dRatio; // to pass 2D <--> 3D
|
|
gp_Ax2d _ray; // a ray starting at _uvOut
|
|
|
|
vector<gp_XY> _uvRefined; // divisions by layers
|
|
|
|
void SetNewLength( const double length );
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Poly line composed of _Segment's of one EDGE.
|
|
* It's used to detect intersection of inflated layers by intersecting
|
|
* _Segment's in 2D.
|
|
*/
|
|
struct _PolyLine
|
|
{
|
|
StdMeshers_FaceSide* _wire;
|
|
int _edgeInd; // index of my EDGE in _wire
|
|
bool _advancable; // true if there is a viscous layer on my EDGE
|
|
_PolyLine* _leftLine; // lines of neighbour EDGE's
|
|
_PolyLine* _rightLine;
|
|
int _firstPntInd; // index in vector<UVPtStruct> of _wire
|
|
int _lastPntInd;
|
|
|
|
vector< _LayerEdge > _lEdges; /* _lEdges[0] is usually is not treated
|
|
as it is equal to the last one of the _leftLine */
|
|
vector< _Segment > _segments; // segments connecting _uvIn's of _lEdges
|
|
_SegmentTree::Ptr _segTree;
|
|
|
|
vector< _PolyLine* > _reachableLines; // lines able to interfere with my layer
|
|
|
|
vector< const SMDS_MeshNode* > _leftNodes; // nodes built from a left VERTEX
|
|
vector< const SMDS_MeshNode* > _rightNodes; // nodes built from a right VERTEX
|
|
|
|
typedef vector< _Segment >::iterator TSegIterator;
|
|
typedef vector< _LayerEdge >::iterator TEdgeIterator;
|
|
|
|
bool IsCommonEdgeShared( const _PolyLine& other );
|
|
size_t FirstLEdge() const { return _leftLine->_advancable ? 1 : 0; }
|
|
bool IsAdjacent( const _Segment& seg ) const
|
|
{
|
|
return ( & seg == &_leftLine->_segments.back() ||
|
|
& seg == &_rightLine->_segments[0] );
|
|
}
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Intersector of _Segment's
|
|
*/
|
|
struct _SegmentIntersection
|
|
{
|
|
gp_XY _vec1, _vec2; // Vec( _seg.p1(), _seg.p2() )
|
|
gp_XY _vec21; // Vec( _seg2.p1(), _seg1.p1() )
|
|
double _D; // _vec1.Crossed( _vec2 )
|
|
double _param1, _param2; // intersection param on _seg1 and _seg2
|
|
|
|
bool Compute(const _Segment& seg1, const _Segment& seg2, bool seg2IsRay = false )
|
|
{
|
|
_vec1 = seg1.p2() - seg1.p1();
|
|
_vec2 = seg2.p2() - seg2.p1();
|
|
_vec21 = seg1.p1() - seg2.p1();
|
|
_D = _vec1.Crossed(_vec2);
|
|
if ( fabs(_D) < std::numeric_limits<double>::min())
|
|
return false;
|
|
_param1 = _vec2.Crossed(_vec21) / _D;
|
|
if (_param1 < 0 || _param1 > 1 )
|
|
return false;
|
|
_param2 = _vec1.Crossed(_vec21) / _D;
|
|
if (_param2 < 0 || ( !seg2IsRay && _param2 > 1 ))
|
|
return false;
|
|
return true;
|
|
}
|
|
bool Compute( const _Segment& seg1, const gp_Ax2d& ray )
|
|
{
|
|
gp_XY segEnd = ray.Location().XY() + ray.Direction().XY();
|
|
_Segment seg2( ray.Location().XY(), segEnd );
|
|
return Compute( seg1, seg2, true );
|
|
}
|
|
//gp_XY GetPoint() { return _seg1.p1() + _param1 * _vec1; }
|
|
};
|
|
//--------------------------------------------------------------------------------
|
|
|
|
typedef map< const SMDS_MeshNode*, _LayerEdge*, TIDCompare > TNode2Edge;
|
|
|
|
//--------------------------------------------------------------------------------
|
|
/*!
|
|
* \brief Builder of viscous layers
|
|
*/
|
|
class _ViscousBuilder2D
|
|
{
|
|
public:
|
|
_ViscousBuilder2D(SMESH_Mesh& theMesh,
|
|
const TopoDS_Face& theFace,
|
|
const StdMeshers_ViscousLayers2D* theHyp);
|
|
SMESH_ComputeErrorPtr GetError() const { return _error; }
|
|
// does it's job
|
|
SMESH_ProxyMesh::Ptr Compute();
|
|
|
|
private:
|
|
|
|
bool findEdgesWithLayers();
|
|
bool makePolyLines();
|
|
bool inflate();
|
|
double fixCollisions( const int stepNb );
|
|
bool refine();
|
|
bool shrink();
|
|
void setLenRatio( _LayerEdge& LE, const gp_Pnt& pOut );
|
|
void adjustCommonEdge( _PolyLine& LL, _PolyLine& LR );
|
|
void calcLayersHeight(const double totalThick,
|
|
vector<double>& heights);
|
|
void removeMeshFaces(const TopoDS_Shape& face);
|
|
|
|
bool error( const string& text );
|
|
SMESHDS_Mesh* getMeshDS() { return _mesh->GetMeshDS(); }
|
|
_ProxyMeshOfFace* getProxyMesh();
|
|
|
|
// debug
|
|
//void makeGroupOfLE();
|
|
|
|
private:
|
|
|
|
// input data
|
|
SMESH_Mesh* _mesh;
|
|
TopoDS_Face _face;
|
|
const StdMeshers_ViscousLayers2D* _hyp;
|
|
|
|
// result data
|
|
SMESH_ProxyMesh::Ptr _proxyMesh;
|
|
SMESH_ComputeErrorPtr _error;
|
|
|
|
// working data
|
|
Handle(Geom_Surface) _surface;
|
|
SMESH_MesherHelper _helper;
|
|
TSideVector _faceSideVec; // wires (StdMeshers_FaceSide) of _face
|
|
vector<_PolyLine> _polyLineVec; // fronts to advance
|
|
|
|
double _fPowN; // to compute thickness of layers
|
|
double _thickness; // required or possible layers thickness
|
|
|
|
// sub-shapes of _face
|
|
set<TGeomID> _ignoreShapeIds; // ids of EDGEs w/o layers
|
|
set<TGeomID> _noShrinkVert; // ids of VERTEXes that are extremities
|
|
// of EDGEs along which _LayerEdge can't be inflated because no viscous layers
|
|
// defined on neighbour FACEs sharing an EDGE. Nonetheless _LayerEdge's
|
|
// are inflated along such EDGEs but then such _LayerEdge's are turned into
|
|
// a node on VERTEX, i.e. all nodes on a _LayerEdge are melded into one node.
|
|
|
|
};
|
|
|
|
} // namespace VISCOUS_2D
|
|
|
|
//================================================================================
|
|
// StdMeshers_ViscousLayers hypothesis
|
|
//
|
|
StdMeshers_ViscousLayers2D::StdMeshers_ViscousLayers2D(int hypId, int studyId, SMESH_Gen* gen)
|
|
:StdMeshers_ViscousLayers(hypId, studyId, gen)
|
|
{
|
|
_name = StdMeshers_ViscousLayers2D::GetHypType();
|
|
_param_algo_dim = -2; // auxiliary hyp used by 2D algos
|
|
}
|
|
// --------------------------------------------------------------------------------
|
|
bool StdMeshers_ViscousLayers2D::SetParametersByMesh(const SMESH_Mesh* theMesh,
|
|
const TopoDS_Shape& theShape)
|
|
{
|
|
// TODO ???
|
|
return false;
|
|
}
|
|
// --------------------------------------------------------------------------------
|
|
SMESH_ProxyMesh::Ptr
|
|
StdMeshers_ViscousLayers2D::Compute(SMESH_Mesh& theMesh,
|
|
const TopoDS_Face& theFace)
|
|
{
|
|
SMESH_ProxyMesh::Ptr pm;
|
|
|
|
SMESH_HypoFilter hypFilter( SMESH_HypoFilter::HasName( GetHypType() ));
|
|
const SMESH_Hypothesis * hyp = theMesh.GetHypothesis( theFace, hypFilter, /*ancestors=*/true );
|
|
const StdMeshers_ViscousLayers2D* vlHyp =
|
|
dynamic_cast< const StdMeshers_ViscousLayers2D* > ( hyp );
|
|
if ( vlHyp )
|
|
{
|
|
VISCOUS_2D::_ViscousBuilder2D builder( theMesh, theFace, vlHyp );
|
|
pm = builder.Compute();
|
|
SMESH_ComputeErrorPtr error = builder.GetError();
|
|
if ( error && !error->IsOK() )
|
|
theMesh.GetSubMesh( theFace )->GetComputeError() = error;
|
|
else if ( !pm )
|
|
pm.reset( new SMESH_ProxyMesh( theMesh ));
|
|
}
|
|
else
|
|
{
|
|
pm.reset( new SMESH_ProxyMesh( theMesh ));
|
|
}
|
|
return pm;
|
|
}
|
|
// --------------------------------------------------------------------------------
|
|
void StdMeshers_ViscousLayers2D::RestoreListeners() const
|
|
{
|
|
StudyContextStruct* sc = _gen->GetStudyContext( _studyId );
|
|
std::map < int, SMESH_Mesh * >::iterator i_smesh = sc->mapMesh.begin();
|
|
for ( ; i_smesh != sc->mapMesh.end(); ++i_smesh )
|
|
{
|
|
SMESH_Mesh* smesh = i_smesh->second;
|
|
if ( !smesh ||
|
|
!smesh->HasShapeToMesh() ||
|
|
!smesh->GetMeshDS() ||
|
|
!smesh->GetMeshDS()->IsUsedHypothesis( this ))
|
|
continue;
|
|
|
|
// set event listeners to EDGE's of FACE where this hyp is used
|
|
TopoDS_Shape shape = i_smesh->second->GetShapeToMesh();
|
|
for ( TopExp_Explorer face( shape, TopAbs_FACE); face.More(); face.Next() )
|
|
if ( SMESH_Algo* algo = _gen->GetAlgo( *smesh, face.Current() ))
|
|
{
|
|
const std::list <const SMESHDS_Hypothesis *> & usedHyps =
|
|
algo->GetUsedHypothesis( *smesh, face.Current(), /*ignoreAuxiliary=*/false );
|
|
if ( std::find( usedHyps.begin(), usedHyps.end(), this ) != usedHyps.end() )
|
|
for ( TopExp_Explorer edge( face.Current(), TopAbs_EDGE); edge.More(); edge.Next() )
|
|
VISCOUS_3D::ToClearSubWithMain( smesh->GetSubMesh( edge.Current() ), face.Current() );
|
|
}
|
|
}
|
|
}
|
|
// END StdMeshers_ViscousLayers2D hypothesis
|
|
//================================================================================
|
|
|
|
using namespace VISCOUS_2D;
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Constructor of _ViscousBuilder2D
|
|
*/
|
|
//================================================================================
|
|
|
|
_ViscousBuilder2D::_ViscousBuilder2D(SMESH_Mesh& theMesh,
|
|
const TopoDS_Face& theFace,
|
|
const StdMeshers_ViscousLayers2D* theHyp):
|
|
_mesh( &theMesh ), _face( theFace ), _hyp( theHyp ), _helper( theMesh )
|
|
{
|
|
_helper.SetSubShape( _face );
|
|
_helper.SetElementsOnShape(true);
|
|
|
|
_surface = BRep_Tool::Surface( theFace );
|
|
|
|
if ( _hyp )
|
|
_fPowN = pow( _hyp->GetStretchFactor(), _hyp->GetNumberLayers() );
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Stores error description and returns false
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::error(const string& text )
|
|
{
|
|
cout << "_ViscousBuilder2D::error " << text << endl;
|
|
_error->myName = COMPERR_ALGO_FAILED;
|
|
_error->myComment = string("Viscous layers builder 2D: ") + text;
|
|
if ( SMESH_subMesh* sm = _mesh->GetSubMesh( _face ) )
|
|
{
|
|
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
|
|
if ( smError && smError->myAlgo )
|
|
_error->myAlgo = smError->myAlgo;
|
|
smError = _error;
|
|
}
|
|
//makeGroupOfLE(); // debug
|
|
|
|
return false;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Does its job
|
|
*/
|
|
//================================================================================
|
|
|
|
SMESH_ProxyMesh::Ptr _ViscousBuilder2D::Compute()
|
|
{
|
|
_error = SMESH_ComputeError::New(COMPERR_OK);
|
|
_faceSideVec = StdMeshers_FaceSide::GetFaceWires( _face, *_mesh, true, _error );
|
|
if ( !_error->IsOK() )
|
|
return _proxyMesh;
|
|
|
|
//PyDump debugDump;
|
|
|
|
if ( !findEdgesWithLayers() ) // analysis of a shape
|
|
return _proxyMesh;
|
|
|
|
if ( ! makePolyLines() ) // creation of fronts
|
|
return _proxyMesh;
|
|
|
|
if ( ! inflate() ) // advance fronts
|
|
return _proxyMesh;
|
|
|
|
if ( !shrink() ) // shrink segments on edges w/o layers
|
|
return _proxyMesh;
|
|
|
|
if ( ! refine() ) // make faces
|
|
return _proxyMesh;
|
|
|
|
//makeGroupOfLE(); // debug
|
|
//debugDump.Finish();
|
|
|
|
return _proxyMesh;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Finds EDGE's to make viscous layers on.
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::findEdgesWithLayers()
|
|
{
|
|
// collect all EDGEs to ignore defined by hyp
|
|
vector<TGeomID> ids = _hyp->GetBndShapesToIgnore();
|
|
for ( size_t i = 0; i < ids.size(); ++i )
|
|
{
|
|
const TopoDS_Shape& s = getMeshDS()->IndexToShape( ids[i] );
|
|
if ( !s.IsNull() && s.ShapeType() == TopAbs_EDGE )
|
|
_ignoreShapeIds.insert( ids[i] );
|
|
}
|
|
|
|
// check all EDGEs of the _face
|
|
int totalNbEdges = 0;
|
|
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
|
|
{
|
|
StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
|
|
totalNbEdges += wire->NbEdges();
|
|
for ( int iE = 0; iE < wire->NbEdges(); ++iE )
|
|
if ( _helper.NbAncestors( wire->Edge( iE ), *_mesh, TopAbs_FACE ) > 1 )
|
|
{
|
|
// ignore internal EDGEs (shared by several FACEs)
|
|
TGeomID edgeID = getMeshDS()->ShapeToIndex( wire->Edge( iE ));
|
|
_ignoreShapeIds.insert( edgeID );
|
|
|
|
// check if ends of an EDGE are to be added to _noShrinkVert
|
|
PShapeIteratorPtr faceIt = _helper.GetAncestors( wire->Edge( iE ), *_mesh, TopAbs_FACE );
|
|
while ( const TopoDS_Shape* neighbourFace = faceIt->next() )
|
|
{
|
|
if ( neighbourFace->IsSame( _face )) continue;
|
|
SMESH_Algo* algo = _mesh->GetGen()->GetAlgo( *_mesh, *neighbourFace );
|
|
if ( !algo ) continue;
|
|
|
|
const StdMeshers_ViscousLayers2D* viscHyp = 0;
|
|
const list <const SMESHDS_Hypothesis *> & allHyps =
|
|
algo->GetUsedHypothesis(*_mesh, *neighbourFace, /*noAuxiliary=*/false);
|
|
list< const SMESHDS_Hypothesis *>::const_iterator hyp = allHyps.begin();
|
|
for ( ; hyp != allHyps.end() && !viscHyp; ++hyp )
|
|
viscHyp = dynamic_cast<const StdMeshers_ViscousLayers2D*>( *hyp );
|
|
|
|
set<TGeomID> neighbourIgnoreEdges;
|
|
if (viscHyp) {
|
|
vector<TGeomID> ids = _hyp->GetBndShapesToIgnore();
|
|
neighbourIgnoreEdges.insert( ids.begin(), ids.end() );
|
|
}
|
|
for ( int iV = 0; iV < 2; ++iV )
|
|
{
|
|
TopoDS_Vertex vertex = iV ? wire->LastVertex(iE) : wire->FirstVertex(iE);
|
|
if ( !viscHyp )
|
|
_noShrinkVert.insert( getMeshDS()->ShapeToIndex( vertex ));
|
|
else
|
|
{
|
|
PShapeIteratorPtr edgeIt = _helper.GetAncestors( vertex, *_mesh, TopAbs_EDGE );
|
|
while ( const TopoDS_Shape* edge = edgeIt->next() )
|
|
if ( !edge->IsSame( wire->Edge( iE )) &&
|
|
neighbourIgnoreEdges.count( getMeshDS()->ShapeToIndex( *edge )))
|
|
_noShrinkVert.insert( getMeshDS()->ShapeToIndex( vertex ));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return ( totalNbEdges > _ignoreShapeIds.size() );
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Create the inner front of the viscous layers and prepare data for infation
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::makePolyLines()
|
|
{
|
|
// Create _PolyLines and _LayerEdge's
|
|
|
|
// count total nb of EDGEs to allocate _polyLineVec
|
|
int nbEdges = 0;
|
|
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
|
|
nbEdges += _faceSideVec[ iWire ]->NbEdges();
|
|
_polyLineVec.resize( nbEdges );
|
|
|
|
// Assign data to _PolyLine's
|
|
// ---------------------------
|
|
|
|
size_t iPoLine = 0;
|
|
for ( size_t iWire = 0; iWire < _faceSideVec.size(); ++iWire )
|
|
{
|
|
StdMeshers_FaceSidePtr wire = _faceSideVec[ iWire ];
|
|
const vector<UVPtStruct>& points = wire->GetUVPtStruct();
|
|
int iPnt = 0;
|
|
for ( int iE = 0; iE < wire->NbEdges(); ++iE )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iPoLine++ ];
|
|
L._wire = wire.get();
|
|
L._edgeInd = iE;
|
|
L._advancable = !_ignoreShapeIds.count( wire->EdgeID( iE ));
|
|
|
|
int iRight = iPoLine - (( iE+1 < wire->NbEdges() ) ? 0 : wire->NbEdges() );
|
|
L._rightLine = &_polyLineVec[ iRight ];
|
|
_polyLineVec[ iRight ]._leftLine = &L;
|
|
|
|
L._firstPntInd = iPnt;
|
|
double lastNormPar = wire->LastParameter( iE ) - 1e-10;
|
|
while ( points[ iPnt ].normParam < lastNormPar )
|
|
++iPnt;
|
|
L._lastPntInd = iPnt;
|
|
L._lEdges.resize( L._lastPntInd - L._firstPntInd + 1 );
|
|
|
|
// TODO: add more _LayerEdge's to strongly curved EDGEs
|
|
// in order not to miss collisions
|
|
|
|
Handle(Geom2d_Curve) pcurve = L._wire->Curve2d( L._edgeInd );
|
|
gp_Pnt2d uv; gp_Vec2d tangent;
|
|
for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
|
|
{
|
|
_LayerEdge& lEdge = L._lEdges[ i - L._firstPntInd ];
|
|
const double u = ( i == L._firstPntInd ? wire->FirstU(iE) : points[ i ].param );
|
|
pcurve->D1( u , uv, tangent );
|
|
tangent.Normalize();
|
|
if ( L._wire->Edge( iE ).Orientation() == TopAbs_REVERSED )
|
|
tangent.Reverse();
|
|
lEdge._uvOut = lEdge._uvIn = uv.XY();
|
|
lEdge._normal2D.SetCoord( -tangent.Y(), tangent.X() );
|
|
lEdge._ray.SetLocation( lEdge._uvOut );
|
|
lEdge._ray.SetDirection( lEdge._normal2D );
|
|
lEdge._isBlocked = false;
|
|
lEdge._length2D = 0;
|
|
|
|
setLenRatio( lEdge, SMESH_TNodeXYZ( points[ i ].node ) );
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fill _PolyLine's with _segments
|
|
// --------------------------------
|
|
|
|
double maxLen2dTo3dRatio = 0;
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iPoLine ];
|
|
L._segments.resize( L._lEdges.size() - 1 );
|
|
for ( size_t i = 1; i < L._lEdges.size(); ++i )
|
|
{
|
|
_Segment & S = L._segments[i-1];
|
|
S._uv[0] = & L._lEdges[i-1]._uvIn;
|
|
S._uv[1] = & L._lEdges[i ]._uvIn;
|
|
S._indexInLine = i-1;
|
|
if ( maxLen2dTo3dRatio < L._lEdges[i]._len2dTo3dRatio )
|
|
maxLen2dTo3dRatio = L._lEdges[i]._len2dTo3dRatio;
|
|
}
|
|
// // connect _PolyLine's with segments, the 1st _LayerEdge of every _PolyLine
|
|
// // becomes not connected to any segment
|
|
// if ( L._leftLine->_advancable )
|
|
// L._segments[0]._uv[0] = & L._leftLine->_lEdges.back()._uvIn;
|
|
|
|
L._segTree.reset( new _SegmentTree( L._segments ));
|
|
}
|
|
|
|
// Evaluate possible _thickness if required layers thickness seems too high
|
|
// -------------------------------------------------------------------------
|
|
|
|
_thickness = _hyp->GetTotalThickness();
|
|
_SegmentTree::box_type faceBndBox2D;
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
faceBndBox2D.Add( *_polyLineVec[ iPoLine]._segTree->getBox() );
|
|
//
|
|
if ( _thickness * maxLen2dTo3dRatio > sqrt( faceBndBox2D.SquareExtent() ) / 10 )
|
|
{
|
|
vector< const _Segment* > foundSegs;
|
|
double maxPossibleThick = 0;
|
|
_SegmentIntersection intersection;
|
|
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
|
|
{
|
|
_PolyLine& L1 = _polyLineVec[ iL1 ];
|
|
for ( size_t iL2 = iL1+1; iL2 < _polyLineVec.size(); ++iL2 )
|
|
{
|
|
_PolyLine& L2 = _polyLineVec[ iL2 ];
|
|
for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
|
|
{
|
|
foundSegs.clear();
|
|
L2._segTree->GetSegmentsNear( L1._lEdges[iLE]._ray, foundSegs );
|
|
for ( size_t i = 0; i < foundSegs.size(); ++i )
|
|
if ( intersection.Compute( *foundSegs[i], L1._lEdges[iLE]._ray ))
|
|
{
|
|
double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio;
|
|
double psblThick = distToL2 / ( 1 + L1._advancable + L2._advancable );
|
|
if ( maxPossibleThick < psblThick )
|
|
maxPossibleThick = psblThick;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_thickness = Min( _hyp->GetTotalThickness(), maxPossibleThick );
|
|
}
|
|
|
|
// Adjust _LayerEdge's at _PolyLine's extremities
|
|
// -----------------------------------------------
|
|
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
{
|
|
_PolyLine& LL = _polyLineVec[ iPoLine ];
|
|
_PolyLine& LR = *LL._rightLine;
|
|
adjustCommonEdge( LL, LR );
|
|
}
|
|
// recreate _segments if some _LayerEdge's have been removed by adjustCommonEdge()
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iPoLine ];
|
|
// if ( L._segments.size() == L._lEdges.size() - 1 )
|
|
// continue;
|
|
L._segments.resize( L._lEdges.size() - 1 );
|
|
for ( size_t i = 1; i < L._lEdges.size(); ++i )
|
|
{
|
|
_Segment & S = L._segments[i-1];
|
|
S._uv[0] = & L._lEdges[i-1]._uvIn;
|
|
S._uv[1] = & L._lEdges[i ]._uvIn;
|
|
S._indexInLine = i-1;
|
|
}
|
|
L._segTree.reset( new _SegmentTree( L._segments ));
|
|
}
|
|
// connect _PolyLine's with segments, the 1st _LayerEdge of every _PolyLine
|
|
// becomes not connected to any segment
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iPoLine ];
|
|
if ( L._leftLine->_advancable )
|
|
L._segments[0]._uv[0] = & L._leftLine->_lEdges.back()._uvIn;
|
|
}
|
|
|
|
// Fill _reachableLines.
|
|
// ----------------------
|
|
|
|
// compute bnd boxes taking into account the layers total thickness
|
|
vector< _SegmentTree::box_type > lineBoxes( _polyLineVec.size() );
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
{
|
|
lineBoxes[ iPoLine ] = *_polyLineVec[ iPoLine ]._segTree->getBox();
|
|
if ( _polyLineVec[ iPoLine ]._advancable )
|
|
lineBoxes[ iPoLine ].Enlarge( maxLen2dTo3dRatio * _thickness );
|
|
}
|
|
// _reachableLines
|
|
for ( iPoLine = 0; iPoLine < _polyLineVec.size(); ++iPoLine )
|
|
{
|
|
_PolyLine& L1 = _polyLineVec[ iPoLine ];
|
|
for ( size_t i = 0; i < _polyLineVec.size(); ++i )
|
|
{
|
|
_PolyLine& L2 = _polyLineVec[ i ];
|
|
if ( iPoLine == i || lineBoxes[ iPoLine ].IsOut( lineBoxes[ i ]))
|
|
continue;
|
|
if ( !L1._advancable && ( L1._leftLine == &L2 || L1._rightLine == &L2 ))
|
|
continue;
|
|
// check reachability by _LayerEdge's
|
|
int iDelta = 1; //Max( 1, L1._lEdges.size() / 100 );
|
|
for ( size_t iLE = 1; iLE < L1._lEdges.size(); iLE += iDelta )
|
|
{
|
|
_LayerEdge& LE = L1._lEdges[iLE];
|
|
if ( !lineBoxes[ i ].IsOut ( LE._uvOut,
|
|
LE._uvOut + LE._normal2D * _thickness * LE._len2dTo3dRatio )
|
|
&&
|
|
!L1.IsAdjacent( L2._segments[0] ))
|
|
{
|
|
L1._reachableLines.push_back( & L2 );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// add self to _reachableLines
|
|
Geom2dAdaptor_Curve pcurve( L1._wire->Curve2d( L1._edgeInd ));
|
|
if ( pcurve.GetType() != GeomAbs_Line )
|
|
{
|
|
// TODO: check carefully
|
|
L1._reachableLines.push_back( & L1 );
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief adjust common _LayerEdge of two adjacent _PolyLine's
|
|
* \param LL - left _PolyLine
|
|
* \param LR - right _PolyLine
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder2D::adjustCommonEdge( _PolyLine& LL, _PolyLine& LR )
|
|
{
|
|
int nbAdvancableL = LL._advancable + LR._advancable;
|
|
if ( nbAdvancableL == 0 )
|
|
return;
|
|
|
|
_LayerEdge& EL = LL._lEdges.back();
|
|
_LayerEdge& ER = LR._lEdges.front();
|
|
gp_XY normL = EL._normal2D;
|
|
gp_XY normR = ER._normal2D;
|
|
gp_XY tangL ( normL.Y(), -normL.X() );
|
|
//gp_XY tangR ( normR.Y(), -normR.X() );
|
|
|
|
gp_XY normCommon = ( normL + normR ).Normalized(); // average normal at VERTEX
|
|
|
|
EL._normal2D = normCommon;
|
|
EL._ray.SetLocation ( EL._uvOut );
|
|
EL._ray.SetDirection( EL._normal2D );
|
|
|
|
// update _LayerEdge::_len2dTo3dRatio according to a new direction
|
|
const vector<UVPtStruct>& points = LL._wire->GetUVPtStruct();
|
|
setLenRatio( EL, SMESH_TNodeXYZ( points[ LL._lastPntInd ].node ));
|
|
|
|
ER = EL;
|
|
|
|
const double dotNormTang = normR * tangL;
|
|
const bool largeAngle = Abs( dotNormTang ) > 0.2;
|
|
if ( largeAngle )
|
|
{
|
|
// recompute _len2dTo3dRatio to take into account angle between EDGEs
|
|
gp_Vec2d oldNorm( LL._advancable ? normL : normR );
|
|
double fact = 1. / Max( 0.3, Cos( oldNorm.Angle( normCommon )));
|
|
EL._len2dTo3dRatio *= fact;
|
|
ER._len2dTo3dRatio = EL._len2dTo3dRatio;
|
|
|
|
if ( dotNormTang < 0. ) // ---------------------------- CONVEX ANGLE
|
|
{
|
|
// Remove _LayerEdge's intersecting the normCommon
|
|
//
|
|
const gp_XY& pCommOut = ER._uvOut;
|
|
gp_XY pCommIn( pCommOut + normCommon * _thickness * EL._len2dTo3dRatio );
|
|
_Segment segCommon( pCommOut, pCommIn );
|
|
_SegmentIntersection intersection;
|
|
for ( int isR = 0; isR < 2; ++isR ) // loop on [ LL, LR ]
|
|
{
|
|
_PolyLine& L = isR ? LR : LL;
|
|
_PolyLine::TEdgeIterator eIt = isR ? L._lEdges.begin()+1 : L._lEdges.end()-2;
|
|
int dIt = isR ? +1 : -1;
|
|
// at least 2 _LayerEdge's should remain in a _PolyLine (if _advancable)
|
|
if ( L._lEdges.size() < 3 ) continue;
|
|
size_t iLE = 1;
|
|
for ( ; iLE < L._lEdges.size(); ++iLE, eIt += dIt )
|
|
{
|
|
gp_XY uvIn = eIt->_uvOut + eIt->_normal2D * _thickness * eIt->_len2dTo3dRatio;
|
|
_Segment segOfEdge( eIt->_uvOut, uvIn );
|
|
if ( !intersection.Compute( segCommon, segOfEdge ))
|
|
break;
|
|
}
|
|
if ( iLE >= L._lEdges.size () - 1 )
|
|
{
|
|
// all _LayerEdge's intersect the segCommon, limit inflation
|
|
// of remaining 2 _LayerEdge's
|
|
vector< _LayerEdge > newEdgeVec( 2 );
|
|
newEdgeVec.front() = L._lEdges.front();
|
|
newEdgeVec.back() = L._lEdges.back();
|
|
L._lEdges.swap( newEdgeVec );
|
|
if ( !isR ) std::swap( intersection._param1 , intersection._param2 );
|
|
L._lEdges.front()._len2dTo3dRatio *= intersection._param1;
|
|
L._lEdges.back ()._len2dTo3dRatio *= intersection._param2;
|
|
}
|
|
else if ( iLE != 1 )
|
|
{
|
|
// eIt points to the _LayerEdge not intersecting with segCommon
|
|
if ( isR )
|
|
LR._lEdges.erase( LR._lEdges.begin()+1, eIt );
|
|
else
|
|
LL._lEdges.erase( eIt, --LL._lEdges.end() );
|
|
}
|
|
}
|
|
}
|
|
else // ------------------------------------------ CONCAVE ANGLE
|
|
{
|
|
if ( nbAdvancableL == 1 )
|
|
{
|
|
// make that the _LayerEdge at VERTEX is not shared by LL and LR
|
|
_LayerEdge& notSharedEdge = LL._advancable ? LR._lEdges[0] : LL._lEdges.back();
|
|
notSharedEdge._normal2D.SetCoord( 0.,0. );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Compute and set _LayerEdge::_len2dTo3dRatio
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder2D::setLenRatio( _LayerEdge& LE, const gp_Pnt& pOut )
|
|
{
|
|
const double probeLen2d = 1e-3;
|
|
|
|
gp_Pnt2d p2d = LE._uvOut + LE._normal2D * probeLen2d;
|
|
gp_Pnt p3d = _surface->Value( p2d.X(), p2d.Y() );
|
|
double len3d = p3d.Distance( pOut );
|
|
if ( len3d < std::numeric_limits<double>::min() )
|
|
LE._len2dTo3dRatio = std::numeric_limits<double>::min();
|
|
else
|
|
LE._len2dTo3dRatio = probeLen2d / len3d;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Increase length of _LayerEdge's to reach the required thickness of layers
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::inflate()
|
|
{
|
|
// Limit size of inflation step by geometry size found by
|
|
// itersecting _LayerEdge's with _Segment's
|
|
double minStepSize = _thickness;
|
|
vector< const _Segment* > foundSegs;
|
|
_SegmentIntersection intersection;
|
|
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
|
|
{
|
|
_PolyLine& L1 = _polyLineVec[ iL1 ];
|
|
for ( size_t iL2 = 0; iL2 < L1._reachableLines.size(); ++iL2 )
|
|
{
|
|
_PolyLine& L2 = * L1._reachableLines[ iL2 ];
|
|
for ( size_t iLE = 1; iLE < L1._lEdges.size(); ++iLE )
|
|
{
|
|
foundSegs.clear();
|
|
L2._segTree->GetSegmentsNear( L1._lEdges[iLE]._ray, foundSegs );
|
|
for ( size_t i = 0; i < foundSegs.size(); ++i )
|
|
if ( ! L1.IsAdjacent( *foundSegs[i] ) &&
|
|
intersection.Compute( *foundSegs[i], L1._lEdges[iLE]._ray ))
|
|
{
|
|
double distToL2 = intersection._param2 / L1._lEdges[iLE]._len2dTo3dRatio;
|
|
double step = distToL2 / ( 1 + L1._advancable + L2._advancable );
|
|
if ( step < minStepSize )
|
|
minStepSize = step;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#ifdef __myDEBUG
|
|
cout << "-- minStepSize = " << minStepSize << endl;
|
|
#endif
|
|
|
|
double curThick = 0, stepSize = minStepSize;
|
|
int nbSteps = 0;
|
|
while ( curThick < _thickness )
|
|
{
|
|
curThick += stepSize * 1.25;
|
|
if ( curThick > _thickness )
|
|
curThick = _thickness;
|
|
|
|
// Elongate _LayerEdge's
|
|
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iL ];
|
|
if ( !L._advancable ) continue;
|
|
//dumpFunction(SMESH_Comment("inflate")<<data._index<<"_step"<<nbSteps); // debug
|
|
for ( size_t iLE = L.FirstLEdge(); iLE < L._lEdges.size(); ++iLE )
|
|
L._lEdges[iLE].SetNewLength( curThick );
|
|
// for ( int k=0; k<L._segments.size(); ++k)
|
|
// cout << "( " << L._segments[k].p1().X() << ", " <<L._segments[k].p1().Y() << " ) "
|
|
// << "( " << L._segments[k].p2().X() << ", " <<L._segments[k].p2().Y() << " ) "
|
|
// << endl;
|
|
L._segTree.reset( new _SegmentTree( L._segments ));
|
|
//dumpFunctionEnd();
|
|
}
|
|
|
|
// Avoid intersection of _Segment's
|
|
minStepSize = fixCollisions( nbSteps );
|
|
|
|
#ifdef __myDEBUG
|
|
cout << "-- minStepSize = " << minStepSize << endl;
|
|
#endif
|
|
if ( minStepSize <= 0 )
|
|
{
|
|
break; // no more inflating possible
|
|
}
|
|
stepSize = minStepSize;
|
|
nbSteps++;
|
|
}
|
|
|
|
if (nbSteps == 0 )
|
|
return error("failed at the very first inflation step");
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Remove intersection of _PolyLine's
|
|
* \param stepNb - current step nb
|
|
* \retval double - next step size
|
|
*/
|
|
//================================================================================
|
|
|
|
double _ViscousBuilder2D::fixCollisions( const int stepNb )
|
|
{
|
|
// look for intersections of _Segment's by intersecting _LayerEdge's with
|
|
// _Segment's
|
|
double newStep = 1e+100;
|
|
vector< const _Segment* > foundSegs;
|
|
_SegmentIntersection intersection;
|
|
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
|
|
{
|
|
_PolyLine& L1 = _polyLineVec[ iL1 ];
|
|
//if ( !L1._advancable ) continue;
|
|
for ( size_t iL2 = 0; iL2 < L1._reachableLines.size(); ++iL2 )
|
|
{
|
|
_PolyLine& L2 = * L1._reachableLines[ iL2 ];
|
|
for ( size_t iLE = L1.FirstLEdge(); iLE < L1._lEdges.size(); ++iLE )
|
|
{
|
|
_LayerEdge& LE1 = L1._lEdges[iLE];
|
|
foundSegs.clear();
|
|
L2._segTree->GetSegmentsNear( LE1._ray, foundSegs );
|
|
for ( size_t i = 0; i < foundSegs.size(); ++i )
|
|
if ( ! L1.IsAdjacent( *foundSegs[i] ) &&
|
|
intersection.Compute( *foundSegs[i], LE1._ray ))
|
|
{
|
|
const double dist2DToL2 = intersection._param2;
|
|
double newLen2D = dist2DToL2 / 2;
|
|
if ( newLen2D < 1.1 * LE1._length2D ) // collision!
|
|
{
|
|
if ( newLen2D < LE1._length2D )
|
|
{
|
|
if ( L1._advancable )
|
|
{
|
|
LE1.SetNewLength( newLen2D / LE1._len2dTo3dRatio );
|
|
L2._lEdges[ foundSegs[i]->_indexInLine ]._isBlocked = true;
|
|
L2._lEdges[ foundSegs[i]->_indexInLine + 1 ]._isBlocked = true;
|
|
}
|
|
else // here dist2DToL2 < 0 and LE1._length2D == 0
|
|
{
|
|
_LayerEdge LE2[2] = { L2._lEdges[ foundSegs[i]->_indexInLine ],
|
|
L2._lEdges[ foundSegs[i]->_indexInLine + 1 ] };
|
|
_Segment outSeg2( LE2[0]._uvOut, LE2[1]._uvOut );
|
|
intersection.Compute( outSeg2, LE1._ray );
|
|
newLen2D = intersection._param2 / 2;
|
|
|
|
LE2[0].SetNewLength( newLen2D / LE2[0]._len2dTo3dRatio );
|
|
LE2[0]._isBlocked = true;
|
|
LE2[1].SetNewLength( newLen2D / LE2[1]._len2dTo3dRatio );
|
|
LE2[1]._isBlocked = true;
|
|
}
|
|
}
|
|
LE1._isBlocked = true; // !! after SetNewLength()
|
|
}
|
|
else
|
|
{
|
|
double step2D = newLen2D - LE1._length2D;
|
|
double step = step2D / LE1._len2dTo3dRatio;
|
|
if ( step < newStep )
|
|
newStep = step;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return newStep;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Create new edges and shrink edges existing on a non-advancable _PolyLine
|
|
* adjacent to an advancable one.
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::shrink()
|
|
{
|
|
gp_Pnt2d uv; gp_Vec2d tangent;
|
|
_SegmentIntersection intersection;
|
|
double sign;
|
|
|
|
for ( size_t iL1 = 0; iL1 < _polyLineVec.size(); ++iL1 )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iL1 ]; // line with no layers
|
|
if ( L._advancable )
|
|
continue;
|
|
if ( !L._rightLine->_advancable && !L._leftLine->_advancable )
|
|
continue;
|
|
|
|
const TopoDS_Edge& E = L._wire->Edge ( L._edgeInd );
|
|
const int edgeID = L._wire->EdgeID ( L._edgeInd );
|
|
const double edgeLen = L._wire->EdgeLength( L._edgeInd );
|
|
Handle(Geom2d_Curve) pcurve = L._wire->Curve2d ( L._edgeInd );
|
|
const bool edgeReversed = ( E.Orientation() == TopAbs_REVERSED );
|
|
|
|
SMESH_MesherHelper helper( *_mesh ); // to create nodes and edges on E
|
|
helper.SetSubShape( E );
|
|
helper.SetElementsOnShape( true );
|
|
|
|
// Check a FACE adjacent to _face by E
|
|
bool existingNodesFound = false;
|
|
PShapeIteratorPtr faceIt = _helper.GetAncestors( E, *_mesh, TopAbs_FACE );
|
|
while ( const TopoDS_Shape* f = faceIt->next() )
|
|
if ( !_face.IsSame( *f ))
|
|
{
|
|
SMESH_ProxyMesh::Ptr pm = _ProxyMeshHolder::FindProxyMeshOfFace( *f, *_mesh );
|
|
if ( !pm || pm->NbProxySubMeshes() == 0 )
|
|
{
|
|
// There are no viscous layers on an adjacent FACE, clear it's 2D mesh
|
|
removeMeshFaces( *f );
|
|
}
|
|
else
|
|
{
|
|
// There are viscous layers on the adjacent FACE;
|
|
// look for already shrinked segments on E
|
|
const SMESH_ProxyMesh::SubMesh* adjEdgeSM = pm->GetProxySubMesh( E );
|
|
if ( adjEdgeSM && adjEdgeSM->NbElements() > 0 )
|
|
{
|
|
existingNodesFound = true;
|
|
|
|
// copy data of moved nodes to my _ProxyMeshOfFace
|
|
const UVPtStructVec& adjNodeData = adjEdgeSM->GetUVPtStructVec();
|
|
UVPtStructVec nodeDataVec( adjNodeData.size() );
|
|
for ( size_t iP = 0, iAdj = adjNodeData.size(); iP < nodeDataVec.size(); ++iP )
|
|
{
|
|
nodeDataVec[ iP ] = adjNodeData[ --iAdj ];
|
|
gp_Pnt2d uv = pcurve->Value( nodeDataVec[ iP ].param );
|
|
nodeDataVec[iP].u = uv.X();
|
|
nodeDataVec[iP].v = uv.Y();
|
|
nodeDataVec[iP].normParam = 1 - nodeDataVec[iP].normParam;
|
|
}
|
|
_ProxyMeshOfFace::_EdgeSubMesh* myEdgeSM = getProxyMesh()->GetEdgeSubMesh( edgeID );
|
|
myEdgeSM->SetUVPtStructVec( nodeDataVec );
|
|
|
|
// copy layer nodes
|
|
map< double, const SMDS_MeshNode* > u2layerNodes;
|
|
SMESH_Algo::GetSortedNodesOnEdge( getMeshDS(), E, /*skipMedium=*/true, u2layerNodes );
|
|
// u2layerNodes includes nodes on vertices, layer nodes and shrinked nodes
|
|
vector< std::pair< double, const SMDS_MeshNode* > > layerUNodes;
|
|
layerUNodes.resize( u2layerNodes.size() - 2 ); // skip vertex nodes
|
|
map< double, const SMDS_MeshNode* >::iterator u2n = u2layerNodes.begin();
|
|
size_t iBeg = 0, iEnd = layerUNodes.size() - 1, *pIndex = edgeReversed ? &iEnd : &iBeg;
|
|
for ( ++u2n; iBeg < u2layerNodes.size()-2; ++u2n, ++iBeg, --iEnd ) {
|
|
layerUNodes[ *pIndex ] = *u2n;
|
|
}
|
|
if ( L._leftLine->_advancable && layerUNodes.size() >= _hyp->GetNumberLayers() )
|
|
{
|
|
vector<gp_XY>& uvVec = L._lEdges.front()._uvRefined;
|
|
for ( int i = 0; i < _hyp->GetNumberLayers(); ++i ) {
|
|
L._leftNodes.push_back( layerUNodes[i].second );
|
|
uvVec.push_back ( pcurve->Value( layerUNodes[i].first ).XY() );
|
|
}
|
|
}
|
|
if ( L._rightLine->_advancable && layerUNodes.size() >= 2*_hyp->GetNumberLayers() )
|
|
{
|
|
vector<gp_XY>& uvVec = L._lEdges.back()._uvRefined;
|
|
for ( int i = 0, j = layerUNodes.size()-1; i < _hyp->GetNumberLayers(); ++i, --j ) {
|
|
L._rightNodes.push_back( layerUNodes[j].second );
|
|
uvVec.push_back ( pcurve->Value( layerUNodes[j].first ).XY() );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // loop on FACEs sharing E
|
|
|
|
if ( existingNodesFound )
|
|
continue; // nothing more to do in this case
|
|
|
|
double u1 = L._wire->FirstU( L._edgeInd ), uf = u1;
|
|
double u2 = L._wire->LastU ( L._edgeInd ), ul = u2;
|
|
|
|
// Get length of existing segments (from edge start to node) and their nodes
|
|
const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
|
|
UVPtStructVec nodeDataVec( & points[ L._firstPntInd ],
|
|
& points[ L._lastPntInd + 1 ]);
|
|
vector< double > segLengths( nodeDataVec.size() - 1 );
|
|
BRepAdaptor_Curve curve( E );
|
|
for ( size_t iP = 1; iP < nodeDataVec.size(); ++iP )
|
|
{
|
|
const double len = GCPnts_AbscissaPoint::Length( curve, uf, nodeDataVec[iP].param );
|
|
segLengths[ iP-1 ] = len;
|
|
}
|
|
|
|
// Before
|
|
// n1 n2 n3 n4
|
|
// x-----x-----x-----x-----
|
|
// | e1 e2 e3 e4
|
|
|
|
// After
|
|
// n1 n2 n3
|
|
// x-x-x-x-----x-----x----
|
|
// | | | | e1 e2 e3
|
|
|
|
// Move first and last parameters on EDGE (U of n1) according to layers' thickness
|
|
// and create nodes of layers on EDGE ( -x-x-x )
|
|
for ( int isR = 0; isR < 2; ++isR )
|
|
{
|
|
_PolyLine* L2 = isR ? L._rightLine : L._leftLine; // line with layers
|
|
if ( !L2->_advancable ) continue;
|
|
|
|
double & u = isR ? u2 : u1; // param to move
|
|
double u0 = isR ? ul : uf; // init value of the param to move
|
|
int iPEnd = isR ? nodeDataVec.size() - 1 : 0;
|
|
|
|
// try to find length of advancement along L by intersecting L with
|
|
// an adjacent _Segment of L2
|
|
|
|
double length2D;
|
|
sign = ( isR ^ edgeReversed ) ? -1. : 1.;
|
|
pcurve->D1( u, uv, tangent );
|
|
|
|
gp_Ax2d edgeRay( uv, tangent * sign );
|
|
const _Segment& seg2( isR ? L2->_segments.front() : L2->_segments.back() );
|
|
// make an elongated seg2
|
|
gp_XY seg2Vec( seg2.p2() - seg2.p1() );
|
|
gp_XY longSeg2p1 = seg2.p1() - 1000 * seg2Vec;
|
|
gp_XY longSeg2p2 = seg2.p2() + 1000 * seg2Vec;
|
|
_Segment longSeg2( longSeg2p1, longSeg2p2 );
|
|
if ( intersection.Compute( longSeg2, edgeRay )) // convex VERTEX
|
|
{
|
|
length2D = intersection._param2; // |L seg2
|
|
// | o---o---
|
|
// | / |
|
|
// |/ | L2
|
|
// x------x---
|
|
}
|
|
else // concave VERTEX // o-----o---
|
|
{ // \ |
|
|
// \ | L2
|
|
// x--x---
|
|
// /
|
|
// L /
|
|
length2D = ( isR ? L2->_lEdges.front() : L2->_lEdges.back() )._length2D;
|
|
}
|
|
// move u to the internal boundary of layers
|
|
u += length2D * sign;
|
|
nodeDataVec[ iPEnd ].param = u;
|
|
|
|
gp_Pnt2d newUV = pcurve->Value( u );
|
|
nodeDataVec[ iPEnd ].u = newUV.X();
|
|
nodeDataVec[ iPEnd ].v = newUV.Y();
|
|
|
|
// compute params of layers on L
|
|
vector<double> heights;
|
|
calcLayersHeight( u - u0, heights );
|
|
//
|
|
vector< double > params( heights.size() );
|
|
for ( size_t i = 0; i < params.size(); ++i )
|
|
params[ i ] = u0 + heights[ i ];
|
|
|
|
// create nodes of layers and edges between them
|
|
vector< const SMDS_MeshNode* >& layersNode = isR ? L._rightNodes : L._leftNodes;
|
|
vector<gp_XY>& nodeUV = ( isR ? L._lEdges.back() : L._lEdges[0] )._uvRefined;
|
|
nodeUV.resize ( _hyp->GetNumberLayers() );
|
|
layersNode.resize( _hyp->GetNumberLayers() );
|
|
const SMDS_MeshNode* vertexNode = nodeDataVec[ iPEnd ].node;
|
|
const SMDS_MeshNode * prevNode = vertexNode;
|
|
for ( size_t i = 0; i < params.size(); ++i )
|
|
{
|
|
gp_Pnt p = curve.Value( params[i] );
|
|
layersNode[ i ] = helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, params[i] );
|
|
nodeUV [ i ] = pcurve->Value( params[i] ).XY();
|
|
helper.AddEdge( prevNode, layersNode[ i ] );
|
|
prevNode = layersNode[ i ];
|
|
}
|
|
|
|
// replace a node on vertex by a node of last (most internal) layer
|
|
// in a segment on E
|
|
SMDS_ElemIteratorPtr segIt = vertexNode->GetInverseElementIterator( SMDSAbs_Edge );
|
|
const SMDS_MeshNode* segNodes[3];
|
|
while ( segIt->more() )
|
|
{
|
|
const SMDS_MeshElement* segment = segIt->next();
|
|
if ( segment->getshapeId() != edgeID ) continue;
|
|
|
|
const int nbNodes = segment->NbNodes();
|
|
for ( int i = 0; i < nbNodes; ++i )
|
|
{
|
|
const SMDS_MeshNode* n = segment->GetNode( i );
|
|
segNodes[ i ] = ( n == vertexNode ? layersNode.back() : n );
|
|
}
|
|
getMeshDS()->ChangeElementNodes( segment, segNodes, nbNodes );
|
|
break;
|
|
}
|
|
nodeDataVec[ iPEnd ].node = layersNode.back();
|
|
|
|
} // loop on the extremities of L
|
|
|
|
// Shrink edges to fit in between the layers at EDGE ends
|
|
|
|
const double newLength = GCPnts_AbscissaPoint::Length( curve, u1, u2 );
|
|
const double lenRatio = newLength / edgeLen * ( edgeReversed ? -1. : 1. );
|
|
for ( size_t iP = 1; iP < nodeDataVec.size()-1; ++iP )
|
|
{
|
|
const SMDS_MeshNode* oldNode = nodeDataVec[iP].node;
|
|
|
|
GCPnts_AbscissaPoint discret( curve, segLengths[iP-1] * lenRatio, u1 );
|
|
if ( !discret.IsDone() )
|
|
throw SALOME_Exception(LOCALIZED("GCPnts_AbscissaPoint failed"));
|
|
|
|
nodeDataVec[iP].param = discret.Parameter();
|
|
if ( oldNode->GetPosition()->GetTypeOfPosition() != SMDS_TOP_EDGE )
|
|
throw SALOME_Exception(SMESH_Comment("ViscousBuilder2D: not SMDS_TOP_EDGE node position: ")
|
|
<< oldNode->GetPosition()->GetTypeOfPosition()
|
|
<< " of node " << oldNode->GetID());
|
|
SMDS_EdgePosition* pos = static_cast<SMDS_EdgePosition*>( oldNode->GetPosition() );
|
|
pos->SetUParameter( nodeDataVec[iP].param );
|
|
|
|
gp_Pnt newP = curve.Value( nodeDataVec[iP].param );
|
|
getMeshDS()->MoveNode( oldNode, newP.X(), newP.Y(), newP.Z() );
|
|
|
|
gp_Pnt2d newUV = pcurve->Value( nodeDataVec[iP].param ).XY();
|
|
nodeDataVec[iP].u = newUV.X();
|
|
nodeDataVec[iP].v = newUV.Y();
|
|
nodeDataVec[iP].normParam = segLengths[iP-1] / edgeLen;
|
|
nodeDataVec[iP].x = segLengths[iP-1] / edgeLen;
|
|
nodeDataVec[iP].y = segLengths[iP-1] / edgeLen;
|
|
}
|
|
|
|
// create a proxy sub-mesh containing the moved nodes
|
|
_ProxyMeshOfFace::_EdgeSubMesh* edgeSM = getProxyMesh()->GetEdgeSubMesh( edgeID );
|
|
edgeSM->SetUVPtStructVec( nodeDataVec );
|
|
|
|
// set a sub-mesh event listener to remove just created edges when
|
|
// "ViscousLayers2D" hypothesis is modified
|
|
VISCOUS_3D::ToClearSubWithMain( _mesh->GetSubMesh( E ), _face );
|
|
|
|
} // loop on _polyLineVec
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Make faces
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _ViscousBuilder2D::refine()
|
|
{
|
|
// remove elements and nodes from _face
|
|
removeMeshFaces( _face );
|
|
|
|
// store a proxyMesh in a sub-mesh
|
|
// make faces on each _PolyLine
|
|
vector< double > layersHeight;
|
|
double prevLen2D = -1;
|
|
for ( size_t iL = 0; iL < _polyLineVec.size(); ++iL )
|
|
{
|
|
_PolyLine& L = _polyLineVec[ iL ];
|
|
if ( !L._advancable ) continue;
|
|
|
|
//if ( L._leftLine->_advancable ) L._lEdges[0] = L._leftLine->_lEdges.back();
|
|
|
|
// calculate intermediate UV on _LayerEdge's ( _LayerEdge::_uvRefined )
|
|
size_t iLE = 0, nbLE = L._lEdges.size();
|
|
if ( /*!L._leftLine->_advancable &&*/ L.IsCommonEdgeShared( *L._leftLine ))
|
|
{
|
|
L._lEdges[0] = L._leftLine->_lEdges.back();
|
|
iLE += int( !L._leftLine->_advancable );
|
|
}
|
|
if ( !L._rightLine->_advancable && L.IsCommonEdgeShared( *L._rightLine ))
|
|
{
|
|
L._lEdges.back() = L._rightLine->_lEdges[0];
|
|
--nbLE;
|
|
}
|
|
for ( ; iLE < nbLE; ++iLE )
|
|
{
|
|
_LayerEdge& LE = L._lEdges[iLE];
|
|
if ( fabs( LE._length2D - prevLen2D ) > LE._length2D / 100. )
|
|
{
|
|
calcLayersHeight( LE._length2D, layersHeight );
|
|
prevLen2D = LE._length2D;
|
|
}
|
|
for ( size_t i = 0; i < layersHeight.size(); ++i )
|
|
LE._uvRefined.push_back( LE._uvOut + LE._normal2D * layersHeight[i] );
|
|
}
|
|
|
|
// nodes to create 1 layer of faces
|
|
vector< const SMDS_MeshNode* > outerNodes( L._lastPntInd - L._firstPntInd + 1 );
|
|
vector< const SMDS_MeshNode* > innerNodes( L._lastPntInd - L._firstPntInd + 1 );
|
|
|
|
// initialize outerNodes by node on the L._wire
|
|
const vector<UVPtStruct>& points = L._wire->GetUVPtStruct();
|
|
for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
|
|
outerNodes[ i-L._firstPntInd ] = points[i].node;
|
|
|
|
// compute normalized [0;1] node parameters of outerNodes
|
|
vector< double > normPar( L._lastPntInd - L._firstPntInd + 1 );
|
|
const double
|
|
normF = L._wire->FirstParameter( L._edgeInd ),
|
|
normL = L._wire->LastParameter ( L._edgeInd ),
|
|
normDist = normL - normF;
|
|
for ( int i = L._firstPntInd; i <= L._lastPntInd; ++i )
|
|
normPar[ i - L._firstPntInd ] = ( points[i].normParam - normF ) / normDist;
|
|
|
|
// Create layers of faces
|
|
|
|
int hasLeftNode = ( !L._leftLine->_rightNodes.empty() );
|
|
int hasRightNode = ( !L._rightLine->_leftNodes.empty() );
|
|
size_t iS, iN0 = hasLeftNode, nbN = innerNodes.size() - hasRightNode;
|
|
L._leftNodes .resize( _hyp->GetNumberLayers() );
|
|
L._rightNodes.resize( _hyp->GetNumberLayers() );
|
|
vector< double > segLen( L._lEdges.size() );
|
|
segLen[0] = 0.0;
|
|
for ( int iF = 0; iF < _hyp->GetNumberLayers(); ++iF ) // loop on layers of faces
|
|
{
|
|
// get accumulated length of intermediate segments
|
|
for ( iS = 1; iS < segLen.size(); ++iS )
|
|
{
|
|
double sLen = (L._lEdges[iS-1]._uvRefined[iF] - L._lEdges[iS]._uvRefined[iF] ).Modulus();
|
|
segLen[iS] = segLen[iS-1] + sLen;
|
|
}
|
|
// normalize the accumulated length
|
|
for ( iS = 1; iS < segLen.size(); ++iS )
|
|
segLen[iS] /= segLen.back();
|
|
|
|
// create innerNodes
|
|
iS = 0;
|
|
for ( size_t i = iN0; i < nbN; ++i )
|
|
{
|
|
while ( normPar[i] > segLen[iS+1] )
|
|
++iS;
|
|
double r = ( normPar[i] - segLen[iS] ) / ( segLen[iS+1] - segLen[iS] );
|
|
gp_XY uv = r * L._lEdges[iS+1]._uvRefined[iF] + (1-r) * L._lEdges[iS]._uvRefined[iF];
|
|
gp_Pnt p = _surface->Value( uv.X(), uv.Y() );
|
|
innerNodes[i] = _helper.AddNode( p.X(), p.Y(), p.Z(), /*id=*/0, uv.X(), uv.Y() );
|
|
}
|
|
if ( hasLeftNode ) innerNodes.front() = L._leftLine->_rightNodes[ iF ];
|
|
if ( hasRightNode ) innerNodes.back() = L._rightLine->_leftNodes[ iF ];
|
|
L._rightNodes[ iF ] = innerNodes.back();
|
|
L._leftNodes [ iF ] = innerNodes.front();
|
|
|
|
// create faces
|
|
// TODO care of orientation
|
|
for ( size_t i = 1; i < innerNodes.size(); ++i )
|
|
_helper.AddFace( outerNodes[ i-1 ], outerNodes[ i ],
|
|
innerNodes[ i ], innerNodes[ i-1 ]);
|
|
|
|
outerNodes.swap( innerNodes );
|
|
}
|
|
|
|
// Fill the _ProxyMeshOfFace
|
|
|
|
UVPtStructVec nodeDataVec( outerNodes.size() ); // outerNodes swapped with innerNodes
|
|
for ( size_t i = 0; i < outerNodes.size(); ++i )
|
|
{
|
|
gp_XY uv = _helper.GetNodeUV( _face, outerNodes[i] );
|
|
nodeDataVec[i].u = uv.X();
|
|
nodeDataVec[i].v = uv.Y();
|
|
nodeDataVec[i].node = outerNodes[i];
|
|
nodeDataVec[i].param = points [i + L._firstPntInd].param;
|
|
nodeDataVec[i].normParam = normPar[i];
|
|
nodeDataVec[i].x = normPar[i];
|
|
nodeDataVec[i].y = normPar[i];
|
|
}
|
|
nodeDataVec.front().param = L._wire->FirstU( L._edgeInd );
|
|
nodeDataVec.back() .param = L._wire->LastU ( L._edgeInd );
|
|
|
|
_ProxyMeshOfFace::_EdgeSubMesh* edgeSM
|
|
= getProxyMesh()->GetEdgeSubMesh( L._wire->EdgeID( L._edgeInd ));
|
|
edgeSM->SetUVPtStructVec( nodeDataVec );
|
|
|
|
} // loop on _PolyLine's
|
|
|
|
return true;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Remove elements and nodes from a face
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder2D::removeMeshFaces(const TopoDS_Shape& face)
|
|
{
|
|
// we don't use SMESH_subMesh::ComputeStateEngine() because of a listener
|
|
// which clears EDGEs together with _face.
|
|
if ( SMESHDS_SubMesh* sm = getMeshDS()->MeshElements( face ))
|
|
{
|
|
SMDS_ElemIteratorPtr eIt = sm->GetElements();
|
|
while ( eIt->more() ) getMeshDS()->RemoveFreeElement( eIt->next(), sm );
|
|
SMDS_NodeIteratorPtr nIt = sm->GetNodes();
|
|
while ( nIt->more() ) getMeshDS()->RemoveFreeNode( nIt->next(), sm );
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Creates a _ProxyMeshOfFace and store it in a sub-mesh of FACE
|
|
*/
|
|
//================================================================================
|
|
|
|
_ProxyMeshOfFace* _ViscousBuilder2D::getProxyMesh()
|
|
{
|
|
if ( _proxyMesh.get() )
|
|
return (_ProxyMeshOfFace*) _proxyMesh.get();
|
|
|
|
_ProxyMeshOfFace* proxyMeshOfFace = new _ProxyMeshOfFace( *_mesh );
|
|
_proxyMesh.reset( proxyMeshOfFace );
|
|
new _ProxyMeshHolder( _face, _proxyMesh );
|
|
|
|
return proxyMeshOfFace;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Calculate height of layers for the given thickness. Height is measured
|
|
* from the outer boundary
|
|
*/
|
|
//================================================================================
|
|
|
|
void _ViscousBuilder2D::calcLayersHeight(const double totalThick,
|
|
vector<double>& heights)
|
|
{
|
|
heights.resize( _hyp->GetNumberLayers() );
|
|
double h0;
|
|
if ( _fPowN - 1 <= numeric_limits<double>::min() )
|
|
h0 = totalThick / _hyp->GetNumberLayers();
|
|
else
|
|
h0 = totalThick * ( _hyp->GetStretchFactor() - 1 )/( _fPowN - 1 );
|
|
|
|
double hSum = 0, hi = h0;
|
|
for ( int i = 0; i < _hyp->GetNumberLayers(); ++i )
|
|
{
|
|
hSum += hi;
|
|
heights[ i ] = hSum;
|
|
hi *= _hyp->GetStretchFactor();
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Elongate this _LayerEdge
|
|
*/
|
|
//================================================================================
|
|
|
|
void _LayerEdge::SetNewLength( const double length3D )
|
|
{
|
|
if ( _isBlocked ) return;
|
|
|
|
//_uvInPrev = _uvIn;
|
|
_length2D = length3D * _len2dTo3dRatio;
|
|
_uvIn = _uvOut + _normal2D * _length2D;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return true if _LayerEdge at a common VERTEX between EDGEs with
|
|
* and w/o layer is common to the both _PolyLine's. If this is true, nodes
|
|
* of this _LayerEdge are inflated along a _PolyLine w/o layer, else the nodes
|
|
* are inflated along _normal2D of _LayerEdge of EDGE with layer
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _PolyLine::IsCommonEdgeShared( const _PolyLine& other )
|
|
{
|
|
const double tol = 1e-30;
|
|
|
|
if ( & other == _leftLine )
|
|
return _lEdges[0]._normal2D.IsEqual( _leftLine->_lEdges.back()._normal2D, tol );
|
|
|
|
if ( & other == _rightLine )
|
|
return _lEdges.back()._normal2D.IsEqual( _rightLine->_lEdges[0]._normal2D, tol );
|
|
|
|
return false;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Constructor of SegmentTree
|
|
*/
|
|
//================================================================================
|
|
|
|
_SegmentTree::_SegmentTree( const vector< _Segment >& segments ):
|
|
SMESH_Quadtree()
|
|
{
|
|
_segments.resize( segments.size() );
|
|
for ( size_t i = 0; i < segments.size(); ++i )
|
|
_segments[i].Set( segments[i] );
|
|
|
|
compute();
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return the maximal bnd box
|
|
*/
|
|
//================================================================================
|
|
|
|
_SegmentTree::box_type* _SegmentTree::buildRootBox()
|
|
{
|
|
_SegmentTree::box_type* box = new _SegmentTree::box_type;
|
|
for ( size_t i = 0; i < _segments.size(); ++i )
|
|
{
|
|
box->Add( *_segments[i]._seg->_uv[0] );
|
|
box->Add( *_segments[i]._seg->_uv[1] );
|
|
}
|
|
return box;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Redistrubute _segments among children
|
|
*/
|
|
//================================================================================
|
|
|
|
void _SegmentTree::buildChildrenData()
|
|
{
|
|
for ( int i = 0; i < _segments.size(); ++i )
|
|
for (int j = 0; j < nbChildren(); j++)
|
|
if ( !myChildren[j]->getBox()->IsOut( *_segments[i]._seg->_uv[0],
|
|
*_segments[i]._seg->_uv[1] ))
|
|
((_SegmentTree*)myChildren[j])->_segments.push_back( _segments[i]);
|
|
|
|
SMESHUtils::FreeVector( _segments ); // = _elements.clear() + free memory
|
|
|
|
for (int j = 0; j < nbChildren(); j++)
|
|
{
|
|
_SegmentTree* child = static_cast<_SegmentTree*>( myChildren[j]);
|
|
child->myIsLeaf = ( child->_segments.size() <= maxNbSegInLeaf() );
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return elements which can include the point
|
|
*/
|
|
//================================================================================
|
|
|
|
void _SegmentTree::GetSegmentsNear( const _Segment& seg,
|
|
vector< const _Segment* >& found )
|
|
{
|
|
if ( getBox()->IsOut( *seg._uv[0], *seg._uv[1] ))
|
|
return;
|
|
|
|
if ( isLeaf() )
|
|
{
|
|
for ( int i = 0; i < _segments.size(); ++i )
|
|
if ( !_segments[i].IsOut( seg ))
|
|
found.push_back( _segments[i]._seg );
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < nbChildren(); i++)
|
|
((_SegmentTree*) myChildren[i])->GetSegmentsNear( seg, found );
|
|
}
|
|
}
|
|
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Return segments intersecting a ray
|
|
*/
|
|
//================================================================================
|
|
|
|
void _SegmentTree::GetSegmentsNear( const gp_Ax2d& ray,
|
|
vector< const _Segment* >& found )
|
|
{
|
|
if ( getBox()->IsOut( ray ))
|
|
return;
|
|
|
|
if ( isLeaf() )
|
|
{
|
|
for ( int i = 0; i < _segments.size(); ++i )
|
|
if ( !_segments[i].IsOut( ray ))
|
|
found.push_back( _segments[i]._seg );
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < nbChildren(); i++)
|
|
((_SegmentTree*) myChildren[i])->GetSegmentsNear( ray, found );
|
|
}
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Classify a _Segment
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _SegmentTree::_SegBox::IsOut( const _Segment& seg ) const
|
|
{
|
|
const double eps = std::numeric_limits<double>::min();
|
|
for ( int iC = 0; iC < 2; ++iC )
|
|
{
|
|
if ( seg._uv[0]->Coord(iC+1) < _seg->_uv[ _iMin[iC]]->Coord(iC+1)+eps &&
|
|
seg._uv[1]->Coord(iC+1) < _seg->_uv[ _iMin[iC]]->Coord(iC+1)+eps )
|
|
return true;
|
|
if ( seg._uv[0]->Coord(iC+1) > _seg->_uv[ 1-_iMin[iC]]->Coord(iC+1)-eps &&
|
|
seg._uv[1]->Coord(iC+1) > _seg->_uv[ 1-_iMin[iC]]->Coord(iC+1)-eps )
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//================================================================================
|
|
/*!
|
|
* \brief Classify a ray
|
|
*/
|
|
//================================================================================
|
|
|
|
bool _SegmentTree::_SegBox::IsOut( const gp_Ax2d& ray ) const
|
|
{
|
|
double distBoxCenter2Ray =
|
|
ray.Direction().XY() ^ ( ray.Location().XY() - 0.5 * (*_seg->_uv[0] + *_seg->_uv[1]));
|
|
|
|
double boxSectionDiam =
|
|
Abs( ray.Direction().X() ) * ( _seg->_uv[1-_iMin[1]]->Y() - _seg->_uv[_iMin[1]]->Y() ) +
|
|
Abs( ray.Direction().Y() ) * ( _seg->_uv[1-_iMin[0]]->X() - _seg->_uv[_iMin[0]]->X() );
|
|
|
|
return Abs( distBoxCenter2Ray ) > 0.5 * boxSectionDiam;
|
|
}
|